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Abstract: Reduction induced either by the inherent dynamics of a system or control task at
hand is often advantageous for analysis and control of the system. In the current work we consider
state estimation for flexible, tip-steerable needle insertions. Specifically, we design observers that
exploit the symmetry induced by the task of controlling the needle to a desired plane. These
needles curve inside the tissue as they are inserted into it and have been modeled as a six degree
of freedom nonholonomic system. Several planning and control algorithms have been proposed
to automate needle insertions so as to improve their accuracy. Central to these algorithms is
the estimation of the needle states (position and orientation of the needle tip) from only the
needle-tip position measurements; needle-tip orientation cannot be directly measured since the
needle shaft is very thin. We first show that the needle steering system is an observable system
and then illustrate how the planar task decomposes the configuration space into a reduced space
and a fiber space. Finally, we design an observer on the reduced space and an embedded-space
observer on the fiber space.

Keywords: Nonholonomic control, Needle steering, Symmetry and Reduction, Observer design,
Lie groups

1. INTRODUCTION

Needles are pervasive in percutaneous therapies for biop-
sies, bracytherapy and drug delivery. For these procedures,
accurate placement of the needle tip is crucial for the
success of the procedure. Needles have to be inserted into
tissue accurately to reach a specific target while avoiding
bones and sensitive organs. Improving needle targeting
accuracy and expanding the applicability of needle inter-
ventions in general, involves actively steering a needle as
it is being inserted. Physicians often rely on pre- or intra-
operative medical imaging to guide a needle to its target.
Several factors limit performance, including the amount
of steering that a needle affords after it is inserted, noisy
sensors, imperfect actuators, and tissue deformations. Fur-
thermore, navigation in 3D under image guidance by ma-
nipulating the needle at its base (from outside the patient)
requires profound spatial reasoning skills and extensive
training.

In the past few years, there has been a large effort to over-
come these limitations by improving insertion accuracy
through use of robotic systems or needle placement de-
vices for needle insertions [DiMaio et al., 2006, Stoianovici
et al., 1998, Wei et al., 2004b], better imaging modali-
ties [Abolhassani and Patel, 2006, Ding et al., 2002, Wei
et al., 2004a], needle tissue interaction models [Glozman
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and Shoham, 2004, Webster et al., 2006], and planning
algorithms [Alterovitz et al., 2005, 2007, Park et al., 2005,
DiMaio and Salcudean, 2003, Duindam et al., 2008]. Con-
currently, new needle design research, such as on curved
or pre-bent needles, flexible needles, needles with a stylus
at the tip and flexible steerable-tip needles, has aimed to
expand the applicability of needle insertions in medical
procedures by their ability to reach locations in the tissue
that cannot be reached by traditional rigid symmetric-tip
needles [Okazawa et al., 2005, Webster et al., 2005, DiMaio
and Salcudean, 2003]. We refer to [Abolhassani et al., 2007,
Reed et al., 2010, Cowan et al., 2011] for recent surveys
on needle insertions, modeling and simulations.

In the present work we consider flexible, tip-steerable
needle insertions into tissue. When inserted into tissue,
these steerable needles follow a circular path due to
asymmetric cutting forces at the needle tip. Webster et al.
[2006] model this effect using a nonholonomic kinematic
system. This system has six states and two inputs, namely
the forward insertion and rotation of the needle at the
base. Alterovitz et al. [2005, 2007] develop planners that
rely on the needle staying within a specified 2D plane,
and construct a sequence of circular arcs to reach the
target while avoiding obstacles. Kallem and Cowan [2007,
2009] design and implement a controller that steers a
needle to stay within a desired 2D plane. Duindam et al.
[2008] propose a 3D motion planning algorithm for flexible
steerable-tip needle insertions with spherical obstacles in



the workspace. All these control and planning algorithms
assume that the whole needle state can be measured
or estimated from the measured states. In an operating
room image-guided needle insertions are performed using
ultrasound, CT scans, MR imaging, magnetic tracking or
a combination of them. Since the needle is thin, there
is no direct method to measure the orientation of the
bevel using the stereo cameras. To our knowledge, the
needle orientation cannot yet be measured using any other
imaging modality, be it ultrasound, X-ray, fluoroscopy or
MRI. However, this rotation information is necessary for
control and planning algorithms. Further, segmenting or
tracking the needle in these images is non-trivial as these
images are very noisy. Hence, designing robust model-
based observers which use noisy tip position measurements
to estimate all the needle states is crucial.

Traditionally, pose estimation from images such as in the
structure from motion (SFM) literature is performed based
on sequential video images of a moving cloud of points;
this observation typically over-constrains the underlying
rigid transformation. The problem is conceived as a non-
linear optimization problem, where the objective is to find
the best-fit rigid body transformation to the image data
collected in two views, or in an image sequence [Arun
et al., 1987, Umeyama, 1991, Soatto et al., 1996, Tomasi
and Kanade, 1992, Vidal et al., 2004, Vidal and Hartley,
2004]. When the dynamical model of a system is known
and only a part of the rigid body transformation can
be directly measured (as in the needle steering system),
the problem becomes one of designing an observer that
converges—asymptotically or in finite time—to the actual
transformation. Here we show that the rotation of the
needle tip may be inferred from the measurements of
the needle tip position over time, and we then present
dead-beat and asymptotic observers that exploit the task-
induced reduction to estimate the full needle pose.

In this paper, we present an asymptotic observer that
uses the task-induced reduction developed in [Kallem
and Cowan, 2007, 2009]. In Section 2, we review the
kinematics of flexible, steerable-tip needle insertions. We
then show the observability of the needle steering system
when only the position of the needle tip can be measured
(Section 3). In Section 4, we discuss the notion of “task-
induced” symmetry reduction and review it in the context
of planar control of needle steering. Using the task-induced
reduction, we first develop an observer to estimate the
x position, the pitch of the needle tip (β) and the roll
of the needle (γ) from just x position measurements
(Section 5.2). In Section 5.3 we develop an observer for the
other three states (y, z and yaw (α)) by embedding SE(2)
into a higher dimensional manifold, R4. We then present
successful illustrations of the observer in Section 6.

2. FLEXIBLE STEERABLE-TIP NEEDLE
KINEMATICS

As the flexible bevel-tip needle (Figure 1(a)) is inserted,
the asymmetry of the bevel creates a moment at the
needle tip, deflecting the needle and causing it to follow
a circular arc. As the needle base is rotated, the bevel tip
is reoriented in space, so that subsequent insertion follows
another circular arc in 3D space. If the rotation amount is
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Fig. 1. (a) Flexible, steerable-tip needle. (b) Kinematic
generalized unicycle model of needle steering. The
curvature of the path the needle follows inside the
tissue is κ. This figure is reproduced from Webster
et al. [2006] with permission from the authors.

not a multiple of 180◦ then the new circular arc lies in a
different plane from the first one. A sequence of these arcs
can be used to reach a point in the tissue while avoiding
sensitive organs and bones.

Webster et al. [2006] develop a nonholonomic model of
flexible, steerable-tip needle steering; we briefly review the
model here for completeness. The model consists of six
states, namely the orientation and position of the needle
tip, and two inputs which are the insertion and rotation
speeds. The needle steering model (see Figure 1(b)) is a
generalization of the nonholonomic unicycle model, and
neglects torsional compliance of the needle shaft. The
state of the system lies on the Special Euclidean manifold,
SE(3). Let v denote the insertion speed and ω the rotation
speed of the needle. The kinematic model of needle steering
is given by

(g−1ġ)∨ = V1v + V2ω, (1)

where g =
[
R p
0T 1

]
∈ SE(3) with R ∈ SO(3) representing

the orientation of the needle and p ∈ R3 the position
of the needle tip. ∨ and ˆ denote the usual isomorphism
between se(3) and R6. The control vector fields are given
by V1 = [0 0 1 κ 0 0]T and V2 = [0 0 0 0 0 1]T and κ is
the radius of curvature of the path the needle will follow
inside the tissue as it is being inserted. The vector field V1

corresponds to the insertion of the needle into the tissue
and V2 corresponds to the rotation of the needle outside
the tissue (or human). This nonholonomic system has a
degree of nonholonomy of four. Note that this model is
only valid for forward insertions of the needle into the
tissue; during the removal of the needle from the tissue,
there are no cutting forces on the needle tip and hence the
needle follows the path (in reverse) it followed during the
forward insertion into the tissue.

3. ESTIMATION OF 6-DOF NEEDLE POSE FROM
POSITION MEASUREMENTS

Assume that we have a needle tip position over time,
denoted by p(t). Here on we assume also that the forward
insertion of the needle is held constant at v(t) = v. This
assumption is equivalent to parameterizing the system
based on insertion distance rather than time. Let e′is
for i = 1, 2, 3 denote the principal unit vectors in three
dimensions. Two successive time derivatives of p(t) and
using the kinematic model (1) yield



ṗ(t) = R(t)e3v

and
p̈(t) = −κR(t)e2v,

and their cross product is given by
ṗ(t)× p̈(t) = κR(t)e1v

2.

Provided that v > 0, the rotation of the needle tip, R(t),
can be determined:

R(t) =
1
v

[
1
kv

ṗ(t)× p̈(t) −1
k

p̈(t) ṗ(t)
]
. (2)

This analysis shows that the orientation is indeed observ-
able from position measurements if v > 0.

Equation (2) can directly be used as an observer, but in
practice this would imply finite difference approximations
to the first and second time derivatives of the needle
tip position because of the availability of only discrete
samples of p(t). Also, since the needle steering system
is nonlinear, control and observer designs are inherently
coupled and they need to be developed simultaneously.
Here we consider the task of controlling the flexible,
steerable-tip needle to a desired 2D plane and we use the
controller developed in [Kallem and Cowan, 2007, 2009].
The motivation on this task is to use it in conjunction
with the 2D planners developed by [Alterovitz et al.,
2005, 2007] to drive the needle to a desired goal while
avoiding obstacles. We first decompose the configuration
space into a reduced space (where the controller acts) and
a fiber space (where the planner acts) using “task-induced”
reduction and use it further to design observers for needle
steering.

4. TASK-INDUCED SYMMETRY AND REDUCTION

Reduction induced either by the inherent dynamics of the
system or the control task at hand is often advantageous
for analysis and control of the system [Bloch, 2003, Mars-
den et al., 1990]. Here we use “task-induced” reduction
[Kallem et al., 2007, 2010] to design observers for needle
steering. The “task-induced” reduction is extrinsic to the
system and the symmetry comes from the control task in
contrast with the Lagrangian symmetry and reduction.

Proposition [Kallem et al., 2007, 2010] Let G be a Lie
group and g its Lie algebra. Consider the left-invariant
kinematic system

g−1ġ = ξ0 +
k∑

i=1

ξiui

where g ∈ G, ξi ∈ g, and ui’s for i = 1, 2, . . . , k are inputs
to the system. Let the control task be defined as the zero
value of a functional φ : G → R. Let H be the subgroup
of G invariant to the task, namely H = {h ∈ G : ∀g ∈
G,φ(hg) = φ(g)}. Since H is a subgroup of G there exists
a bundle projection π : G → B = G/H. The vector field
on the reduced space, B, can be calculated as

ṙ = f0(r) +
k∑

i=1

fi(r)ui

where fi(r) = Tgπ · gξi, and the fiber dynamics are given
by

h−1ḣ = Ads(r)

(
ξ0 +

k∑
i=1

ξiui − s(r)−1Ts · ṙ

)
. 2

Since the fiber space, H, does not affect the control task,
we need to consider the state evolution only in the base
space for achieving the control task.

The needle steering system is a left-invariant system with
G = SE(3) and the control task of driving the needle to
the plane is invariant to rigid body transformations in the
y-z plane making H = SE(2). The reduced system is the
base space of the principal fiber bundle

(
SE(3), π, S2×R

)
.

The projection map of the bundle is given by
π(g) = π(R,p) = (R−1e1,p

T e1),
where g = (R,p) ∈ SE(3). Note that the reduced space
is S2 × R and the fiber space is SE(2). Kallem and
Cowan [2007, 2009] use Z-Y-X fixed angles as generalized
coordinates to parameterize R, the needle-tip orientation.
Let γ be the roll of the needle, β be the pitch of the
needle out of the plane and α be the yaw of the needle
in the plane. Let the position of the needle-tip be p =
[x y z]T ∈ R3 which can be measured by imaging system.
Since these local coordinates are well defined on U ={

[x y z α β γ]T ∈ R6 : α, γ ∈ R mod 2π, β ∈ (−π/2, π/2)
}

,
the planar controller and the observer are local; we observe
in the simulations and experiments that the domain of
attraction is quite large (see Section 6).

Here on, we assume that v = 1 as this assumption is a
equivalent to parameterizing the system based on insertion
distance rather than time. Let r = [r1 r2 r3]T =
[x β γ]T denote the state vector of the “reduced” order
system which is given by

ṙ =

[ sin r2
κ sin r3

−κ cos r3 tan r2

]
+

[0
0
1

]
ω

yr = r1,

(3)

where yr is the measured state of the reduced system. The
fiber space state h = [h1 h2 h3]T = [y z α]T evolves as

ḣ =

[− sinh3 cos r2
cosh3 cos r2
κ sec r2 cos r3

]

yh =
[
h1

h2

]
.

(4)

Note that r = 0 corresponds to stabilizing the needle to
the y-z plane.

5. ASYMPTOTIC OBSERVER USING REDUCTION
AND STATE IMMERSION

5.1 Previous work on state immersion

Linearizing nonlinear systems has tremendous advantages
in systems analysis and in designing controllers and ob-
servers. Jacobian linearization is a first order Taylor series
approximation of a nonlinear system near an equilibrium
point and is useful in analyzing stability properties. In
feedback linearization an exact change of coordinates of
the state space variables (both the states and inputs)
is obtained by taking successive Lie derivatives of the
output to result in a global change of coordinates under
certain conditions and sometimes this may only result
in a local (perhaps large) change of coordinates Khalil
[2002]. In Carleman linearization the configuration space
is immersed in a higher dimensional space to obtain a



linear system. In Carleman linearization, an infinite Taylor
series expansion is performed on the system around an
equilibrium point, and all the monomials of the states
variables are assigned as the new state variables. This
technique results in a bilinear system that has an infinite
number of states in general. The Taylor expansion in the
Carleman linearization can be truncated to obtain a finite
order bilinear system, but this makes the linearization
approximate. By increasing the order of the Taylor expan-
sion, better approximations can be obtained. More details
can be found in [Kowalski and Steeb, 1991, Sastry, 1999].

Below, we present an asymptotic observer for the reduced
space using a change of coordinates obtained through
feedback linearization. Then we use a linear model to
represent three-state fiber dynamics by state immersion
into a finite higher dimensional manifold. We use the
output and its derivatives in a similar manner as that in
feedback linearization, and embed the SE(2) manifold into
R4 to obtain a linear system and design an observer for
the fiber space states. It is important to note that our
embedding for SE(2) in higher dimensional space is exact
unlike Carlemen linearization (see Section 5.3).

Planar control 
(update roll angle)

Imaging modality
(measure position)

Physical system
(state evolution)

Reduced space 
observer

(estimate x, β, γ)

Fiber space 
observer

(estimate y, z, α)

xy, z

v, ω

full state 
estimate

x, β, γ~    ~     ~

y, z, α~    ~     ~

g~ 

Fig. 2. Coupled reduced space and fiber space asymptotic
observers. The reduced space observer estimates x-
position, pitch and roll of the needle tip from (noisy) x
measurements. The fiber space observer uses these es-
timates along with the (noisy) y and z measurements
and estimates the rest of the states of the needle.

5.2 Reduced space observer

The reduced space system can be feedback linearized via
a transformation of state and input coordinates [Kallem
and Cowan, 2007, 2009]:

s = [r1, sin r2, κ cos r2 sin r3]T , (5)
u =− κ2sin r2 + κ cos r2 cos r3 ω. (6)

The state equations in the feedback linearized form are:

ṡ = Ars +Bru =

[0 1 0
0 0 1
0 0 0

]
s +

[0
0
1

]
u

yr = Crs = [1 0 0] s.

(7)

A full state Luenberger observer with the following dy-
namics estimates all the reduced states from the output:

˙̃s = Ars̃ +Bru+ Lr(yr − ỹr)
ỹr = Crs̃.

(8)

5.3 Fiber space observer though state immersion

Assume that the needle tip is driven to the desired plane
(the y-z plane). At this configuration, the needle tip
position and orientation is such that x = 0, β = 0 and
γ = 0 or γ = 180◦. For the current analysis, let us
assume that γ = 0. The other three states lie on the SE(2)
manifold and evolve with the following dynamics:

ḣ =

[− sinα
cosα
κ

]
. (9)

Consider the embedding, ϕ : SE(2)→ R4 defined by

ϕ(h) =

 y
z

− sinα
cosα

 . (10)

Note that the Jacobian, ∂ϕ
∂h , is full rank everywhere. Also

ϕ is a smooth mapping and there is a one-to-one mapping
between SE(2) and ϕ(SE(2)). In these coordinates, ~ ∈
ϕ(SE(2)) ⊂ R4, the fiber dynamics are

~̇ = Ah~ =

0 0 1 0
0 0 0 1
0 0 0 −κ
0 0 κ 0

 ~. (11)

Thus, by embedding SE(2) into a higher dimensional R4,
we obtain a linear system. Also, since we can measure the
needle tip position, the output states of this system are
given by

yh = Ch~ =
[
1 0 0 0
0 1 0 0

]
~. (12)

The system (Ah, Ch) is observable and the following Lu-
enberger observer will estimate the the state vector ~:

˙̃~ = Ah~ + Lh(yh − ỹh)

ỹh = Ch~̃,
(13)

where (Ah − LhCh) is Hurwitz. Note that in general h̃(t)
does not lie on ϕ(SE(2)), but as t→∞, it lies on ϕ(SE(2)).
The estimate of fiber space state, h̃, is given by

h̃ =

 ~̃1

~̃2

arctan 2(−~̃3, ~̃4)

 . (14)

5.4 Coupled reduced space and fiber space observers

Now, when the needle is being driven towards the desired
plane (y-z plane), the reduced space observer can feed into
the fiber space observer to estimate the full 6-DOF pose of
the needle from just position measurements; see Figure 2.
In this case, the fiber space dynamics is given by (4) and
the fiber space observer is given by

˙̃~ = AhT~ + Lh(yh − ỹh)

ỹh = Ch~̃,
(15)

where

T =


cos β̃ 0 0 0

0 cos β̃ 0 0
0 0 cos γ̃ sec β̃ 0
0 0 0 cos γ̃ sec β̃

 .
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Fig. 3. Asymptotic observer to estimate the full 6-DOF
pose of needle steering from just the position measure-
ments in MATLAB simulations. The radius of curva-
ture of the needle in the tissue is taken as 12.2cm, tip
position data is collected every 1mm of insertion with
no measurement noise. The estimation errors converge
to zero in all the six degrees of freedom.

Note that when the needle is stabilized to the desired plane
(x = 0, β = 0◦ and γ = 0◦), T = I and the observer
converges to the one given in (13).

6. SIMULATION RESULTS

We present MATLAB simulations to illustrate the work-
ing of the proposed observer. The radius of curvature is
assumed to be 12.2cm. Figure 3 is one such simulation
with no noise in the position measurements. Needle po-
sition data was collected every 1mm of insertion. The
figure shows the estimation errors in all the six degrees
of freedom. The left column shows the estimation errors of
the reduced space variables and the right column shows
estimation errors in the fiber variables. The estimation
error decreases from an initial error and goes to zero
asymptotically. Figure 4 is an example simulation run,
in which the measured position data is noisy. Here, noisy
needle tip position data was collected every 1mm of inser-
tion, with measurement noise that is uniformly distributed
within ±1mm in each of three coordinates of the position
measurement. In this example, we can see that that the
estimate errors decrease but oscillate around zero due to
the presence of noise. It should be noted that high gains are
used in the planar controller and observer to obtain fast
convergence of the needle to the y-z plane. If less aggressive
gains are used, then the steady state oscillations are lower,
thus reducing the steady state variance in estimation. We
have also successfully used this observer in implementa-
tions of control and planning algorithms implemented on
phantom tissue [Reed et al., 2008, 2010]; although the
present paper is the first to report on the observer design
itself, which has not been been previously reported.
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Fig. 4. Asymptotic observer to estimate the full 6-DOF
pose of needle steering from just the position measure-
ments in MATLAB simulations. The radius of curva-
ture of the needle in the tissue is taken as 12.2cm.
Noisy needle tip position data is collected every 1mm
of insertion, with measurement noise that is uniformly
distributed within ±1mm. The estimation errors con-
verge to zero in all the six degrees of freedom with a
low steady-state variance.

7. CONCLUSIONS

In this work, we develop an observer on the group of
rigid-body transformations for needle steering using “task-
induced” symmetry and reduction with only the needle tip
position measurements. We consider the case of stabilizing
the needle tip to a desired 2D plane and decompose the
space into a reduced space and a fiber space. For the
reduced space observer, we convert the system into a linear
system by a change of coordinates and for the fiber space
we embed the space into a higher dimensional space to
obtain a linear system. We implement the observer success-
fully in MATLAB simulations and show that this observer
can be used for planning and control purposes in labo-
ratory experiments performed on phantom tissue [Reed
et al., 2008, 2010]. This observer uses local coordinates
making the domain of attraction of the observer local too.
Future work to design observer on rigid-body transforma-
tions that does not require local coordinates would be very
useful.
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