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Abstract. This paper presents a global diffeomorphism from a suitably defined
“visible set” of rigid body configurations — a subset of SE(3) — to an image-
space. The mapping between the visible set and the image-space is given by the
projection of a set of features of a specially designed visual target. The target is
a sphere marked with a feature point and a vector tangent to the sphere at the
feature point. We show how the construction of a diffeomorphism to image-space
should pave the way for developing global, dynamic visual servoing systems using
Navigation Functions.

Keywords. Visual servoing, geometric control, occlusions, field-of-view, nav-
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1 Introduction

There is a large and growing body of algorithms for “visual servoing” (VS) —
motion control using visual feedback. Traditionally, VS algorithms generate
motor reference velocities to register a camera’s current view of a scene with
a previously stored view (for a tutorial, see [7]).

We seek to move VS toward a systematic theory by characterizing the
geometry of “visible” configurations of a visual target relative to a camera.
In particular, for a specific target geometry we present a diffeomorphism —
a smooth and smoothly invertible transformation — from an appropriately
defined visible set of configurations to an image space. We believe this trans-
formation will enable the construction of purely image-based, global dynamic
VS algorithms.

1.1 Background

A significant challenge involves representing rigid motions in terms of visually
measured quantities. Ideally, such a representation should enable effective
encoding of

• Configuration and State, e.g. position and velocity or position and
momentum for Lagrangian or Hamiltonian systems.

• Tasks and goals, e.g. trajectories in the state space or points in the
configuration space.



2 Cowan and Chang

• Obstacles, e.g. the edge of the field-of-view (FOV) for VS systems.
• Uncertainty, e.g. sensor and actuator noise or parametric error.

There are several candidate representations of image-based rigid motion
to consider from the literature. The classical approach to “2D VS” employs
the projection, treated as a vector in Rn, of an arbitrary set of feature points
[7]. The redundancy of using extra feature points seems to confer robustness
to measurement noise in any one of the feature measurements. However, the
movement of features is constrained by the underlying rigid motion, render-
ing image-based control and motion planning in image space challenging for
large deviations from a goal. Notwithstanding those challenges, Corke and
Hutchinson [2] created a 2D kinematic algorithm for 6DOF VS that seems
(empirically) to have a very large basin of attraction while keeping features
in the FOV. Their algorithm employs a clever choice of image features which
helped motivate the choice of features used in this paper.

A more recent approach uses partial pose reconstruction: given a sufficient
number of feature points, the relative pose, up to a scale in translation, be-
tween two views may be determined without exploiting a geometrical model
of the points. Using this technique, researchers developed six DOF VS algo-
rithms robust to calibration uncertainty [12,15]. It is worth noting that the
methods used require sufficient point correspondences between views to fully
reconstruct a geometric model of the visual target [10]. Application of this
method to contexts besides full six DOF VS remains a challenge.

Alternatively, one may recover the complete pose of a camera with re-
spect to a target by exploiting a model of the target [11]. Vision-based
controllers using full pose reconstruction are often referred to as “3D VS”
algorithms. Model based pose reconstruction requires fewer feature points
than the model-free approach described above, and has the added advantage
of fully recovering feature depth, effectively reducing the camera to a “vir-
tual Cartesian sensor.” Representing visibility obstacles, such as the FOV
or self-occlusions is less parsimonious, but can be done [5]. Formal results
demonstrating parametric robustness of VS systems using this method re-
main elusive.

Generalized image-based coordinates have proven extremely effective in
a few narrow contexts [3,5,16]. Generalized coordinates describe kinematic
motion with one variable per mechanical DOF. Lagrange’s equations, for ex-
ample, are usually written using such coordinates. Hence, this approach en-
ables the expression of dynamical equations of motion in terms of measured
quantities on the image plane. Obstacles such the FOV and self-occlusions of-
ten appear as the boundary of a compact manifold in image-space and hence
their avoidance may be cast as an instance of dynamical obstacle avoidance
[5]. Although quite robust in practice, obtaining formal guarantees of robust-
ness to noise or parametric uncertainty for this framework remains an open
problem.
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1.2 Contribution

To date, global image-based representations of configuration have been ap-
plied only to three DOF systems. This paper builds on previous results in
a key way: we present an image-based, geometric representation of six DOF
rigid motion. Our development of a global representation of “visible” rigid
motions viewed through the projection of a set of features should help pave
the way for new global, dynamic VS systems.

Organization. In Section 2, we employ a specific target geometry — a
sphere with a few markings — to create a global image-based representation
of motion for six DOF VS. Included in our development is a simple, purely
image-based representation of the so-called image Jacobian (made possible
since, as we show, the image and task spaces are diffeomorphic). In Section 4,
we suggest a method for using our diffeomorphism for kinematic or dynamic
control, although there is much open work to be done in this endeavor. Finally,
we give some concluding remarks in Section 5.

2 Six DOF Diffeomorphism to Image-space

We assume a visual target may be designed to our specifications, so we may
explore new image-based representations of rigid motion. In cases in which
we have the freedom to design visual targets — for example when designing
docking stations for space craft, helicopter landing beacons, or visual targets
for a factory setting — this approach may lead to novel target designs that
ease the control problem. More generally, it is hoped that the insight drawn
from taking this approach may enable us to reinterpret target geometries over
which we have have less design freedom.

Consider the problem of moving a rigid target object in six DOF relative
to a perspective camera. The rigid target considered is as follows:

1. A spherical body. Consider a spherical body of radius %. As the body
moves away from the camera, its projection gets smaller. Roughly speak-
ing, the position and size of the body’s image encodes the position of the
center of the body relative to the camera.

2. A single point on the body. Adding a visible point to the body breaks
the visual symmetry, allowing us to resolving two rotational DOF’s from
the location of the feature point on the image.

3. A unit vector tangent to the body. The final degree of freedom is
resolved by considering the orientation on the image of a projected vector
attached to our feature point on the body.

Zhang and Ostrowski [16,17] developed the idea of projecting a spherical
body to an image plane for VS of a blimp relative to a large ball. Using a
“flat” image plane, the resulting image is an ellipse, which they approximate
as a circle by assuming that a slice of the spherical body parallel to the image



4 Cowan and Chang

Table 1. List of symbols.

Symbol Description

o, p, b, . . . ∈ E3 Euclidean points (Roman)
v, e, . . . ∈ R3 vectors (boldfaced)

e1, e2, . . . ∈ R3 standard basis
π : {E3 − oc} → S2 image projection model – spherical panoramic camera

F = {o, i, j, k} rigid coordinate frame, o ∈ E3 and i, j, k ∈ R3

Fc,Fb camera frame and body frame

pb, vb point, p, and vector, v, with respect to Fb

H ∈ SE(3) rigid transformation of Fb, relative to Fb

R ∈ SO(3) rotation effected by H, columns R =
[
r1 r2 r3

]
d ∈ R3 translation effected by H

pc = Hpb, vc = Rvb point, p, and vector, v, with respect to Fc

ν : SE(3) → R measure of feature visibility, (5)
V ⊂ SE(3) set of “visible” configurations, H ∈ V ⇐⇒ ν(H) > 0

λ ∈ (0, 1) radius on image sphere of body, (3)
s ∈ S2 unit vector pointing toward body centroid, (3)

Q ∈ SO(3) image-based rotation, columns Q =
[
q1 q2 q3

]
, (7)

(Q, λ, s) = c(H) camera map, (8)
I image feature space, I ⊂ SO(3)× (0, 1)× S2, (9)

plane is projected. The present paper builds on that work, employing a more
‘exact’ diffeomorphism to the image-space, as well as incorporating additional
markings on the body whose projection encodes rotational information.

2.1 Notation and Definitions

At the risk of burdening the reader with formalism, we present the following
definitions to enable a precise geometric description of the domain and range
of a camera viewing rigid motions.

An affine point p ∈ A3 has homogeneous coordinates p =
[
p1 p2 p3 1

]T
with respect to some rigid frame. Note that TA3 = A3×R3, and that R3 acts
on points to translate them in the usual way, so that if v =

[
v1 v2 v3

]T ∈ R3

and p ∈ A3, then p + v =
[
p1 + v1 p2 + v2 p3 + v3 1

]T ∈ A3. Two points
cannot be “added” together, but if p, b ∈ A3 then v = p − b ∈ R3 is the
vector such that p = b + v. Adding the usual metric structure to affine space
A3 yields Euclidean space E3 where the distance between two points is given
by the two norm of their difference, ‖p − b‖ (a measure independent of the
choice of rigid frame).

A rigid frame, F , is defined by its origin, o ∈ E3, and three mutually or-
thogonal unit vectors, i, j,k ∈ R3, that create a right-handed frame. Consider
a full perspective (“pinhole”) camera with frame Fc such that oc is located
at the pinhole (or optical center), with kc aligned with the optical axis. The
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pinhole camera projects points in the open half space “in front” of the camera
to an image-plane pair, given by via the map, π+{E3 : (p−oc) ·kc > 0} → R2,
expressed in camera frame coordinates

π+(p) =
f

p3

[
p1

p2

]
p3 > 0 , (1)

where f is the camera focal length. The camera observes features of a rigid
body, affixed with rigid frame Fb. Let

H =
[

R d
0T 1

]
∈ SE(3), where R =

[
r1 r1 r3

]
∈ SO(3), d ∈ R3,

denote the rigid transformation of Fb relative to Fc. A point expressed with
respect to the body-frame as pb, appears as pc = Hpb with respect to the
camera frame. Similarly, if vb is a vector in the body frame, then vc = Rvb

is the same vector with respect to the camera frame.
Hamel et. al. [6] remap the image plane to a sphere to recover some

symmetry that is “broken” by a flat image plane. This approach has also
been used in the structure from motion (SFM) literature [1]. Let p = (p−oc)
and note that the unit vector, p/‖p‖ may be recovered from the image-plane
pair in (1) since

p

‖p‖
=
[
π+(p)

f

]/∥∥∥∥[π+(p)
f

]∥∥∥∥ , p3 > 0

with respect to the camera frame. Of course, this assumes that we know
the parameter f (or, more generally, all so-called “intrinsic” camera param-
eters, omitted to simplify the presentation). Motivated by this observation,
we consider for convenience a “panoramic” spherical camera

π : (E3 − {oc}) → S2 (2a)

: p 7→
p

‖p‖
where p = (p− oc) . (2b)

For the purposes of this paper, S2 = {v ∈ R3 :v ·v = 1} ⊂ R3. For the camera
map, S2 corresponds to the unit tangent space of E3 at oc, namely “the set
of unit vectors originating from the camera origin.” To keep features within
a finite FOV, one may introduce an appropriate image-space “obstacle” into
the controller design (see Section 4).

2.2 Image-based Translation

Attach the body frame at the center of the sphere, so that the location of the
body relative to the camera origin is given by ob − oc = d. If ‖d‖ > % — i.e.
the body remains bounded away from the camera origin — then the surface
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of the body double-covers a topological disc on S2 via the map π. The edge
of the disc, a planar slice of the image-sphere, is a perfect circle of radius

λ =
%

‖d‖
, % < ‖d‖ < ∞.

(The circle radius, λ, appears dimensionless because the image-sphere was
normalized to unit radius). The center of the circle on the image-sphere is in
the direction of

s =
d

‖d‖

and is readily measurable from the projection of the body.
Let B := {d ∈ R3 : ‖d‖ > %} denote the translations of the body origin

that keep it a body radius away from the camera. We now have a diffeomor-
phism — a smooth and smoothly invertible function — from locations of the
body to image measurements, c1 :B → (0, 1)× S2, given by

c1 :d 7→ (λ, s) . (3)

The inverse of c1 is given simply by

c−1
1 (λ, s) =

%

λ
s . (4)

2.3 Image-based Rotation

To break the rotational symmetry of our spherical rigid body, attach a visible
feature point, b, to its surface, and a unit vector a tangent to the body at
that point. For convenience, align the body frame so that origin coincides
with the center of the body, and the unit vector (b − ob)/% lies along the
negative kb axis. Hence, in the body frame bb =

[
0, 0, −%, 1

]T .
As we will show, the projection of b to the image-sphere, q1 = π(b),

encodes two rotational degrees of freedom. We encode the final degree-of-
freedom by projecting a unit vector or “arrow”, a, tangent to the body at the
point b. In practice, the vector a may be approximated by two distinguishable
points on the surface of the sphere. Again for convenience we assume the
vectors body-fixed representation is simply ab = e2. Let b = b − oc denote
the vector from the camera origin to the body point b. Recalling that the
rotation matrix R has columns (r1, r2, r3), then with respect to the camera
frame, we have

bc =
[
bc

1

]
= Hbb, where bc = d− %r3, and ac = Rab = r2 .
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||d||

Image sphere

Spherical body

Fig. 1. Projection of a spherical body with a feature point on it to the image-
sphere. The image-plane measurement is given by y = (Q, λ, s) = c(H).

Note that (b− ob) · a = −% e3 · e2 = 0.
Some configurations cause the body to occlude the feature point, b. This

occurs when (b−oc)·(ob−b) becomes negative. Hence, we define a “visibility”
function [5], ν, and associated “visible set” of rigid transformations, V by

ν(H) := (d− %r3) · r3 and V := {H ∈ SE(3) : ν(H) > 0} . (5)

Note that ν(H) > 0 =⇒ ‖d‖ > %, i.e. d ∈ B = {d ∈ R3 : ‖d‖ > %}.
The projection of (b, a) ∈ TE3 to the image sphere is modeled by

Tπ : (b, a) 7→ (π(b), Tbπ · a) ∈ TS2 .

We are not concerned with the length of the projection of a, only the direc-
tion. Hence, consider the unit tangent map T 1π represented in the camera
frame by

T 1π : (b, a) 7→ (q1, q2) where (6)

q1 =
bc

‖bc‖
=

d− %r3

‖d− %r3‖
and q2 =

Γq1a
c

‖Γq1a
c‖

=
Γq1r2

‖Γq1r2‖
where Γq1 := (I − q1q1

T ) .
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Geometrically, q2 is a unit vector tangent to the image-sphere at the point
q1. The unit vectors q1 and q2 are mutually orthogonal. Consider the plane
containing the camera origin oc, the point b, and the vector a. The unit vector

q3 = q1 × q2

is normal to that plane. Thus, we define a function c2 :V → SO(3)

c2 :H 7→
[
q1 q2 q3

]
= Q, (7)

identifying T 1S2 with SO(3).

2.4 Diffeomorphism to Image-space

Claim. The function c :V → I, defined by

c(H) := (c2(H), c1(d)) , where (8)

I =
{

(Q,λ, s) ∈ SO(3)× (0, 1)× S2 : q1 · s >
√

1− λ2
}

(9)

and Q =
[
q1 q2 q3

]
is a diffeomorphism, i.e. V ' I. ut

The proof is given in Appendix A

3 Image Jacobian

To be of practical application to VS we present a representation of the tangent
map Tc :TV → TI, its inverse Tc−1, and the cotangent map T ∗c :T ∗I →
T ∗V, with the following commutative diagram in mind:

TV

��

Tc //

��

TI
Tc−1

oo

��
V c // I

T ∗V

OO

T∗c−1
//
T ∗I

T∗c
oo

OO

We make the following identification of the tangent space TSE(3) of the Lie
group SE(3):1

TSE(3) ' SE(3)× se(3) ' SE(3)× (R3 s R3), (10)
1 The Lie algebra R3 s R3 is R3 ×R3 with the Lie bracket structure found in [13].
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where se(3) is the Lie algebra of SE(3). The identification occurs via “right
translation,” i.e.

(H, Ḣ) 7→ (H, ḢH−1) 7→ (H, (ω,v)) (11)

where

H =
[

R d
0T 1

]
, Ḣ =

[
Ṙ ḋ
0T 0

]
and

ω =
(
ṘR−1

)∨
v = −ṘR−1d + ḋ

and the isomorphism R3 ' so(3) is defined by

̂:
ω1

ω2

ω3

 7→
 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 , ∨ :

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 7→
ω1

ω2

ω3

 ,

where so(3) is the Lie algebra of SO(3). More detail can be found in, for
example [13].

Similarly, for each y = (Q,λ, s) = I ⊂ SO(3) × (0, 1) × S2, we have the
following identification

TyI = TQSO(3)× Tλ(0, 1)× TsS2 ' R3 × R× TsS2 (12)

where we identify TQSO(3) with so(3) ' R3, again via right translation

(Q, Q̇) 7→ (Q, ξ) where ξ =
(
Q̇Q−1

)∨
. (13)

Hence, to compute THc we find the mapping relating the tangent space iden-
tifications made above in (10) and (12), namely

(H, (ω,v)) 7→
(
y, (ξ, λ̇, ṡ)

)
where y = (Q, λ, s) = c(H) ,

ξ

λ̇
ṡ

 = C(y)
[
ω
v

]
and

C(y) := THc|H=c−1(y)

=

I3×3
1
β (δq1q

T
3 − q2q

T
3 + q3q

T
2 )

01×3 −λ2

% sT

−ŝ λ
% (I3×3 − ssT )

 , (14)

where

δ =
s · q2√

λ2 − sin2 φ
, β =

%

λ

(
cos φ−

√
λ2 − sin2 φ

)
,

cos φ = s · q1 and sinφ =
√

1− (s · q1)2 .
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The construction of C is straight forward. The details are given in [4].
To compute Tc−1, and T ∗c is now straight forward. Using the above

representations, we have

Tyc−1 =
(
C(y)T C(y)

)−1
C(y)T and T ∗y c = C(y)T . (15)

Note that the expression for Tyc−1 is not a pseudo-inverse. The possible con-
fusion arises since the six dimensional tangent space TyI is locally embedded
in R7. It should be noted that in many image-based visual servoing strate-
gies employ the pseudo-inverse of the image Jacobian since the image feature
points are treated as though moving freely in Rn.

4 Controller

For the present work, we consider the case of so-called “eye-in-hand” VS,
wherein the camera moves relative to the body which serves as an inertial
reference frame. Let (Ω,V ) denote the angular and linear velocities, respec-
tively, of the camera relative to the fixed, inertial body frame. Let G = H−1

denote the transformation of the camera frame, Fc, relative to the inertial
body frame, Fb. Note that[

Ω̂ V
0T 0

]
= G−1Ġ = −ḢH−1 = −

[
ω̂ v
0T 0

]
, (16)

effectively mapping the identification of TSE(3) given by the right trans-
lation of Ḣ in (10) and (11) to the left translation of Ġ = d

dt

(
H−1

)
. Note

that this relationship clears up, once and for all, the kinematic distinction be-
tween “eye-in-hand” servoing and the so-called “fixed-camera” configuration,
wherein the camera is fixed and the body is moving.

For simplicity, we posit a fully actuated purely kinematic plant model

Ġ = G

[
Ω̂ V
0T 0

]
(17)

where we treat (Ω,V ) ∈ R3 s R3 as control inputs. (We generalize this to
a dynamical free rigid body in [4]). One possible control strategy involves
planning a path yd(t) ∈ I that moves from the initial configuration to the
goal state and following the path via[

Ω
V

]
= −Tyc−1

ξd

λ̇d

ṡd

 (18)

where
[
ξd , λ̇d , ṡd

]T
is the desired velocity ẏd, expressed using the tangent

space identification in (12). The minus sign in the above expression arises
due to the identification made above in (16).
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4.1 Visual Servoing via Navigation Functions

The diffeomorphism c, the visible set V, and its relatively simple image I, pro-
vide tremendous leverage into the VS problem. Given a desired configuration
G∗ = (H∗)−1, measured through its image y∗ = (Q∗, λ∗, s∗) = c(H∗), there
are many possible image-based control strategies we can employ to achieve
our objective of driving G → G∗.

An open-loop strategy, such as the one above in (18), may be undesir-
able. However, the generation of ẏd can also be conceived as a feedback law,
for example by using the method of Navigation Functions (NF’s) [8,9,14].
A substantial benefit of using NF’s is that they allow us to “lift” our kine-
matic controller to second order settings with little additional effort, while
maintaining similar convergence guarantees (as we do for this problem in [4]).
Moreover, these methods have already proven practicable for dynamic VS [5].

Let D ⊂ I be compact “safe” domain. If we carefully design an artificial
potential function ϕ :D → [0, 1], then by letting

ẏd = −∇ϕ (19)

the control law given by (18) drives G so that y converges to y∗, except
for a set of measure zero. The following definition, adapted from [8], gives a
set of conditions that guarantee essentially global convergence of the above
controller (18), with ẏd given in (19).

Definition 1. Let D be a smooth compact connected manifold with bound-
ary, and y∗ ∈

◦
D be a point in its interior. A Morse function, ϕ ∈ C2[D, [0, 1]]

is called an Navigation Function if

1. ϕ takes its unique minimum at ϕ(y∗) = 0;
2. ϕ achieves its maximum of unity uniformly on the boundary, i.e. ∂D =

ϕ−1(1).

For any function satisfying the above definition, the controller given by
(18) will ensure convergence y

t→∞−−−→ y∗ from all initial conditions in D. For
more information, see [8].

4.2 Computing a Safe Domain and Navigation Function

The next step is to compute a compact domain D ⊂ I that is “safe” with
respect to the FOV of our camera system in the sense that if G−1 = H ∈
c−1(D) then all the necessary features are visible. To illustrate, we treat the
FOV as a cone originating at the camera origin, with center along e3, as
shown in Figure 2. This cone reduces to a constraint on s and λ, namely

f(y) := λs · e3 −
√

(1− λ2)(1− (s · e3)2) ≥ cos θ

where θ is the angle from e3 to the edge of the FOV cone. Additionally,
we constrain λ ∈ [λmin, λmax] ⊂ (0, 1) where the parameters λmin and λmax
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Fc

e3

FOV Cone

Image Sphere

Body

Fig. 2. A simple model of the FOV cone.

effectively keep the camera from moving too far from or too close to the
camera body, respectively. Finally, we keep q1 from being too close to the
edge of the projected circle, namely q1 · s + ε ≥

√
1− λ2. Putting these

constraints together yields the compact manifold

D =
{
y = (Q, λ, s) ∈ SO(3)× [λmin, λmax]× S2 :

f(y) ≥ cos θ, λmin ≤ λ ≤ λmax

}
⊂ I ,

(20)

where θ ∈ (0, π/2) , 0 < λmin < λmax < 1 .

Clearly D ⊂ I. Given this domain, one must construct an NF on D. The
construction of ϕ represents work in progress, however, we conjecture that
given the relatively simple geometry of D, that constructing a suitable NF
should be straight forward. In fact, we believe (but have not yet formally
shown) that D ' [0, 1]5×S1 which is the same topology for which an NF has
already been constructed for VS by the first author and colleagues [5].

5 Conclusion

In this paper, we presented a global diffeomorphism from a large subset of
configurations in SE(3) — those that are “visible” — to an appropriately
defined image space. Such constructions provide tremendous leverage because
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they shed light on the geometry of occlusion free servoing as well as provide a
clear pathway to construct global dynamical visual servoing systems by using,
for example, Navigation Functions.

A global, sensor-based representation of the configuration space leaves
many open doors. For example, the control of underactuated and kinemati-
cally nonholonomic systems becomes possible in sensor space. Now that we
now know it is possible to globally represent rigid motion using image coor-
dinates, the next step is to construct a more general class of diffeomorphisms
to the image plane that does not require designing special visual targets.
We believe that with proper insight, the projection of a collection of rigidly
connected feature points may be interpreted geometrically, again enabling a
global representation of visible configurations. For example, perhaps depth
can be described in terms of “moments”, as suggested by Hamel and Ma-
honey [6], and orientation can be described in terms of the projection of two
or three feature points.
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A Proof That c : V → I is a Diffeomorphism

The proof proceeds in four parts. First, we show that c is smooth on V.
Next we show that c(V) ⊂ I. Third, we show that c is bijective by explicitly
computing its inverse, c−1, on I. Finally, we show that c−1 is smooth on I.

The function c is smooth. The function c is composed of smooth functions
away from the set where the arguments of ‖ · ‖−1 become zero. But those
arguments are nonzero on V. In particular:

1. Equation (3) depends on ‖d‖−1. However, H ∈ V implies ‖d‖ > %.
2. Equation (6) depends on ‖b‖−1 = ‖d− %r3‖−1. Visibility implies ‖d‖ >

%, which in turn implies ‖d− %r3‖ ≥ ‖d‖ − ‖%r3‖ = ‖d‖ − % > 0.
3. Equation (6) depends on ‖Γq1r2‖−1. This blows up iff q1 = ±r2, i.e.

q1 =
d− %r3

‖d− %r3‖
= ±r2

and hence, from (5)

ν(H) = (d− %r3) · r3 = ±‖d− %r3‖ r2 · r3 = 0 ,

=⇒ H /∈ V .

This contradiction implies that ‖Γq1Rab‖ > 0 for H ∈ V.

Hence, c is smooth on V.
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The image of V indeed is contained in I. To see that c(V) ⊂ I, let
(Q,λ, s) = c(H). By construction of c, we have that (Q,λ, s) ∈ SO(3) ×
(0, 1)× S2. To show that q1 · s >

√
1− λ2, note from (6) that

q1 · s =
(d− %r3) · s
‖d− %r3‖

=
‖d‖ − %s · r3√

%2 − 2d · r3 + ‖d‖2
=

1− λα√
1− 2λα + λ2

where α = s · r3. From (5), α > λ to ensure ν(H) > 0. Since the right hand
side reaches its minimum of

√
1− λ2 for α = λ, we have that q1 ·s >

√
1− λ2.

The function c is bijective. Consider any H ∈ V, with rotation R =[
r1 r1 r1

]
and translation d as usual. Let c(H) = (Q,λ, s) ∈ I, where Q =[

q1 q2 q3

]
. Given (λ, s), recovering the translation from (4) is trivial, namely

d = c−1
1 (λ, s) ∈ B. Recovering the rotation from (Q, λ, s) requires a bit more

care, but the result yields the unique inverse on I (see [4] for details):

c−1 : (Q,λ, s) 7→ H =
[
r1 r2 r3 d
0 0 0 1

]
, where d =

%

λ
s ,

r3 =
1
λ

(s− βq1) , β = ‖b‖ =
%

λ

(
cos φ−

√
λ2 − sin2 φ

)
r2 =

(
q2 −

r3 · q2

r3 · q1
q1

)/∥∥∥∥∥q2 −
r3 · q2

r3 · q1
q1

∥∥∥∥∥, and r1 = r2 × r3 .

(21)

The function c−1 is smooth. Finally, we need only show that c−1 is
smooth. But, c−1 is composed of smooth functions. There are two caveats:

1. Equations involving 1/λ. This is fine since 0 < λ < 1.
2. Equation for r2. First, note that r3 · q1 = r3 · b/‖b‖ = ν(H)/‖b‖ > 0.

Also, since q2 and q1 are linearly independent, the denominator can never
be zero, so this equation is smooth on I.

Hence c−1 is smooth, and c is a diffeomorphism c :V ≈ I. ut
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