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Abstract

The objective of this research is to discover the rules by which the human ner-

vous system controls the cyclic task of paddle juggling. The existence of separate

feedforward and feedback control signals is hypothesized, and the feedforward control

system is completely identified using tools from dynamical systems theory. Using this

knowledge progress is made in identifying the feedback control system, with some in-

teresting findings. The author believes that the data analysis methods in this work

are novel and can be applied in the study of other hybrid dynamical cyclic tasks such

as walking and running.
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Chapter 1

Introduction

1.1 The Neuromechanical System

The objective of this research is to discover the “rules” by which the human

nervous system controls and adapts motor tasks that are of a cyclic nature (running,

walking, juggling, breathing, etc.). For some of these tasks, especially in locomotion,

it has been found that the dynamics of the mechanical system is critical to the the task

[1,2], and so we shall call the combination of the nervous system and the mechanical

system dynamics the “neuromechanical” system.

While the mechanical system can be modeled reasonably using physics and phys-

iology, there is no such easy way to model the nervous system. The brain is a “black

box”: we can only observe an output through some muscle activity corresponding to

an input to the sensory systems. In the context of cyclic tasks, the “input–output”
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CHAPTER 1. INTRODUCTION

notion turns into the idea of observing a response to a perturbation. A task such as

walking is autonomous (not in the dynamical systems sense of the term), and there is

a quasi-periodic output to no discernible input. Perturbations can cause deviations

from a stable limit cycle, and following this the neuromechanical system attempts to

return to the equilibrium orbit. The nature of the trajectory of this return exposes

some of the characteristics of the closed-loop system.

The process of trying to understand the plant model from input–output data

is generally termed as the system identification problem. As stated before, it is

reasonable to assume that for many tasks, we can describe a “correct” model of the

mechanical system using physics. Unfortunately, most of the time an accurate model

would have a very large number of degrees of freedom and tunable parameters, and

would be extremely complicated. A simpler model that has similar characteristics is

often used instead [3, 4].

The validation of such a simplified model can still be complicated. This is because

the mechanical system is in a closed loop with the brain, leading to issues of identifi-

ability [5]. In the simplified block diagram of Figure 1.1, it is usually not possible to

extract output data or inject input between the nervous and mechanical systems. As

a result, we cannot tease apart the neural dynamics from the combined neuromechan-

ical system dynamics by looking at only the input–output data. In fact, this difficulty

motivates our choice of paddle juggling as the cyclic task of interest (see Section 1.3

). Knowing the mechanical model exactly (we are assuming a fairly simple model for

2



CHAPTER 1. INTRODUCTION

Nervous
System

Mechanical
System

Sensory
System

Task Output

Figure 1.1: Simple model for neuromechanical control.

the muscle) makes it possible to learn what part the brain (controller) is playing in

the closed-loop system by looking at input–output data.

1.2 Modeling as a Dynamical System

Walking, running and juggling are all examples of cyclic tasks, and we can consider

the system output (for the case of juggling the output would include ball position and

velocity, paddle position and velocity) to be generated by a hybrid dynamical system.

We shall use the following representation for a hybrid system:

Φ :



ẋ = f(x, u), where u = β(y, t)

x 7→ πi(x), when gi(x) = 0

y = h(x)

In the above equations, f represents the continuous time dynamics, h represents

the output map, and the πi : Rn → Rn are a finite set of state mappings that represent

3



CHAPTER 1. INTRODUCTION

the discrete “transition maps” in the terminology of [6]. In our case, the continuous

dynamics include ball flight under gravity and a double integrator system for paddle

movement. There is only one discrete transition, at the ball-paddle collision.

The function β is the control law, which uses a history of sensory inputs y for

feedback,

y(t) = { y(τ) : τ ∈ (−∞, t] }

and also has a state–independent “feedforward” component which is made clear by the

explicit time dependence. Section 2.1.1 has a detailed discussion of the feedforward

and feedback parts of the control. The exact structure of β is not assumed to be

known at this point; it may (for example) be the output of a dynamical system, or

state feedback through a memoryless delay.

Note that for a cyclic system, f must be a nonlinear function in x. For the case

of paddle juggling, Φ has a stable periodic limit cycle, x∗(t). This means that

• when u is not state–dependent (no “feedback” component), x∗(t) is invariant

under the action of the state transition function f and the mappings πi,

• x∗(t+ T ) = x∗(t) for any t, where T is the “period” of the limit cycle.

1.3 Why Paddle Juggling?

We chose the paddle one-juggle as our cyclic task because the mechanical system

is easier to model than for other tasks such as walking and running. The mechanical

4



CHAPTER 1. INTRODUCTION
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Figure 1.2: Experimental setup for paddle juggling. (Credit: Eatai Roth)

system needs only to include a model for paddle movement controlled by the arm.

We may assume that the elbow exerts a torque, making the paddle dynamics a dou-

ble integrator. The ball dynamics can be broken up into a continuous flight phase

(constant gravitational acceleration), and a discrete impact step (non-elastic collision

between the paddle and the ball). Simple physics can model this whole system, and

all of the free parameters (paddle mass, ball mass, ball-paddle coefficient of restitu-

tion) are easily measured. The mechanical system model is formally written down in

Section 2.2.

As discussed in Section 1.1, an exact knowledge of the mechanical system means

that we have reduced our “unknowns” in the identification problem to just the neural

dynamics. It is obviously difficult to formulate an exact mechanical model for a

task such as walking, and this subsequently makes it difficult to extricate the neural

dynamics from those of the mechanical system when dealing with input–output data.

Finally, it is easy to simulate the task in a virtual reality system, which enables us

5



CHAPTER 1. INTRODUCTION

to not only collect data easily, but also gives us the ability to perturb the physics in

order to analyze the human response. This effectively means we can inject an input

between the neural and mechanical blocks of Figure 1.1, using haptics to perturb the

paddle downstream of the neural signal.

We used a “Stanford haptic paddle” [7] interface to a computer for data collection,

eliminating the need for sophisticated data acquisition apparatus such as high speed

cameras or motion capture equipment. For the experiments in this study, there was

no haptic feedback to the user. Providing haptic feedback along with visual feedback

(or some combination of the two) is among possible future work.

6



Chapter 2

Modeling

2.1 Feedforward and Feedback Signals

We hypothesize that the juggling control system has feedforward and feedback

parts, whose constributions are summed to produce the input for the mechanical sys-

tem. On the limit cycle, the feedback part is zero. However, small perturbations

caused by noise or exogenous inputs excite the feedback component which tries to

bring the system back to equilibrium. In the current work, we study the contribu-

tion of the feedforward input and visual feedback, and ignore slow changes to the

feedforward input attributable to learning or adaptation.

To understand the distinction between feedforward and feedback input, consider

the following conceptual experiment. A human subject performing closed–loop stable

period one paddle juggling is suddenly blindfolded. The human will keep executing a

7
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Figure 2.1: Detailed model for neuromechanical control of paddle juggling

“nominal” paddle trajectory which may or may not be stable—this nominal trajec-

tory is the result of the feedforward control (because of blindfolding and neglecting

haptic feedback, the feedback signal is zero). The visual feedback simply modifies

this feedforward input in order to stabilize the ball–paddle system.

2.1.1 Feedforward vs. Nominal

It is worth noting that in a “black–box” system it might be impossible to perfectly

distinguish feedforward control from a reflex based feedback control that is non–zero

even at equlibrium (or on the limit cycle for a cyclic system). Consider the example

of a mirror law paddle juggler [8], where the control law is purely feedback based.

8



CHAPTER 2. MODELING

The method discussed in this work would attempt to extract a “nomimal” paddle

trajectory (the trajectory at the limit cycle) and fit a feeback control system which

depends on perturbation of the state off the limit cycle. In most cases, a feedback

augmented feedforward system may be equivalent in the input–output sense to the

pure feedback system. However, as in the mirror law case, the pure feedback system

may need fewer parameters and represent a more parsimonious description of the

system. Further research is needed to devise a method which can truly separate the

feedforward signal from a feedback signal.

In the present work, instead of trying to resolve this distinction we focus our

attention on separating out a “nominal” trajectory and the feedback corrections to

it. The control signal which generates the system output when the system is per-

fectly on the limit cycle shall be referred to as the nominal control input, and the

trajectory generated by it the nominal trajectory. In the following chapters, we use

the term “feedforward” interchangeably with “nominal”. Consequently, the residual

control signal when the nominal input is subtracted off is termed as the “feedback”

signal. This terminology may not always be accurate, but as explained above, for our

experimental setup (and for most practical purposes) the difference is imperceptible.

In subsequent sections we shall attempt to separate the feedforward and feedback

control inputs from human data in order to compare their contributions in executing

stable period–one paddle juggling.

9



CHAPTER 2. MODELING

2.2 Mechanical Model

Suppose the states of the mechanical system are written as x1: ball position,

x2 = ẋ1: ball velocity, x3: paddle position and x4 = ẋ3: paddle velocity, and call

x(m) =



x1

x2

x3

x4


the state vector (for only the mechanical system). The continuous dynamics follow

the following equations:

ẋ2 = − g

mb

ẋ4 =
1

mp

u

where mb is the ball mass, mp is the paddle mass, and u (t) is the force input to the

paddle exerted by torque at the elbow joint. In our simulation we used mb = mp = 1.

There is a discrete mapping of the states that happens at a ball-paddle collision.

This collision happens when the following condition is satisfied:

x1 − x3 = 0 and x2 − x4 < 0.

10



CHAPTER 2. MODELING

Let the collision map be defined as xi 7−→ x+
i for each state xi. Then

x+
1 = x1

x+
2 = −αx2 + (1 + α)x4

x+
3 = x3

x+
4 = x4

where α is the ball-paddle coefficient of restitution. The arm and paddle together

are assumed to have sufficient inertia that the paddle velocity is not affected by the

collision.

2.3 Sensing Model

We assume that the nervous system receives full knowledge of the four states

considered above, with no added dynamics (i.e. no delay).

y = x(m).

For the present work we ignored haptic feedback.

11



Chapter 3

Feedforward Control System

Our first objective was to extract the “feedforward” (in the sense defined in Section

2.1.1) trajectory for period-one juggling from human trials. The simulated execution

of a purely feedforward motion (Figure 3.1) to the juggling system will be referred

to as “open-loop” paddle juggling. Our experimental setup was described in Section

1.3, and the number of trials we used was N = 1.

In future work, a priority is to incorporate multiple human trials in our experiment.

The analysis provided in this thesis provides the theoretical basis for this future work.

It is an open question whether different individuals have the same feedforward

“strategy” or if they use different strategies. In Figure 2.1 we explicitly included a

block that slowly affected the feedforward strategy even for the same individual. (By

“slow”, we mean here over the scale of 10’s or 100’s of cycles). This can explain

the effect of adaptation or “training” modifying the feedforward trajectory. Later in

12
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Figure 3.1: The block diagram for open-loop paddle juggling.

Chapter 4 we shall describe our hypothesis of a possible effect of adaptation in the

feedback control.

3.1 Obtaining the Feedforward Trajectory

from Data

We propose that the following experiment and data processing steps yield the

feedforward trajectory. We collect data from a single individual executing period-1

paddle juggling without perturbations over a period of a large number (50-100) of

13



CHAPTER 3. FEEDFORWARD CONTROL SYSTEM

cycles. In the modeling step (Section 2.1) we stated that when the system is on the

limit cycle, the contribution of feedback to the control input is zero. Since there are

no perturbations, the only deviations from equilibrium occur because of noise.

First, we argue that the noise–induced deviations are zero mean in the original

coordinate frame. If they were not, the human would likely “correct” for these devia-

tions with a constant offset to the feedforward trajectory, so that the performance of

the feedforward trajectory in the absence of sensory feedback is the best possible. In

any case, a non–zero bias to the noise will be lumped into the feedforward trajectory

we ultimately extract.

Secondly, note that for small deviations from equilibrium (it can be assumed

that perturbations due to noise are small enough), the behavior of the nonlinear

neuromechanical system can be described well by a linearization about the limit

cycle. Hence the paddle trajectory (which is a system output) is related linearly to

the noise input. Hence, it can be reasoned that by averaging the system output for

a large number of cycles, we shall eliminate the contribution of the zero–mean noise,

and what is left is the output caused by feedforward control.

3.1.1 Phase Extraction

Even though period-one paddle juggling is a periodic process (and we modeled it

using a nonlinear system with a periodic orbit), in reality that data is quasi-periodic.

Suppose that we can (by some unknown method) identify points in time when the

14



CHAPTER 3. FEEDFORWARD CONTROL SYSTEM

state of the system should be identical (exactly one time period apart), and these

points are {t1, t2, . . .}. Then it is not necessarily true that ti+1− ti = T (the constant

period of the system).

Instead of time, let us introduce an alternative notion called phase. Phase is an

invertible mapping φ : R → R such that x (φi+1) = x (φi) on the limit cycle (using

the shorthand φi = φ (ti) for brevity), and also φi+1 − φi = 2π. So, while the time

data x (t) is quasi-periodic, the phase data x (φ) is strictly periodic with period 2π.

Note that often we use the term phase to refer to φ mod 2π ∈ S1, and the meaning

should be clear from the context.

In this work, we have used the PHASER algorithm due to Revzen and Gucken-

heimer [9] for phase extraction from our time series data.

3.1.1.1 Change of Coordinates to Facilitate Phase Extraction

The method of Revzen and Guckenheimer was developed only for data which is

an intrinsic mode function (IMF), meaning that the Hilbert transform of the time

data winds around the origin at a rate strictly greater than zero. Paddle juggling

data has discontinuities (for example, a phase space plot of ball position–ball velocity

has a large jump in phase) which make phase extraction particularly difficult and

unreliable.

We used the following nonlinear periodic change of coordinates in order to place

the data in a coordinate frame more conducive to phase extraction. We show in

15



CHAPTER 3. FEEDFORWARD CONTROL SYSTEM

Figure 3.2: Nonlinear change of coordinates to remove phase discontinuities.

Appendix A that this does not affect the deterministic properties of the system (such

as Floquet modes) that we seek to determine from our data.

Suppose the system output is y ∈ R4,

y =



b

ḃ

r

ṙ



16



CHAPTER 3. FEEDFORWARD CONTROL SYSTEM

where b is the ball position and r is the paddle position. Let h0 : R4 → R4 send

y 7−→



b− r

ḃ− ṙ

r

ṙ


=:



η

η̇

r

ṙ


.

Note that h0 is linear.

Let h1 : R4 → R2 × R+ × [−π, π] convert (η, η̇) 7→ (ρ, θ) (from Cartesian to polar

coordinates), while leaving (r, ṙ) unchanged. Because of physical constraints of the

system (b > r at all times), θ ∈ [−π, π].

Let h2 : R2 × R+ × [−π, π] → R2 × R+ × S1 convert θ 7→ 2θ, leaving everything

else unchanged.

After the application of the change of coordinates

ρ

θ′

r

ṙ


= h2 ◦ h1 ◦ h0 (y) ,

note that output data on the limit cycle is still discontinous right at impact. This is

because, after the collision,

η̇+ = −αη̇.

In order to compensate for this, we use the mapping h3 : R2 × R+ × S1 →

17



CHAPTER 3. FEEDFORWARD CONTROL SYSTEM

R2 × R+ × S1 that warps the ρ component via

ρ 7−→ ρ

(
1− θ′ + π

2π
(1− α)

)
.

Note that each of these transformations is invertible and smooth (the conversion

to polar coordinates has a singularity at the origin, but that is safely avoided in real

data since the empirically observed limit cycle is far from this set). To sum up, the

transformation we apply to our juggling data is h : R4 → R4

y 7−→ h−1
1 ◦ h3 ◦ h2 ◦ h1 ◦ h0 (y) .

The effect of these transformations in phase space is shown in Figure 3.2.

The method of [9] combines several scalar time series in order to give a more

robust phase estimate. For paddle juggling we used the first and third components

of y (after the change of coordinates above) for phase extraction. Note that the

second and fourth components of y are simply derivatives of the first and third com-

ponents, respectively. The Hilbert transform H (used to get protophases in [9]) has

the property that

d

dt
H (x (t)) = H (ẋ (t)) ,

so that adding derivatives of the scalar time series does not add any new information

to the phase estimation process.

18



CHAPTER 3. FEEDFORWARD CONTROL SYSTEM

Po
si
tio

n
Ve

lo
ci
ty

Ac
ce
le
ra
tio

n

ImpactPeak

Figure 3.3: Nominal open-loop trajectory from human trial data.

3.1.2 Averaging to get Nominal (Feedforward) Tra-

jectory

Suppose we call the collected output data y1, y2, . . . , yp. Once we have extracted

the phase φ1, . . . , φp, we can average by binning in phase. For example, consider a

division of the phase space

S1 = ψ1 ∪ ψ2 ∪ · · · ∪ ψK

where the ψi are pairwise disjoint, and for any φi ∈ ψi and φi+1 ∈ ψi+1, φi < φi+1.

Further, let ρi = {j ∈ 1, . . . , p : φj ∈ ψi}. The averaging is done in the following

19



CHAPTER 3. FEEDFORWARD CONTROL SYSTEM

manner:

γi =

∑
j∈ρi

yj

|ρi|
.

The number of bins, K, controls the “resolution” of the average trajectory. If we have

more data, we can afford to make K larger. In our trial, we used K = 100.

The data γ1, . . . , γK is now the average trajectory. Figure 3.3 shows the nominal

trajectory obtained by this method from our human trial.

3.2 Fitting a Model to Open-Loop Paddle

Juggling

Since we know the exact feedforward trajectory of the human, we can now attempt

to fit a model to open-loop paddle juggling (using the feedforward trajectory without

feedback correction). As stated before, this system is periodic, nonlinear and time-

varying. We shall attempt to find a model that explains only the linearized system

(this will only be valid in the regime that linearization of the nonlinear system is

valid, i.e. for small perturbations from the limit cycle).

Secondly, we shall also assume that the number of states in the system is known

and is equal to 4 (same as the dimension of the output space). This assumption is

related to the fact that the feedforward control system does not need an observer that

would add additional dynamics and thus require more states.

20
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x

P(x)

S

Figure 3.4: A Poincaré return map, where S is the codimension–1 manifold, and P
is the return map. (Source: Wikipedia)

In order to extract the dynamics of the system, we did simulations with a ball

bouncing on a paddle which is blindly executing the known feedforward trajectory.

By simulating a rich assay of perturbations, we can excite all the dynamics of this

system and then attempt to fit the input-output data. We need to use certain tools

from dynamical systems theory in order to accomplish this from the simulated data,

these are mentioned below.

3.2.1 Poincaré Return Maps

A Poincaré return map or first recurrence map (see Figure 3.4) is a useful tool

in analyzing periodic systems. The map itself is the intersection of the orbit of the

system with a lower dimensional section (usually of codimension 1) transverse to the

flow of the system. This return map data is a discrete-time dynamical system in a

21
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codimension 1 subspace of the ambient space, and it may be used to analyze some of

the properties of the original system, such as stability.

Even though the theory of Poincaré return maps allows choosing any section

transverse to the flow, there is a subtle issue with considering sections of constant

phase as we have done in this work. When we are not on the limit cycle exactly, a

particular section is not necessarily an isochron for trajectories ending up at the next

section simultaneously. One may envision choosing sections in a special way so as to

ensure that the time taken for the states to go from one section to the next is constant

(as long as they are within a small cylinder around the limit cycle trajectory). This

is a topic for future research.

3.2.2 Floquet Coordinates

Floquet coordinates are a coordinate frame in the ambient space of the dynamical

system where the coordinate axes lie along the eigenvectors of the Poincaré return

map. The main use of Floquet coordinates comes about as a result of Floquet’s

Theorem, which says that this coordinate change transforms the periodic system into

a linear time invariant (LTI) system.

The procedure to find Floquet coordinates is similar to the procedure described

in [10]:
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1. Construct M = 20 sections of constant phase

φi =
i

M
2π, i ∈ {0, 1, . . . ,M − 1}

and find the data at the sections by interpolating the phase data.

2. Find section maps Ai,j ∈ R4×4 by doing a least squares fit to section data. If

Xl = {x at section l}, then

Xi = Ai,jXj =⇒ Ai,j = XiX
†
j .

We must take care to make sure that elements of Xi appear chronologically

after (and within 1 period of) corresponding elements of Xj.

3. Pick an initial section, φk, and find the Poincaré return map for a section at φk.

Suppose X
(0)
k represents Xk with the last column removed, and X

(1)
k represents

Xk with the first column removed. Then a least squares fit for the return map

matrix is

Ak = X
(1)
k

(
X

(0)
k

)†
.

4. Let Ak = VkDkV
−1
k be an eigendecomposition of Ak. The Floquet coordinate

axes at section k are the columns of Vk. Now these eigenvectors can be “prop-

agated” using the section maps,

Vk+1 = Ak+1,kVk, Vk+2 = Ak+2,k+1Vk+1, etc.

Note that it must be true that Ak+2,k = Ak+2,k+1Ak+1,k, etc., however this

is not a “constraint” enforced by our method of finding Floquet coordinates.
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Tweaking this method to enforce this constraint should be considered a future

avenue of research.

Let us denote the transformation to Floquet coordinates by F . F is a periodic, time–

varying, invertible transformation. Suppose the data obtained from the perturbation

simulations mentioned in Section 3.2 is a time series x1, x2, . . . , xp, and we use the

PHASER algorithm [9] to obtain the phase φ1, . . . , φp. Now we can convert the phase

data to Floquet coordinates

xk
F−→ zk,

and by Floquet’s Theorem, zk are explained by an LTI system. Define Z = [z1, · · · , zp].

Just like before we can fit

AF = Z(1)
(
Z(0)

)†
.

Now we can get back the phase varying system matrix A (φ), AF
F−1

−−→ A (φ) .

3.2.3 Open-Loop Stability

Now that we have a model for the open-loop system, we can examine its stability

properties to see if feedback is necessary to stabilize paddle juggling. The acceleration

curve in Figure 3.3 indicates that the acceleration of the paddle at impact time is

positive. This suggests that the system is not passively stable [11].

To verify this “intuition”, we did numerical simulations of open-loop juggling with

time period ≈ 1 second starting from initial conditions very close to the limit cycle
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Figure 3.5: Eigenvalues of open-loop paddle juggling return map obtained from sim-
ulations.

(within the regime where the linearized system equations are valid. The resulting

system has return map eigenvalues (see Section 3.2.1) that lie outside the unit circle

(Figure 3.5), ergo the open-loop system is in fact unstable.

To sum up, human paddle juggling is not passively stable, and requires visual

feedback for a time period of 1 second. There is a possibility that if the time period

is reduced enough (so that visuomotor delays make visual feedback insufficient for

feedback stabilization), the human switches to a trajectory that is passively stable.

Experiments of this nature are part of future work.
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3.3 Feedforward Trajectory as an Opti-

mal Trajectory

Once we obtain the feedforward trajectory being used by the human (Section 3.1),

a natural question to ask is why that particular trajectory was picked by the nervous

system. We hypothesized that the trajectory used is the result of optimization of

certain criteria like stability, performance and energy consumption. We can test

these hypotheses by finding an optimal result satisfying the task constraints over the

space of all trajectories, and then comparing this with the feedforward trajectory

obtained previously.

3.3.1 Parameterizing Period-One Juggling Trajec-

tories

For this section, we shall assume that the dynamics are continuous time. Suppose

the paddle position is given by xp (t). Paddle physics is a simple double integrator,

ẍp = u. The constraints on the trajectory are

• xp (0) = xp (T ) = 0 (can be set arbitrarily to any constant), and

• ẋp (0) = ẋp (T ) = V , where V is the correct paddle velocity at impact to sustain

ball flight of period T given the coefficient of restitution.
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These differential constraints can be written as integral constraints on u after solving

the linear system with a matrix exponential. This gives∫ T

0

u (t) dt = 0,

∫ T

0

tu (t) dt = V T.

We must first find a parameterization of the space of all trajectories. Since the

trajectory is periodic, a natural choice is a finite order Fourier series:

u(t) =

Q∑
k=0

(ak cos (kωt) + bk sin (kωt)) , where ω =
2π

T
.

Applying the integral constraints to this series results in a linear constraint of the

coefficients,
Q∑

k=0

bk
k

= −ωV.

Because of this constraint, note that u can be specified by 2Q − 1 parameters, and

that is the space of our optimization. In the next sections, we consider u ∈ R2Q−1.

3.3.2 Objective Functions

The objective function is a function OF : R2Q−1 → R that is minimized to get the

optimal trajectory. We considered the following candidate objective functions:

1. Minimum input.

OF (u) =

∫ T

0

||u (t)|| dt.

2. Minimum jerk.

OF (u) =

∫ T

0

||u̇ (t)|| dt.
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3. Minimum goal error with white noise. For this objective function we

performed Monte-Carlo trials of the juggling system. Suppose xb (t) denotes the

ball position. Then, at t = 0, xb (0) = xp (0) = 0 and define Vb = ẋb (0) = gT/2.

This makes sure that xb (T ) = 0 and ẋb (T ) = −Vb.

Let w (t) ∼ N (0, σ2) be i.i.d. noise. For t ∈ [0, T ], the paddle input affected by

noise is

ũ (t) = u (t) + w (t) .

Note that this paddle trajectory noise will affect the impact time, and let the

noise-affected impact time be called T̃ 6= T . Suppose the paddle velocity on

integration of the noisy trajectory gives Ṽ = ẋp

(
T̃

)
. The ball velocity after

impact will be

Ṽ +
b = −αVb + (1 + α) Ṽ .

The ball peak height after impact is

h = xp

(
T̃

)
+

(
Ṽ +

b

)2

2g
.

The objective function to minimize goal error is

OF (u) =
∑
trials

∣∣∣∣h− V 2
b

2g

∣∣∣∣ .
We used M = 1000 Monte-Carlo trials for the optimization.

4. Minimum goal error with signal-dependent noise. Signal-dependent

noise is a model studied and used widely in the neuroscience literature [12,13].
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This means that the motor control noise has a variance proportional to magni-

tude of the force exerted. For our model, the objective function is the same as

in the previous case, except now

ũ (t) = u (t) + |u (t)|w (t) .

In the steps above where we have used a norm ||·|| symbol, we tried optimization with

both the 1-norm and the 2-norm. It is also worth noting that slightly different results

may be expected from using ||u (t)||2 instead of ||u (t)|| in the objective functions. The

work in [14] reports that an exponent of ≈1.69 fits the data well for human reaching

tasks.

3.3.3 Muscle Dynamics

For the minimum goal error objective functions, the best fit optimal model exhib-

ited extreme (physiologically impossible) jerk. Keep in mind that the signal u is the

output of the nervous system, and before this we have assumed that it is translated

directly into elbow torque. However, the muscles actuating the elbow have their own

dynamics which need to be modeled.

We have assumed that the muscle dynamics result in a low pass filter of the

input signal. This assumption is based on the fact that any strictly proper rational

transfer function (for a mechanical model of muscle) would exhibit low pass filtering

properties. Furthermore, such models have gained traction in other similar modeling
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studies [15]. In terms of the optimization mentioned above, high frequency neural

signals get attenuated; this is effectively a truncation of higher order Fourier series

terms in the elbow torque signal u.

3.3.4 Results

From our trials, minimum goal error under signal-dependent noise best

matched our data by visual inspection. This is a nice validation of the applicability

of a model used frequently in neuroscience [12] for the case of paddle juggling. The

following caveats should be kept in mind:

• We only examined 4 different objective functions, whereas the brain may be

optimizing a combination of these, or something entirely different. We based

our choices on relevancy to physiology and the current neuroscience literature.

• A quantitative comparison of the trajectories to real data (over multiple cycles)

will verify which model is the best. The procedure would be to fit the resid-

uals from the model predictions to an ARMA process, and verifying that the

residuals are mostly a stationary process.
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Figure 3.6: Minimum input. Note: for this plot and the subsequent optimization
results, the x-axis is time from 0 to the juggling time period, and the y-axis is nor-
malized to be the most visually accessible.
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Figure 3.7: Minimum jerk.
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Figure 3.8: Minimum goal error with white noise.
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Figure 3.9: Minimum goal error with signal-dependent noise.
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The Role of Feedback

From the work in Chapter 3, we have a model for open-loop juggling (the result

of feedforward control) in Figure 2.1. In order to establish models for the feedback

control, we now include a feedback term that gets added to the feedforward signal

(Figure 4.1).

The first question that needs to be asked is, how many states are in the neurome-

chanical system? This question is of fundamental importance, but is hard to answer

from input-output data alone. In Section 3.2 we stated that it is reasonable to assume

that the feedforward control system has no additional states, but a similar argument

cannot be made for feedback control. Even for a simple linear system, a linear state

observer doubles the number of states. In Section 4.2 we examine a structured way

of answering this question.

Further, it is possible that there is a simple delay component in the feedback loop
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ObserverFeedback

Juggling
Dynamics

paddle, arm, 
ball, etc.

Visual/Haptic
Sensing

Feedforward
Learning Rule

(slow)

Brain

Sensory
Prediction

Figure 4.1: The block diagram for closed-loop paddle juggling.

because of the response time of the visuomotor system. Delays cannot be explained

by finite state models and have to be accounted for separately.

The second question we asked is, when in the cycle does the human make the most

use of visual feedback? We can assume that the human has full knowledge of the state

of the paddle as a consequence of proprioception and an efference copy (cf. [16]), and

the unknown states are of the ball only. The ball experiences free flight under gravity,

and from simple physics it only takes two discrete observations of ball position to have

full knowledge of its state. Intuitively, this means that the feedback signal should only

need to make large corrections to the open-loop trajectory at a certain point in the
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cycle. In Section 4.1 we show the results of a data-driven approach to answer to this

question.

4.1 Magnitude of Feedback Signal

From our hypothesis of the structure of nervous control system in Figure 2.1,

we stated that the feedback control input results in a correction to a feedforward

trajectory for paddle juggling. In Section 3.2, we showed how to obtain a linearized

phase-varying model of the feedforward control system, in discrete time. For this

section, we shall write the same system in continuous time, for conceptual clarity.

Suppose y (t) is a vector of the mechanical states of the system at time t; then the

open-loop system evolves according to

ẏ = AOL (t) y

where the time varying nature of AOL is made explicit. Note that it is periodic, so

that AOL (t+ T ) = AOL (t) for any t, where T is the period.

Then the closed-loop system evolves according to

ẏ = AOL (t) y + Feedback (t)

where “Feedback” is the result, at time t, of the sumtotal of all the hidden dynamics

in the feedback system affecting the observable states. It is a function of t and y, and

the dependence of the latter is implicit in our notation. The important thing is that

in this equation, the matrix AOL (t) is known.
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Figure 4.2: Plot of the magnitude of the feedback signal from pilot data along with
the open-loop trajectory showing the large feedback input near the ball peak.

Using our experimental setup described in Section 1.3, we collected pilot data

y (t) of closed-loop paddle juggling. We propagated the mechanical state (measured

at each time instant) through the open-loop model and compared this to the actual

closed-loop data:

FeedbackMagnitude (t) = ||ẏ (t)− AOL (t) y (t)|| .

Resuts from our pilot data (shown in Figure 4.2) suggest that feedback is maximum

115.8 ms after the ball reaches the peak of its flight. This is just slightly shorter than

visuomotor delays (≈150-250 ms, cf. [17]). This suggests that visual information

during ascent right before peak is integrated to generate a stable estimate of apex

state, which is sufficient for feedback control stabilization of the system.
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This result gives us good insight on how to do structured perturbations of paddle

juggling. For example, a perturbation of ball physics during ball ascent is likely to

be corrected for in the same cycle, whereas a perturbation during ball descent may

only be corrected for in the subsequent cycle.

Furthermore, the result also suggests that there is a delay component in the feed-

back loop, which should be accounted for in any detailed model of the feedback control

system for and cyclic tasks that depend on visual feedback.

4.2 Subspace Analysis

Applying the Floquet method to the closed-loop system would assume knowledge

of all the states, but the brain controller states are not readily available. The authors

of [18] developed a method for state space system ID for LTI systems that uses

the input–output data only and computes not only the dimensionality of the state

space but also the system matrices themselves (up to a similarity transform). We

developed an extension to their method to do system ID on linear parameter varying

(LPV) systems.

Recently there have been other methods of subspace system ID developed such as

in [19] where the authors compute the generalized observability matrix and determine

the system matrices from there. On the other hand, our method (like the method

of [18]) estimates the state sequence up to a change of coordinates, and then computes
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the system matrices.

4.2.1 Problem Statement

In our juggling data, suppose we call the vector of hidden states of unknown size,

x. Then the system equations can be written as

xk+1 = Ac(k)xk +Buk

yk = Cxk

where c (k) = k − 1 (modK) + 1, uk is the exogenous input at instance k (this refers

to, for example, a perturbation to the ball physics), and K is the period. The A

matrix is periodic, but the B and C matrices are constant–meaning that the output

map and the way the inputs affect the states do not change through the cycle.

4.2.2 Solution and Results

The solution method is demonstrated for a period-3 system in Appendix B, and

the extension to other K is obvious and straight-forward.

This algorithm has been tested on simulated data of systems with n = 3 and

K = 3 . Its application to real juggling data is a part of future work.
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Discussion

In this work, we examine human paddle juggling as a simple example of neural

control of a cyclic task. We demonstrate the usefulness of picking this particular

problem by creating an experimental setup using a haptic paddle interfaced to a

computer (Section 1.3). This system is easy to model, and we were able to collect

pilot human trial data (N = 1 subjects). With this setup we can also perform

systematic perturbation of the ball and/or paddle physics in real-time in order to

observe the human response, in future work.

Our central idea is the existence of distinct feedforward and feedback control sig-

nals for generating paddle motions (Section 2.1). We hypothesize that the feedforward

signal produces a periodic paddle trajectory that may or may not be stable, and the

feedback part integrates sensory information (visual and haptic) in order to stabilize

the mechanical states.
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In Chapter 3, we set about trying to extract the feedforward trajectory from

human data. We note that the data is not strictly periodic in time and introduce the

concept of phase such that it is periodic in phase. We use an existing method for

phase computation, and show how some additional data processing steps can make

this phase estimation process easier (Section 3.1.1). In Section 3.2, we attempt to

determine the characteristics of the open-loop dynamics with only the feedforward

trajectory. We use the help of Floquet Theory to transform the data into a coordinate

frame where the system is LTI and fit a linear system to it. This is a good model as

long as we are “close enough” to the limit cycle that the linearized system equations

are valid. We find that this open-loop system is actually locally unstable for a 1

second period paddle juggle by our single subject.

In Section 3.3 we evaluate a set of possible objective functions that the nervous

system might be optimizing in order to “pick” the feedforward trajectory. This set

of functions was chosen with particular attention to neuroscience literature, and our

data suggests that the brain minimizes error in goal height assuming the existence

signal-dependent motor noise, choosing optimal performance over energetic concerns.

Finally, in Chapter 4 we attempt to elucidate the nature of the feedback signal that

corrects the feedforward trajectory from visual sensory information. In Section 4.1 we

choose to not make assumptions about the structure of the system, but instead simply

use our open-loop model from Section 3.2 to predict closed-loop data. The prediction

error is exactly the feedback term. We showed that, averaged over many cycles, our
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human subject injected a feedback signal whose magnitude peaked 115.8 ms after

the ball peak. This indicates that the human uses the ball state information at and

just before apex and makes corrections to the trajectory once per cycle. In Section

4.2 we show some progress in building a full-fledged system ID method for periodic

linear state space systems, and envision that this method might be used to analyze

closed-loop juggling data and fully understand the dynamics of the feedback “block”.

With the intuition we have gained into neuromechanical control of paddle juggling,

future work can delve deeper into making a good engineering model of the brain’s

contribution in controlling cyclic tasks (including separate feedforward or feedback

signals). Also, the tools we have developed in this work can be applied to the analysis

of other more complicated hybrid systems such as human walking, running or “real”

(non paddle-) juggling.
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Nonlinear Change of Coordinates

Consider an arbitrary discrete dynamical system

xk+1 = g (xk)

with a fixed point g (x∗) = x∗. Now suppose we apply a nonlinear diffeomorphism h

to get a change of coordinates zk = h (xk), and define z∗ = h (x∗). Note that

zk+1 = h ◦ g ◦ h−1 (zk) ,

and h◦g◦h−1 (z∗) = z∗. Now suppose we linearize z about z∗, and call ∆zk = zk−z∗.

Applying the chain rule for derivatives,

∆zk+1 = Dh|g◦h−1(z∗) ·Dg|h−1(z∗) ·Dh−1|z∗∆zk

=
(
Dh|x∗ ·Dg|x∗ ·Dh−1|z∗

)
∆zk.
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Note that we can take derivatives of h ◦ h−1 (z∗) = z∗ to get

Dh|x∗ ·Dh−1|z∗ = I (the identity transformation)

Dh−1|z∗ = (Dh|x∗)−1 .

Putting this in the previous equation, we get that

∆zk+1 = (Dh|x∗) ·Dg|x∗ · (Dh|x∗)−1 ∆zk.

This shows that the linearized z data and the linearized x data are both explained

by systems that have the same eigenvalue structures, and are just a similarity trans-

form away from each other.
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Subspace LPV System ID

For the system model in Section 4.2.1, let x ∈ Rn×1, u ∈ Rp×1, y ∈ Rq×1. Let

i denote the “window size” (for our method the window size must be a multiple of

the period). Let j = r − 2i + 1, where r is the number of data points. For the first
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example, suppose


y1 y2

y2 y3 · · ·

y3 y4


︸ ︷︷ ︸

qi×j

=


C C C

CA1 CA2 CA3

CA2A1 CA3A2 CA1A3


︸ ︷︷ ︸

qi×ni

·


x1 x4

x2 x5 · · ·

x3 x6


︸ ︷︷ ︸

ni×j

+


0 0 0

CB 0 CB 0 CB 0

CA2B CB 0 CA3B CB 0 CA1B CB 0


︸ ︷︷ ︸

qi×piK

·



u1 u4

u2 u5

u3 u6

u2

u3 · · ·

u4

u3

u4

u5


︸ ︷︷ ︸

pi2×j

,

or, renaming matrices, Y1|i = ΓiX1 +HiU1|i.
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Similarly,

Xi+1 =


A3A2A1

A1A3A2

A2A1A3


︸ ︷︷ ︸

=Θi

X1

+


A3A2B A3B B

A1A3B A1B B

A2A1B A2B B


︸ ︷︷ ︸

=∆i

U1|i

For any matrices P and Q, define

P/Q = PQT
(
QQT

)†
Q

as the “projection” of the rows of P on to the rows of Q. Also define Q⊥ as the

space perpendicular to the row space of Q. Then P/Q⊥ = P
(
I −QT

(
QQT

)†
Q

)
,

and Q/Q⊥ = 0. The idea is to eliminate the effect of U on Y by projecting onto a

space perpendicular to U , so as to get a “linear” dependence of Y and X.

The system equations are

Xi+1 = ΘiX1 + ∆iU1|i

Y1|i = ΓiX1 +HiU1|i.

From the second equation,Xi = Γ†
i

(
Y1|i −HiU1|i

)
, meaningXi+1 =

(
∆i −ΘiΓ

†
iHi

)
U1|i+

ΘiΓ
†
iY1|i.
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We can write,

Xi+1 =

[
∆i −ΘiΓ

†
iHi ΘiΓ

†
i

]
︸ ︷︷ ︸

Li

 U1|i

Y1|i


︸ ︷︷ ︸

W1|i

.

Now because we took i = µK (some multiple of the period),

Yi+1|2i = ΓiXi+1 +HiUi+1|2i = ΓiLiW2|i +HiUi+1|2i

Now we can try to eliminate the contribution of U to Y as follows:

Yi+1|2i/U
⊥
i+1|2i = ΓiLiW2|i/U

⊥
i+1|2i +Hi Ui+1|2i/U

⊥
i+1|2i︸ ︷︷ ︸

=0(
Yi+1|2i/U

⊥
i+1|2i

) (
W2|i/U

⊥
i+1|2i

)†
W1|i︸ ︷︷ ︸

,Oi+1

= ΓiXi+1.

In the equation above, the left hand side is known, but the right hand side is

unknown.We can get an initial factorization using SVD:

Oi+1 = PSV = PS1/2︸ ︷︷ ︸
E

S1/2V︸ ︷︷ ︸
F

As long as E and F have the right dimensions, we can always get the “correct”

factorization by inserting a matrix T .

EF = (ET )
(
T−1F

)
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We want T−1F = X̂i+1. So

[
f1 f2 f3 · · ·

]
︸ ︷︷ ︸

F

=

[
T1 T2 T3

]
︸ ︷︷ ︸

T


x̂4

x̂5 · · ·

x̂6


︸ ︷︷ ︸

X̂i+1[
f1 f4 f7 · · ·

]
= T1

[
x̂4 x̂7 x̂10 · · ·

]
, etc.

The matrix on the left above must have rank n (use Sylvester’s inequality to show

this...). We can do another SVD to get a factorization of the form above to obtain

T1 and

[
x̂4 x̂7 x̂10 · · ·

]
. In this way we can get T =

[
T1 T2 T3

]
, and all the

x̂k (but x̂4, x̂7, . . . may be in different coordinates than x̂5, x̂8, . . .).

To fix this, suppose we define

x̄k = Pc(k)x̂k,

and find P ’s such that the x̄ are all in the same coordinates. Define

Pd =


P1

P2

P3

 ,

so that X̄i+1 = PdX̂i+1. So

Oi+1 = EF =
(
ETP−1

d

)
X̄i+1.

Now, we want ETP−1
d to have the structure of Γi. In particular, the first “row”
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must be

[
C C C

]
. Suppose

ET =

 E1 E2 E3

∗

 (recall that ET is known)

So now,

E1P
−1
1 = E2P

−1
2 = E3P

−1
3 .

We can arbitrarily set P1 = I and get all the x’s in the same coordinates as x̂4, x̂7,

etc. After this step we have an estimate X̄i+1.

To obtain the system matrices, note that x̄2 x̄5 · · ·

y1 y4 · · ·

 =

 A1 B

C 0


 x̄1 x̄4 · · ·

u1 u4 · · ·

 .
We can backdivide to get the A1, B, C matrices, and similarly all the other A

matrices.
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The Conditioning of Γi

Γ†
i is well behaved when Γi is near square. If C has more columns than rows, we

can redefine Γi with more rows in the following way:

Γi =



C C C

CA1 CA2 CA3

CA2A1 CA3A2 CA1A3

CA3A2A1 CA1A3A2 CA2A1A3

CA1A3A2A1 CA2A1A3A2 CA3A2A1A3

CA2A1A3A2A1 CA3A2A1A3A2 CA1A3A2A1A3



.

This effectively means that i = 6 for the problem above, and some matrices such

as the Y matrix need to be redefined. In the previous case, we had enough equations

to solve for the matrices P , but in this case using E1P
−1
1 = E2P

−1
2 = E3P

−1
3 only is

not enough.

Just by counting, the matrix equation

Γi


I2×2

P2

P3

 = ET (known 6× 6matrix)

has 20 scalar variables and 36 equations for them. A simple nonlinear solver (such as

the Levenberg-Marquardt algorithm in MATLAB) yields the correct solution.
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