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Abstract Properties of neural controllers for closed-loop
sensorimotor behavior can be inferred with system iden-
tification. Under the standard paradigm, the closed-loop
system is perturbed (input), measurements are taken
(output), and the relationship between input and output
reveals features of the system under study. Here we show
that under common assumptions made about such sys-
tems (e.g. the system implements optimal control with
a penalty on mechanical, but not sensory, states) im-
portant aspects of the neural controller (its zeros mask
the modes of the sensors) remain hidden from standard
system identification techniques. Only by perturbing or
measuring the closed-loop system “between” the sen-
sor and the control can these features be exposed with
closed-loop system identification methods; while uncom-
mon, there exist noninvasive techniques such as galvanic
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vestibular stimulation that perturb between sensor and
controller in this way.

1 Introduction

How do nervous systems transform sensory signals into
motor commands for control? Engineering analyses, such
as closed-loop system identification (system ID), promise
to help answer this question. We focus in this paper
on sensorimotor stabilization behaviors because they are
particularly amenable to system ID. In these behaviors,
animals robustly, automatically, and repeatably modu-
late muscle commands to drive sensory signals to de-
sired equilibria (or limit cycles). A fitted model of an an-
imal’s dynamical closed-loop response to a moving sen-
sory scene can reveal features of the sensorimotor pro-
cessing necessary to perform the stabilization behavior
(Cowan and Fortune 2007).

Numerous systems in biology involve sensory guided
stabilization of a mechanical system. For example, cock-
roaches follow along walls using their antenna by steer-
ing so as to stabilize the antennal tactile measurement
(Camhi and Johnson 1999), which can be modeled as a
sensorimotor stabilization task (Cowan et al 2006; Lee
et al 2008). Weakly electric knifefish swim forward and
backward to maintain their position relative to a longi-
tudinally moving refuge (Rose and Canfield 1993) which
can exploited to empirically determine the closed-loop
sensorimotor transfer function (Cowan and Fortune 2007).
Likewise, honeybees balance optic flow to remain in the
center of a narrow passageway (Srinivasan et al 1999,
1991; Si et al 2003). Similar experimentally tractable
sensorimotor stabilization behaviors occur in blowflies
(Kalb et al 2006; Balint and Dickinson 2004; Boeddeker
and Egelhaaf 2005) and hawkmoths (Frye 2001; Spray-
berry and Daniel 2007).

While our results are relevant to the aforementioned
animal systems, the principle motivation and focus of
our paper is bipedal standing balance in humans. Like
the examples above, bipedal standing balance occurs in a
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closed sensorimotor loop (Horak and Macpherson 1996;
Kuo 1995; van der Kooij et al 2001; Kiemel et al 2002;
Carver et al 2005) (see Figure 1). For this system, we
identify three components of this loop: the controller,
N , the body, G, and the sensors, H . For human balance,
N is the central nervous system, G is a multilink inverted
pendulum (van der Kooij et al 1999; Kuo 2005) actuated
by muscles, and H is an array of vestibular, visual and
somatosensory receptors (Horak and Macpherson 1996;
Kuo 2005). The signals between pairs of “boxes” can
be measured, such as with electromyogram recordings or
force measurements, u0 (Fitzpatrick et al 1996; van der
Kooij et al 2005), body sway, z0 (Oie et al 2002; Kiemel
et al 2002), or neurophysiological recording, y0 (Ram-
charitar et al 2006). Of course, the available measure-
ments will determine other modelling choices: for exam-
ple if G includes muscle dynamics, then u1 cannot rep-
resent force. Likewise the signals can be perturbed, such
as with muscle stimulation (Sponberg et al 2008) or me-
chanical perturbation (Jindrich and Full 2002), wu, with
visual scene motion wz (Oie et al 2002; Ravaioli et al
2005), or with a galvanic stimulus wy (Fitzpatrick et al
1996). Of course, these perturbations must be delivered
in closed loop, as the human or animal is performing the
behavior under study.

By specifying known perturbations and using closed-
loop system identification (Kiemel et al 2002; van der
Helm et al 2002), researchers can create mathematical
models for the individual components N , G, and H .
Methods for identifying these components other than
closed-loop system identification, for example “breaking
the loop,” have been explored in other contexts such as
the fly optomotor response (Heisenberg and Wolf 1988).
These experiments have not been possible for human
posture control because experiments with humans must
obviously be noninvasive. Breaking the loop has several
other disadvantages: in particular the subsystem under
investigation may operate in a different (non-physiological)
regime. Nevertheless, some related experimental manip-
ulations with humans are used. For example, sway refer-
encing uses feedback to attenuate ankle proprioception
and/or vision (Nashner 1981; Nashner et al 1982; Allum
et al 2002). But these manipulations fall short of open-
ing the feedback loop because vestibular information re-
mains present. Moreover, these experiments cannot be
performed on patients with loss of vestibular function
because the patients fall.

Posture control is often modeled as a linear system
(Kuo 1995, 2005; Kiemel et al 2002; van Soest and Rozen-
daal 2008). Define Wz , Wy, and Wu, to be the Laplace
transform the inputs, respectively, wz , wy, and wu. Simi-
larly, define Z0, Y0, and U0 to be the Laplace transform of
the outputs, respectively, z0, y0, and u0. Then the trans-
fer functions from input to output can be calculated and

written as

Z0 = (I − GNH)−1(GNWy + GWu + GNHWz) (1)

Y0 = (I − HGN)−1(HGNWy + HGWu + HWz) (2)

U0 = (I − NHG)−1(NWy + NHGWu + NHWz) (3)

where N = N(s), G = G(s), and H = H(s) are the
transfer functions of the body, sensors, and controller,
respectively.

We will show that under assumptions commonly made
about posture control, zeros of N(s) cancel the poles
of H(s). A common set of assumptions (stronger than
needed) that imply these cancellations are (1) the system
operates in the classical linear-quadratic-Gaussian con-
text, (2) the nervous system implements optimal control
based on a correct internal model of the plant, (3) the
internal plant model includes a model of organism’s sen-
sors, but (4) the optimality criterion does not penalize
the sensor states.

In the classical linear-quadratic-Gaussian (LQG) con-
text, a controller tries to regulate the setpoint of a linear
system (described below using state matrices A, B, C
and D) corrupted by Gaussian noise while minimizing
a quadratic cost function (called J below). The optimal
controller uses feedback from a optimal state estimator
(a Kalman filter). The feedback gains (called K) depend
on the optimality criterion but the optimal state estima-
tor does not. The optimal state estimator depends on an

internal model of the plant (with state matrices Â, B̂,

Ĉ, and D̂), as well as the Kalman gains L. The Kalman
gains are determined by the internal model, and the
statistics of the noise. A good reference with figures for
optimal control in the context of human posture is Kuo
(2005). A family of state estimators, called Luenberger
obervers, can be obtained by relaxing the requirement
that the observer gains L, optimal.. Our cancellation re-
sult holds for any choice of L. Moreover, our results do
not require that the nervous system’s internal model be
correct, but cancellations will occur only for the modes
of the sensors that are correctly modelled in the ner-
vous system. Our meaning of the phrase “correctly mod-
elled” is subtle, especially in the case of multiple-input
multiple-output systems, but it will be made precise be-
low.

Under the scenario we have outlined above, in order
to detect the poles of the sensor with closed-loop sys-
tem identification, the system must be measured between
H(s) and N(s) or perturbed between H(s) and N(s)—
otherwise sensor dynamics are masked in the closed loop
by the pole-zero cancellations resulting from the series
connection N(s)H(s). More precisely, Proposition 2 (be-
low) shows that the pole-zero cancellations must occur
in transfer functions for Z0 and U0 (i.e. in (1) and (3)).
Thus, the only way to avoid the cancellation is to mea-
sure between H and N . Alternatively, however, perturb-
ing between H and N may also prove useful: we show
that in a simple example a double zero appears in the
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transfer functions from Wy to Z0 and from Wy to U0. Im-
portantly, this double zero appears at the masked pole of
H and one zero remains uncancelled in the closed loop.
Thus, with a perturbation at wy sensory dynamics have
an effect that is in principle measurable in the closed
loop, even without measuring y0. These results suggest
that to fully disentangle the respective contributions of
sensory dynamics and downstream sensorimotor control,
experiments must be designed to somehow access the sig-
nal between the two processes (Lee et al 2008).

2 Pole-Zero Cancellation in a SISO System

Suppose that body and sensor systems, G and H , are
both linear, time-invariant, dynamical systems realized
in state space as

G :

{

ẋb = AGxb + BGu

z = CGxb + DGu
(4)

H :

{

ẋs = AHxs + BHz

y = CHxs + DHz
(5)

Here, xb is the body state vector and xs is the sensor
state vector; these vectors are of arbitrary (finite) dimen-
sion. We have dropped the subscripts on the signals u, z
and y, because for the purposes of the present discussion
(i.e. for deriving the controller with a zero that cancels
a mode of H) we can assume that no perturbations are
delivered: wu = wz = wy = 0, so that u0 = u1 = u,
etc. The plant, the series connection between G and H ,
is given by the system

HG :

{

ẋ = Ax + Bu

y = Cx + Du
(6)

where x = (xT
b , xT

s )T is the concatenated vector of state
variables. A simple calculation shows that

A =

[

AG 0
BHCG AH

]

, B =

[

BG

BHDG

]

, (7)

C =
[

DHCG CH

]

, D = DHDG. (8)

We adopt the increasingly popular view (Todorov and
Jordan 2002; Bhushan and Shadmehr 1999; Kuo 2005,
1995; Kiemel et al 2002; van der Kooij et al 2001) that
the animal’s neural controller N takes the form of (opti-
mal) feedback from a state estimator. In particular, we
presume a linear, time-invariant, observer-based neural
control system:

N :











˙̂x = Âx̂ + B̂u + L(y − ŷ)

ŷ = Ĉx̂ + D̂u

u = −Kx̂

(9)

where L is the observer error feedback gain, K is the
state feedback gain, and (Â, B̂, Ĉ, D̂) is nervous system’s

model of the plant, HG in (6). Up to now, we have made
no assumptions about the number of inputs and outputs
of the various subsystems (except that they are internally
compatible), the structure of the plant model, nor the
optimality criteria used to select L and K.

The purpose of the remainder of this section is to il-
lustrate, via a simple example, the more general result
presented in Section 3. Toward that end, further suppose
that the plant (6) is single-input–single-output (SISO)
and that the actual sensor system H in (5) has a pole
(perhaps one of many) at the value −α. The SISO as-
sumption forces the signals u and y to have dimension
one. We make no assumptions about the dimension of z,
the signal between the body and the sensors.

For illustrative purposes, assume the observer is based
on the following model of the plant:

Â =

[

γ̂ 0

β̂ −α̂

]

, B̂ =

[

b̂b

b̂s

]

,

Ĉ =
[

ĉb ĉs

]

, D̂ = d̂,

(10)

where γ̂, β̂, α̂ are all scalars, i.e. the observer makes the
possibly erroneous assumption that the plant is second
order. We notate the state space matrices for the ob-
server’s model of the plant with hats to distinguish them
from the actual state space matrices of the plant—we al-
low the two sets of matrices to be different. The compo-
nents of the state of this internal model are the estimated
body state x̂b and estimated sensor state x̂s. We allow
the estimator’s model to be incorrect both in parame-
ters and in number of states. In this SISO example, the
internal models of both G and H are first order, but we
emphasize that we have made no assumptions about the
orders of the true G and H—they could potentially be
much larger than one. The zero that appears in the up-
per right corner of Â follows from the series connection
between G and H . Our choice of internal model implies
that the controller knows the plant has this structure.
Finally our internal model of the plant assumes that the
sensor system has a pole at the value −α̂.

In this illustrative example, the observer-based con-
trol (9) reduces to

N :

{

˙̂x = F x̂ + Ly

u = −Kx̂
(11)

where

F = Â − B̂K − LĈ + LD̂K. (12)

We do not yet specify the elements of the matrices K and
L, however compatibility with our previous assumptions
determines their dimensions:

L =

[

lb
ls

]

, K =
[

kb ks

]

. (13)

We make two additional assumptions, both also hav-
ing analogues in the general result. First, we assume
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Fig. 1 Closed-loop sensorimotor regulation with perturbations and measurements. The series connection HG is called the
plant.

ks = 0, or in general, that the feedback does not depend
upon the estimated sensor state variable. This assump-
tion, commonly made by postural modellers (Kuo 2005;
van der Kooij et al 2001) will be justified in the next sec-
tion (Proposition 1) as a consequence of optimal control
with a cost function that involves only mechanical states
and not sensor states. Second, we assume α̂ = α, namely
that the sensor system H actually has a pole where the
internal model assumes.

We now verify that the open-loop transfer function
of this controller is given by

N(s) = −K(sI − F )−1L =
−kblb(s + α̂)

s2 + η1s + η2

(14)

for some constants η1 and η2 that depend upon all pa-
rameters of the controller (including α̂).

To prove this statement, we write the matrix F in
terms of its components:

F =

[

F11 F12

F21 F22

]

(15)

Now we use this representation of F , and the formula for
the inverse of a 2 by 2 matrix, to expand (14):

N(s) =
[

kb 0
]

[

s − F22 F12

F21 s − F11

] [

lb
ls

]

× (det(sI − F ))−1

(16)

Using that ks = 0, we expand the second column of F :
[

F12

F22

]

=

[

−lbĉs

−α̂ − lsĉs

]

(17)

It can now be verified that that the numerator of N(s)
is kblb(s + α̂) and that the denominator of N(s) is s2

−

s(F11 + F22) + (F11F22 − F12F21), as claimed.
This transfer function has a single zero at −α̂. But

we have assumed that H has a pole at −α and that the
internal model knows this, i.e. α̂ = α. A zero in N coin-
ciding with a pole in H implies a pole-zero cancellation

in the closed loop when the measurement is taken at u0

or z0. Thus, the controller masks the sensor pole at −α.
Our masking result follows from a few simple assump-
tions that allow the internal model to be wrong in many
respects.

Even if the signal cannot be measured between H and
N , there is some hope of identifying the sensor dynamics
from perturbations between these two blocks. Consider
the transfer functions from Wy to U0 and Wy to Z0,
(embedded in (3) and (1), respectively). Write

H(s) =
H̃(s)

s + α
(18)

N(s) = Ñ(s)(s + α) (19)

Becase H(s) and N(s) are rational transfer functions and
each has a factor of (s + α) (in, respectively, the denom-

inator and numerator) H̃(s) and Ñ(s) represent, respec-
tively, H(s) and N(s) separated from the factor (s + α).
The purpose of this manipulation is to demonstrate the
cancellation between the factors of (s+α) and, in partic-
ular, where those factors remain uncancelled. With these
substitutions and setting wz and wu to zero yields the
following transfer functions

Z0 = (I − GÑH̃)−1GÑ(s + α)Wy (20)

U0 = (I − ÑH̃G)−1Ñ(s + α)Wy (21)

Thus, an uncancelled zero appears at the (open-loop)
sensor pole in the transfer functions from Wy to Z0 and
from Wy to U0.

3 The General Case

We assume G(s), H(s) and N(s) are given by (4) through
(9), except that now we make no assumptions about the
dimensions of u, y, xb, xs or x̂. In particular, we allow
the plant and internal plant model to both be multiple
input and multiple output (MIMO). The internal plant
model can still be wrong both in parametrization and in
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numbers of states, but we assume x̂ concatenates esti-
mated states for the body, x̂b, with estimated states for
the sensors, x̂s.

Recall that the plant refers to the series connection
of the body, G, and sensors, H , which has the following
block structure:

A =

[

Ab 0
Asb As

]

B =

[

Bb

Bs

]

(22)

C =
[

Cb Cs

]

D =
[

Dsb

]

(23)

Here (22) and (23) restate (7) and (8), adopting a
new notation: subscripts b and s denote the position of
the corresponding blocks in the plant model matrices A,
B, C, and D.

The nervous system’s internal model of the plant has
an analogous block structure implied by the series con-
nection between G and H , known to the nervous system.
Specifically,

Â =

[

Âb 0

Âsb Âs

]

B̂ =

[

B̂b

B̂s

]

(24)

Ĉ =
[

Ĉb Ĉs

]

D̂ =
[

D̂sb

]

(25)

We reiterate that neither the elements, nor the dimen-
sions, of the internal plant model’s matrices (24) and (25)
need be the same as the corresponding quantities for the
actual plant model, (22) and (23), except that the upper
right zero block of the plant A matrix is known by the
nervous system.

As before, we assume N(s) implements state feedback
based on a Luenberger observer (9) with the form

N :

{

˙̂x = F x̂ + Ly

u = −Kx̂
(26)

As before, F = Â − (B̂ − LD̂)K − LĈ. Moreover we
assume that the dimensions of L and K are compatible
in (26). These matrices have block structure:

L =

[

Lb

Ls

]

K =
[

Kb Ks

]

(27)

The matrix L can chosen so that the observer is
a Kalman filter, making x̂ estimate the state x opti-
mally with respect to the internal model and the as-
sumed statistics of Gaussian noise. Moreover, the matrix
K can be chosen to provide optimal control with respect
a quadratic criterion, making the observer an optimal
linear-quadratic-gaussian controller. We do not explic-
itly represent noise in our equations, but we do allow for
noise. Specifically, noise could corrupt the signals wy,
wu, and wz , in Figure 1. If the internal model is correct
and K and L are chosen appropriately (with respect to
a quadratic criterion), then in the presense of the noise,
our controller performs better than any other with re-
spect to the chosen criterion.

We emphasize that our results do not depend on the
assumption that L and K are chosen optimally. However,
as in the SISO case of Section 2, we do assume that there
is no feedback directly from the sensory states, namely
Ks = 0. This would be the case assuming a quadratic
optimal controller with no penalty on the sensory states,
as established by the following result.

Proposition 1 Suppose K is the unique feedback gain
that optimizes the quadratic cost function

J =

∫

∞

0

(xT Q x + uT R u)dt, (28)

where Q and R are symmetric matricies, Q is positive-
semidefinite, and R is positive-definite. Suppose further
that J does not depend upon sensor variables, (A, B) is
stabilizable and (A, Q) is detectable. Then Ks = 0.

Proof The feedback gain K satisfies

K = R−1BT S, (29)

where S is the unique symmetric positive-semidefinite
solution to the algebraic Riccati equation (Bryson and
Ho 1975):

−AT S − SA + SBR−1BT S − Q = 0. (30)

The block structure of x (body, sensor) implies a block
structure for Q. Because the objective function does not
depend upon the sensor variables, Q has the following
block structure:

Q =

[

Qb 0
0 0

]

. (31)

Note that this assumption would follow from a hypothe-
sis that postural control system has evolved to stabilize
the body, not the sensors. Given this structure for Q, a
simple calculation verifies that S is given in block struc-
ture by

S =

[

Sb 0
0 0

]

, (32)

where Sb is the unique positive semidefinite that satisfies

−AT
GSb − SbAG + SbBGR−1BT

GSb − Qb = 0, (33)

and where (AG, BG, CG, DG) are the system matrices for
the body G(s). The optimal feedback gain is then given
by [Kb 0] where

Kb = R−1BT
GSb. (34)

Finally, note that the result Ks = 0 still follows if the
system matrices used in this derivation from the internal
model of the plant, rather than the actual plant. This
generality holds because we have assumed that Â has
the block structure determined by the series connection
of G and H . ⊓⊔
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In the SISO case, if −α̂ is a pole of the observer’s
model of the sensor (i.e. an eigenvalue of Âs) then the
controller N(s) has a zero at −α̂. Now consider the MIMO
system and suppose −α̂ is an eigenvalue (real or com-

plex) of Âs. Under what conditions does N(s) have a
transmission zero at −α̂?

We refer the reader to Levine (1996) for the following
definition: we say that s is a right zero of the system
(with n states, m inputs, and p outputs)

ẋ = Ax + Bu (35)

y = Cx + Du (36)

if vectors ξk and uk exist, both not zero, so that

[

sI − A −B
−C −D

] [

ξk

uk

]

=

[

0
0

]

(37)

The matrix on the left hand side of (37) is called the
Rosenbrock system matrix (RSM).

We have assumed that there exists a vector v̂ such
that Âsv̂ = −α̂v̂. Let q = Ĉsv̂. Direct calculation shows
that the vector




0
v̂
q



 (38)

lies in the null space of the RSM

[

sI − F −L
−K 0

]

=





sI − Âb + (B̂b − LbD̂)Kb + LbĈb

−Âsb + (B̂s − LsD̂)Kb + LsĈb

−Kb

LbĈs −Lb

sI − Âs + LsĈs −Ls

0 0





if and only if s = −α̂. This result shows that the con-
troller N(s) has a transmission zero at α̂.

Now we show that a pole-zero cancellation occurs in
the closed loop:

Proposition 2 Let φ = [wT
y , wT

u , wT
z ]T be the set of

available perturbation inputs to the plant and let yf =
[zT , uT ]T (with no direct measurement of y) be the set of
available measurement outputs. If

1. As has an eigenvalue at α with associated eigenvector
v,

2. Âs has an eigenvalue at α̂ with associated eigenvector
v̂ (not necessarily equal to v),

3. α = α̂, and
4. v and v̂ can be scaled so that Csv = Ĉsv̂,
5. the feedback gain Ks is zero, as derived above,

then there is a pole-zero cancellation, i.e. α is a pole of
the closed-loop system but the mode corresponding to α
is unobservable.

In less precise language we can rephrase Item 4 as the
condition that the internal model’s observation of the
sensor mode is correct. Item 4 will alway be satisfied if
the system has one observation (i.e. if C and Ĉ have

one row), and also if the quantities Csv and Ĉsv̂ are
nonzero. Alternatively, Item 4 will always be satisfied if
the internal model of the sensors is correct. Finally for
the closed-loop system to remain stable we must also
assume that the canceled modes of the sensors have neg-
ative real parts.

Proof Let xf = [xT , x̂T ]T be the full system state. Then
the full system can be written as

ẋf = Afxf + Bfφ (39)

yf = Cfxf (40)

where

Af =

[

A −BK

LC Â − B̂K − L(D − D̂)K − LĈ

]

=









Ab 0 −BbKb

Asb As −BsKb

LbCb LbCs Âb − B̂bKb − Lb(D − D̂)Kb − LbĈb

LsCb LsCs Âsb − B̂sKb − Ls(D − D̂)Kb − LsĈb

0
0

−LbĈs

Âs − LsĈs









,

the block structure of Bf is unneeded for the proof, and

Cf =

[

CG 0 −DGKb 0
0 0 −Kb 0

]

, (41)

derived from equations (4) and (9).
Direct calculation verifies that the vector

vf =







0
v
0
v̂






(42)

is an eigenvector of Af with eigenvalue −α. (Here 0 indi-
cates a zero vector of appropriate dimension.) Thus, the
sensor pole is a pole of the closed-loop system. Neverthe-
less Cfvf = 0 indicating that the mode associated with
α is unobservable due to a pole-zero cancellation. ⊓⊔

4 Discussion

We have shown that pole-zero cancellations between the
sensors and the controller occur under modeling hypothe-
ses commonly made about the human postural control
system. For examples, our results hold under the classi-
cal optimal linear-quadratic-Gaussian paradigm where a
(correct) internal model of the plant includes the sensors,
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but the cost function for optimality does not penalize
sensor states. For clarity, we concede that our results do
not prove rigorously that these pole-zero cancellations
also appear in biological systems. Indeed, we cannot es-
tablish that all the assumptions needed for the proof
hold in nature. For example, the subsystems, H , N and
G, are unlikely to respond linearly to all possible signals.
Instead, our results establish that mode-masking, while
it may naively seem pathologically unlikely, actually ap-
pears generically in sensorimotor models under hypothe-
ses considered reasonable. Our results suggest that the
possibility of such masking in biological systems should
not be assumed to be negligible. Thus, to reveal the dy-
namics of the sensorimotor chain, methods of identify-
ing the subsystems should be designed accordingly. To
unmask hidden dynamics these methods must include
measuring, perturbing or breaking the loop between the
subsystems.

A special case of sensory dynamics is a time delay.
Time delays exist in all sensor systems, biological or oth-
erwise. A linear sensor in series with a time delay is a
linear dynamical system, however it is not one that can
be placed into the finite dimensional state space format,
(22) and (23), that we have assumed to prove our re-
sults. Specifically, a time delay is an infinite dimensional
dynamical system.

To make this discussion concrete, suppose that the
sensor system H behaves as a first order linear system
with a pole at −α followed in series by a time delay.
Now, consider carefully the proofs about the appearance
of the zero at α̂ in the SISO controller or transmission
zero at α̂ in MIMO controller. Remember that α̂ is the
value of α assumed by the nervous system. Notice that
the only assumptions used in these proofs concerned the
internal model of the plant and not the actual plant. If
the internal model of the plant ignored the time delay,
but satisfied our other hypotheses, it would still have a
(transmission) zero at −α̂, which could cancel the mode
at −α. For this cancellation to occur we must of course
have match between sensor pole and its internal model:
−α = −α̂. Also, for MIMO systems, we must have a
match in the observation of this mode (Item 4 in Propo-
sition 2). But the presence of infinite dimensional dy-
namics in the plant does not prevent it. Thus the mode
masking phenomena we study here can occur even in
the presence of time delays. But only the finite number
of modes that are assumed and modelled correctly by
the nervous system are cancelled by the controller—the
rest remain.

On the other hand, the internal model of the plant
might not ignore the time delay. One way the internal
model might account for the delay is with a finite di-
mensional approximation. Such an approximation can
account for delay arbitrarily well if the order is suffi-
ciently high. In this situation, assuming the other hy-
potheses are satisfied, the controller has (transmission)
zeros at the poles its internal delay approximant. Thus

the controller will mask a finite number of the modes
of the delay. However this does not mean that the con-
troller is masking the delay, even approximately, because
the controller does not invert the transfer function of the
delayed sensor. In particular all of the zeros of the de-
layed sensor remain in the closed loop.

We raise the possibility that the mode-masking phe-
nomenon that we study here, could, in the future, be
supported experimentally. We discuss this possibility in
the context of posture control and the vestibular sense.
The primary afferents of the semicircular canals have
been modeled as high-pass filters of velocity with a time
constant of about 5 seconds (Mergner 2002; Wilson and
Melvill Jones 1979). This time constant arises from the
biophysics of the end organ. More detailed models place
an additional time constant significantly faster (0.003 s,
for both the regular and irregular units) as well as one
much slower (32.4 s, for the irregular units) (Wilson and
Melvill Jones 1979).

In engineering practice the dynamics of sensors of-
ten occur in a higher frequecy regime than the frequency
regime of the dynamics of interest. In this scenario, an
engineer might not penalize the sensor states in the cost
function for optimal control, just as we have assumed.
However contrary to our assumptions, an engineer might
not even include the sensors in the forward model (called
the “internal model,” above), because they are not needed
for control, and contrary to our results, the sensor’s high
frequency modes would remain uncancelled in the closed
loop. But the time constants of the vestibular sensor are
slow compared to engineered sensors and human postu-
ral sway has a prominent time constant of roughly the
same magnitude (5-10 seconds) as the 5 second time con-
stant of the vestibular afferents. This time constant per-
sists in the postural sway of patients with profound bilat-
eral vestibular loss (unpublished observation), suggesting
that its origin is not vestibular in nature. The omission of
the vestibular state in the forward model would severely
impair the hypothetical engineer’s controller.

Because of the frequency overlap, and because the
vestibular time constants are known fairly precisely, we
propose the 5 second vestibular time constant as a good
candidate for experimentally verifying our mode-masking
predictions. Specifically, we propose searching for a co-
inciding zero in the neural controller. One way to detect
such a zero, without breaking the loop, is to use closed-
loop system identification with a perturbation that af-
fects the vestibular signal after the dynamics of the sen-
sor. There is an experimental technique which accom-
plishes such a perturbation: galvanic vestibular stimu-
lation (Fitzpatrick et al 1996). The challenge of using
such a stimulus with system identification is controlling
the stimulus precisely. A wider range of tests may be
possible with animal models, such as postural balancing
in cats (Ting and Macpherson 2005; Lockhart and Ting
2007). As sensorimotor system ID techniques mature, we
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expect that the questions raised in this paper will be ad-
dressed in a variety of animal and human experiments.
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