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Abstract— Traditionally, visual servoing is separated into
tracking and control subsystems. This separation, though con-
venient, is not necessarily well justified. When tracking and
control strategies are designed independently, it is not clear
how to optimize them to achieve a certain task. In this work,
we propose a framework in which spatial sampling kernels
– borrowed from the tracking and registration literature –
are used to design feedback controllers for visual servoing.
The use of spatial sampling kernels provides natural hooks
for Lyapunov theory, thus unifying tracking and control and
providing a framework for optimizing a particular servoing
task.

As a first step, we develop kernel-based visual servos for a
subset of relative motions between camera and target scene.
The subset of motions we consider are 2D translation, scale,
and roll of the target relative to the camera. Our approach
provides formal guarantees on the convergence/stability of
visual servoing algorithms under putatively generic conditions.

I. I NTRODUCTION

Visual servoing (VS) entails moving either a camera or
the camera’s visual target such that the image of the target
asymptotically converges to a desired image. Traditionally,
visual servoing assumes that there is an image processing
unit tracking the feature points in the image. This information
is used by the visual servoing controller to drive the feature
trajectories to some desired constellation. This technique is
sometimes convenient because the problem can be decoupled
into “feature tracking” and “control” sub-problems.

However, the classical division between vision and control,
may be ill-equipped for the reality of a complex, unstructured
world. By decoupling vision and control, the vision design
problem includes little or no direct information related to the
underlying control task that it serves, rendering it difficult or
impossible to make intelligent choices as to what to observe,
or how to observe it. Conversely, control cannot adapt to a
changing visual environment. Thus, neither the vision nor
controller design can be tuned (much less optimized) for the
properties of its counterpart. Consequently, visual tracking
algorithms tend to be hand-tailored (often along with the
environment) to provide adequate information needed for a
specific control algorithm.

In the present work, we propose a method to perform
visual servoing without separating the tracking and con-
trol tasks. We build on spatial kernel-based tracking algo-
rithms [3], [6], [8], [9] to design feedback controllers and
use Lyapunov stability theory to show stability of the same.
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We present preliminary results on the implementation of this
kernel-based visual servoing approach on a class of simple
motions that can be extended to more complex motions.

Related Work

a) Visual Servoing: Visual servoing traditionally re-
quires that a vision subsystem provide feature point corre-
spondences between current and desired views as the robot
or target moves. These geometric measurements are then
used directly for vision-based control. While nearly all of
these methods rely on a vision front-end to provide geometric
visual features, researchers have begun to tackle the sensing
problem more directly. Rivlin and Rotstein [13] investigate
the tradeoffs between window size and resolution, analogous
to adjusting the kernel width, as we propose. Kragic et
al. [10], [11] directly address the issue of tracking for control.
They use appearance-based and geometric models of a scene
to match the current view with an expected projection that
is computed from an estimate of the current pose. Using a
detect, match and update scheme, their tracker feeds into a
very classical 2D or 3D visual servo controller. Deguchi [5]
encodes the entire target image using the Karhunen-Loève
expansion. The coefficients in this expansion are related
to the underlying object motion, leading to a form similar
to the image-Jacobian for feature-based methods. Tahri and
Chaumette [14] perform visual servoing via moments which
is related to the present paper as described below.

b) Kernel-Based Tracking Methods:Kernel-based
tracking methods have recently gained popularity primarily
due to their broad range of convergence and their robustness
to unmodelled spatial deformations. In these methods a
kernel K : R2 → R is a real-valued piecewise continuous
function defined on the location space of the image. The
kernel acts as a sampling function that weighs the feature
space of the image. These weighted values are usually
summed over all locations to create a measurement. Tracking
then reduces to optimally shifting the location of the kernel,
the objective function being a metric between the kernel-
based measurement at the current location and a fixed refer-
ence measurement [3], [8], [9]. Interestingly, spatial kernels
can be viewed as moment-generators, an interpretation that
may connect this paper to prior work [14]: since kernels
are usually polynomial functions of image location, kernel
measurement can be thought of as a collection of moments
of feature space around the kernel center.

One can extend the kernel-based tracking framework by
defining multiple kernels and/or multiple image projections.
Comaniciu et. al [3] define multiple image projections
through a binning function into mutually orthogonal binary



projections. Their work was extended by Hager et al. [9]
to multiple kernels for tracking complex motions. The idea
of using motion specific kernels invariant to other motion
parameters was introduced. The idea of multiple kernels
was further extended to articulated motions in [8]. In all
these approaches, the kernel parameters are chosen in an
ad-hoc manner often leading to sub-optimal performance.
More recently, Dewan and Hager [6] introduced a scheme for
optimizing the kernel parameters to the target being tracked.

Our approach differs fundamentally from the aforemen-
tioned approaches in that we place tracking and control in
the same framework: spatial sampling kernels unify geometry
and sensing, which will enable us to develop an integrated
strategy for tracking and control. We note that our work is
preliminary, and as such we have not directly compared it
with other work; we leave such comparisons for future work.

II. K ERNEL-BASED V ISUAL SERVOING (KBVS)

For the present exposition, we make a number of sim-
plifying assumptions. First, we consider the “eye-in-hand”
configuration in which the camera is mounted on the robot
end effector, and the target is stationary. Further, we assume a
kinematic motion model for the robot, whose control inputs
are its joint velocities. We treat image pixels as continu-
ous variables over all ofR2 measured in continuous time,
rather than discrete variables over a finite image measured
in discrete time (in practice these assumptions are clearly
violated; see experimental results, section III). In all the
analysis below, the image or its transformations are treated
as signals that are directly measured.

Given a signal,s(w, t) (such as the intensity of the image
at each pixel as time progresses), the kernel-projected value
of the signal at timet may be defined as the scalar

ξ(t) =
∫
I

K(w)s(w, t)dw, (1)

wherew ∈ I = R2 is the image spatial indexing variable.
As the camera moves relative to the target, the signal,s(·, t),
changes, thus affecting the kernel-projected value. At the
goal, let the signal bes0 = s(·, 0) and the kernel-projected
measurement at the goal be denoted byξ0 = ξ(0). The aim
of KBVS is to drive the robot/camera to goal configuration
by driving ξ(t) → ξ0.

Below, we develop KBVS controllers for a subset of
generic camera motions inSE(3). We first describe our
overall method for a 2D translation (x-y) parallel to the
optical plane and then for translation along the optical axis
(z), and roll about the camera optical axis (θ).

A. 2D Translation

Consider a robot with a camera mounted on it as in
Figure 1. Image intensity at each pixel is taken as the signal,
ignoring illumination changes. The pixel location is given
by w ∈ R2. Let the kernel projection of the image at the
goal beξ0 at the positionx = 0 andy = 0 (without loss of
generality). Our goal is to determine a control input that will

Fig. 1. Experimental configuration.

drive the kernel-projected measurement toξ0, thus driving
[x(t), y(t)] → 0.

Let the configuration of the robot be denoted byq =
[x, y]T ∈ R2. Assume that the camera moves parallel to the
optical axis according to the simplified dynamics1

q̇ = u, (2)

whereu ∈ R2 is the robot control input. For the remainder
of the paper, we assume the signal only depends on time via
the camera motion, which in this case implies (in an abuse
of notation)s(w, t) = s(w, q(t)).

For simplicity of presentation, we assume that the scene
is a unit distance away from the image plane, so that
s(w, q(t)) = s0(w − q(t)). Through a change of variables,
w̄ = w + q, and recalling thatI = R2, the kernel-projected
measurementξ can be rewritten as

ξ =
∫
I

K(w)s0(w− q)dw =
∫
I

K(w̄ + q)s0(w̄)dw̄. (3)

From (3), observe that even when the images or the signal
are discontinuous and hence not differentiable, the kernel-
projected measurement is analytically differentiable as long
as the kernel is smooth. As we show below, we exploit the
differentiability of ξ(t) in the design of KBVS controllers.

Consider a Lyapunov function candidateV = 1
2 (ξ− ξ0)2.

Applying the chain rule, we have

V̇ =(ξ − ξ0)
∂ξ

∂q
q̇

=(ξ − ξ0)
[ ∫

I
K ′(w̄ + q)s0(w̄)dw̄

]
q̇

=(ξ − ξ0)
[ ∫

I
K ′(w)s0(w − q)dw

]
u,

whereK ′(w) = ∂K(w)
∂w . Note that in the last step, we revert

the coordinates back tow. Now, choose the input,u, as

u = −(ξ − ξ0)
∫
I
∇K(w)s(w, q)dw, (4)

where∇K = (∂K
∂w )T ∈ R2. This requires only the current

signal projection,ξ, the signal projection at the goal,ξ0, the
kernel function derivative,K ′, and the current signal,s(w, t),

1We believe that lifting these control laws to second order mechanical
systems should be straight forward.



which depends ont only throughq(t) (see above). With this
choiceV̇ becomes

V̇ = −(ξ − ξ0)2
∥∥∥∥∫

I
∇K(w)s(w, q)dw

∥∥∥∥2

.

Assuming the candidate Lyapunov function,V , is positive
definite in the configuration variable, theṅV is negative
semi-definite. The assumption thatV > 0 admittedly de-
pends on the signal and kernel properties, although it appears
from our experiments (Section III) to be a locally valid
generic assumption and, in any case, can be numerically
tested and optimized [6]. This choice of input guarantees
stability (in the Lyapunov sense) of the controller with mild
assumptions on the image and kernel – KBVS is appealing
exactly for this reason.

For practical applications, it is crucial to obtain at least
localasymptoticstability. If the kernel-image pair is such that
in a neighborhood around the goal,

∫
I ∇K(w)s(w, q)dw 6=

0 (again, which appears to be true generically), local asymp-
totic stability is guaranteed. This quantity becoming zero is
analogous to image error lying in the null space of the Jaco-
bian in tracking literature [1]. For good practical performance
of the controller, the Lyapunov function in the configuration
space of the robot should be quadratic near the goal, the
Hessian at the goal should have positive eigenvalues, and
condition number as close to one as possible. This provides
us with an objective function that likely can be optimized for
larger regions of attraction and better performance, which we
leave for future work.

Similar to the ideas presented in [6], an alternate way of
doing 2D translation is to decouple it into two 1D translations
using two independentx and y directional kernels. Each
kernel is invariant to the motion in the other direction,
thereby providing independent controllers. For example, a
kernel oriented in thex direction can be formed by stacking
a gaussian kernel along every pixel in they direction. As dis-
cussed in [6], we also found that using the two independent
kernels provides better results than using a single kernel.
The experiments presented for the 2D translation case in
Section III use the two-kernel approach.

B. Translation along optical axis

Cideciyan [2] uses a spatial Fourier transform (FT) of
images for tracking and registration to decouple translation
and scaling. We seek to capitalize on this invariance of the
magnitude of FT to translation to develop controllers for
depth and rotation that can integrated with the previously
developed 2D controllers in thex-y plane. As a first step,
we consider motions in depth only.

Here, we consider motions of a camera along its optical
axis. Even though this corresponds to a translation as in
the previous two cases, there is a fundamental difference
between the two: 2Dx-y translations simply translate the
image, while motions in depth inversely scale the image.
Thus, we seek an appropriately transformed signal and
control strategy. Specifically, we use the magnitude of the
FT of the image as the signal.

Let I0 denote the image at the goal, andF0 the magnitude
of its spatial FT. We assume that the goal corresponds to
unity depth (without any loss of generality). Let the inertial
world reference frame be such that thez-axis is parallel to
the camera’s optical axis. In this frame, the camera is moving
along thez-axis according to

ż(t) = u, (5)

with goalz0 = 1. At any generic position of the camera, the
imageI is a scaled version ofI0, i.e.

I(w, z) = I0(w/z).

One can show that the magnitudes of the spatial FT of these
images (F andF0 respectively) are related by

F (v, z) = z2F0(zv), v ∈ R2.

We define the kernel-projected measurement as

ξ =
∫
I

K(v)F (v, z)dv =
∫
I

K(v̄/z)F0(v̄)dv̄, (6)

wherev̄ = zv. At the goal we haveξ0 =
∫
I K(v)F0(v)dv.

Our aim is to drive the robot toz = 1 by driving ξ(t) → ξ0.
Consider a Lyapunov function candidate:V = 1

2 (ξ − ξ0)2

and choosing the input as

u = (ξ − ξ0)
∫
I

K ′(v)vF (v, z)dv, (7)

then V̇ = − 1
z (ξ − ξ0)2

∥∥∫
I K ′(v)vF (v, z)dv

∥∥2
. If z > 0,

V̇ is negative semi-definite, which is a realistic assumption
for objects seen by the camera.

C. Rotation about the optical axis

In this section we develop KBVS for rotation of the
camera relative to the target about its optical axis. Let the
robot dynamics be

θ̇ = u, (8)

whereu is the control input. As in the case of scaling, we use
the magnitude of the spatial FT of the image as the signal.
Let I0 andF0 denote the image and signal at the goal, where
θ = 0 (without any loss of generality). At any generic roll
position of the camera, the imageI is a rotated version of
I0:

I(w, θ) = I0(Rθw), whereRθ =
[

cos θ sin θ
− sin θ cos θ

]
∈ SO(2).

The magnitudes of the spatial FT of these images are related
by

F (v, θ) = F0(Rθv), v ∈ R2. (9)

We define the kernel-projected measurement as

ξ =
∫
I

K(v)F (v, θ)dv =
∫
I

K(RT
θ v̄)F0(v̄)dv̄, (10)

wherev̄ = Rθv. At the goal, the kernel-projected measure-
ment is ξ0 =

∫
I K(v)F0(v)dv. As before, our aim is to

drive the robot toθ = 0 by driving ξ(t) → ξ0. Consider a



Lyapunov function candidate:V = 1
2 (ξ − ξ0)2. Choose the

control input as

u = −(ξ − ξ0)
∫
I

K ′(v)JvF (v, θ)dv, (11)

where J = R−π
2

. With this choice ofu, V̇ = −(ξ −
ξ0)2

∥∥∫
I K ′(v)JvF (v, θ)dv

∥∥2
, which is negative semi-

definite.

D. Extensions toSE(2) + Depth Motions

In the above controllers, we used the image as the signal
for the x-y translations and the magnitude of the FT of the
image as the signal for depth and roll. As discussed before,
the FT of the image removes any translation effects while
controlling depth and roll. For 3D translational control, one
can execute the depth controller first, since it is invariant to
translation, and then run the 2Dx-y controller. Similarly, to
control all of SE(2) (identified withx, y, and roll), one can
control for roll first, since it is again invariant to translation,
and then control in the 2D plane. Furthermore, all four
degrees of freedom (x, y, z, and roll) can be controlled
in a similar manner. We have yet to verify these coupled
controllers experimentally.

III. E XPERIMENTAL RESULTS

In the design of the our above controllers, we made
several simplifying assumptions which deserve attention for
use in practical applications on real images. The issue of
discrete spatial sampling is addressed by pre-computing the
kernel and its partial derivatives, evaluating them at the pixel
locations, storing them as matrices, and then approximating
the kernel projections with dot products between the kernel
matrix and the signal. This pre-computation speeds up the
control loop. Moreover, while the images are not of infinite
extent as assumed, we use kernels whose support is, for
all practical purposes, compact (e.g. a Gaussian with small
standard deviation).

In this section, we present the experimental results for
controlling an eye-in-hand configuration according to the
control laws described in Section II. Experiments were run
using an American Robot Merlin 6200 series robot arm. This
robot arm provides six degrees of freedom via a waist, shoul-
der, elbow, and spherical wrist configuration. Attached to the
end of the arm is a Basler 602fc firewire camera, providing
gray scale images with a resolution of 640x480 pixels. The
robot is controlled via a dedicated workstation running Linux
with real-time extensions. In order to facilitate algorithm
development and implementation, the software infrastructure
allows for direct control of the robot and capture of images
directly from the GNU Octave mathematical software [7].

Our experiments consisted of 10 tests for each of the
prescribed scenarios. We ran experiments on both contrived
and natural images. In each set of trials, the robot was placed
in an initial position and then moved a random amount away
from the goal along the degree(s) of freedom being tested.
In Figures 3, 5, 7, and 9, three of the ten trials are shown.
They represent the maximum (red dashed line) displacement,

Fig. 2. Example images of a 2D trial with contrived image.Left- Goal
image.Center- Initial displacement image.Right- Difference between the
goal and the final images.

Fig. 3. 2D Translation: Three trials showing control to the goal image
shown in Figure 2 as discussed in the text.Left- Convergence in kernel-
projected value.Right- Convergence inx andy translation.

minimum (black dash-dot line) displacement, and median
(blue solid line) displacement from the goal location out of
the random set of runs.

A. 2D Translation

In the two-dimensional case, our contrived image required
a certain amount of structure to avoid the well known
aperture problem in motion estimation. However, we found
that natural images from our laboratory environment contain
the needed information to avoid the aperture problem. Our
natural images consist of the second author sitting in a chair
in the foreground with the background inherent to the lab
environment as shown in Figure 4. For all the experiments
we used two Gaussian kernels, one forx motions and another
for y motions.

The following parameters are tuned for the experiment:
the sigma of the Gaussian kernels, the controller gains, and
the convergence threshold. The width of the Gaussian kernel
plays an important role in determining the size of the region
of convergence and the accuracy of convergence. With a
wide kernel, the domain of attraction is large, but may not
converge exactly to the goal. A narrow kernel results in a
small domain of attraction, yet provides tight convergence
when starting near the goal. In all cases, the width of the
kernel, the lighting, and brightness play an important role
in determining the value and dynamic range of the kernel-
projected value,ξ, thus driving the selection of the controller
gain and the convergence threshold. Future work will entail
determining how to reduce the number of parameters, as well
as adapting the kernels during control to provide both a large
domain of attraction and accurate convergence.

Figure 2 shows the images from a typical 2D transla-
tion using our contrived image. The translation performed



Fig. 4. Example images of a 2D trial in a real environment.Left- Goal
image.Center- Initial displacement image.Right- Difference between the
goal and the final images.

Fig. 5. 2D Translation: Three trials showing control to the natural goal
image shown in Figure 4 as discussed in the text.Left- Convergence in
kernel-projected value.Right- Convergence inx andy translation.

between the goal image and the initial image in Figure 2
was 6 cm inx motion and 12 cm iny motion. This typical
example shows that even though the majority of the circular
object in the image had been translated out of the image,
the algorithm still converges to the goal. The convergence in
both the Cartesian distance|x− x0| and the kernel-projected
value |ξ − ξ0| is shown for the contrived and natural image
in Figures 3 and 5 respectively.

B. Depth and Roll Motion

As the image signal is a finite window representation of
a continuous underlying signal from the real scene, its FFT
will have truncation ringing effects popularly known as the
Gibbs phenomenon [12]. These truncation effects in the FFT
will always be present and renders the relation given in (9)
invalid. Different windowing functions [12] can be used to
attenuate the Gibbs phenomenon at the cost of losing the
image signal. In order to avoid this issue for the present
paper, we use a simple scene with a constant background
and threshold-based segmentation to make the background
signal zero. This is similar to the binary projections used
by [3], [9] for kernel-based tracking. Taking the FFT of this
segmented image almost completely removes the truncation
effects.

For both of these experiments, we picked an almost con-
stant background so it could be easily segmented as shown in
Figures 6 and 8. In order to remove new background pixels,
we only use a cropped circular region in the image. For
depth, we used a Gaussian kernel and for roll we used a
rotationally asymmetric kernel,

K(w) = (rmax − (w2
i + w2

j )) sin2(θ),

where rmax is the maximum radius picked by the user,

Fig. 6. Example images of a typical depth trial.Left- Goal image.Center-
Initial displacement image.Right- Difference between the goal and the final
images.

Fig. 7. Depth: Three trials showing control to the goal image shown in
Figure 6 as discussed in the text.Left- Convergence in kernel-projected
value.Right- Convergence in depth DOF.

w = (wi, wj) is the pixel location in the image andθ =
atan2(wj , wi) is the angle of the pixel locationw.

Convergence in the degree of freedom and the kernel-
projected value for depth and roll can be found in Figures
7 and 9, respectively. These figures show the convergence
in the kernel-projected values and in the actuated degree of
freedom: Cartesian translation for depth and angle of rotation
about the optical axis for roll.

In the future, we plan to explore other methods of reducing
the truncation due to the Gibbs phenomenon through various
windowing methods [12]. Another alternative is to first
transform the image to polar coordinates before computing
the FFT. We suspect that this will recover the invariance,
without the need to pre-segment the image.

C. Convergence Error Results

To quantify the performance of the KBVS control, we
measured three differences between the initial conditions and
the converged conditions. We first calculated the position
error of the robot arm along the pertinent degree(s) of
freedom using the forward kinematics of the robot arm.
This provides an absolute measurement, in the world frame
of the robot, of the convergence to the goal. Second, we

Fig. 8. Example images of a typical roll trial.Left- Goal image.Center-
Initial displacement image.Right- Difference between the goal and the final
images.



Fig. 9. Roll: Three trials showing control to the natural goal image shown
in Figure 8 as discussed in the text.Left- Convergence in kernel-projected
value.Right- Convergence in roll angle.

calculated a normalized difference of the kernel-projected
value, giving an error in convergence to the goal in terms
of the selected Lyapunov function. Third, we computed a
summed square difference between the goal image and the
image after convergence, normalized by the norm of the
goal image. Table I lists all these three average errors and
standard deviations over all the runs for the 2D translation,
depth, and roll motion cases. For all the trials, we neither
saw divergence or convergence to a local minimum for
the chosen set of kernel parameters, gains and convergence
thresholds. The repeatability of convergence to the goal is
clearly demonstrated by the low error values in the table.

TABLE I

ANALYSIS OF FINAL ERRORS AFTER CONVERGENCE TO THE GOAL.

Motion Error Type Avg Std
2D Position (meters) 0.004875 0.002365
2D kernel-projected Value (%) 0.1302 0.0632
2D Image (%) 4.2009 1.4337
Depth Position (meters) 0.002322 0.001563
Depth kernel-projected Value (%) 0.0411 0.0238
Depth Image (%) 4.8740 1.6543
Roll Position (degrees) 0.28875 0.217241
Roll kernel-projected Value (%) 0.7943 0.4077
Roll Image (%) 12.2651 0.9038

IV. CONCLUSIONS

We presented a visual servoing controller that uses kernel-
based sampling to directly exploit the underlying high di-
mensional visual signal for control, thereby bridging the
gap between tracking and control. In particular, we have
demonstrated the applicability of this approach separately
on four degrees of freedom of motion – three translational
directions and roll about the optical axis– on a range of

visual signals. In addition, the approach allows combina-
tions of these basic motion controllers to be extended to
more complex tasks such as ‘SE(2) and depth’. We believe
this provides an important first step towards a theoretical
framework for analyzing stability and convergence issues of
various vision-based control tasks.

As an exploratory paper, there was no attempt made to
characterize the performance of our algorithm with respect
to the image-kernel pair. The optimization of KBVS methods
for a given servoing task will be an obvious next step, thus
allowing us to investigate the benefit that KBVS may provide
over existing visual servoing approaches for those specific
tasks. The optimization of KBVS would entail exploring
issues such as kernel parameter tuning, incorporating multi-
ple kernels/image projections [4], [9] and designing kernels
sensitive only to particular motions [6].
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