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INTRODUCTION
Flying animals are capable of precise, agile maneuvers that range
from hovering while feeding from a moving flower, to mating in
midair, to the complex interactions between aerial predators and
prey. Flight control requires sensory inputs from a diversity of
modalities and the coordination of multiple muscles across the body.
The difficulty of experimentally disentangling the interactions
between sensors, muscles and the physical dynamics of the body
has led many studies to focus on understanding movement through
the action of a single, primary motor output. This single output
approach is particularly true in the case of flight, where the
production of lift and thrust forces by the wings makes them obvious
targets for study (Taylor, 2001).

Because of the crucial importance of the wings, less attention
has been paid to the role of body shape, or the ‘airframe’ of the
animal, for flight control. Changes in the shape of the body of an
animal can alter the relative positions of the center of pressure on
the body or its center of mass relative to the center of lift and thrust
produced by wings. Thus the body itself could be a key contributor
to the system of actuators involved in flight control, exercising
‘airframe-based’ control. Indeed, the control potential of body shape
has been established for the passive, aerial descent paths of terrestrial
lizards (Libby et al., 2012), but not for flying animals.

The clearest evidence for airframe-based control comes from
insects, where strong abdominal steering reflexes occur in response
to visual or mechanical sensory stimuli. Desert locusts (Schistocerca

gregaria), for example, respond with large abdominal and leg
motions when presented with angled wind stimuli during tethered
flight (Camhi, 1970a; Camhi, 1970b). Similar responses have been
observed in fruit flies (Drosophila melanogaster) in response to
visual rotations (Götz et al., 1979; Zanker, 1988a; Zanker, 1988b).
These abdominal responses depend on the axis of stimulation, with
the yaw rotations eliciting strong horizontal abdominal movements
and the pitch rotations prompting vertical movements. Moths
(Manduca sexta) display strong abdominal responses to both visual
and mechanical rotations about the pitch axis (Hinterwirth and
Daniel, 2010). In addition, honeybees (Apis mellifera) modulate the
vertical abdominal angle based on the speed of a translating visual
pattern (Luu et al., 2011).

Proposed mechanisms for control by abdominal flexion include:
(1) its role as an aerodynamic rudder, moving the center of drag
relative to the center of lift, leading to either increased moments
due to decreased streamlining (Camhi, 1970a; Zanker, 1988a) or
deceased moments via greater streamlining (Luu et al., 2011); and
(2) deformations of the body (airframe) will shift the center of mass
relative to the center of lift, affecting a pitch or yaw moment that
can be used for flight control (Dyhr et al., 2012; Hedrick and Daniel,
2006; Zanker, 1988a).

Here we develop a control theoretic approach (Fig.1), which
integrates sensory mediated changes in abdominal position with
modeled body dynamics, to understand the effectiveness of airframe
shape changes for governing the flight path of an insect. Using a
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systems identification approach following methods developed by
Roth et al. (Roth et al., 2011), we seek to quantify the system stability
(or conversely agility).

We suggest that, in addition to shifting the center of mass,
airframe morphing provides a mechanism for redirecting lift forces
to control flight via conservation of angular momentum. Inspiration
for the mechanism came from tethered flight experiments of the
visual–abdominal reflex in the hawkmoth Manduca sexta. By
presenting the moths oscillating vertical patterns with broadband
temporal frequency content we found that abdominal motions were,
to a good approximation, linear and time invariant with respect to
the visual input. We then estimated the open-loop transfer function
from pitch rotations of the visual field to dorsal-ventral abdominal
flexion. The effectiveness of these abdominal movements for
maintaining pitch stability in free flight was then tested using a
mathematical model of a hovering moth. Our results demonstrate
that the experimentally measured abdominal movements are
sufficient for maintaining stable hovering flight, suggesting that
moths actively alter body shape to control flight. Furthermore, they
operate near the edge of stability where minor perturbations will
move them into an unstable and more maneuverable configuration
with much higher available rates of change for switching between
states.

MATERIALS AND METHODS
Animals

Manduca sexta (Linnaeus) were reared in the Department of
Biology at the University of Washington, Seattle. A total of 10 moths
of both sexes were used for experiments 3–5days after eclosion.
Prior to experiments, moths were secured to a metal rod via a magnet
glued to the dorsal thorax (Hinterwirth and Daniel, 2010). For a
subset of experiments (two moths), the head was restrained by
bridging the UV-cured glue from the tether base to the top of the
head. The tether was adjusted to maintain a 45deg body angle during
flapping flight. Abdominal position was measured using high-speed
digital video via a tracking point painted onto the tip of the abdomen.
Animals were tested after they had warmed up by flying on the
tether at least 1min.

Flight arena
A wrap-around LED display system (Reiser and Dickinson, 2008)
spanning the moth’s visual field ±110deg vertically and ±50deg
horizontally was used to present visual stimuli (Fig.1B). Moths were
dark adapted for at least 30min prior to experiments. A neutral
density filter was placed over the LEDs to reduce the average light
level reaching the moth to a maximum of 12cdm–2 (Gossen
Mavolux 5032C luminance meter, Nürnberg, Germany) to keep
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Fig.1. Experimental design and feedback diagram. (A)The flow of information underlying the visual–abdominal reflex was envisaged as a feedback control
system, where time-dependent signals (arrows) are filtered (boxes) to produce a kinematic output. Visual sensors detect the motion of the animal, q(t),
relative to the environment, r(t), to produce a motion-dependent ʻerrorʼ signal, e(t). The error signal is processed by central nervous system (CNS) to
generate an appropriate behavioral response by sending signals, u(t), to the muscles. The actions of the muscles are filtered by the body dynamics, or
plant, to yield a kinematic output in the form of state variables (e.g. x, θa). (B)The sensor and controller processing blocks of the visual–abdominal reflex
were characterized by presenting visual pitch rotations to tethered moths in a cylindrical LED arena. The abdominal angle (θa) was measured relative to the
horizontal axis using three tracking points (white circles): two fixed points on the tether and one moving point painted on the abdomen. (C)The dynamics of
the plant were derived using a simple physical model of the moth composed of two masses, corresponding to the abdomen and the thorax, connected by a
hinge joint. The abdomen and thorax both had fixed masses, ma and mt, at distances la and lt from the hinge joint. The head was included as part of the
thorax. The centers of mass of each body segment, as well as of the two-body system (M), are denoted by the checkered circles. The angles of the major
axes of the abdomen and thorax (θa and θt) were defined relative to the horizontal (gray dashed line). The action of the wings was simulated with an
average lift force (Fw, vertical arrow), located at a distance d from the hinge joint and oriented at an angle α relative to θt. Abdominal flexion was
implemented as a torque, τ, on the hinge joint modulating θa and θt.
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moths in a dark-adapted state, matching previous
electrophysiological and behavioral studies in M. sexta (Hinterwirth
and Daniel, 2010; Theobald et al., 2010). The visual image was
controlled by signals generated in MATLAB (MathWorks, Natick,
MA, USA) and output through a USB data acquisition board (USB
6251, National Instruments, Austin, TX, USA).

Data acquisition
Moth behavioral responses were captured from a lateral view at
186framess–1 with a high-speed camera (Basler Pilot GigE, Basler
Vision Technologies, Ahrensburg, Germany). The LED arena
voltage output was used to reconstruct the visual stimulus and was
recorded at 10kHz using an USB data acquisition board (USB 6251,
National Instruments). Simultaneously recorded frame
synchronization pulses from the camera were used to temporally
align the video data with the stimulus position information. A second
USB data acquisition board (USB 6008, National Instruments)
provided an automatic camera end-trigger, as well as a pulse signal
for an infrared LED to confirm frame alignment. Abdominal
position data were digitized from the image with the DLTdataviewer
MATLAB software package (Hedrick, 2008). Abdominal deflection
was quantified from the angle between the tether and abdomen tip
for each frame (Fig.1B).

Visual stimuli
The visual pattern consisted of a horizontally oriented square wave
grating with a spatial frequency of 0.03cyclesdeg–1. This frequency
falls within the electrophysiologically measured spatial frequency
optima of the motion sensitive lobula plate tangential neurons at
low light levels in M. sexta (Theobald et al., 2010). Visual stimuli
were oscillated vertically to mimic visual rotations in the pitch axis.
The temporal dynamics of the motion were chosen to cover a broad
range of temporal frequencies and consisted of two classes of stimuli:
sum of sines and chirps.

The sum of sines stimuli were composed of 10 time-varying
sinusoids that spanned more than two decades in temporal frequency,
from 0.01 to 20Hz (Fig.2A). Using a method similar to that of Roth
et al. (Roth et al., 2011), stimuli were generated by selecting 20
approximately logarithmically spaced frequencies that were all prime
multiples of 0.05Hz, to avoid interference from harmonics. The
lowest frequency was 0.1Hz and the highest was ~20Hz. These
frequencies were used to create component sinusoids, each with a
random initial phase. The 20 components were split into two
spectrally interlaced groups of 10, yielding two groups that
approximately spanned the full frequency range. The maximum
velocities of the individual components were normalized by scaling
the position amplitude inversely with frequency. The sinusoids
within a group were summed to yield a full sum of sines stimulus.
The full stimuli were then normalized to a fixed maximum velocity
in order to match velocity amplitude across trials. Amplitude was
varied by multiplying the normalized sum of sines stimuli by a fixed
scale factor. Each stimulus was generated separately, such that the
randomized phases of the component sinusoids were different for
a given amplitude and frequency range. However, the same stimuli
were used across animals.

The sum of sines stimuli concentrated power at single frequencies,
thereby increasing the signal-to-noise ratio, but resulting in relatively
coarse frequency resolution. Furthermore, an additional 40s sum of
sines trial was necessary to acquire the full frequency spectrum at
single amplitudes. Chirp stimuli (Fig.2B), in which the instantaneous
temporal frequency was increased continuously over time, provided
higher-resolution frequency spectrums in a single 40s trial. Hence,

chirps provided an efficient means of measuring abdominal
responses at different stimulus amplitudes, but at the cost of a lower
signal-to-noise ratio. In addition, consistency in the abdominal
response across stimulus types provided a measure of the linearity
of the behavioral responses.

Chirp stimuli (Fig.2B) consisted of sinusoidally oscillating
patterns with temporal frequencies that increased logarithmically
over time. The logarithmic sweep signal, ranging from 0.1 to 16Hz,
was generated using the MATLAB chirp function (Signal Processing
Toolbox). The maximum frequency was lower than for the sum of
sines because tethered flight was not consistently maintained when
moths were presented isolated high-frequency oscillations. In
addition, the low signal-to-noise ratio of the chirp was problematic
at high frequencies (>17Hz) because of the high-powered noise from
the wing beats. The maximum velocity of the chirp was normalized
across frequencies. Unlike the sum of sines, normalizing the velocity
of the final chirp stimulus was not necessary because only one
frequency was present at any one time. The final amplitudes of the
chirp stimuli were scaled to allow for comparison with the sum of
sines. The gain factor was chosen by matching the summed power
of the chirp within logarithmically spaced frequency bands to the
power of the sum of sines stimuli.

Experimental trials
Moths were presented with seven 40s stimulus presentations in each
experimental trial: two different amplitudes of the two interlaced
sum of sines stimuli and three different amplitudes of the chirp
stimulus. The order of presentation was generated pseudo-randomly
for each trial. The grating was held stationary for 200ms at the
beginning and end of each stimulus. Not all moths behaved over
the full course of a full experiment. Trials during which a moth
ceased flying, or had a wing-beat frequency less than 17Hz, were
not used for analysis.

Data analysis
Data analysis was performed in MATLAB. The voltage signal from
the arena, specifying angular position, was downsampled using the
camera frame-sync pulses and temporally aligned with the
abdominal response data. Characterization of the visual–abdominal
response was performed in frequency space by first calculating the
discrete Fourier transform (DFT; calculated using MATLAB’s fft
command) of both the visual stimulus and the abdominal response.
Magnitude was calculated by taking the absolute value of the DFT,
while phase was calculated using the MATLAB angle function.

For the sum of sines trials, gain and phase were calculated only
at the frequency maxima present in the visual stimulus. For chirps,
the limited time duration of the stimulus at any given frequency
resulted in a nosier signal at each discrete frequency. To overcome
this effect, the DFT was averaged within 26 logarithmically
increasing bins, and the magnitude and phase were calculated for
each bin.

For Bode plots, gain was calculated by taking the ratio of the
absolute value of the DFT of the response and the stimulus at each
frequency. The phase lag was calculated by taking the difference
of the response phase relative to the stimulus phase. Gain was
calculated for each trial (on a decibel scale) after which the mean
and confidence intervals were calculated for all moths. Phase was
similarly averaged, but because the phase data were periodic, the
mean and confidence intervals were calculated using the open source
Circular Statistics Toolbox (Berens, 2009).

An alternative method for determining the gain and phase is to
first average the complex valued frequency domain data and then
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calculate the magnitude and phase angle to determine the gain and
phase, respectively. The confidence intervals can then be calculated
by fitting a Gaussian probability density function to the data in the
complex plane (Roth et al., 2011). Both methods yield consistent
results, with the results from the second averaging method reported
in supplementary material Fig. S1.

Linearity estimates and time invariance
Specialized analytical tools for linear time-invariant systems allow
for the precise determination of the long-term behavior of the

system. We tested whether the visual–abdominal response satisfied
the linear conditions of superposition and scaling. In addition, we
performed another linearity test, the signal–response coherence.
These linearity measures implicitly tested the time invariance of
the system.

Linear superposition requires that the outputs of a system to
specific frequency inputs be equivalent regardless of whether the
frequencies are presented individually or together. Chirp stimuli
approximate single sinusoids presented serially over time, while the
sum of sines stimuli presented multiple frequency components
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Fig.2. Frequency selectivity of abdominal responses. (A)Example stimulus (top, blue) and abdominal response (bottom, red) from a single sum of sines
experimental trial. The time-domain positional signal (left), Fourier transform of the position signal (middle) and the Fourier transform of the velocity (right)
are shown for both the stimulus and response. Fourier transforms of the stimulus position and response illustrate the selectivity of the abdominal response.
The 10 peaks in the stimulus correspond to the 10 different sinusoidal components of the sum of sines stimulus. The smaller peaks present only in the
abdominal response trace are likely due to harmonics of the base frequency responses. The normalization of the sinusoidal components in velocity can be
seen from the Fourier velocity plot (top right). Small differences in the peak heights are likely due to imperfect sampling. (B)Example signals for a chirp trial,
same as above. Note that while the velocity of the chirp stimulus was normalized to a maximum value, the velocity magnitude of the stimulus in Fourier
space has a negative slope (top right). This result is partially due to the logarithmic frequency ramping of the chirp stimulus that results in a higher density of
samples at higher frequencies.
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simultaneously. Hence, consistency in the chirp and sum of sines
responses would strongly suggest that the visual–abdominal response
satisfies the linear superposition condition.

Linear scaling requires the output of the system to scale
proportionally with the input. For the present study, this scaling
required that the gain of the abdominal response be independent of
visual signal amplitude. However, because all biological systems
can be pushed outside of a linear range due to response saturation,
we attempted to identify a limited range of amplitude within which
responses were linear. Stimuli with three different maximum
velocities were used: 225, 450 and 675degs–1. Following Roth et
al. (Roth et al., 2011), velocity amplitude, as opposed to positional
amplitude, was limited to prevent response saturation at high
frequencies, thereby avoiding potential confounds between the
frequency and velocity dependence of the responses. The velocity
maxima were chosen empirically because moths did not maintain
consistent tethered flight when the maximum velocity amplitude
dropped below 225degs–1.

A final test of linearity was provided by the signal–response
coherence (Bendat and Piersol, 1980; Roth et al., 2011). The
coherence, Cxy, of two signals, an input x(t) and output y(t), is defined
as:

where Gxx and Gyy are the autospectral densities of x(t) and y(t),
respectively, and Gxy is the cross-spectral density of the two signals.
The coherence provides a linear estimate of the relative power transfer
from the input to the output, with 0≤Cxy≤1. A coherence of 1 indicates
that the spectral power transfer between the two systems is equal to
the total power in the individual signals and can be completely
explained by a linear transfer function between input and output. Low
coherence can be due to multiple factors, including noise, nonlinearity
or other inputs. However, it is important to note that high coherence
is not a sufficient condition for linearity. A periodically excited
nonlinear system will yield a coherence of 1 at the excited frequencies
in the absence of noise (McCormack et al., 1994).

Model fit
The transfer function from image position to abdominal angle was
determined by fitting the complex-valued frequency domain data
with a first-order high-pass filter with a fixed time delay. We
evaluated the goodness-of-fit of the model by calculating the χ2 in
the frequency domain as follows:

where Ō(ωk) is the experimentally observed mean value at
frequency ωk and G(ωk, Θ) is the value predicted by the modeled
transfer function with parameters Θ (Taylor, 1997). For the
variance term σk

2 we used the squared standard error of the mean,
calculated as the trace of the covariance matrix of the observed
data points at each frequency (Pintelon and Schoukens, 2012)
divided by the number of samples at each frequency. This type of
least squares fitting will yield biased parameter estimates for
random excitation signals or when the signal to noise ratio is low.
However, by using periodic excitations with high signal-to-noise
ratios we were able to avoid these biases.

Parameters for the high-pass filter model were determined by
minimizing the χ2 between the complex valued transfer function

C
G

G G
 , (1)xy

xy

xx yy

2

=

O G ,
 , (2)

k

�
k k

k

2

1

2

2∑
( ) ( )

χ =
ω − ω Θ

σ=

model and the 225degs–1 sum of sines. The minimization was
performed using a Nelder–Mead simplex algorithm implemented
by the MATLAB fminsearch function (Lagarias et al., 1998). The
transfer function was first visually matched to provide initial
parameter estimates. We then performed a large iterative parameter
sweep around these initial estimates to determine the starting
parameters for the minimization runs. The parameters estimates
yielding the lowest χ2 were used in the final model. There was strong
convergence in the final parameter estimates with >10% of runs
settling within the same local minimum.

In order to validate our choice of model, we fit a variety of high-
pass filter models of different orders to the data. The models were
compared using the corrected Akaike’s information criterion (AICc),
defined as:

where kθ is the number of model parameters and n is the number
of frequencies (Akaike, 1987; Burnham and Anderson, 2002). The
AICc provides a means of comparing the relative goodness-of-fit
of different models while penalizing models for the number of
parameters. A detailed discussion of the different models and their
AICc values is included in the Appendix.

Mechanical perturbation experiments
While the abdominal angle (relative to the thorax) was measured
in the behavioral experiments, the control signal used by the model
was the torque applied at the thoracic–abdominal joint. Because the
torque is manifest as an angle change (with some dynamics), we
could estimate the torque by measuring the dynamic properties of
the joint.

The parameters and dynamics of the control model were primarily
derived from simple, direct measurements (e.g. masses) or
extrapolated from known values (e.g. moments of inertia). However,
measuring the hinge joint dynamics was more complicated and
required some assumptions about the properties of the joint.
Mathematically, we modeled these dynamics as a torsional
spring–damper system. In order to test these assumptions and
measure the spring constant and damping coefficient of the hinge
joint, we performed a set of mechanical perturbation experiments.

Moths were tethered and placed in the arena, but instead of being
presented a visual stimulus they were allowed to ‘fly’ freely in the
dark. As they were flying, the abdomen was perturbed from its rest
position via a physical impulse. An experimenter positioned their
hand behind the moth for the entire recording period and applied
the impulse by flicking the abdomen with their finger. Moths were
then killed using ethyl acetate and reattached to the tether, after
which we measured the passive dynamics of the joint using similar
perturbations.

Analysis was performed by aligning the maximum abdominal
deflection for each impulse. Impulses were selected for analysis only
if the abdomen was contacted for a single frame. For trials measuring
the passive properties of the joint, the (damped) natural frequency
was calculated by measuring the time between subsequent peaks or
troughs. The coefficient of damping was calculated by fitting the
peak (or minimum) amplitudes with a decaying exponential.

Control model
After measuring the visual–abdominal transfer function
underlying the response, we determined the efficacy of the
behavioral responses for flight control. Specifically, we evaluated
whether the extrapolated torque responses, filtered through the
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modeled body dynamics of the moth (plant, Fig.1A), would be
sufficient to stabilize the model flight kinematics. We derived
the equations of motion for a simplified model of a moth (Fig.1C)
and analyzed the effectiveness of the behaviorally measured
transfer function using the Mathematica software package
(Wolfram Research, Champaign, IL, USA) and the MATLAB
Control Systems toolbox.

The simplified moth model consisted of two masses, an
abdomen and a thorax/head combination (Fig.1C). The abdomen
was modeled as an ellipse with major axis 2la, a minor axis ra
and a center of mass ma. The thoracic segment was composed of
two rigidly fixed circular masses, a head and a true thorax, with
radii rth and rh and masses mth and mh, respectively. For simplicity,
the coupled masses are simply referred to as the thorax, with
combined mass mt and radius rt.

The abdomen and thorax rotated about a fixed hinge joint, at
distances la and lt from their respective centers of mass. These
rotations were characterized by the angular deflection of the
major axes of each mass relative to the horizontal, θa and θt,
for the abdomen and thorax, respectively. Counterclockwise
rotations were defined as positive. Moments of inertia for an
ellipse (abdomen, Ia) and two fixed circles (thorax, It) were
calculated for rotations around the joint. The lift force of the
wings, Fw, was modeled as an average constant force located
along the major axis of the thorax at a distance d from the
hinge joint and oriented at an angle α relative to the thoracic
angle (θt). The center of mass of the whole system, M, was
calculated from the positions of the abdominal and thoracic
masses.

Real moths control the relative abdominal angle through the
actions of muscles at the thoracic–abdominal joint. Conservation
of angular momentum requires that changes in the abdominal
angle are, in the absence of external forces, balanced by equal
and opposite inertial reactions of the thorax. For the model, the
abdominal and thoracic angles were modulated by a torque (τ)
that acted with equal but opposite direction on the two masses.
Because the lift vector was fixed relative to the thorax, changes
in joint angle redirected the direction of the lift force. Shifting
the center of mass relative to the center of lift also changed the
moment arm of the lift forces.

To determine the stability of the system, we first derived the
nonlinear Euler–Lagrange equations of the system in the center of
mass reference frame:

where the Lagrangian (L) is defined as the difference between the
kinetic (T) and potential (V) energy of the system such that L=T–V.
The vector q contains the kinematic variables for the system
moving and rotating in the x–y plane, q=(x, y, θa, θt), where x and
y correspond to the horizontal and vertical positions (respectively)
of the center of mass (M) of the moth. The right-hand side of the
equation specifies the internal dynamics of the system while the
left-hand side contains the external forces acting on the system. In
this case, the external inputs were the torque, τ, acting on the hinge
joint and the constant wing forces, Fw, fixed at 90deg relative to
the major axis of the thorax.

The Euler–Lagrange equations for the simulated moth can be
expressed in the form:

which can be rewritten as:

The mass matrix M(q) is composed of inertial terms, C(q,q͘)
includes Coriolis terms and position- and velocity-dependent
constraints, N(q) includes gravitational terms and Γ represents the
generalized forces from the wings.

By substituting out q for the state vector, z, defined as:

the two second-order Lagrange equations (Eqn4) can be expressed
as four first-order equations:
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Table1. Model parameter values

Parameter Symbol Value

Distance from the hinge joint (m) d 0.006
Lift force of the wings (mN) Fw 17.9
Moment of inertia of an ellipse (abdomen) (gm2) Ia 3.9×10−4

Moment of inertia of an ellipse (thorax) (gm2) It 1.8×10−4

Distance from the abdomen to the center of mass (m) la 0.0153
Distance from the thorax to the center of mass (m) lt 0.008
Mass of the abdomen (g) ma 0.999
Mass of the head (g) mh 0.106
Mass of the thorax (true thorax + head) (g) mt 0.832
Mass of the true thorax (g) mth 0.726
Minor axis (m) ra 0.0055
Radius of the head (m) rh 0.002
Radius of the thorax (true thorax + head) (m) rt 0.008
Radius of the true thorax (m) rth 0.006
Angle of wing lift forces (deg) α 90

Masses and lengths were borrowed from Hedrick and Daniel (Hedrick and Daniel, 2006).
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The generalized forces, Γ, were determined by mapping the wing
forces, Fw, into joint space by multiplying Fw by the Jacobian
transpose of the position vector at which the force was applied:

Both the wing forces and gravity were constant over time, leaving
the joint torque, τ, as the only time-varying control input to the
system. The torque acted on the abdominal and thoracic angles with
equal, but opposite, magnitudes. To simulate the inherent dynamic
properties of the thoracic–abdominal joint, we modeled the joint as
a torsional spring–damper system, with spring constant k and
coefficient of damping b. The abdomen was assumed to have a
natural rest angle θ0, defined as the angle at which the spring and
gravitational constants balanced to position the center of mass
directly under the center of lift. Real moths manipulate the thoracic-
abdominal joint angle via muscle actuation, which we modeled as
a control torque at the joint, u1. The net torque at the joint was then:

These equations constituted the complete nonlinear dynamics of
the model moth. The final step for evaluating the model was to
input physical parameter values. To be consistent with previous
studies, empirical parameter values were borrowed from previous
work (Hedrick and Daniel, 2006) and are shown in Table1.

To simplify the stability analysis, we evaluated the model at an
equilibrium state of hovering flight. This simplification allowed for
a linear approximation of the full nonlinear equations of motion.






q q q

g m m

l l m m t t t

m m

l l m m t t t

m m

C , N

0
( )

sin

sin

, (10)

t

a t

a t a t a t t
2

a t

a t a t a t
2

a t

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
+ =

+

θ − θ⎡⎣ ⎤⎦θ

+

−
θ − θ⎡⎣ ⎤⎦θ

+

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

F t

F t

F l m t t

m m

F l m m m

m m

cos

sin

sin

d( ) sin( )

 , (11)

w t

w t

w a a a t

a t

w t t a t

a t

( )
( )

( ) ( )Γ =

α + θ⎡⎣ ⎤⎦
α + θ⎡⎣ ⎤⎦

α − θ + θ⎡⎣ ⎤⎦
+

− + +⎡⎣ ⎤⎦ α
+

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

 

k t t b t t

k t t b t t

z

0
0

u

u

.  (12) 
1 0 1 2 1 2

1 0 1 2 1 2

1( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

τ = − −θ + θ − θ⎡⎣ ⎤⎦ − θ − θ⎡⎣ ⎤⎦
− + −θ + θ − θ⎡⎣ ⎤⎦ + θ − θ⎡⎣ ⎤⎦

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

Prior to linearizing the model, we also dropped states that were of
minimal interest to our analysis. The model was translation invariant,
meaning that the (x, y) states were decoupled from the rest of the
system and could be removed with no loss of generality. The average
lift forces were constant to first order near the hovering equilibrium,
meaning that acceleration terms in the y (vertical) direction were
zero. Because the moth started at equilibrium (zero vertical motion),
this condition meant that the ẏ state could be ignored. Taken together,
therefore, these conditions allowed the removal of the (x, y, ẏ) terms
from the equations of motion. Linearization and stability analyses
were then performed on this simplified five-state system.

RESULTS
Open-loop system identification

Vertical movements of the abdomen accurately tracked the rotation
of the visual pattern, as can be seen in the example data traces
(Fig.2). This tracking is particularly clear for the sum of sines, where
the frequency peaks in the abdominal responses closely match those
of the visual stimulus (Fig.2A, center column). A notable exception
appears around 20Hz, where the average signal power increases
dramatically. This increased power is attributable to the filtering of
the 20–25Hz wing beat through the thorax and abdomen. Additional
low-amplitude spikes present only in the abdominal response traces
are likely due to harmonics of the base frequency responses.

The input–output properties of a linear system are fully described
by two frequency-dependent variables: the gain, defined as the
amplitude ratio of the output over the input, and the phase lag,
defined as differences in the relative timing of periodic input and
output signals. This input–output relationship can be represented
compactly with a transfer function that can then be used to predict
the steady-state output of the system to arbitrary inputs.

For these experiments, the input was the angle of the visual
pattern, and the output was the abdominal angle. In order to derive
a single transfer function from the data, the gain and phase from
individual trials were averaged across trials. The transfer function
was fit to the averaged response for the lowest-amplitude stimulus,
225degs–1, because it showed the highest similarity between the
sum of sines and chirps and did not appear to saturate at high
frequencies (discussed in the following section). The average phase
and gain for sum of sines and chirp trials are shown in Fig.3 in the
form of a Bode plot.

Abdominal responses are strongly attenuated at frequencies
below 1Hz, after which they plateau as frequency increases. The
shape of the gain response is similar for both the chirp and sum of
sines and is characteristic of a high-pass filter. The phase plot shows
a pronounced, approximately linear, phase roll-off as frequency
increases (the roll-off appears to be super-linear due to the log scale
on the abscissa). This linear roll-off is indicative of a fixed time
delay between the stimulus and response. However, a fixed time
delay will not impact the gain of the response. Taken together, the
decreased gain at low frequencies and the approximately linear phase

The equations of motion for the simple, non-forced, system (Fig.1C) are then:

M q

m m
m m

l m m I m m

m m

l l m m t t

m m

l l m m t t

m m

l m m I m m

m m

0 0 0
0 0 0

0 0
cos

0 0
cos

 , (9)

a t

a t

a
2

a t a a t

a t

a t a t a t

a t

a t a t a t

a t

t
2

a t t a t

a t

( ) ( ) ( ) ( )

( ) ( ) ( )

=

+
+

+ +
+

θ + θ⎡⎣ ⎤⎦
+

θ + θ⎡⎣ ⎤⎦
+

+ +
+

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

THE JOURNAL OF EXPERIMENTAL BIOLOGY



1530

roll-off suggested that the visual–abdominal transfer function could
be modeled by a first-order high-pass filter with a fixed time delay.

To verify our choice of transfer function, we fit multiple different
high-pass filter models to the data (see Appendix). Parameters were
determined by minimizing the χ2 of the model relative to the
experimental data as discussed in the Materials and methods. The
best model, as determined using the AICc, was a first order high-
pass filter with gain K=0.46, one zero z=0.1π , one pole P=1.0π
and a fixed time delay of τd=0.041s with a χ2=48. In the Laplace
domain, the function has the form:

where s is the complex frequency (rads–1). The high-pass filter
portion of the equation above is the parenthetic term and determines
the shape of the gain function. It also influences the phase. The
effect of the time delay, specified by the exponential term, is limited
to the phase plot only and is manifest as a linear increase in the
phase lag with increasing frequency (or as an exponential phase
roll-off in the log frequency plot in Fig.3).

This transfer function was estimated for moths with unrestrained
heads. Because moths could track the pattern with head movements,
potentially decreasing the apparent motion of the visual stimulus,
we also tested two moths with restrained heads. The results (Fig.4)
show that while the shape of the curve remains the same, the gain
increases at mid-range frequencies, and a slight, positive shift in
the phase response is present at low frequencies.

G s K
s z
s p

e  , (13)s d( ) = +
+

⎛
⎝⎜

⎞
⎠⎟

− τ

Response linearity and time invariance
Three amplitudes were tested in chirp experiments. Two amplitudes,
225 and 450degs–1, were used for sum of sines trials because of
the longer time course of sum of sines experiments (80s for sum
of sines compared with 40s for chirps).

The results (Fig.5A; supplementary material Fig.S1) suggest that
the visual–abdominal response scales approximately linearly across
the threefold amplitude range tested. The response consistency
across stimuli types demonstrates that both superposition and time
invariance are satisfied. Slight deviations are apparent at low
amplitudes where gain varies inversely with stimulus amplitude. At
high frequencies and amplitudes, gain drops off for the chirp stimuli,
but not for the sum of sines. The phase responses are very consistent,
with the exception of the chirp data at high frequencies. These
inconsistencies at high frequencies follow from the presence of
variability between trials at frequencies beyond the roll-off, partially
resulting from the lower signal-to-noise ratio at high frequencies
introduced by the wing beat (see Materials and methods). Thus,
phase is not reliably computed under those conditions.

The gain differences at low frequency are partially explained by
response saturation. The positional amplitudes of visual stimuli were
high at low frequencies. Because the visual stimuli wrapped around
the edges of the circular arena, there were no limits on the
displacement of the grating. The range of abdominal motion,
however, had physical limits. Hence, the limited displacement of
the abdomen at high stimulus amplitudes necessarily resulted in
some nonlinearity in the gain functions measured at low frequencies.

Similarly, the deviation between the sum of sines and chirp results
at high frequency is likely due to velocity amplitude saturation.
While the velocity maxima were approximately matched between
the two types of stimuli, the instantaneous amplitude at any given
frequency of the chirp was larger than for the equivalent sum of
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Fig.3. Gain and phase of the visual–abdominal response. The gain (top)
and relative phase (bottom) of the visual-abdominal response is plotted for
a single amplitude, 225degs–1, for sum of sines (SoS; blue circles) and
chirp stimuli (blue line). Phase is plotted from −180 to 180deg because of
the uncertainty inherent in estimating a periodic variable from data where,
for example, phase differences of 180 and 540deg are equivalent. Hence,
the discontinuities in the phase plot, demarcated by dashed lines, are in
fact continuous and are simply the result of the phase rolling off to the next
cycle. For these plots, gain and phase were calculated for each trial and
then averaged across trials. Error bars and shaded regions represent the
95% confidence intervals for 12 sum of sines trials and 20 chirp trials from
seven moths with one to six trials per moth. The data are well described by
a high-pass filter function (black line) with a time delay τd of 41ms.
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Fig.4. Comparison of head-fixed and non-head-fixed responses. The gain
(top) and relative phase (bottom) of the visual-abdominal response is
plotted for two amplitudes of sum of sines (SoS), 225degs–1 (blue) and
450degs–1 (green), for head-fixed (square, N=2 moths, n=3 trials) and non-
head-fixed (circle, N=8, n=22) moths. Error bars represent the 95%
confidence intervals. Note the increased gain for head-fixed moths at
frequencies above 1Hz and the slight phase shift at low frequencies. The
data are well described by a high-pass filter function (black line) with a time
delay τd of 41ms.
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sines stimulus. This difference is because the sum of sines stimuli
contained multiple simultaneous frequency components, so that each
individual component had lower amplitude. Hence, the response
differences can be explained by a visual saturation non-linearity at
the high chirp amplitudes, a fact that is supported by the strong
agreement at low chirp amplitudes.

A second test of linearity was provided by the spectral coherence.
The coherence was measured for all sum of sines trials and then
averaged across trials at the same amplitudes. Coherence was not
calculated for the chirp stimuli because the relatively low power at
individual frequencies confounded the coherence estimates.

The coherence curve for the 450degs–1 sum of sines trials is
shown in Fig.5B and is consistent with the curves at other
amplitudes. As can be seen, the coherence is above 0.8 for all but
one of the stimulus peaks. The one exception is the peak around
20Hz. This difference is likely due to contamination from the ~20Hz
wing beat frequency. The high coherence suggests that the
input–output relationship from visual stimulus to abdominal
deflection is consistent with a linear model.

Mechanical perturbation experiments
The recoveries of three moths to mechanical perturbations of the
abdomen are plotted in Fig.6. The moths recover to within 5deg
of the initial position 100ms after the perturbations, with subsequent
oscillations quickly damped out. An additional low-frequency

recovery from the 5deg offset to the initial position occurs over the
next 200ms. These results indicate that, during flight, the
thoracic–abdominal joint is both stiff (rapid passive response) and
close to critically damped and that, to good approximation, the
applied torque and angle are approximately linearly related (with
some gain).

Dead moths displayed weakly damped abdominal oscillations in
response to perturbations. The measured passive properties of the
dead moths were consistent with a spring-damped system with
natural frequency ω0=65.8±9.6s−1, damped natural frequency
ω0=63.0±8.7s−1, damping ratio ζ=0.267±0.025 and time constant
τp=17.4±1.3s−1.

Control model
Having characterized the open-loop visual–abdominal response, we
evaluated the effectiveness of the response for maintaining stability
during free flight by deriving the full nonlinear equations of motion
for a model moth (Fig.1C).

The perturbation experiments indicated that the
thoracic–abdominal joint was heavily damped. Furthermore, the
quick recovery to the original abdominal angle suggested that the
abdominal angle was specified by a positional command. Hence,
it was unnecessary to include the detailed hinge dynamics in the
model, as the control signal sent to the abdomen was effectively
converted to an angular position. Mathematically, we
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transfer function (black line) and low-amplitude data are the same as in Fig.3. (B)The frequency peaks in the normalized Fourier transform of two interlaced
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implemented this by making the control torque, u1, a linear
function of abdominal angle:

where u is a new angular control variable. The spring constant k
was then locked to the damping coefficient b, and the limit of the
state equations (Eqn12) was taken as b→∞. This limit simplifies
the temporal dynamics such that the torque is linearly related to the
abdominal angle by a scalar factor k and, hence, a Hookean process.
With this final assumption, the model parameters were fully
specified.

The full equations were reduced from an eight- to a five-state
system as described in the Materials and methods. The control
potential of the abdomen was derived for a specific regime,
hovering flight, which allowed linearization of the model about
a stable equilibrium. The equilibrium was defined by setting the
initial x and y positions and velocities to zero. The abdominal
and thoracic angles were chosen such that the center of mass was
positioned directly beneath the center of lift, as described in the
Materials and methods. The system was then linearized by taking
the Taylor expansion of the state equations about the equilibrium
condition. The first-order terms of the expansion yielded a set of
linear equations that approximated the full dynamics of the
system.

The transfer function from the input u1 (proportional to θa–θt) to
the thoracic (pitch) angle in Laplace space was:

where Km=–0.69 and zm
2=279s−2. This transfer function can also

be expressed as an ordinary differential equation in time:

The transfer function exhibits two temporal scales. One is on the
time scale of the position change of the abdomen relative to the
thorax, redirecting the lift vector relative to the center of mass. The
other time scale is associated with the rotation of the body as a
whole in response to that redirection of force.
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Effectiveness of abdomen for flight control
The above experiments provided two transfer functions, one for the
open-loop tethered flight experiments and a second for the closed-
loop free flight model. These transfer functions correspond to the
sensor/controller blocks and the plant block in the full feedback
system (Fig.1A), respectively. For two linear systems, we can
determine the closed-loop dynamics of the combined system from
the dynamics of the open-loop components.

The assumption of linearity was well supported by the
experimental data. However, combining the two transfer functions
required reconciling potential differences between the abdominal
dynamics of a tethered moth, as in the case of the experimentally
measured transfer function, and for the free-flight case. The
dynamics of the sensory input, controller output and plant dynamics
will be different for a moth with closed-loop control of the visual
stimulus, free-flight body dynamics, or both.

The simplification of the hinge joint dynamics suggested the
tethered abdominal response dynamics were a reasonable
approximation for the free-flight case. In the behavioral experiments,
we measured the transfer function from visual angle to abdominal
angle. Because the thorax was fixed to the tether such that the
thoracic angle could not be changed, we equated the experimentally
measured abdominal angle to the model control input, u1,
proportional to θa–θt. As discussed above, the perturbation
experiments support the assumption of a positional controller.

Given these caveats, the resulting closed-loop transfer function
H(s) was:

The time delay makes explicitly evaluating the stability of the
system challenging. A graphical method for determining the stability
of a time-delayed, linear time-invariant system is the Nyquist plot
(Fig.7). In a Nyquist plot, the stability of the closed-loop system
H(s) is determined by evaluating the open-loop transfer function,
G(s)•P(s), along the imaginary axis. For a given minimal phase open-
loop transfer function (as in our case), the resulting closed-loop
system is stable if and only if the –1 point on the real axis is not
encircled. For our open-loop system, the product of the
experimentally measured transfer controller transfer function G(s)
and the plant model P(s), we see that the system does not encircle

H s
G s P s

G s P s
( )

( ) ( )
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Fig.6. Abdominal perturbation response during tethered flight. The average
abdominal angle in response to a physical perturbation is plotted versus
time for three individual moths (colored traces) and for the population
(black line). After the initial perturbation, the abdominal angle rapidly
undershoots (possibly due to passive mechanisms) and then slowly
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the –1 point and is thus stable. However, the proximity of the
crossing-point to –1 suggests that the system is only stable by a
small margin, such that a slight increase in the gain could potentially
destabilize the system. The magnitude of the decrease required to
make the system unstable was smaller than the difference in gain
between head-fixed and non-head-fixed moths.

DISCUSSION
Our results suggest that moths actively modulate their body shape
to control flight in response to visual pitch stimuli. By measuring
the visual–abdominal sensorimotor transform of a tethered moth
using broadband visual stimuli, we showed that the behavioral
responses were approximately linear within the range of stimuli we
provided. The linearity of the response allowed us to determine the
control potential of the abdominal response using a control theoretic
model of a hovering moth. The model suggests that movements of
the abdomen contribute to pitch stability during flight, but at
relatively slow time scales (over multiple wing beats) and with a
very slim stability margin. Operating at the edge of stability may
allow the animal to quickly transition away from stable, steady-
state hovering to agile, unstable maneuvers.

The transform of visual sensory input to motor output is
linear with an approximate delay of 41ms

We define the sensorimotor transform (or transfer function) as the
input–output relationship from visual image position to abdominal
angle. Diagrammatically, the behaviorally measured transfer
function combines both the sensor and the controller (Fig.1A) and
encompasses a number of different physiological processes,
including phototransduction, neural signal propagation and muscle
activation.

In measuring the sensorimotor transform, we found that
abdominal movements tracked the frequency peaks in the visual
stimuli (Fig.2), which was particularly clear for the discrete peaks
present in the sum of sines stimuli. This matching indicated that the
behavioral responses were directly related to the motions of the
visual pattern (as opposed to some ancillary behavior), allowing us
to estimate the sensorimotor transfer function.

In many cases, our stimulus choices differed greatly from
previous studies and explain the differences between our observation
and previous results. One notable difference was our choice to scale
the positional amplitude with frequency, thereby keeping the
velocity range of the visual stimuli constant. Previous behavioral
results suggested that visual–abdominal responses resembled a band-
pass filter, with a peak response at 3Hz that rolled off on either side
(Hinterwirth and Daniel, 2010). These results were consistent with
electrophysiological recordings from directionally selective
interneurons in the moth brain (Theobald et al., 2010). Our results
show that moths are able to respond to frequencies up to, and
possibly exceeding, 20Hz, with our ability to test higher frequencies
limited by the wing beat. Responses at frequencies greater than 3Hz
suggest that the response saturation observed in previous studies
may be due to the high velocities of the patterns rather than the high
temporal frequencies. However, one consequence of fixing the
stimulus velocity is that it will have very large positional amplitudes
at low frequencies. The variation between the low-frequency
responses across amplitudes suggests that there was some response
saturation, but that it was limited to the lowest frequencies and
yielded rather minor differences. The effects of sensor saturation
would likely be more dramatic at higher amplitudes.

The broad frequency sampling allowed us to estimate the visual-
abdominal transfer function. We fit the data with a simple first-

order high-pass filter with a fixed delay (τd), consistent both with
the shape of the gain curve and the phase roll-off. Our model
comparison results demonstrated that reducing the number of model
parameters, particularly the pole or the delay, significantly reduced
the goodness-of-fit of the model, while higher-order models added
unnecessary complexity without increasing the predictive power (see
Appendix, Table A1).

By fitting our model in the frequency domain we were able
disambiguate the effects of the high-pass filter and the fixed time
delay on phase. This delay, likely due to signal transmission and/or
encoding times, appears as a phase lag that increases linearly with
temporal frequency (Fig.3). Phase lags can result both due to a fixed
time delay, which results from characteristics such as signal
propagation delays, and/or due to filtering (or neural processing),
so that attempts to estimate the time delay at a single frequency will
almost certainly yield spurious estimates. Quantifying the behavioral
delay is critically important because shifts in response latency have
significant ramifications for control, with longer delays decreasing
the stability margin of a system.

Our estimated transfer function was composed of a high-pass filter
multiplied by a fixed time delay (exponential term in Eqn13). Based
on our model fit, we measured an estimated time delay, τd, of 41ms.
While we are unable to quantify the precision of this estimate, given
the multiple parameters in our estimated transfer function and the
variance of our data, 2–3ms changes in this parameter noticeably
impact the χ2. While this behavioral delay is consistent with other
measures of response delays of visually mediated behaviors in other
insects (Heisenberg and Wolf, 1988; Robert and Rowell, 1992), it
is somewhat surprising given that the moths in our study were dark
adapted, which can increase photoreceptor response times by up to
30ms (Howard et al., 1984). The delay is also notably different
from the 100–200ms response delays measured from visual
interneurons (Theobald et al., 2010). That difference may arise from
an unknown behavioral state in fixed preparations that are necessary
for intracellular recordings. Supporting this conclusion is the fact
that we did not observe abdominal motions when moths were not
actively flapping their wings, indicating that the response was
dependent on the behavioral state of the animal. In addition, in one
experimental trial not included in our analyses, we measured a time
delay of ~100ms (supplementary material Fig.S2). A second set of
experiments on the same moth yielded a time delay of ~40ms,
indicating that the moth was capable of responding more quickly
to the visual stimulus. This change in time delay may be evidence
for the importance of the behavioral state or attention of the animal
on behavioral output.

The 41ms delay in the abdominal response indicates that it is a
relatively slow control mechanism, acting at the time scale of
individual wing strokes. This time scale would suggest that the
abdomen is unlikely to play a significant role in the recovery from
fast (<40ms) flight perturbations, or at least in the initial phase of
the recovery. However, it is not clear whether this time delay is
limited by sensory processing, or is instead reflective of the relative
time scale of control in which the abdomen is involved. Previous
experiments in M. sexta have shown that abdominal reflexes can
be elicited by both mechanical and visual stimuli (Hinterwirth and
Daniel, 2010).

The majority of our experiments were performed with moths that
were free to move their heads. Moths clearly moved their heads in
phase with the visual pattern and head motion could affect the
resulting optic flow. Unlike abdominal movements, head movements
were apparent even when moths were not actively flapping their
wings. Although unrestrained head preparations created a potential
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confound for measuring the visual–abdominal transfer function, the
condition was more relevant to free flight where insects use head
motions to actively stabilize their gaze (Huston and Krapp, 2008;
van Hateren and Schilstra, 1999). The head-fixed experiments
indicated that, while eliminating head motions did alter the
abdominal response, the changes were mainly in the gain of the
response. This result makes intuitive sense, as the apparent visual
motions across the eye were greater when moths were not able to
partially compensate for the motion by visually tracking pattern
movement.

All physiological processes are nonlinear over a sufficiently large
parameter space and, as mentioned previously, the measured
sensorimotor transform encompassed multiple, presumably
nonlinear (e.g. Howard et al., 1984), physiological processes
(Fig.1A). However, we show that the visual–abdominal response
is time-invariant and satisfies the two conditions for linearity,
superposition and scaling, within a restricted parameter space and
during steady-state behavior. Comparison of the sum of sines and
chirp responses (Fig.3, Fig.4A) demonstrates that the responses to
sequentially presented single frequencies (chirps) are consistent with
the responses to the frequencies superimposed (sum of sines). The
constant gain between amplitudes (Fig.5A) indicates linear scaling
between the input visual stimulus and the abdominal output. Time
invariance is shown by the response consistency between both
different sum of sines stimuli with randomized phase, and between
sum of sines and chirps. These two properties, linearity and time
invariance, were necessary in order to derive a general transfer
function describing the behavioral output to an arbitrary input and,
hence, integral to the stability analyses.

While it was surprising that the combination of multiple nonlinear
processes underlying the visual–abdominal response yielded a
linear transfer function, this observation is not unprecedented, with
linearity in behavioral responses having been previously observed
for both behavioral outputs (Roth et al., 2011) and the integration
of sensory inputs (Frye and Dickinson, 2004; Hinterwirth and
Daniel, 2010). The fact that biological systems, with their
fundamentally nonlinear underpinnings, display linear behavior is
not as surprising as one might think. The system is operating near
an equilibrium, and nonlinear dynamics can be reasonably
represented by linear dynamics in the regions of attraction of
equilibria (Åström and Murray, 2008).

Control and stability
By measuring the sensorimotor transfer function from visual input
to abdominal output, we were able to determine the potential role
of abdominal movements for flight control. As previously
mentioned, the experimentally measured transfer function
corresponded to the combined sensor/controller block of our control
theoretic model (Fig.1A). In order to determine the effects of the
outputs of the controller on flight control, we first needed to relate
the output of the sensorimotor transfer function, in the form of an
abdominal angle, to the input to the plant, a muscle activation or
torque. Our mechanical perturbation experiments (Fig.6) suggested
that these two quantities were linearly related. In order to relate the
torque inputs to the kinematic output, and thereby test the
contribution of abdominal motions to flight stability, we needed to
derive a transfer function for the plant. Because the physical plant
dynamics were nonlinear, we linearized them around a stable
hovering equilibrium, yielding a transfer function that could be
inserted into the model. Combining the two transfer functions
(Eqn17) yielded a linear, time-invariant system upon which we could
perform stability analyses.

The recovery of the abdomen to its initial angle during the
tethered flight perturbation experiments was fast, especially when
compared with the time constant of recovery of the dead moth.
There are two possible explanations for this rapid recovery during
tethered flight that are not mutually exclusive: active muscle may
be tuned to reject mechanical perturbations, and/or rapid, active
reflexes at the thoracic–abdominal joint are involved. The slower,
secondary recovery from mechanical perturbations that we
observed also suggested that the moth may be sensing its
abdominal position. This conclusion is not unreasonable given
the quantities of sensors that most animals possess, as well the
importance of proprioception. Given the large mass of the
abdomen, and its resulting resistance to acceleration, it is possible
that it could serve as a large proof mass for an inertial sensor.
This characteristic would mean that the abdomen could be serving
as an actuator, governing movement, and also a sensor, detecting
the state of the animal in the environment. Such nonlinear
coupling between sensation and actuation is often observed in
biology, but it rarely appears in human-engineered systems.
Investigating this interplay, and the potential advantages of
actively moving the sensors, is one area where biological sciences
can provide insight and inspiration to engineering.

The linearized plant model (Eqn16) revealed two mechanisms
by which abdominal motions could influence flight path. The first
is due to the shifting of the center of mass relative to the centers
of lift and thrust, altering the rotational moment of the moth, and
has been previously proposed as a possible control mechanism
during flight and aerial descent (Hedrick and Daniel, 2006; Libby
et al., 2012; Zanker, 1988a). The second is the physical redirection
of lift vector on the thorax when the joint is flexed. To our
knowledge, this mechanism of action has not been previously
proposed and would be unique to flying animals that are actively
generating lift and thrust forces. The possible advantages of
redirecting forces through abdominal flexion, as opposed to
simply altering the aspects of the wing kinematics, are unclear.
A sustained change in abdominal angle could provide a
straightforward method for trimming the direction of the wing
forces.

This apparent redundancy also highlights the fact that animals
are true multiple-input–multiple-output (MIMO) systems. It is
likely that the abdomen works synergistically with the wings for
flight control. Given the relatively low frame rates of our cameras,
we were unable to fully reconstruct wing motions. However,
previous experiments by Hinterwirth and Daniel (Hinterwirth and
Daniel, 2010) have shown that abdominal responses work in
concert with the wings. A potentially valuable and interesting
future research direction would be to measure the transfer
functions of both the wings and the abdomen to visual input and
determine whether the actions of the two are complementary for
stability. Our hypothesis would be that they work together, but
that the temporal bandwidth of the responses is likely different,
with the wings acting relatively quickly and the abdomen working
at a slower time scale.

For simplicity, we modeled the action of the wings as a constant
force vector oriented at a fixed angle relative to the thorax. However,
we did not consider the aerodynamic forces produced by the periodic
forcing of the wings, which may strongly influence the temporal
dynamics of the body during flapping flight. Studies applying
computational fluid dynamics techniques to moth flight have shown
that cyclic wing forcing introduces an aerodynamic pitching moment
that results in unstable longitudinal motions when the moth is
perturbed during hovering flight (Sun et al., 2007). Our results
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suggest that abdominal motions could play a role in counteracting
this instability, but such a conclusion would require detailed
consideration of both the aerodynamics of flapping flight as well
as the phase of abdominal movements relative to the wing beat cycle.
We do not believe that these aerodynamic effects qualitatively
impact our conclusions, but the nonlinear effects could have
significant impacts on our control analyses, and the stability margin,
of our model.

Our experiments investigated abdominal control of pitch, but
moths also display weaker abdominal reflexes about the yaw and
roll axes (Hinterwirth and Daniel, 2010). Pitch motions were of
particular interest to us because of the moths’ inherent instability
about this axis (Sun et al., 2007; Sane et al., 2007), suggesting that
pitch stabilization requires active neural feedback. Furthermore, the
symmetry of the moth about the pitch axis made the plant dynamics
more tractable from a mathematical standpoint. The abdomen likely
plays an important role in the control of yaw and roll, but the
dynamics are much more complicated due to the coupling of yaw
and roll moments during abdominal deflections and asymmetries
in the insect about these axes.

Recent work with freely hovering moths has shown that the
abdominal motions during free flight are consistent in direction with
those observed in our tethered preparation (Cheng et al., 2011). The
time delay of the abdominal flexion, relative to pitch angle, appeared
to be much faster, on the order of 20ms. The faster time scale lends
credence to our hypothesis that mechanosensory information also
mediates abdominal responses.

While our experiments suggest that the abdomen plays a role
in flight control, we could not determine the relative importance
of the abdomen for flight control. Hedrick and Daniel (Hedrick
and Daniel, 2006) indirectly addressed this issue using an inverse
modeling approach, in which they investigated the parameters
necessary to achieve a desired kinematic state. In the case of stable
hovering flight, they did not show a clear role for abdominal
movements. However, this does not preclude abdominal
contributions to flight control or that the abdomen may be more
important for control at longer time scales. Our results are
consistent with this hypothesis, as the abdomen appeared to have
a relatively slow time scale of control (on the order of multiple
wing beats).

Our results suggest that abdominal motions help stabilize flight
and that the resulting feedback system was very close to the
stability margin. The margin was small enough that slight changes
in gain or delay of the controller, such as those resulting from
fixing the head, could make the system unstable. One
disadvantage of highly stable systems is that they are resistant to
change such that any changes in state can require significant
energy and time. By skirting the stability margin, the system could
easily shift into an agile, unstable regime that would increase the
animal’s maneuverability. Here we define maneuverability as the
availability of high rates of change for switching between states.
While our results are consistent with this strategy, it is possible
that the transfer function during closed-loop behavior could shift
further away from the stability margin, further stabilizing (or
destabilizing) the system. Additional measurements of the
visual–abdominal input–output relationship during tethered
closed-loop or free-flight experiments would help determine the
operating stability margin during natural behavior. Despite these
caveats, this work points to a powerful strategy for increasing
flight agility in which sensory-motor systems are maintained at
the stability margin to allow quick transitions between stable and
maneuverable states.

APPENDIX
Model comparisons

A total of six different models were fit to the abdominal response
data. Because the response data displayed high-pass filter behavior,
we chose to test high-pass filter models of different orders with and
without time delays. The six models were:

where the Ki terms denote gains, the zi terms are zeros, the pi terms
are poles, the i terms are delays and s is the complex frequency in
the Laplace domain (units of rads–1).

Parameters for the models were determined by minimizing the
χ2 of the model relative to the 225degs–1 sum of sines data as
described in the Model fit section of the Materials and methods.
Because the size of the parameter space for the higher-order models
was so large, initial parameters for each model were determined by
first manually fitting the models to the data. We then performed
very large parameter sweeps around these initial values to settle on
the best-fit parameter choices. The final parameters and χ2 values
for each model are show in TableA1 and the Bode plots for the
different models are shown in Fig.A1.

Using the best-fit parameter values for each model, we then
evaluated the relative goodness-of-fit of each model using Akaike’s
information criterion (AIC), which provides an estimate of the
relative loss of information between different models (Burnham and
Anderson, 2002). The AIC is easily calculated using the χ2 as follows:

where kθ is the number of model parameters (Akaike, 1987). A
smaller AIC is better and, as can be seen from the equation, the
AIC penalizes models for the number of parameters. Hence, while
a high-order model that fits the data better can always be found
(until the parameters exceed the degrees of freedom of the data),
these parameters come at the cost of making the model more
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TableA1. Parameter and goodness-of-fit metrics for each of the
high-pass filter models (EqnsA1–A6)

G1 G2 G3 G4 G5 G6

Ki 0.31 0.31 0.45 0.46 –119 –84
i – – 0.041 0.041 0.45 0.47
zi _ –0.011π – 0.1π – 0.1π
pai 0.38π 0.36π 0.78π 1.0π –84π –57π
pbi – – – – 0.79π 0.97π
χ2 787 787 59 48 59 47
AICc 792 795 66 59 69 61
L 0 0 0.02 1.0 0 0.25
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complex. It is also important to note that the values of the AIC are
only informative relative to other models.

The AIC will be biased for a model with a large number of
parameters relative to samples, as was the case for our study with
a maximum kθ=5 and n=20 frequency samples. To account for this
in our model comparison, we calculated the corrected AIC (AICc,
Eqn3) for each model (TableA1). We were also able to calculate
the relative likelihood L of each model:

The relative likelihood indicates how probable a model is to
minimize information loss compared with the minimum AIC
(AICc,4), and values for the six models are shown in TableA1. For
instance, model G6 is 0.25 times as likely to minimize the
information loss as model G4.
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Fig.A1. Transfer function model comparison Bode plot. (A)The transfer
functions for the six different high pass filter models fit to the 225degs–1

sum of sines (SoS) data (blue circles, N=7 moths, n=12 trials) with the 95%
confidence intervals computed in the complex plane (Roth et al., 2011).
Equations for the different models, with zeros z, poles p and time delays d,
are provided in the figure. The models without time delays (red lines) do a
poor job fitting the phase at high frequencies, which indirectly impacts the
magnitude curve due to the least squares error minimization used to fit the
model parameters. The models without zero parameters (dashed lines) do
a poorer job of fitting the phase at lower frequencies.
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