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Abstract

Visual servo controllers in the literature rarely achieve
provably large domains of attraction, and seldom ad-
dress two important sensor limitations: (i) suscep-
tibility to self-occlusions and (ii) finite field of view
(FOV). In this paper, we tackle the problem of global,
occlusion-free visual servoing of a fully actuated rigid
body by recourse to navigation functions on a compact
manifold which encode these restrictions as control ob-
stacles. For occlusion free rigid body servoing, the man-
ifold of interest is the “visible” set of rigid body config-
urations, that is, those for which the feature points are
within the field of view and unoccluded by the body.
For a set of coplanar feature points on one face of a
convex polyhedron, we show that a slightly conserva-
tive subset of the visible set has a simple topology am-
menable to analytical construction of a navigation func-
tion. We construct the controller via a closed form co-
ordinate transformation from our problem domain into
the topological model space and conclude with simula-
tion results.

1 Introduction

Increasingly, roboticists and control engineers use com-
puter vision systems as sensors. As is standard, this
paper assumes that the vision processing system pro-
vides the image plane coordinates of features of a rigid
body being observed in the scene. That is, we have a
virtual sensor, c : Q → Y, that measures the perspec-
tive projection of features of a rigid body moving in the
configuration space Q. Each output

y = c(q)

is the location of N point or edge features on the image
plane, whose correspondence to rigid body features is
known.

By ignoring the substantial challenges of early vision,
vision-based control reduces to registering the projec-
tion of feature points of the current view of an object

∗The first and third authors were supported in part by the
NSF under grant IRI-9510673. The second author was supported
by Fundação para a Ciência e Tecnologia (FCT) under the project
PRAXIS XXI/BD/18148/98.

with those from a image taken when the object was
at a goal location. The wisdom of this approach is
that the sensor can determine if a positioning task has
been achieved, even in the presence of calibration er-
rors. For example, the perspective projection of four
or more rigidly constrained points in general position
on a body uniquely determines its pose (see for exam-
ple [10]) and, hence, given a projection of those points
onto a (possibly uncalibrated) camera, there exists a
unique pose which registers with the projection. Many
algorithms have been proposed and implemented that
achieve asymptotic tracking even in the presence of
large errors in sensor and robot calibration. For an
introduction to this approach, broadly referred to as
visual servoing, see [3].

Typically (e.g. [2]), visual servoing algorithms assume
a simple, fully actuated, kinematic plant model:

q̇ = u.

To compute the input u in coordinates, one simply com-
putes a desired velocity of image feature coordinates,
vd, which is then “pulled back” through the pseudo-
inverse of the Jacobian matrix so that

u = −
(
J(q)TJ(q)

)−1
J(q)T (y − y∗)

where

J(q) := Dqc (q)

and y∗ is desired location of image-plane features. The
main advantage to this approach, many argue, is that
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Figure 1: The “admissible cone”, a topological cone de-
noted Wa, is the set of body translations which
guarantee that, regardless of body rotation, all
feature points will be within the FOV.
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Figure 2: Simulation of three different artificial potential functions: a) the proposed NF in (7); b) the image-based potential
function in (9), which leads to self occlusion and never reaches the goal; c) image-based potential function in (10)
that accounts for self occlusion obstacles, nevertheless the potential function stops on a local minimum.

convergence is robust with respect to the model param-
eters of the camera and rigid body being servoed. De-
spite its advantages, there are many weaknesses to this
approach. First, it is quasi-static, ignoring the mechan-
ical system dynamics which impose restrictions on the
speed of operation. As vision systems and processing
get faster, such restrictions become undesirable. Sec-
ond, there usually exist spurious critical points intro-
duced by the alignment of y− y∗ with the null space of
J(q)T , and the absence of such spurious critical points
is, to our knowledge, only guaranteed for a few cases
[1, 4, 13]. Finally, there are many geometric problems
associated with visual servoing such as losing sight of
features due to (i) self occlusions or (ii) leaving the
camera finite field-of-view (FOV). Usually these prob-
lems are ignored in analysis, and when encountered in
practice simply cause the system to move into an emer-
gency stop state, necessitating human intervention.

Relation to Existing Literature: Recently,
Malis and Chaumette [8, 9] used the homography be-
tween corresponding images – the current view and the
desired view of a body – to partially reconstruct the
pose up to a scaling in depth, for which they coined
the term “2 1

2
D Visual Servoing” since it is neither fully

image based nor fully reconstructive. Taylor and Os-
trowski [12] present a similar quasi-global, quasi-static
approach which uses the epipolar geometry to do a par-
tial pose reconstruction, though their approach normal-
izes the translational component to unit length. Both of
these works analytically demonstrate the robustness to
camera parametric uncertainty, and Malis et. al. fur-
ther validate the idea with an implementation for a
6DOF servoing system. These are two of the most
novel approaches to date for 6DOF rigid body visual
servoing and deserve careful attention. However, both
of these approaches presuppose the quasi-static limita-
tions of the classical image-based approach, and neither

deals analytically with obstacle (i), though Malis and
Chaumette anecdotally claim that self-occlusions never
occur with coplanar feature sets, and they introduce
an “adaptive” controller to keep one point of the body
within the FOV, as detailed in [7].

Along different lines, Zhang and Ostrowski presented
a dynamical visual servoing algorithm for a blimp for
which they found a local diffeomorphism to the im-
age plane to control 3DOF of the blimps motion [13],
namely the radius and centroid (ρ, x, y) of an ellipse
from a projected sphere.

Contributions and Organization: The no-
tion of an navigation function (NF) first articulated in
[6], and briefly reviewed here in the appendix, proved
fruitful for planar (3DOF) visual servoing [1], and this
paper presents our recent efforts to design NF’s for spa-
tial (6DOF) rigid body visual servoing.

Following that general approach, we first examine a
topological model space for “occlusion-free” servoing,
and then design a navigation function for that topol-
ogy (Section 2). Of course the topological model is not
enough; we need a coordinate system in which to do
control, so in Section 2.3 we present a Cartesian coor-
dinate system for our navigation function. Our simu-
lations in Section 3 show the advantages of our algo-
rithm over the traditional approach to visual servoing.
We conclude with a brief account of the prospects for
a family of image-based navigation functions.

2 NFs for Occlusion Free Servoing

To use NF’s, we begin with a topological characteriza-
tion of “occlusion-free” servoing (2.1), construct a NF
for this model space (2.2), and then show how to “de-
form” it back to the problem at hand (2.3).



2.1 The Topology of Occlusion Free Servoing

We must understand the topology of “occlusion-free
servoing” in order to design a navigation function for it.
Hence, we introduce the visible set of configurations, V,
which render the feature points of the body completely
in view of the camera – a simple and intuitive idea. In
general, this set depends on the features chosen, the
body geometry, the camera and the body’s configura-
tion space.

We will consider 2 cases: planar (n = 2) and spatial
(n = 3) visual servoing. In both cases, we consider
a world frame, F, whose origin is coincident with the
camera pinhole and whose nth axis is orthogonal to the
image plane. Also, we have a body fixed frame, FB .
The body pose, H, is a homogeneous transformation
matrix

H ∈ SE(n) =

{[
R T

0T 1

]
|R ∈ SO(n),T ∈ Rn

}

and any point with homogeneous coordinates p ∈ An,
expressed with respect to FB , has coordinates Hp in F.
We will assume that there is a goal pose H∗ ∈ V.

2.1.1 Planar Case, V ⊂ SE(2): Suppose we
have a convex polygonal rigid body in a plane, with N
feature points on one edge, and let H ∈ SE(2) denote
the pose of the body. For convenience we attach the
x-axis of FB to the edge of the body as depicted in
Figure 3. Denote the columns of R = [r1, r2] and let

F =
{
H ∈ SE(2) |TT r2 > 0

}

denote the set of configurations which are “facing” the
camera pinhole. Similarly, let

W = {H ∈ SE(2) |Hpi ∈ Wc, i = 1, . . . , N}

denote the “workspace” of the camera, where

Wc =
{
p ∈ A2 | p = o + α0v0 + α1v1, α1, α2 > 0

}

is the cone defined by the FOV, where o is the origin
of F, and vi ∈ R2 are the vectors coincident with the
FOV boundary and have a positive projection onto the
y-axis of F. Clearly,

V = F ∩W ∈ SE(2)

denotes all configurations for which the three features
are projected to the image plane within the FOV and
without self-occlusions. See Figure 3. We showed in [1]
that for N = 3, V is equivalent to an open ball in R3,
which led to an image-based navigation function that
rendered all of V as the domain of attraction for a goal
H∗.

2.1.2 Spatial Case, V ⊂ SE(3): We now con-
sider a 6DOF rigid body with a set of N coplanar fea-
tures. Just as in the planar case, H ∈ SE(3) repre-
sents the homogeneous transformation from FB to F.

We conveniently attach the body frame such that the
(x, y)-plane contains the features, and the z-axis points
toward the interior of the body. Letting R = [r1, r2, r3],
we have

F =
{
H ∈ SE(3) |TT r3 > 0

}

W = {H ∈ SE(3) |Hpi ∈ Wc, i = 1, . . . , N}

where

Wc =

{
p ∈ A3 | p = o +

i=3∑

i=0

αivi, αi > 0, ∀i

}

is set of points on the interior of the FOV cone, defined
by the four vectors vi, i = 1, . . . , 4. Finally, we have

V = F ∩W ∈ SE(3).

Unfortunately, we have not yet characterized the topol-
ogy of V, so we consider a subset V ′ ⊂ V which is
slightly conservative with respect to the FOV.

Assume all of the features are contained inside a circular
disk of radius %, as depicted in Figure 1. We adopt the
conservative requirement that center of the disk remain
fully in the “admissible cone,”

Wa =




p ∈ A3 | p =




0
0
%
1


+

i=3∑

i=0

αivi, αi > 0, ∀i





The admissible cone is simply the set of locations in
which all possible rotations of the body keep the fea-
tures in the field of view. Hence

W ′ =

{
H =

[
R T

0T 1

]
∈ SE(3) |T ∈ Wa

}

and
V ′ =W ′ ∩ F (1)

Proposition 1 The set V ′ ⊂ SE(3) is diffeomorphic to

D5 × S1

Proof.∗ The centroid is confined to move in a solid
cylinder, i.e. R+ × D2. Recall that the body coor-
dinate frame, FB is attached such that the z-axis is
orthogonal to the face (facing into the body) and the
(x, y)-plane contains the feature points. Consider the
fact that SO(3) is an SO(2) bundle over S2, and iden-
tify the orientation of the z-axis with the basepoint in
S2. The requirement that the body faces the camera
is a constraint on the the z-axis, namely that it always
has a positive projection of onto the line-of-site. This
yields a hemisphere; i.e. a diffeomorphic copy of D2. An
SO(2) bundle over D2 is diffeomorphic to SO(2)×D2.
Therefore

V ′ ≈ R+ ×D2 × SO(2)×D2 ≈ D5 × S1.

∗Robert Ghrist lent valuable insights into the topology of
SO(n).
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Figure 3: A cartoon depiction of the sets F , W and V for a planar world. For convenience, the image plane is drawn in
front of the camera pinhole. From left to right, the figures show three typical configurations of a rigid body with
respect to a planar camera. Left: The edge is facing the camera, but the leftmost point is out of view. Center:

Although completely within the camera workspace, the edge is facing away from the camera and is occluded by
the body. Right: The edge is facing and within the field of view of the camera.

2.2 Navigation Function for D5 × S1

Let (x, θ) ∈ D5 × S1, where†

D5 =
{
x ∈ R5

∣∣ ‖x‖∞ < 1
}

Define

ϕ̃(x, θ) =
‖x‖2 + 1− cos(θ)
∏i=5

i=1
(1− x2

i )
(2)

Proposition 2

ϕ =
ϕ̃

(1 + ϕ̃)
(3)

is a navigation function on D5×S1 with a minimum at
(0, 0) and a saddle at (0, π), and achieves a maximum
value of 1 on the entire boundary ‖x‖∞ = 1

Proof. By design, ϕ achieves a maximum value of 1 on
the entire boundary ‖x‖∞ = 1. Furthermore, it is rou-
tine to verify that the two zeros gradient of ϕ are (0, 0)
and (0, π), and that the Hessian at the critical points is
nonsingular. Furthermore, the Hessian at (0, 0) is posi-
tive definite, hence it is a minimum, and it is indefinite
at (0, π), hence it is a saddle.

2.3 Change of Coordinates

Successful application of the NF presented above re-
quires a change of coordinates from V ′ to D5 × S1. We
will find it convenient to introduce the specific set of
coordinates, q ∈ Q, for SE(3) shown in Appendix B,
and we will write matrices parameterized this way as
h(q).

†Note that the open disk is diffeomorphic to the cross product
of open intervals.

Coordinate Valid Interval
q1 (0,∞)
q2 (−α,α)
q3 (−γ,γ)
q4 (−π/2,π/2)
q5 (−π/2,π/2)
q6 Rmod 2π

Table 1: Coordinate bounds for h−1(V ′) ⊆ R5 × S1. The
parameters α and β are the horizontal and ver-
tical FOV angles, respectively, i.e. cosα cosβ =
[0, 0, 1]vi/||vi||.

The coordinates provide an intuitive handle on the
topology of V ′. Note that if we restrict the coordinates
as in Table 1, we obtain a parameterization of V ′. It
is routine (though somewhat tedious) to find a closed
form inverse, h−1, for all points in V ′.

To deform V ′ into the simple model space in Section
2.2, we first map into local coordinates through h−1.
Then, we map the coordinate range in Table 1 through

b1(q) =

([
q1 − 1

q1 + 1
,
q2
α
,
q3
γ
,
q4
π/2

,
q5
π/2

]T

, q6

)
(4)

so that b1 ◦h
−1 : V ′ → D5×S1. Finally, we “warp” the

result to put the goal at the origin via b2 : D5 × S1 →
D5 × S1

b2(a) =







(
a1−a∗

1

1−a1a∗
1

)

...(
a5−a∗

5

1−a5a∗
5

)


 , a6 − a∗6


 (5)

a∗ = b1 ◦ h
−1(H∗). (6)
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Figure 4: Simulation of visual servoing for a rigid body whose initial position is very close to the camera, but whose feature
points are fully within the FOV. The navigation function proposed in Equation (7) correctly drives the body to
the desired goal without violating the FOV constraints or self occluding. LEFT: The image plane trajectory of
feature points. RIGHT: Snapshot at four successive times.

The result is a map b = b2 ◦ b1 ◦ h
−1 : V ′ ≈ D5 × S1

and hence

ϕ = ϕ ◦ b (7)

is an NF on V ′, with a unique global minimum H∗.
A kinematic version of our controller is given in local
coordinates by

q̇ = −Dq(ϕ ◦ h)(q). (8)

3 Simulated Implementation

Given the correspondence of image points, there are
many algorithms for computing the pose of the body,
H, and the goal, H∗. So, we define c : V ′ → Y ⊂ R2×N

as the perspective projection of pointsHP . The feature
points, P = [p1, . . . , pN ], are expressed in body coordi-
nates. Furthermore, there is always a unique inverse
H = c−1(y) for every point y ∈ c(V ′).

The following simulations illustrate situations where
naive approaches based on a simple measure of the dis-
tance of the image feature points to the goal fail, and
how our algorithm overcomes the failures. It is assumed
that there are four feature points (N = 4) on one face.
Let ϕ̂ be a continuous potential function defined on
R2×4 by

ϕ̂(y) :=

4∑

i=1

‖yi − y∗i ‖
2 (9)

where

y∗ = c(H∗).

Figure 2 compares the performance of the potential
function defined in (7) with that of (9). The left column
represents visual illustrations of the body at various
“snapshots” throughout its motion. The right column
shows the trajectories of the four feature points. The
black dots represent the initial feature locations and the
white dots represent their goal locations. As expected,
Figure 2(a) shows that (7) converges to the goal while
all features points remain visible. However, the simu-
lation of (9) in Figure 2(b) encounters a self-occlusion
before convergences is obtained. A naive improvement
accounting for obstacles, given by

ϕ′(y) :=

∑4

i=1
‖yi − y∗i ‖

2

∏
{i,j,k}∈S

∣∣∣∣det
[
yi yj yk

1 1 1

]∣∣∣∣
1/2

, (10)

where S = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}}, was
used for the simulations in Figure 2(c). In this case,
there are no occlusions but the potential function stops
on a local minimum.

Figures 4 and 5, illustrate a situation where the body
is very close to the image plane, but fully inside the
(conservative) FOV, V ′. Figure 5 reveals all the weak-
nesses of ϕ̂. The trajectory of one of the feature points
clearly goes out the FOV (of course, we are able to al-
low the simulation to continue but an implementation
would fail). Also, self-occlusion occurs, and the sim-
ulation stops on a local minimum. Figure 4, on the
other hand, which has the same initial condition and
goal, uses (7) and correctly executes the desired task as
expected.
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Figure 5: Simulation of visual servoing for a rigid body whose initial position is very close to the camera, but whose feature
points are fully within the FOV. The potential function in Equation (9) is based only on image feature points and
this trajectory goes out of the FOV, self occludes and ends in a local minima. LEFT: The image plane trajectory
of feature points. RIGHT: Snapshot at four successive times.

Parametric Uncertainty: Of course c−1 de-
pends on the intrinsic camera parameters (focal length,
pixel size, etc.) and the body parameters, P , neither of
which will be exactly known. To guarantee global con-
vergence under (at least small) parametric uncertainty,
we compute the goal pose, the current pose and the
FOV cone all with respect to the same set of parameter
estimates. We believe that modest perturbations of the
parameters will not affect the convergence properties,
though we have not calculated explicit bounds on the
camera or body parameters which guarantee global con-
vergence. However, our exploratory simulations sug-
gest robustness to fairly large parametric uncertainty,
and we are currently working on formal perturbation
bounds to verify the robustness of our technique.

4 Conclusions

In this paper, we presented the first dynamical spa-
tial rigid body visual servoing algorithm guaranteed to
converge to a goal while avoiding self-occlusions and
maintaining all feature points within in the field-of-
view. This is achieved by a Navigation Function on
a slightly conservative subset of the configurations in
which all feature points are in view.

Our approach requires reconstructing the current pose
and the goal pose. It would be more desirable to avoid
that reconstruction, or in the worst case, only partially
reconstruct the pose. By designing an NF directly in
image coordinates, this may be feasible.
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A Review of Navigation Functions

A review of NF’s follows.‡ An NF, ϕ, is a C2 artifi-
cial potential function on a compact manifold, M , such
that ϕ : M → [0, 1]. It must encode a goal set, G as
the unique global minimum, ϕ(G) = 0, and achieve
a maximum of 1 on the entire boundary of M , i.e.
ϕ(∂M) = 1. Once constructed, one can obtain a second
order controller which is guaranteed to converge to G
for all points in M except a zero measure set, by simply
following the negative gradient of the NF, and adding
a suitable damping term [5]. As a simple example, con-
sider a system with configuration space M = (−1, 1)
whose dynamics are given by

mẍ = u

and apply the NF ϕ(x) = x2, and damping b. Letting

u = −
k

2
Dxϕ (x)− bẋ

=⇒ mẍ+ bẋ+ kx = 0

‡For a precise definition of Navigation Functions and their
applications to robotics, see [11].



which renders 0 globally asymptotically stable, and is
guaranteed to never hit the boundary set ∂M = {±1}
for all initial positions on M .§

For the purposes of this paper, one may simply consider
the first order gradient system given by

ẋ = −Dxϕ (x)

when considering the convergence properties of the con-
troller.

B Local Coordinates

We will make frequent use of local coordinates for com-
putation. Here we define a local chart h : Q → SE(3),
where Q ⊂ R5 × S1 as follows. Let

h = h1h2h3; (11)

where h1 is a simple offset of the origin along the z-
axis and h2 and h3 are parametrized by spherical coor-
dinates and XYZ Euler-angles respectively as follows.
Let

hi(q) =

[
Ri(q) Ti(q)
0T 1

]
, i = 1, 2, 3. (12)

For the translational component, we have

T1 = [0, 0, %]T R1 = I3×3

For the spherical coordinate component we have

T2(q) = q1




sin q2 cos q3
sin q3

cos q2 cos q3




and

R2(q) =




cos q2 − sin q2 sin q3 sin q2 cos q3
0 cos q3 sin q3

− sin q2 − cos q2 sin q3 cos q2 cos q3


 .

Finally, for the Euler angles, we have T3 = 0 and

R3(q) =




1 0 0
0 cos q4 sin q4
0 − sin q4 cos q4




·




cos q5 0 − sin q5
0 1 0

sin q5 0 cos q5




·




cos q6 sin q6 0
− sin q6 cos q6 0

0 0 1


 .

The coordinates are restricted as in Table 1.

§To be precise, one must put bounds on the initial velocities
to compute the domain of attraction on TM as a function of
damping [5].
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