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Abstract We present an algorithm for SLAM on planar graphs. We assume that a
robot moves from node to node on the graph using odometry to measure the dis-
tance between consecutive landmark observations. At each node, the robot follows
a branch chosen at random, without reporting which branch itfollows. A low-level
process detects (with some uncertainty) the presence of landmarks, such as corners,
branches, and bumps, but only triggers a binary flag for landmark detection (i.e.,
the robot is oblivious to the details or “appearance” of the landmark). Under un-
certainties of the robot’s odometry, landmark detection, and the current landmark
position of the robot, we present an E-M-based SLAM algorithm for two cases: (1)
known, arbitrary topology with unknown edge lengths and (2)unknown topology,
but restricted to “elementary” 1- and 2-cycle graphs. In thelatter case, the algorithm
(flexibly and reversibly) closes loops and allows for dynamic environments (adding
and deleting nodes).

1 Introduction

Navigation of inexpensive mobile robots with limited computational capabilities,
imprecise sensing, and crude odometry presents a number of interesting challenges.
Here, we approach the problem of Simultaneous Localizationand Mapping (SLAM,
cf. [10]) in this setting. We assume that as a robot moves through the environment,
a low level control algorithm allows the robot to follow physical structures (walls,
doorways, etc.). These physical structures are presumed togive rise to a natural
graph structure where nodes of the graph are intermittent features detected by the
robot’s sensory system, including doorways, corners, or bumps on the wall (Fig. 1).
This sensory system was inspired by an artificial antenna [17] from which the tactile
feedback received is close range, intermittent, and sparse. This means that the robot
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Fig. 1: An illustration of how an environment with landmarksis treated purely as a
graph by the robot.

needs only run its mapping and localization algorithm occasionally (when a feature
is detected), but that only “corridor-like” environments with walls are considered
in this paper. Here, the observation is simply the odometrically measured distance
traversed since the last detected node, and we allow for the possibility of missing
nodes or detecting false positives.

In short, we propose a solution to the SLAM problem given sparse sensory data
(binary and intermittent) and a low dimensional state space. The topological ap-
proach lets us abstract the application (for example an indoor environment) from
the basics of the algorithm.

Almost all existing SLAM approaches use some statistical technique due to the
inherent uncertainty in noisy robot motion and/or observation. Csorba [7] developed
the theory behind a modified Extended-Kalman-Filter (EKF) based SLAM algo-
rithm; the EKF method has been improved and used extensivelysuch as in [12]. By
the nature of an EKF, the motion model and observation noise are independent: the
sensory noise is a function of the sensor physics, and is independent of the robot’s
motion noise. By contrast, our approach considers the motion and observation mod-
els as deeply related: the observation model is the “time to collision” for the motion
model. In this paper, we use a Wiener process motion model which gives rise to
an Inverse Gaussian sensory model; however this method can work with a variety
of movement and sensory models as long as there is a probability density function
describing the observations and an estimator, such as maximum likelihood, for its
parameters.

Monte Carlo or particle filter approaches like FastSLAM [19]were designed to
be computationally efficient, mapping up to thousands of landmarks while using the
EKF for landmark location estimation. In our framework of intermittent observa-
tions, such a huge number of landmarks would be rare.

We used an E-M (Expectation–Maximization) based mapping approach which
has been explored previously by others using various approaches. Unlike Thrun [23]
who considered a discrete brute-force minimization of a cost function over a grid-
based map, we considered our map lengths to be continuous andderive a formula
for an approximate solution. GraphSLAM [24] optimizes a specially constructed
graph with robot poses and landmarks as nodes to get the map posterior and is
meant to work “off-line.” We considered an “on-line” approach where the robot
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dynamically builds the map as it receives observations. Another approach uses a
Kalman filter [22] which attempts to keep track of the full statesin between nodes
(or observations) by taking the limit of a “dummy” observation variance to infinity.
Utilizing the fact that our sensory information (edge length) is only available on
every node contact and is directly related to the motor noise, we posed the problem
to recovering the topological state of the robot; this has the added benefit of being
more robust to problems such as loop closure.

Most SLAM implementations represent the map as a metric object but several
researchers have taken a topological approach. Choset and Nagatani [6] treat the
higher dimensional robot navigation space as a topology by using a Generalized
Voronoi Graph (GVG) and perform localization using graph matching. Our simple
sensor models generate sparse data that lends itself well tograph representation,
and we attempt to simultaneously map and localize the robot on the graph using
only odometry and landmark detection without appearance information. In [20], the
authors demonstrate mapping using Bayesian methods and a prior over graphs. To
search over the space of graphs, they use Monte Carlo sampling by starting with
a random topology, proposing a modification based on a proposal distribution and
then picking the new one if it improves a pre-set cost function. Bailey [3] proposes
a graph theoretic approach to data association. A recent approach [11] performs
SLAM on graphs using “energy” of the graph as a metric for choosing the best fit-
ting topology and Extended Information Filter (EIF) for mapping. For all of these
“model selection” issues, like data association and evaluating how good a topo-
logical fit is, we use an information theoretic criterion which rationalizes selection
based on entropy considerations. A few methods [16, 18] combine both metric and
topological information, composed of local feature-basedmetric maps connected
by edges in a topology, using Kalman Filter or FastSLAM basedmethods. Our ap-
proach does not require metric mapping because we estimate lengths in the map as
edge parameters.

The main contribution made by this paper is a multi-part algorithm that solves
SLAM on planar graphs (assuming “elementary” 1- or 2-cycle topologies) including
a novel loop closure approach using a model selection criterion (Sections 3–5). We
verify our results and test applications of the algorithm through numerical experi-
ments (Section 6), and address unsolved problems and opportunity for improvement
(Section 7).

2 Preliminaries

2.1 Notation

We represent the topology of landmarks as a graphG with N nodes andM edges. We
denote the set of all nodes asX = {1, . . . ,N}. Each nodei ∈ X has degreeκi [13]
and a landmark detection probabilityqi which is assumed to be knowna priori (our
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long-term goal is to use sensor characteristics to estimatethis—see Discussion).
The edge lengths between adjacent nodes are denoted byθ = {θ1, . . . ,θM}, and the
robot’s estimates arêθ = {θ̂1, . . . , θ̂M}.

As mentioned in Section 1, our SLAM algorithm runs at discrete instancesk ∈ Z

where each increment ink occurs when a landmark is detected. We usexk ∈ X

to denote thenode position of the robot in the graph at instancek. The robot’s
(odometry) observationyk is a variable representing the distance traveled between
the events of detecting nodes at instancesk − 1 andk. The history of odometry
observations is denotedyk

1 ≡ {y1, . . . ,yk}.
LetS denote the discrete set of states the robot can be in wheresk ≡ (xk,ek)∈S

andek is the “entry” edge to nodexk. Note that|S | = ∑N
i=1 κi. This choice of state

takes into account the position and orientation of the robotin G at any instancek.
We also denote the transition made by the robot at timek astk, the corresponding
observation asyk, the start state as L(tk), and the end state as R(tk). Relating to
our existing notation, R(tk) = sk = L(tk+1). Let the number of edges included in a
transition be the “length” of the path|t|.

2.2 Odometry Measurement Error: Inverse Gaussian

When using Bayes’ rule or performing parameter estimation we need to analytically
express the posterior likelihood of an observationPθ (y). This expression can be
thought of as the distribution over the first passage time to afixed distance in a
random walk. This distribution is known in the literature asthe Inverse Gaussian
(IG) or Wald distribution [5].

We assume the robot’s motion in between nodes to be a Wiener process with a
varianceσ2 and a constant and strictly positive drift velocityv. Then the distribution
of the first passage time is a probability density function [5]:

N
−1(τ;µ ,λ ) =

√

λ
2πτ3 exp

(

− λ (τ − µ)2

2µ2τ

)

, (1)

whereµ = L/v, λ = L2/σ2, τ = yk/v (passage time) andL is the actual edge length
associated with the observationyk. For our purposes it makes more sense to write
the pdf as a function ofyk, v andL:

Pθ (yk) ∼ N
−1(yk;L,v,σ2) =

Lv3/2y−3/2
k√

2πσ2
exp

(−(yk −L)2v
2σ2yk

)

. (2)

For this distribution,P(yk < 0) = 0, and as noise decreases the shape looks more
and more Gaussian.
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3 Mapping with Known, Arbitrary Topology

Mapping an unknown environment along with localization make up the SLAM
problem. We treat mapping first, and then localization in Section 5.

The “map” in our case consists of the graphG and its associated edge lengths
θ (G) = {θ1, . . . ,θM}. In this section we assumeG is known (and can be a general
graph without any restrictions) and we find an estimateθ̂ (G):

θ̂ (G) = argmax
θ

P(yk
1|θ ;G). (3)

In Section 4 we address the problem whenG is unknown.

3.1 Perfect Data Association

When each observation can be perfectly associated to an edgelength, we can do
a simple ML estimate of the parameter. For this section, letθi be the edge length
associated with the observationsyk

1. Then

θ̂i = argmax
θi

(

lnP(yk
1|θi)

)

.

Using (2) and maximizing the likelihood function above gives θ̂ as a function of the
sample harmonic mean〈y〉:

θ̂i =
1
2

(

〈y〉+
√

〈y〉2 +4σ2〈y〉/v

)

, where
k
〈y〉 =

k

∑
i=1

1
yi

. (4)

3.2 Imperfect Data Association: E-M Approach

When data association is not deterministic (for example if the robot does not per-
fectly detect nodes), the observed datayk

1 are “incomplete” and we cannot directly
maximizePθ (yk

1). The E-M algorithm [8] introduces “hidden variables”zk
1 which

are chosen such thatPθ (yk
1,z

k
1) or the “complete data” is specifiable by some distri-

bution.
The E step computes an expectation (and effectively averages over) the hidden

variableszk
1 and lets us maximize a likelihoodPθ (yk

1):

Q(θ ,θ ′) = EZ|Y ;θ ′
[

lnPθ (yk
1,z

k
1)
]

=
k

∑
l=1

∑
zl

(lnPθ (yl|zl)+ lnPθ (zl))Pθ ′(zl |yk
1). (5)
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The natural choice of each hidden variable iszl = tl , but this raises the issue that
the space of pathst is infinite and the sum seems intractable. This problem can be
solved by breaking up the sum by the possible length of the path:

∑
t

f (t) = ∑
s∈S

∑
t:R(t)=s

f (t) = ∑
s∈S

(

∑
t:R(t)=s,
|t|=1

f (t)+ ∑
t:R(t)=s,
|t|=2

f (t)+ . . .

)

.

The infinite sum above is suited for a breadth-first search (BFS) which is a tree
traversal technique. Any planar graphG can be expanded to an infinite tree if we
allow nodes to appear multiple times in this tree, by lookingat connectivities in the
incidence matrix ofG. We can make an approximation and truncate this tree at|t|max

levels deep, making the set of possible paths (denotedT ) finite and the sum above
computable.

By keeping track of detection probabilitiesqi of each node in the tree and the
sum of the edge lengths from the root node, the BFS can tell usP(t) andP(yl|t).
Since we only care about transitions with non-zero probability, we let |T | be the
number of paths withP(t) > 0.

E-Step. We use the “forward” and “backward” algorithms from Hidden Markov
Model (HMM) theory to computePθ ′(tl |yk

1) efficiently. Let

c(l)
j , Pθ ′(tl|yk

1) =
αl−1(L(tl))P(tl)P(yl|tl)βl+1(R(tl))

∑s′ αk(s′)
, (6)

where j indexes into the (finite) set of paths returned by BFS, and

αl(s) = ∑
t:R(t)=s

P(yl|t)P(t)αl−1(L(t)) (7)

βl(s) = ∑
t:L(t)=s

P(yl|t)P(t)βl+1(R(t)), (8)

with α0(s) = P(S0 = s) andβk+1(s) = 1 ∀ s ∈ S .1

M-Step. We can define aM×|T |matrixD with di j =

{

1 if path j contained edgei,

0 otherwise.
Also let L j be the length of patht j. To maximize we take the first derivative, and
that gives us

∂Q
∂θi

=
k

∑
l=1

∑
j:di j=1

c(l)
j

∂
∂θi

lnPθ (yl |t j) =
k

∑
l=1

∑
j:di j=1

c(l)
j

∂
∂L j

lnPθ (yl|t j)

=
k

∑
l=1

∑
j:di j=1

c(l)
j

(

1
L j

+
v

σ2 −L j
v

σ2yl

)

, (9)

1 These computations are standard in HMM literature and derivations should be easily found in
texts such as [14].
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by the chain rule. For
∂L j
∂θi

, we knowL j = ∑i:di j=1 θi where the conditiondi j = 1
ensures that the derivative is not zero, and we assume that eachL j passes throughθi

no more than once.
Using all theθi we getM quadratic equations inM variables which are hard to

solve analytically. Gradient ascent methods may fail because the likelihood function
(5) may have local maxima as shown by Fig. 4.

We can get an analytical solution by making the following approximation. If we
assume that the edge lengths are large compared to the motionmodel noise, the first
term in the sum in (9) can be ignored.2 Then we get

∂Q
∂θi

=
v

σ2

k

∑
l=1

∑
j:di j=1

c(l)
j

(

1− L j

yl

)

. (10)

After manipulating the sums, we get a linear system of equations; if we letU j =

∑k
l=1 c(l)

j ,V j = ∑k
l=1

(

c(l)
j /yl

)

, A = {ai j},ai j = ∑m:dimd jm=1Vm, b = (b1, . . . ,bM)T ,bi =

∑m:dim=1Um, andθ = (θ1, . . . ,θM)T , we can solve for the estimates ofθ by solving
Aθ = b.

Given reasonable odometry, such as would be expected with a wheeled robot on
an office floor, we expect this approximate solution to be fairly close to the real
solution, and, when using gradient ascent, within the region of convergence of the
true solution. In future work we will establish this for our particular experimental
platform.

4 Mapping with Unknown Topology (1- or 2-Cycles)

The space of planar graphs is large, so we restrict our attention to a specific, nar-
row class of topologies, and enumerate all possible topologies from that class—
“elementary” planar graphs consistingonly of one or two cycles, without leaves or
self-loops. The former is clearly defined as a “cycle graph” in literature, and the
latter is a union of two cycle graphs (at an edge chain or single vertex) which is
connected.

4.1 Model Selection Using Information Theory

To select the most parsimonious modelĜ to fit the datayk
1 we use the Akaike Infor-

mation Criterion (AIC) [1] which is defined as

2 To achieve (10), we assumeσ
2

vL j
≪ 1. In our numerical trials (Section 6.1) this ratio is in the order

of 10−3. The ratio depends on the chosen robot’s dynamics and may be determined by performing
random trials or characterizing the dynamics [4].
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AIC = 2K −2ln(L ), (11)

whereK is the number of model parameters (it isM in our case because there
areM edges inG) andL is the maximized likelihood (5) for thatG. A lower AIC
indicates a better model. Now the algorithm picksĜ as

Ĝ = argmin
G

(

2M(G)−2lnP(yk
1|G, θ̂ (G))

)

, (12)

whereθ̂(G) was found in the previous section.

4.2 1-Cycle Graphs

For simple graphs with 1 cycle we are just estimatingM, and that completely spec-
ifies the graph. This is equivalent to the problem of “closingthe loop,” because the
robot must make a decision about when it has re-visited the start node.

Our mapping procedure finds length estimates according to (3) for a preset range
of M (for implementation feasibility), and then uses (12) to findĜ.

4.3 2-Cycle Graphs

Graphs with two cycles and other more complex graphs containbranches, or nodes
with κi > 2. We use this nomenclature because if we call one edge the “entry edge,”
there are more than 1 “exit edges,” only one of which the robotwill use to exit the
node.

In our simple framework, we will ignore all control input andassume that the
robot picks from the exit edges uniformly at random. This caneasily be incorporated
into the BFS mentioned before in the calculation ofP(t).

4.3.1 Enumerating 2-Cycle Topologies

One type of 2-cycle topology has two nodes of degree 3 which are connected by 3
edge chains. We will refer to these edge chains assuperedges.

For a given total number of edgesM, the problem reduces to finding the number
of edges in each superedge, or the number of ways in whichM can be written as
a sum of 3 positive integers (p + 1 positive integers for ap-cycle graph) which is
the number of solutions toγ1+ γ2+ . . .+ γp+1 = M,γi > 0, which is the same as the
number of solutions toφ1 + φ2 + . . .+ φp+1 = M− (p +1),φi = γi −1,φi ≥ 0.

This last problem is almost the same as that of finding “partitions of an integer”
which has been studied extensively such as in [2]. In the absence of a simple formula
for the number of partitions, we can provide a very conservative upper bound using
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Fig. 2: Eliminating symmetric start states in a 2-cycle graph. (1) Draw a plane of
symmetry between the two nodes of degree 3. (2) Discard all starting states lying on
edges completely in the lower half. (3) For edges being cut bythe symmetry plane,
discard one of the two starting states on that edge. (4) If more than one superedge
has the same number of edges, ignore duplicates.

the “stars and bars” combinatorial argument which will include solutions that are
permutations of one another. The upper bound is

(M−1
p

)

solutions. To actually find
these partitions a very simple recursive function that enforcesφi ≤ φi−1 or similar
to eliminate permuted solutions can be implemented as a computer program.

The other type of 2-cycle graph can be thought of being two distinct 1-cycle
graphs joined together at a degree 4 node. These can be enumerated by finding the
ways in whichM can be expressed as a sum of 2 integers each greater than 1. We
disallow a superedge of length 1 because that would imply presence of a self-loop.

4.3.2 The Start State Problem

The 1-cycle graphs has a symmetry that any choice of startingpositionP(x0 = x) =
δ (x,x⋆), x⋆ ∈ X would yield a correct map up to a cycling of the edges. However,
for more general graphs, this is not true. One way to circumvent this problem is to
use a uniform distribution forP(s0), which is the most general and intuitive but also
less optimal for the algorithm because at the start localization results will be poor.

An alternative approach which we take is to enumerate all thepossible distinct
starting states for a given topology while taking symmetries into account. The num-
ber of elements in this set is usually much smaller than|S |; a visual demonstration
of how this elimination occurs is shown in Fig. 2. A start state s0 can be represented
completely by an edge and a direction (with the edge beinge0 and the direction be-
ing towardsx0) and is represented by an arrow in the figure. Then we perform E-M
calculations for each of those starting states and pick the one that gives maximum
likelihood. We use a similar method as in (3) but maximize forθ ands0 together:

θ̂ (G) = argmax
θ ,s0

P(yk
1|θ ,s0;G). (13)
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5 Localization

The localization problem asks to find a distribution over thecurrent statesk given the
history of observationsyk

1. If we use E-M for mapping as described in Section 3.2,
localization is performed implicitly in the E-step. After the computation of (6),

P(sk|yk
1) = ∑

t:R(t)=sk

Pθ ′(t|yk
1). (14)
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6 Numerical Tests

6.1 Mapping Lengths with E-M

Figure 3 shows a simple trial run of the algorithm in Section 3.2 in which the robot
attempts to map the edge lengths and localize in a known topology with imperfect
association of observations with edges. We used a uniform distribution forP(s0),
and the initial length guesses are shown in the leftmost column of the figure. We

chose|t|max = 5 for this trial (and others in this section), and for this choice ∑ j c(l)
j

was 1 without need for renormalization.
At every “branch point” the exit edge is picked uniformly at random and node

detection is imperfect, resulting in imperfect data association. The given map has a
symmetry so that if it is, for example, “flipped” about the vertical or horizontal, we
still get the same graph. The ground truth and developed mapshave been aligned
for the reader’s convenience.

It is evident that localization results are poor initially because of the developing
map and the initial uniform distribution, but it performs better after a few iterations.
After each iteration localization is performed using the current map estimate, so
the localization results may be drastically different fromthe previous belief after
the map is updated. We can only hope to get good localization results after the
developed map is perfect.

Figure 4A justifies the assumption made in (10) by showing that for sufficiently
small noise, the peak of the approximated likelihood function (red star) closely
matches that of the exact function (blue star) given in (9). As noise is increased,
the red star diverges from the blue star and at each E-M iteration, the maximum
obtained by solving (10) will not necessarily maximize the true likelihood function.
Since the maximization is key to convergence of E-M, we suspect that sufficiently
large noise will cause E-M to fail and degrade the performance of our algorithm.

The figure also shows the presence of local extrema in the likelihood function
making a gradient ascent method difficult. This trial was fora simple 2-edge cycle
so that the likelihood function can be visualized.

In general for E-M, no bounds can be given on the rate of convergence, but
Fig. 4B empirically shows that the total number of E-M iterations required to find
the solution is roughly independent of the motion noise, which is important from an
implementation point of view.

6.2 Loop Closure (and Re-Opening)

With respect to “closing the loop,” Fig. 5 demonstrates the advantage of using the
method described in Section 4.1: the robot can modify a loop closure decision as
long as we do not discard the history of observations. In thistrial the robot is per-
forming SLAM in an unknown topology with imperfect association.
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Fig. 5: An illustration of loop re-opening using the AIC model selection criterion.
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potheses at any period during the same trial. D: The average convergence time to
the correct hypothesis as a function ofε/σ2.

The robot is given a simple cycle map of six edges with the firstthree edges
almost of equal length to the last three (with one of the threebeing perturbed by an
ε). It initially picks M = 3 as the best hypothesis after the trial starts, but after going
around more times and receiving more observations it corrects its hypothesis and
choosesM = 6 as the most parsimonious model. This behavior can be explained at
a higher level by the following argument.

When the robot does not have much information about the map, the “perturba-
tion” can be attributed to noise, so that the lower order model is sufficiently good at
predicting the observations. From the asymptotic normality of ML estimators [9],
we know that var(̂θ) falls as 1/

√
k. So ask gets bigger the lower order model gives

a much poorer fit to the data than the higher order model.
The time required for the algorithm to decide to favor the higher order (but cor-

rect) model over the lower order model depends on the perturbation, and this “con-
vergence time” is plotted in part (D). The minimum number of observations to sup-
port aM = 6 model is six, and so there is a horizontal asymptote at 6 asε gets larger
and larger. The motion model variance wasσ2 = 0.05 for these trials.

6.3 Dynamic Environment

Another problem which pertains to model selection for us is the problem of “dis-
appearing landmarks” where a previously existing landmarkis taken away, and the
similar problem of “new landmarks” where a newer landmark isinserted in the en-
vironment. By comparing the AIC of hypotheses which haveM close to the best
model the robot can make “soft” or modifiable decisions aboutthe nature of its
environment (Fig. 6).

Note in Fig. 6A that the 2-edge model adjusts its length estimates to considerably
lower its AIC around iteration 12, but it still cannot match the 3-edge model. In
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Fig. 6: The A: “new landmark” problem where a node is added to a2-edge cycle
map and B: “disappearing landmark” problem where a node is deleted from a 3-edge
cycle, as handled by our algorithm. In both the plots, the change in the environment
occurs at iteration 7. For the disappearing landmarks problem, one possibility is that
the robot attributes the missing landmark to imperfect detection and continues to
favor the higher-order model (which helps in case the landmark re-appears). In this
trial we set detection probabilitiesqi ≈ 1 so that this did not happen.

Fig. 6B it takes about three iterations for the 2-edge hypothesis to beat the 3-edge
hypothesis.

6.4 Topology Enumeration and Selection: 2-Cycle Graphs

We used the AIC again to help the robot pick the best topology according to (12).
Due to calculation costs, the robot searched only the space of 2-edge-connected
planar graphs with two cycles, having 3≤ M ≤ 5. The candidate topologies are
shown in the right half of Fig. 7. For each of these “edge-partition” hypotheses, there
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Fig. 7: The robot picks the best (2-cycle) topology fit for some observations using
AIC. The true topology was “F,” i.e. the rightmost one in the second row.
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were a number of possible starting states to be taken into account (see Section 4.3.2).
The robot assumed perfect detection for this particular trial.

7 Discussion

This paper presents an algorithm to perform SLAM on elementary graphs. We di-
vide the mapping into two parts, known and unknown topology.Our algorithm
solves the former in the most general case using E-M, and presents techniques of
finding the topology from a very small subset of planar graphs. We pick this sub-
set to be graphs with one or two cycles, but this could be easily extended to other
families of graphs as long as they can be parametrized and enumerated.

This method, while still targeting simple environments andusing minimal sen-
sory information, can address some well known SLAM problems[10]. We present
numerical experiments demonstrating how the algorithm solves the “loop closure”
problem without requiring appearance information in a non-parametric way by us-
ing an information theoretic model selection criterion. Wealso present numerical
experiments illustrating the solution to the problem of dynamic environments by
maintaining multiple hypotheses.

To apply our framework to the real world, several issues would have to be ad-
dressed. First, we need a better way to characterize variouslandmarks and their
corresponding detection probabilities. Although the antenna sensor is capable of
capturing finer details of a landmark, we have chosen to use only sparse sensor in-
put (a binary flag for detection) which gives rise to problemssuch as “misses” and
“false positives” (Section 6.3) which correspond to the sensor signal being below or
above (resp.) a pre-set threshold. This approach would takemany trials to give an
accurate detection probability and the detection probability for one landmark would
most likely be different from the rest of the landmarks. In the future, we plan to
incorporate a richer sensor model of the antenna to (a) correct “misses” or “false
positives” for cases in which the signal is close to the threshold, (b) predictqi based
on how “close” the signal magnitude is to the threshold the first time a landmark
is observed, and (c) incorporate landmark appearances in our algorithm which may
make data association simpler in more complex environments.

Second, some parts of the algorithm, such as maintaining multiple hypotheses
for a large number of possible topologies as well as enumerating to find graph struc-
tures, require large computations. Methods of graphical inference from data [15] as
well as approximate methods that take assumptions about thestructure, such as the
“topology improvement algorithm” in [21], should be explored. We plan to com-
pute the complexity bounds of our algorithm and compare the performance with our
approach to other existing approaches such as EKF-SLAM in large environments.

A natural extension to the algorithm presented here would beto devise a method
of mapping a general planar graph. Our algorithm targets indoor 1-dimensional en-
vironments (corridors), but we imagine using our algorithmwith GVG’s [6] to map
higher dimensional environments; extensions to the algorithm to handle “leaves”
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will naturally have to be made. Furthermore, with the framework in this paper, we
can perform SLAM on any parameter (e.g., landmark appearance) which can be as-
sociated with edges on a graph that has states as nodes, as long as we can define a
probability distribution for observations and an estimator of its parameters.
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