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Abstract— The sparse sensing and limited articulation that
are characteristic of human-engineered robotic systems contrast
dramatically with sensorimotor systems observed in nature.
Animals are richly imbued with sensors, have many points
of articulation and are heavily over-actuated. In fact, the
compliant nature of the body (or Plant) of most animals requires
constant control input to the muscles for postural maintenance.
In this study, we show how flying insects use a compliant
airframe to maintain flight stability via active articulation of
the frame. We first derive the equations of motion for a model
flying insect, inspired by the hawkmoth, a large fast flying and
agile insect. By linearizing the equations of motion about a
hovering equilibrium, we demonstrate that abdominal motions
are sufficient to stabilize flight on a scale of 50ms. We then tested
whether these insects use the abdomen for flight control by
first measuring the open-loop transfer function between visual
pitch rotations and abdominal movement in a tethered moth
preparation. The measured transfer function was consistent
with an abdominal control strategy. We then closed the loop and
found that moths actively stabilize visual pitch rotations using
abdominal motion as the only control input. The behavior was
robust to variations in gain and to a variety of visual stimuli.
These experiments establish airframe articulation as a plausible
control mechanism for active flight.

I. INTRODUCTION

Animal flight has served as inspiration for design concepts
for a host of air vehicles. From the classic observations
of da Vinci [1], the first to show that the center of mass
and center of pressure may not align in flying animals, to
exciting recent studies of wing morphing [2], compliant wing
dynamics [3], [4], autostabilization in yaw [5] and a host of
sensory systems in flight control such as optic flow [6] and
biological gyroscopes [7], [8] we have seen the development
of novel designs employed in engineered systems [9], [10].
Interestingly nearly all attention has focused on either the
sensory information flow provided to flying animals, or on
the kinematics of their wings and the unique aerodynamic
processes that result from flapping flight. Relatively little
attention has focused on how the airframe itself may play an
important role in flight control. Evidence in the biological
literature suggests that there is extensive neural control of
body posture during flight. From the dynamic motions of
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bird tails as aerodynamic control surfaces [11], [12] to even
lizard tails as inertial controllers of descent paths [13] to the
powerful movements of the abdomen of insects [14], [15],
we see a breathtaking range of airframe motions in response
to perturbations. Indeed, the promise of airframe deformation
was recently explored as a method for remotely controlling
insect flight paths by stimulating neural centers controlling
flexion of the insect’s abdomen during free flight [16].

Given the widespread occurrence of airframe deformation
in biology, we sought to use this characteristic as inspiration
for the design of a new generation of micro-air vehicle
controllers. We use as inspiration the abdominal flexion
of the flying hawkmoth to explore the control potential
and stability of air vehicles with deforming airframes. We
combine a dynamical systems model of the deformable
airframe along with a control theoretic model to explore the
stability of this system. In addition, we use real moths in
miniature flight simulators to extract the transfer function
for airframe deformation in response to visual pitch stimuli.
Combining plant dynamic models of airframe deformation
with experimentally derived sensory-response transfer func-
tions, we are able to show that this biologically inspired
approach can provide pitch stability. Further, we are able to
show, via closed-loop measures of hawkmoths in the flight
simulator, that their abdomen does indeed provide control
authority.

The organization of the paper is as follows. A control-
theoretic system model is presented in Section II. The
linearized model is validated relative to live animal data
in Section III. Closed-loop system response is discussed in
Section IV, and conclusions are discussed in Section V.

II. MODELING DEFORMING AIRFRAMES

A. Model setup

We have developed an analytic model inspired by the
dynamics of the flying hawkmoth, Manduca sexta [17]. Our
model treats the animal as a two section airframe that can be
deformed in response to a pitch stimulus. That deformation
is driven by a torque at the joint between the front (thorax
and head, mass mt ) and rear (abdomen, mass ma) sections of
the airframe (see Fig. 1). In addition, we assume that there is
a constant lift and thrust vector Fw that remains fixed relative
to the thorax of the animal.

To determine the stability of the system we first derived
the nonlinear Euler-Lagrange equations of the system in the
center of mass reference frame, which can be expressed for
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Fig. 1. The moth inspired deformable airframe consisted of a front (thorax
and head) and back (abdomen) attached by a hinge joint. The center of
masses of each segment (ma and ma) were located at fixed lengths (la and
lt ) from the hinge. Wing forces Fw were modeled as a constant force vector
originating from the thorax at a distance d from the joint oriented at a fixed
angle α relative to the thoracic angle (θt ). The thoracic and abdominal
angles were changed by a torque τ applied at the joint.

kinematic variables q = (x,y,θa,θt) as

M(q)q̈+C(q, q̇)+N(q) = τ, (1)

where M(q) is the mass matrix, C(q, q̇) includes Coriolis
terms, N(q) includes first order terms due to gravity, and τ

is the torque applied at the thorax-abdomen joint. Deriving
the equations of motion for the system in Fig. 1, prior
to introducing constraints and external forces, yields the
following:

M =


ma +mt 0 0 0

0 ma +mt 0 0
0 0 α11 α12
0 0 α12 α22


where α11 =

l2
a mamt+Ia(ma+mt )

ma+mt
, α12 =

lalt mamt cos(θa−θt )
ma+mt

, α22 =
lt 2mamt+It (ma+mt )

ma+mt
, and

C+N =


0

g(ma +mt)
lalt mamt sin(θa−θt )θ̇t

2

ma+mt

− lalt mamt sin(θa−θt )θ̇a
2

ma+mt

 .
The wing lift forces Fw, fixed at 90◦ relative to the major

axis of the thorax, were introduced as constraints on the term
N. Equation (1) can be expressed as four first-order equations
by replacing q with state vector z:

z =
[

z1
z2

]
where

z1 =


x
y
θa
θt

 , z2 =


ẋ
ẏ
θ̇a
θ̇t

 .

TABLE I
MODEL PARAMETERS

ma la Ia
0.999g 0.0153m 2.9×10−4g ·m2

mt lt It
0.832g 0.008m 0.58×10−4g ·m2

α d Fw
90◦ 0.01m 1.831g ·9.8 m

s2

Because ż1 = z2, the Lagrange equations become

ż = f (z,u) =
[

z2
M(z1)

−1(τ −C(z1,z2)−N(z1))

]
. (2)

The torque τ acts on the abdominal and thoracic angles
with equal, but opposite, magnitudes. For a real moth, the
abdominal-thoracic joint does not freely rotate, but rather has
some inherent dynamic properties. We model the joint as a
torsional spring-damped system, with spring constant k and
coefficient of damping b. The abdomen is also assumed to
have a natural rest angle θ0, determined by finding the angle
at which the spring and gravitational constants balanced so
that the center of mass was located directly under the center
of lift. In addition to the passive dynamic properties of the
joint, the moth actively manipulates abdominal angle via
muscle actuation, which we include as a control torque u1.
The net torque at the joint is then

τ =


0
0

u1 − k(−θ0 +θa −θt)−b(θ̇a − θ̇t)
−u1 + k(−θ0 +θa −θt)−b(θ̇a − θ̇t)

 · zT
1 . (3)

These equations constitute the complete non-linear dynamics
of the model moth. The final step for evaluating the model
was to input real parameter values. To simplify the stability
analysis, we evaluated the model in the equilibrium state of
hovering, permitting a linear approximation of the full non-
linear equations of motion. Prior to linearizing the model,
we also dropped states that were of minimal interest to our
analysis (x,y, ẏ).

B. Parameters

The masses of all segments and their moments of inertia
follow from previously published data and are summarized
in Table I [18]. In addition, the values of k and b were
determined from perturbation experiments done on animals
during tethered flight. In these experiments a physical im-
pulse was applied to the tip of the moth abdomen during
tethered flight while measuring the change in abdominal
angle (Fig. 2). After the peak in the abdominal angle, due to
the perturbation, moths quickly recover to within 5 degrees
of the initial position with minimal oscillation. These results
suggest that the abdomen behaves as a critically damped
system during flight. Furthermore, the quick recovery to the
original position suggested that the abdominal angle was
effectively specified by a positional command (stiffness and
damping were both large). Thus, the hinge dynamics need



not be included in the model, as whatever command control
is being sent to the abdomen is effectively converted to an
angular position.
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Fig. 2. Moths quickly recover from abdominal perturbations during tethered
flight. The average angular deflections for three moths (colored traces) in
response to a physical impulse (peak deflection) show that the abdominal-
thoracic joint is critically damped during flight. The small 20 Hz oscillations
are due to the wing strokes of the moth

C. Transfer function
Armed with model parameters, and our ability to equate

torque control to angular position of the abdomen, we model
the control input as an angular control variable u such that:

u1 = ku. (4)

Both b and k were assumed to be very large, resulting in a
very strong restoring force with minimal temporal dynamics.
Hence, the spring constant effectively converts the angle
command u into the torque required to achieve a specific
abdominal-thoracic angle. The linearized equations yielded
the following transfer function from the input u (proportional
to θa − θt ) to the thoracic measurement(pitch angle) in
Laplace space

P(s) = Km
s2 + z2

m

s2 , (5)

where Km =−0.69 and z2
m = 225s−1. This transfer function

can also be expressed as an ordinary differential equation:

θ̈t(t) = Km(ü(t)+ z2
mu(t)). (6)

Equation (6) has two temporal dynamics. One is on the time
scale of the position change of the abdomen relative to the
thorax, redirecting the lift vector relative to the center of
mass. The other time scale is associated with the rotation of
the body as whole in response to that redirection of force.

III. TRANSFER FUNCTIONS FROM LIVING ANIMALS:
MODEL VALIDATION

A. Extracting transfer functions from living animals: meth-
ods and results

To determine the transfer function used by the animal
during flight, we constructed an insect-scaled flight simu-
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Fig. 3. Moths were tethered in a miniature flight simulator and presented
with visual stimuli rotating about the pitch axis (dashed circle, θv). Abdomi-
nal angle, θa, was measured using two methods. For open-loop experiments,
the angle was measured from the side using a high-speed camera. Real-time
measurement of abdominal angle for closed-loop experiments was tracked
using an IR spot detector and an IR LED glued to the tip of the abdomen.

lator which produced visual pitch stimuli that drive neural
reflexive abdominal flexions (see Fig. 3 and [14], [19]).
Tethered animals were placed in the flight simulator and
exposed to an open-loop stimulus that consisted of a pattern
of horizontally oriented dark and light bars with a spatial
frequency of 0.03 cycles/degree (consistent with a visual
stimulus that has maximal response [20]). That pattern was
moved in the pitch direction with a temporally varying pitch
velocity that was composed of a sum of sinusoidal motions.
That sum of signs consisted of 20 prime multiple frequencies
that were logarithmically spaced between 0.1 and 20 Hz
(see Fig. 4b and [21]). The position of the abdomen was
tracked during these trials using a high-speed video camera
(Basler Pilot GigE, Basler Vision Technologies, Ahrensburg,
Germany) operating at 186 frames per second. Abdominal
angle data was digitized from the images with custom
MATLAB software (DLTdataviewer; [22]).

From the data summarized in Fig. 4, we calculated the
gain and phase of the abdominal flexion in response to the
visual pitch stimulus. These then were used to establish the
transfer function which shows that abdominal responses were
strongly attenuated at frequencies below 1 Hz, after which
they plateau as frequency increases.

The phase plot (Fig. 5) shows a pronounced, and ap-
proximately linear, roll-off indicative of a fixed time delay.
Together, these data suggest that the input-output relationship
is consistent with a transfer function consisting of a high-pass
filter and a fixed time delay. We estimate these responses to
have a gain K = 0.44, one zero z = 0.08, one pole p = 0.75,
and a time delay τd = 0.042s. In the Laplace domain, the
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Fig. 4. Example stimulus (top, blue) and abdominal response (bottom, red)
data are shown in both the time domain (left) and frequency domain (right)
for an open-loop sum of sines trial. Stimuli were normalized in velocity
amplitude. Behavioral response frequencies were precisely matched to those
present in the visual stimulus.

function has the form

G(s) = K
s+ z
s+ p

· e−sτd . (7)

B. Observed and predicted transfer functions shows stabi-
lizing responses

The above experiments provided two transfer functions,
one for the open-loop tethered flight experiments and a
second for a free flight model derived from first principles.
These transfer functions correspond to the Sensor/Controller
blocks and Plant block in the full feedback system respec-
tively. For a linear system, we can easily determine the
closed-loop dynamics (H(s)) of the system by multiplying
them in the Laplace domain:

H(s) =
G(s) ·P(s)

1+G(s) ·P(s)
. (8)

In order to determine the stability of this time-delayed
system, a Nyquist plot has been constructed (Fig. 6). For a
given open-loop transfer function, the resulting closed-loop
system is stable when the minus one point on the real axis
is not encircled. For the open-loop system G(s) ·P(s), we
see that the system does not encircle the minus one point
and is stable. However, the system is very close to marginal
stability, and a slight increase in the gain is sufficient to
destabilize the system. Including other relevant factors, such
as the inertial dynamics of wings, has the potential to further
stabilize, or slightly destabilize, the system.
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Fig. 5. Experimentally measured gain and phase data from 7 moths was
averaged (error bars indicate 95% confidence intervals) and approximated
by a first order high-pass filter with a fixed time delay (black line; see text
for details).
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Fig. 6. The Nyquist plot reveals that airframe deformations contribute to
flight stability. The combined experimental (Controller) and model (Plant)
transfer functions are stable, but very close to the stability margin.



IV. CONTROL AUTHORITY OF THE AIRFRAME:
CLOSED-LOOP RESPONSES

The transfer function estimated from the arena experi-
ments is the open-loop response of a tethered moth. The
dynamics of the sensory input, controller output and plant
dynamics will be different for a moth with either closed-loop
control of the visual stimulus, free flight body dynamics, or
both. While we have established the sufficiency of abdominal
flexion as a stabilizing feature of flight control, we have
not shown it has control authority in the more challenging
closed-loop context. Accordingly, we modified the flight
simulator to have real time position sensing of the abdomen
as an input into the visual pitch stimulus. The stimulus
consisted of a horizontal bar drifting in the pitch upward
direction at a velocity of approximately 16.5 degrees per
second. The position of the abdominal tip, tracked with an
IR LED and an IR 2D spot detector (UDT Technology), was
used to offset the motion of the visual pitch stimulus at a
velocity that was directly proportional to the abdominal angle
(relative to a rest position).

Results show that a tethered moth can indeed control its
visual horizon using its abdomen (Fig. 7). The abdomen
is held by the animal at an angular deflection that offsets
the drift of the visual stimulus. Episodically, the animal
“gives up,” and we see the inherent drift signal of the visual
stimulus. The animal, however, can abdominally “grab”
the signal by moving the abdomen to counteract the drift
and once again stabilize its visual world. Furthermore, this
behavior was robust to four-fold changes in gain and was
stable for a variety of visual stimuli, including horizontal
black bars, spatial white noise patterns, and natural images.
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Fig. 7. Closed-loop stabilization of a visual pattern (solid blue line) based
on the spot detector voltage (red line), proportional to the abdominal angle,
demonstrates the control potential of the abdomen. Three trial of closed-
loop control are shown, demarcated by dashed lines, during which moths
had closed-loop control of the visual world. The moth holds the drifting
visual pattern (drift represented by the dotted blue line) in the first and third
trials, but briefly loses the pattern during the second trial. Large spikes in
abdominal angle are short epochs between trials where the visual stimulus
was turned off. The high frequency component is the inertial reaction of the
abdomen to wing beats.

V. CONCLUSIONS

The widespread occurrence of changes in body posture
in flying animals provides inspiration for the concept of
airframe deformation as a possible control mechanism in
air vehicles. This effect is particularly evident in the flight
control system of large insects where, in the hawkmoth,
powerful flexion of the abdomen occurs in response to
visual pitch stimuli. The combination of dynamic models
of such deforming airframes and control theoretic analyses
of these systems points to a novel mechanism for a pitch
stabilizing controller. Evidence from animals in both open-
and closed-loop flight simulators suggests that neural control
of abdominal angle in flying insects does indeed provide
control authority. Taken together, these results suggest that
that it is possible to implement airframe deformation in
artificial systems, particularly agile micro air vehicles [23].

It is important to note that, in addition to playing a
key role in actuating pitch control and changes in flight
paths, deformable airframes can also play an unexplored role
in sensing. This follows from another biologically inspired
observation: the positions of nearly all body parts of moving
animals are sensed (proprioceptively) by the nervous system
in order to inform a moving creature of the relative states of
stretch and position of locomotor structures. We suspect that
the abdomen of large flying insects is also equipped with
proprioceptive structures, providing the animal information
about the angle of the abdomen. By inference, it is logical
to assume that passive flexion of the abdomen may result
from inertial reactions to abrupt pitch (or yaw) rotations.
The proprioceptive information about angle of the abdomen
may inform a flying animal about rotational motions. Thus
the abdomen and its associated proprioceptive information
suggest that it could serve a dual role as a sensor and
an actuator. Such combined sensing and actuation systems
present exciting nonlinear control theoretic challenges.
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