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Abstract—Image guidance promises to improve targeting accuracy and
broaden the scope of medical procedures performed with needles. This
paper takes a step toward automating the guidance of a flexible tip-
steerable needle as it is inserted into human tissue. We build upon a
previously proposed nonholonomic model of needles that derive steering
from asymmetric bevel forces at the tip. The bevel-tip needle is inserted
and rotated at its base in order to steer it in six degrees of freedom. As
a first step for control, we show that the needle tip can be automatically
guided to a planar slice of tissue as it is inserted. Our approach keeps
the physician in the loop to control insertion speed. The distance of the
needle tip position from the plane of interest is used to drive an observer-
based feedback controller which we prove is locally asymptotically
stable. Numerical simulations demonstrate a large domain of attraction
and robustness of the controller in the face of parametric uncertainty
and measurement noise. Physical experiments with tip-steerable Nitinol
needles inserted into a transparent plastisol tissue phantom under stereo
image guidance validate the effectiveness of our approach.

Index Terms—needle steering, feedback control, nonholonomic system.

I. INTRODUCTION

Successful outcomes for needle-based interventions such as in-
terventional brachytherapy, fine needle aspiration biopsy, thermal
ablation critically depend on accurate targeting [2], [3]. Improving
needle targeting accuracy, and expanding the applicability of needle
interventions, in general, involves actively steering a needle as it is
inserted into tissue. Physicians often rely on pre- or intra-operative
medical imaging to guide a needle to its target. Several factors limit
performance, including the amount of steering that a needle affords
after it is inserted, noisy sensors, imperfect actuators, and tissue de-
formations. Furthermore, navigation in 3D under image guidance by
manipulating the needle at its base (from outside the patient) requires
profound spatial reasoning skills and extensive training. Efforts to
overcome these limitations focus on developing new needles and their
placement devices [4]–[8], improving imaging modalities for building
pre- and intra-operative models [9], developing models that capture
tissue-needle interaction [10]–[12], and improved path planning [13]–
[18]; refer to Abolhassani et al. [19] for a recent survey on needle
insertions.

Building on these recent improvements in needle placement, imag-
ing, and planning, we propose to use model-based feedback control
theory for the first time, to the best of our knowledge, for real-
time image-based needle guidance. This approach relies on models
of needle steering amenable to systems theory (as opposed to, say,
finite element models). Recent efforts make progress towards such
“plant models” for manipulating a needle from outside the patient.
DiMaio and Salcudean [10] show that needles that are stiff relative
to the surrounding tissue can be steered by moving the base of the
needle to deflect the tissue as the needle is inserted; they model this
effect as a kinematic control system with a numerically determined
Jacobian matrix that relates base motions to needle-tip motions.
Glozman and Shoham [11] model the interaction between a flexible
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needle and surrounding tissue using virtual springs to compute local
deformations. In [14] Glozman and Shoham plan a needle path that
avoids obstacles in the work space and then at every time step
they invert their virtual spring model to obtain the translation and
orientation of the needle base (the inputs) in order to drive the needle
back to the planned path in one step.

Webster et al. consider flexible bevel-tip needles that follow a
curved path due to asymmetric cutting forces at the needle tip [12];
they model this effect using a nonholonomic, kinematic system, and
the present work builds directly on this model. In both the rigid
and flexible cases described above, the inputs at the needle base
are treated as inputs to a kinematic control system. Among these
needle insertion models, the one by Webster et al. seems to be the
most amenable to a systems-theoretic approach for control, and is
the only such model that has been experimentally validated for tip-
steerable needles [12]. We build on this model and apply observer-
based feedback control to achieve a desired task. This enables us
to articulate analytical performance limits of our controller, such as
the domain of attraction. Moreover, our approach only requires the
extraction of the needle tip position from images, rather than the
entire needle curve, thereby simplifying image segmentation.

Problem statement

A flexible bevel-tip needle [12], [20] can be steered by rotation
and insertion at the base of the needle (outside the patient). As the
needle is inserted, the asymmetry of the bevel creates a moment at
the needle tip, deflecting the needle and causing it to follow a circular
arc. As the needle base is rotated, the bevel tip is reoriented in space,
so that subsequent insertion follows an arc in a new plane.

As the needle is pushed through tissue, there is a small amount of
tissue deformation and the needle must be steered to avoid bones and
other sensitive organs through which it cannot or should not pass. To
address this problem, Alterovitz et al. propose planning algorithms
to generate desired needle trajectories within a 2D plane [17], for the
same type of needles used in the present study. The output of these
2D planners is a path that can be followed by alternating between
forward insertion (without rotation) of the needle into the tissue and
180◦ rotation (without insertion) of the needle base. The planners
assume that during the process the needle stays in a known (nominal)
2D plane. However, our numerical tests indicate that small errors
of only a few degrees in needle tip orientation cause the needle to
deviate rapidly from the nominal 2D plane. The goal of this paper is
to ensure that the needle tip is stabilized to the desired 2D plane.

Contribution

In the current work we design and demonstrate a nonlinear image-
based observer–controller pair to drive a flexible bevel-tip needle to
a desired 2D plane. We base our plant model on the nonholonomic
kinematic model presented in [12]. We assume that the position (but
not orientation) of the needle tip can be measured in the operation
room by a 3D imaging modality such as biplane fluoroscopy or 3D
ultrasound or by stereo cameras in the laboratory setting, and present
an asymptotic observer for estimating needle orientation needed to
achieve the control task.

As detailed in [21], the controller presented in this paper operates
in conjunction with the 2D planners previously developed [17].
Whenever there is a 180◦ rotation, the controller is employed to
ensure that the needle stays close to the nominal plane, as required
for the planning algorithm to work effectively. We believe that this
paper presents a crucial step towards automated needle guidance in
human tissue. Our controller also allows us to validate the efficacy
of the kinematic model described in [12].
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Fig. 1. The needle steering device inserts the needle into the tissue phantom
while the needle tip position is tracked using two overhead cameras.

II. SYSTEM OVERVIEW

We use the setup shown in Figure 1, which is similar to that
described in [12], for image-guided needle steering experiments. In
the setup, transparent tissue phantoms made from plastisol, which
is a mixture of liquid PVC plastics and the plasticizer adipate
(M-F Manufacturing Co., Inc., Fort Worth, TX) simulate human
tissue. An overhead stereo pair of XCD-X710 firewire cameras
(Sony Corporation, Tokyo, Japan) capture images of the needle as
it is inserted into the phantom by a two-degree-of-freedom needle
insertion device. The insertion device is comprised of a stepper-
motor-driven linear stage that drives the insertion degree of freedom
and a DC servo motor that axially rotates the needle shaft. The rotary
stage is attached to the base of the needle shaft, and as the linear
stage drives the rotary stage forward, the needle advances into the
tissue. A telescoping support sheath around the needle shaft prevents
the needle from buckling outside of the tissue. The needle itself is
a 0.7mm nitinol wire (Nitinol Devices and Components, Fremont,
CA), cut with an approximately 45◦ bevel tip, and pre-bent by 10◦

at 9mm from the needle tip to enhance steerability.
The insertion and rotation speeds comprise two inputs to the

kinematic model for bevel-tip flexible needle steering developed by
Webster et al. [12]. The model is a generalization of the nonholo-
nomic bicycle model, and neglects torsional compliance of the needle
shaft. This model, depicted in Figure 2, is reproduced here for reader
convenience.

In the model, `1, `2 determine the location of bicycle wheels with
respect to the needle tip. Parameter φ is the fixed front wheel angle
relative to the rear wheel. Frame A is the inertial world reference
frame and frames B and C are attached to the two wheels of the
bicycle. In homogeneous coordinates, the rigid body transformation
between frames A and B is given by the rigid body transformation
matrix

g =

»
R p
0T 1

–
∈ SE(3), where R ∈ SO(3) and p ∈ R3. (1)

We assume in this paper that the imaging system measures p, the
3D location of frame B. In the non-generic case that `2 = 0 (the
unicycle model discussed in [12]), p coincides with the needle tip.
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Fig. 2. Kinematic bicycle model: Frame A is the inertial world reference
frame. Frames B and C are attached to the two wheels of the bicycle. This
figure is reproduced from [12] with permission from the authors.

Let v,ω ∈ R3 denote, respectively, the linear and angular
velocities of the needle tip written relative to frame A, and let
V = [vT ,ωT ]T ∈ R6. Webster et al. use Lie-group theory to
find a “coordinate-free” differential kinematic model on the special
Euclidean group, SE(3):

V = (g−1ġ)∨ = V1u1 + V2u2, (2)

where ∨ and ˆ denote the usual isomorphism between se(3) and
R6 (see Appendix), u1 is the insertion speed, u2 is the rota-
tion speed of the needle, and the control vector fields are given
by V1 = [0, 0, 1, κ, 0, 0]T (which corresponds to insertion) and
V2 = [0, . . . , 0, 1]T (which corresponds to needle rotation). Here,
κ = tanφ/`1 is the curvature that the needle follows. Insertion of
the needle, u1, causes the needle to move in the body-frame z-axis
direction, but also to rotate (due to the bevel tip) about the body-
frame x-axis. Rotation of the needle shaft, u2, causes pure rotation
of the needle tip about the body-frame z-axis. Note that this model is
only valid for forward insertions of the needle into the tissue; during
the removal of the needle from the tissue, there are no cutting forces
on the needle tip and hence the needle follows the path (in reverse)
it followed during the forward insertion into the tissue.

III. REDUCTION AND CONTROL FOR PLANE TRACKING

A. Reduced-Order Plant Model

We use Z-Y-X fixed angles as generalized coordinates to parame-
terize R, the rotation matrix between frames A and B. Let γ be the
roll of the needle, β be the pitch of the needle out of the plane and α
be the yaw of the needle in the plane. Let the position of the origin
of frame B be p = [x, y, z]T ∈ R3 relative to the inertial frame
A. We assume that an imaging system measures the location of the
origin of frame B. Note that by driving the origin of frame B to the
y-z plane the needle tip will also be stabilized to the y-z plane.

Using this notation, q =
ˆ
x, y, z, α, β, γ

˜T ∈ U ⊂ R6 forms
a (local) set of generalized coordinates for the configuration of the
needle tip. The coordinates are well defined on

U =
˘
q ∈ R6 : α, γ ∈ R mod2π, β ∈ (−π/2, π/2)

¯
. (3)

The body frame velocity is given by V = J q̇, where

J =

»
RT 03×3

03×3 J22

–
, J22 =

24 cosβ cos γ sin γ 0
− cosβ sin γ cos γ 0

sinβ 0 1

35 .
The kinematic model (2) of the bevel tip flexible needle reduces to

q̇ = J−1V1u1 +J−1V2u2 =

26666664
sinβ 0

− cosβ sinα 0
cosα cosβ 0
κ cos γ secβ 0
κ sin γ 0

−κ cos γ tanβ 1

37777775
»
u1

u2

–
. (4)
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Due to the introduction of generalized coordinates, there are singu-
larities at β = ±π/2 that cause det J = cosβ = 0.

To stabilize the needle to the y-z plane, the states y, z, and α need
not be controlled. Also, these states do not affect the dynamics of
the remaining states, x, β, and γ. Let r = [r1, r2, r3]

T = [x, β, γ]T

denote the state vector of the “reduced” order system. Tracking the
needle tip with an imaging systems typically enable us to measure
only the position of the needle and not its orientation (without
performing any differentiation), which in reduced coordinates is just
the distance from the y-z plane, namely x. We then reparameterize
the reduced-order system in terms of insertion distance, l, enabling
the physician to control the insertion speed. With a slight abuse of
notation, we write ṙ where we mean dr/dl, and interpret the insertion
distance as “time” for convenience of exposition; this is equivalent
to setting u1 = 1 in (4). This system can be represented as:

ṙ =

24 sin r2
κ sin r3

−κ cos r3 tan r2

35+

240
0
1

35u
w =

ˆ
1 0 0

˜
r = r1.

(5)

Note that r = 0 corresponds to the desired equilibrium state of
remaining within the y-z plane to which we wish to stabilize the
needle.

Using judiciously chosen generalized coordinates, we reduced the
plant model to a third order nonlinear system (5). This system can
be feedback linearized (see, e.g. [22]) via a transformation of state
and input coordinates:

s =
ˆ
r1, sin r2, κ cos r2 sin r3

˜T
, (6)

v =− κ2sin r2 + κ cos r2 cos r3u. (7)

The state equations in the feedback linearized form are:

ṡ = As +Bv =

240 1 0
0 0 1
0 0 0

35 s +

240
0
1

35 v
w = Cs =

ˆ
1 0 0

˜
s.

(8)

The system (A,B,C) is completely controllable and observable.

B. Observer-Based Feedback Control

Note that even though the change of coordinates from the nonlinear
system (5) to the feedback linearized system (8) is nonlinear, the first
state—and, importantly, the output—is identical for both systems. In
other words the system is completely observable in both coordinate
systems based on the sensory measurement w = s1 = r1. Hence,
simple control system design techniques from linear system theory
can be used to control this system. A full state Luenberger observer
with the following dynamics estimates all the states from the output:

˙̃s = As̃ +Bv + L(w − w̃)

w̃ = Cs̃.
(9)

The control input to the system is then given by full-state feedback,
using the state estimate:

v = −Ks̃. (10)

Because the system is linear and time-invariant, the separability
principle allows us to select the observer gain matrix, L, and propor-
tional gain matrix, K, independently as we do in our experiments.
Since there are only three states to estimate, and we expect to have
reasonable estimates of sensor noise, the observer can be quickly
and effectively tuned using the Linear Quadratic Gaussian framework,
leading to successful simulations and laboratory experiments (Section
IV).

In the present framework, there are singularities at β = ±π/2
due to the introduction of generalized coordinates. In addition, the
nonlinear transformation from r to s also introduces singularities at
γ = ±π/2. This limitation seems inescapable: global linearization
is mathematically impossible for dynamical systems on the space of
rigid transformations. Fortunately, our feedback linearization scheme
works for all needle positions and orientations except when the needle
is orthogonal to the plane to which we are trying to stabilize. We
believe that this scenario is not of clinical significance; such large
errors in orientation should be addressed at the level of planning,
not with low-level servo control. That said, it is important for the
above described controller never to take the system—or even the
state estimate—to these singularities.

Note that one theoretical difficulty arises because we must compute
u from (7), which requires exact knowledge of r. However, we
do not know s nor r exactly, so we must use s̃ to compute an
estimate of r by plugging s̃ into the inverse of (6). This implies
that the estimator dynamics will have an input error. But locally
near the goal, r ≈ 0, and therefore v ≈ κu. This allows us to
show local asymptotical stability through linearization of the system
given by (8) and (9). Fortunately, both simulations and experiments
suggest that the domain of attraction is quite large; analytically
proving this remains work in progress. It is useful to find an invariant
domain that avoids β = ±π/2 and γ = ±π/2. In general, this is
challenging because of the nonlinear change of coordinates from u
to v, and the lack of full state knowledge needed for that coordinate
transformation. However, if we assume that the error computing u is
negligible, Lyapunov stability analysis can be used to approximate
this region; for details on this computation, see [23].

IV. RESULTS

A. Numerical simulations

Extensive simulations were conducted in MATLAB to test our
proposed controller. We used a discrete-time implementation of the
system and the controller-observer pair, to reflect our physical im-
plementation as closely as possible. The plant model was discretized
assuming constant insertion by 1mm of the needle into the tissue
between samples. We assumed measurement noise of up to ±1mm
with a uniform distribution; this seems clinically reasonable given
that 3D ultrasound imaging can be accurate to within 0.8mm [24],
and is approximately the same or slightly higher than the noise of
our tracking system. The parameter value for the model was taken
to be 1/κ = 12.2cm, which is the radius of curvature of the needle
used in laboratory trials.

In our simulations, we observed that if the entry point was too
far away from the desired plane, the estimator states (which are
in the feedback-linearized coordinates) left the region in which the
inverse of the change of coordinates in (6) is well defined. To avoid
such singularities, we performed estimator saturation, namely if the
estimator states left this region, they were projected to the closest
point in that region. For example, if [s̃1, s̃2, s̃3]

T = [0, 1.5, 0]T ,
then it is projected to [s̃1, s̃2, s̃3]

T = [0, 1, 0]T . Since we used
state feedback control in the feedback-linearized space, this pull-back
affects only the magnitude of the input and not the sign of the input.
Our numerical tests suggested that this saturated nonlinear observer
worked quite well, although formal analysis of the saturation remains
work in progress.

Two characteristic simulations are presented in Figure 3, with the
same initial conditions. In the first case, we tested the system without
any feedback control, and it rapidly diverged from the desired plane
despite relatively small errors in roll, pitch and depth. In the second
simulation, our observer-based controller drove the needle to the
desired plane within about 5 cm of needle insertion.
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Fig. 3. Comparison amongst a simulation with no feedback control
(first column), a simulation with feedback control (second column), and an
experimental trial (third column). The first three rows of plots show the three
states (r1, r2, r3), respectively. In the two simulations, the simulated ground
truth state is known (solid black line), whereas in the physical experiment,
only its estimate (solid teal line) is known. In the feedback control simulation
and physical experiment, the first state is measured at each time step (small
black circles). The fourth row is the cumulative rotational input given to
the system. First column: Open-loop simulation with initial conditions of
r = [−3mm, 2◦, 15◦]. With no control, the needle tip diverges the needle
from the desired plane. Second column: Closed-loop simulation with the same
initial conditions. Noise in the needle tip position is modeled as a random
variable with a uniform distribution between ±0.5mm. With the feedback
control, the needle converges to the desired 2D plane within the noise levels.
Third column: One of the nine experimental trials, with approximately the
same initial conditions as the simulations (ground truth is not known). With
the feedback control, the needle tip converges to the desired 2D plane.

We tested our controller over a uniform grid (10 × 10 × 10) of
1000 initial conditions of up to ±3mm error in depth from the plane,
and up to ±10◦ initial error in “pitch” (r2) and up to ±30◦ initial
error in “roll” (r3). In all cases, we seeded the initial condition of
the observer to s̃2 = s̃3 = 0◦, and for the first state, s̃1 = z1 +noise
of up to 1mm. Each initial condition was simulated 10 times with
noise, for a total of 10,000 simulations. Each insertion was to a length
of 12cm. We found that 98.56% of initial conditions converged to
within ±1mm (the sensor noise floor); upon closer inspection of the
remaining 144 runs in which the states did not converge to within
this tight tolerance in the finite needle insertion distance, we found
that they did not diverge.

We tested the controller using an incorrect value of κ (up to 20%
error) and found that the controller always converged, albeit slower
than it would have if the correct κ was given. Thus the system
appeared to be robust to parametric uncertainty; for an analytic proof
we refer to [25].

B. Experimental validation

Experiments were conducted on the needle steering device de-
scribed in Section II. The tissue used in the experiments was
approximately 35mm thick, and it was sufficiently transparent for
visual tracking purposes. We captured the images of the needle inside
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Fig. 4. Nine experimental trials validate the controller. The mean value of r1

of the nine trials is plotted against the insertion distance of the needle into the
tissue (solid magenta line; gray region indicates mean ± standard deviation).
The specific trial shown in Figure 3 is reproduced here (solid teal line). All
trials control approach the desired 2D plane (r1 = 0, dashed black line) and
stay within the noise levels of the position measurements of approximately
1mm.

the tissue using XVision [26]. This tissue phantom had a refractive
index of 1.3. Refraction was accounted for in our calculations by
assuming that tissue’s top surface was horizontal. The needle used for
the experiments had a radius of curvature of 12.2cm when inserted
into the tissue. The needle follows a circle of radius 1/κ when it
is inserted into the tissue without any rotation at the base, so we
collected needle-tip position data during pure insertion to estimate κ
using least-squares. Following the observation of Webster et al. [6],
we assume that this parameter does not change as a function of
insertion speed.

In the experiments the goal was to reach the y− z plane that was
3mm above from the initial x-position. The pitch was approximately
zero, but neither the pitch nor the roll of the needle tip were precisely
known. The needle was inserted into the tissue for 12cm, which is
about the radius of curvature of the needle inside the tissue. Nine
trials were conducted on this experimental setup with varying pitch
and roll initial conditions. Figure 3 shows a comparison of a typical
trial with our simulation results, and Figure 4 summarizes all nine
experimental trials. In each of the trials, the needle tip converged to
the desired plane within the noise levels of the position measurement.
As with the simulations, these experiments validate the efficacy of
our controller–observer pair and the experiments further support the
nonholonomic model for flexible bevel-tip needle insertion developed
by Webster et al. [12]. It was interesting to note, however, that while
the physical and numerical results were qualitatively quite similar,
the physical system exhibited a consistently more sluggish response,
which we suspect was due to neglected torsional damping due to
friction between the tissue and the needle shaft.

V. DISCUSSION

We present a feedback controller that stabilizes a flexible tip-
steerable needle to a desired 2D plane. We show that considering
a reduced 3-DOF system is sufficient to achieve this goal. The task
of driving the needle tip to a desired 2D plane only required us
to keep track of three of the six degrees of freedom of the needle
tip, which greatly simplifies controller–observer design. We recently
generalized this idea of “task-induced” reduction for other tasks and
kinematic systems on Lie groups [25].

In this paper, we assume that only the 3D position (but not
orientation) of the needle tip can be measured using an imaging
system, and present a linear observer to recover the reduced-order
needle-tip state. Another approach may be to enhance our sensory
measurement, for example by measuring the pitch, r2, if needle shaft
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orientation can be segmented in both images in a neighbhorhood of
the needle tip. In this case, we can use a reduced-state Luenberger
observer (instead of the full state observer) to estimate only the roll,
r3. Measuring the roll itself may be more challenging due to very
small size of the bevel-tip.

Irrespective of the measurement (either just position, or position
and pitch), alternative estimation schemes could be used. For ex-
ample, in an Extended Kalman Filter (EKF) the system is (approx-
imately) linearized around the current state estimate to propagate
covariance and the Kalman gain matrices. In contrast our approach
uses an exact change of coordinates to obtain the controller and
estimator with the trade-off being the use of state estimates to obtain
u from v and, as discussed, exhibits local asymptotic stability. As
with EKFs and other schemes such as particle filters [27], we have
no formal global characterization of the domain of attraction for our
observer–controller pair. However, our scheme is relatively simple
and performs well in practice.

An important next step is to evaluate the performance of this
controller by conducting tests on a variety of tissues (phantom, ex
vivo, and animal cadaver) using ultrasound or fluoroscopy imaging
systems. Due to tissue inhomogeneity, implementing control on real
tissue might benefit from an adaptive version of our controller that
would “learn” the model parameters while stabilizing the needle to
a 2D plane, or a scheme that is insensitive to variations in steering
curvature, as proposed in [23]. Our ultimate goal is to incorporate
automatic needle steering with pre- and intra-operative planning to
greatly enhance the effectiveness of percutaneous therapies.
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APPENDIX

Special Euclidean Group, SE(3)

The special Euclidean Group in thee dimension, SE(3), is the
group of rigid-body transformations. It is the cross product of R3

and the space of rotation matrices, SO(3). SE(3) can also be used
to represent configuration of a rigid body, as we do in this work. The
space of skew-symmtric matrices in three dimensions, so(3), is the
Lie algebra of SO(3). The “wedge/hat” isomorphism R3 ' so(3) is
defined by

b:

24ω1

ω2

ω3

35↔
24 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

35 : ∨

where so(3) is the Lie algebra of SO(3). The Lie algebra of SE(3)
is denoted by se(3). In a standard abuse of notation, we use the
wedge/hat isomorphism R6 ' se(3) to relate translational v and
angular ω velocities to “twists” ξ ∈ se(3) via

ξ∨ =

»
v
ω

–
, and

»
v
ω

–b
=

»bω v
0 0

–
= ξ.

For more detail, refer to [28].
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