Task-Induced Symmetry and Reduction in Kinematic Systems
with Application to Needle Steering

Vinutha Kallem

Abstract— Lie group symmetry in a mechanical system can
lead to a dimensional reduction in its dynamical equations.
Typically, the symmetries that one exploits are intrinsic to
the mechanical system at hand, e.g. invariance of the system’s
Lagrangian to some group of motions. In the present work
we consider symmetries that arise from an extrinsic control
task, rather than the intrinsic structure of configuration space,
constraints, or system dynamics. We illustrate this technique
with several examples. In the examples, the reduction enables us
to design essentially global feedback controllers on the reduced
systems.

We apply task-induced symmetry and reduction to a recently
developed 6 DOF kinematic model of steerable bevel-tip nee-
dles. The resulting controllers cause the needle tip to track
a subspace of its configuration space. We envision that the
methodology presented in this paper will form the basis for a
new planning and control framework for needle steering.

I. INTRODUCTION

Consider the motion of a simple cart in a plane, described
by the usual kinematic equations of motion (i.e. © = v cos#,
y = vsinb, 0 = w). Suppose we are interested in making
the cart follow a line, for example the x-axis. There is a
natural symmetry induced by the task: any motion along the
z-axis does not affect the control task. Hence to follow the
z-axis, we only need to consider two of the three states and
their dynamics, namely y = vsinf, 6 = w. In this trivial
example, reduction results from an extrinsic, “user-defined”
control task, rather than an intrinsic property of the system
itself.

For the trivial example above, it is not clear if a similar
reduction would be possible if the goal were to follow some
other shape, such as, say, a circle, or if the kinematics were
more complicated. In the following sections we present a
general framework in which to answer these questions and
then illustrate the approach with several examples on SE(2)
and SE(3) that culminate in a novel approach to the control
of steerable needles, which was the principal motivation
for us to study this problem. Our approach involves two
simple ingredients. First, for simplicity and since the primary
motivation for the present work is needle steering which has
been modeled as a kinematic system, we consider kinematic
systems on Lie groups. Second, the task should be described
as the zero of a “task functional” on the group. With these
ingredients, the subgroup of configuration space to which the
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task is invariant is used to reduce the kinematic equations of
motion.

In previous work on mechanical systems reduction has
been used when the dynamics of the system exhibit some
intrinsic symmetry. If the Lagrangian of a mechanical system
is invariant to the action of a Lie group, then such a
system is said to exhibit symmetry and the Lie group is
known as the symmetry group. In unconstrained systems with
symmetry, mechanical connections as defined in [11] can be
used for reduction. Bloch et al. [4] define a nonholonomic
connection as a combination of mechanical and Ehresmann
connections and use it to perform Lagrangian reduction in the
presence of nonholonomic constraints. Ostrowski [13] uses
these connections to reduce the systems whose configuration
spaces are a direct product of the symmetry group (also
called the fiber) and a manifold called a shape space (also
called the base space).

The work we present in this paper is closely related to the
literature on relative equilibria [5], [8] however the systems
we consider in this paper are kinematic systems. Roughly
speaking, given a Hamiltonian system with symmetry, a
relative equilibrium is a trajectory that is an equilibrium of
the reduced system. However, our primary system of interest
in the present work, needle steering, is inherently highly
symmetric; in fact, the needle evolves according to a left-
invariant vector field on SE(3), rendering SE(3) itself the
intrinsic symmetry group! That observation itself does not
prove particularly useful from a design point of view, so we
introduce tasks that actually break some of the symmetry.
Then, the “left over” symmetry enables task-specific reduc-
tion and leads us, at least in the specific examples presented,
to an essentially global control strategy to achieve the task.

II. GENERAL FRAMEWORK

Let G be a Lie group.! Consider the left-invariant kine-
matic system

k
9 =C0+ Y i (1
=1
where g = ¢(t) € G is the configuration to be controlled,
& € g are constant vectors in the Lie algebra of G, k is
the total number of scalar inputs to the system and u;’s for
i = 1,2,..k are inputs to the system. We consider cases
where the control task is encoded as the zero value of a

'We assume the reader is familiar with notions from Lie group theory as
it relates to reduction. The appendix reviews some basic facts about fiber
bundles. For more detail, see Bloch [3].



functional ¢ : G — R defined on the configuration space.
Let H be the subgroup? of G invariant to the task, namely

H={heG:YgeG, p(hg) =g} 2)

Our goal is to find a (feedback) controller u such that
»(g(t)) — 0 asymptotically.

Intuitively, we ignore motions in the space H, since such
motions get us no closer to or further from our goal of
bringing ¢(g) to zero. In effect, we perform control only
in the space B that is “left over” after ignoring H. Since B
is of lower dimension than G (dim B = dim G—dim H), the
kinematics (1) and task functional ¢ likely have a simpler
form on B than on G. In fact, in the examples that follow,
the task functional reduces to a candidate Lyapunov function.

Formally, we use H and G to construct a fiber bundle (see
Appendix). Since H is a subgroup of G there exists a bundle
projection  : G — B := G/H. Since H does not affect the
control task, we consider the state evolution only in the base
space. We use r to represent coordinates for the base space
B and h for those in the fiber H. Since the vector field in
(1) is G invariant and H is a subgroup of G, the vector field
is also H invariant. This results in a well defined vector field
on B that does not depend on H. The vector field on B can
be calculated as

k
F=fo(r)+ Y filr)u 3)
i=1
where f;(r) = Tw - g&. This is the reduced kinematic
equation on the base space B.

For completeness, we derive the kinematic equation for the
fiber variable h € H. Though one can employ the concept
of connections for a global derivation, we content ourselves
with the derivation in local coordinates.® Consider a local
section s : U C B — (. Recall that by definition, a local
section s satisfies mo s = Idy *. This section, s, induces the
local trivialization which is a local diffeomorphism defined
by the map:

Y :HxU—a YU), (h,r)—h-s(r).

Its inverse ¢! : 7= 1(U) — H x U is given by ¢~ 1(g) =
(g - (s(m(9)))~t,7(g)). From the definition of 1) we can
rewrite ¢~ '§ as

a7 =(h s()) L (0 s(r)

dt
=Ad,;y h™ h+s(r) "' Ts - 7.

This results in

k
h'h = Ady(, <50 + Z&ui —s(r) s - r> 4)

i=1

2Note that H is a subgroup, since if h1 € H and he € H, then for all
g € G, we have p(h1h2g) = ¢(h2g) = »(g) (closure). Moreover, the
identity e € G is obviously in H. The inverse of every element in h € H
is also in H, since p(g) = ¢(eg) = ¢(hh~1g) = o(h™1g).

31n the examples that follow, the local chart covers all but a set of measure
zero of the base space.

“For all r € U, m(s(r)) = r.

which also depends only on r and u. The equation for the
fiber variable A in (4) is sometimes called the reconstruction
equation [10]. The above construction can be summarized in
a commutative diagram:

1
G > T~ Y(U) HxU
| (i
w|/H s‘lﬂ
\
B=G/H S5 U

We illustrate this reduction method by applying it to the
tasks of following lines and circles with a planar cart. Then,
we tackle the problem of steering flexible bevel-tip needles
to follow spheres and planes in R3.

ITI. FOLLOWING CURVES WITH A PLANAR CART

In this section we revisit the motivating example from
Section I and apply the above reduction framework. We then
show how this can be applied to a more interesting problem
of following a circle. These toy problems are useful because
they have similar (but simpler) structure to that of the needle
steering problems discussed in Section IV.

Consider a body reference frame attached to the cart at
(z,y) with the frame xz-axis pointing along the forward
translational velocity of the cart. The configuration space G
is the group of transformations in 2D, namely G = SE(2)
SO(2)®R? = S'SR2. To denote an element g € SE(2),
we use both g = (R,p) € SO(2)®R? and its homogeneous

representation
—sind Rk
cosf | P~ y|

(&)

The kinematic equation of the unicycle can be written as

cos 0
sin 0

_|B _
g—[OT 1],whereR—[

A v
g g = @ {O} , where 0= {0 —w] . (6)
0 0 w 0

In this case the configuration space G is the special Euclidean
group in two dimensions i.e. G = SE(2). We now consider
two control tasks: following a line and following a circle.

A. Straight Line Following

To follow the z-axis, the cart’s position should be such
that it is oriented parallel to the z-axis and its y-coordinate
should be zero. This is precisely the example discussed in
the introduction, and as shown, is trivial in local coordinates
on SE(2); because of its simplicity, it may seem that the
machinery in this paper is more complicated than needed,
but the example serves to illustrate the general framework in
detail.

For the case when the cart is following the x-axis in the
positive direction, this task can be defined as a zero of the
function ¢ defined as

o(9) = ¢(R,p) = (1 —ef Rey) + %(egp)Q,



where e;’s for ¢ = 1,2 are principal unit vectors in two
dimensions. When the cart is following the xz-axis in the
negative direction, this task can be defined as a zero of the
function, ¢(R,p) = (1 + e Rey) + 3(edp)*.

The function ¢ is invariant to translations along the z-
axis of the world frame. Hence given this control task, the
symmetry group is

H = {h € SE(2) : Vg € SE(2), o(hg) = »(9)}

0
=<cheSE(Q2)|h= 1 0], zeR»=R
0 1

OO =

Let B := G/H = S* x R. Define the projection map, 7 :
G— B by

7(g) = (R e, el p).

For all h € H, w(hg) = n(R, p+ze1) = (R ter,elp) =
7(g). Therefore, 7 is H invariant. Also, if g; € 7~ !(r) then
g2 = hgr € 7 *(r), Vh € H. Therefore m—*(r) = H for
each r € G/H. Let r = [rl,rg,rg]T denote an element

in B with 72 + r2 = 1. Define a global section s : B =
St x R — SE(2) by

™ T2 T3
—T2 T1 0
0 0 1

s(r) =

Note that 7 o s = Idp . Hence, the projection 7 : SE(2) —
S x R is a trivial bundle. With this section, a global
diffeomorphism ¢ : H x B = R x (S! x R) — SE(2)
can be constructed by ¢ (h,r) = hs(r). This fiber bundle
can be represented by the following diagram:

SE(2)

Swm

\
B=S'%xR

Assuming that the forward velocity of the cart, v, is held
constant at v = 1, the dynamics in the reduced space can be
calculated as:

O )
i=|0 |+ |-m|w %)
—7T9 O
with a holonomic constraint given by 72 + 72 = 1. The

reconstruction equation for the fiber variable A = z is given
by
T =7. (8)

Observe that R~ 'e; is the vector e; seen in the body
reference frame. If the cart is following the z-axis, r =
[j:L 0, O]T depending on whether the cart is following the
line along the positive or negative z-axis. We claim that
choosing the following control input will result in the cart
following the desired line:

w = kry —ry for some k € RT. 9)

We use the task function reduced to the base space as a
candidate Lyapunov function, ¢(r) = 1 — ry + $r3. The
time derivative of ¢, upon plugging (9), is ¢(r) = —kr3
which is negative semi-definite. Each level set Q. = {r €
B : p(r) < c}, ¢ > 0 is positive invariant. The subset where
@ =01is given by E={r € S* xR:ry =0} C Q.. The
largest invariant subset in £ contains only the points r =
[O, +1, O]T. Therefore from LaSalle’s invariance principle,
we conclude that the cart follows the desired line. Further
by considering the local chart (r9,73) and by eigen-value
analysis we can see that the equilibrium point 7 = [0, 1, 0] T
is stable and the other one is a saddle. To follow the line
in the other direction, simply let w = 73 — kre for some
ke R*.

B. Circle Following

Suppose we are interested in making the cart follow a
circle given by X = {(z,y) € R? | 22 + y* — p? = 0}.
This task can also be described as the zero of the function,
 defined by:

1
ol9) = ¢(R.p) = 3 [lpe2 = B'p|".

One can show that H = {g = (R,p) : p = 0} ~ SO(2) C
SE(2) is the largest subgroup that leaves ¢ invariant. Con-
struct a fiber-bundle 7 : SE(2) — SE(2)/SO(2) by

(g) =n(R.p) = R 'p.

Notice that B := SE(2)/SO(2) = R2. If we introduce a
global section s : R? — SE(2) by

=% 7]

for r € R, then we can see that 7 defines a trivial bundle.
Let 7 = [ry, 7] " Assuming that the forward velocity of the
cart is constant (say, v = 1), the reduced space dynamics are
given by

T b 0 1
r=R 'p— R "Rr= {O}—F{—l O} rw (10)
and the fiber variable 0 satisfies
6 =w. (11)

Observe that 7 = R~ 'p is the vector from the center of
the desired circle to the origin of the body frame, written in
the body frame. This implies that if the cart is following the
desired circle clockwise 7 = [0, p]T, and r = [0, fp]T if it
is following the desired circle counter-clockwise. We show
that choosing the following control input will result in the
cart following the desired circle clockwise:

1 k
w:—i , for some ke RT. (12)
p
Again we use the task function (restricted to the base space)
as a candidate Lyapunov function, namely (r) = %r% +

1(r2—p)?. Then the time derivative of the Lyapunov function
is p(r) = (1 + row) + (12 — p)(—riw) = —kr?. We



Fig. 1. Cart following a circle: Red dotted circle is the desired circle to
be followed by the cart. Initially the cart is away from the desired circle
but with the application of the controller, it follows the circle.

L.
A

Fig. 2. Needle steering kinematic model: Frame A is the inertial world
reference frame. Frames B and C' are attached to the two wheels of the
bicycle. This figure is reproduced from [14] with permission from the
authors.
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note that ¢(r) is negative semi-definite and that the invariant
subset of the set where ¢(r) = 0 consists of only r =
[O, p] T. As before, one can show using LaSalle’s invariance
principle that the cart follows the desired circle clockwise.
Figure 1 is a simulation of the circular wall-following in a
cart. The cart is initially away from the desired circle but,
it asymptotically follows the desired circle. If it is desired
to follow the circle counter-clockwise, choose the input as
w = %. Note here that convergence is global.

IV. APPLICATIONS TO NEEDLE STEERING

Long thin needles are used to perform percutaneous ther-
apies in many diagnostic and therapeutic procedures. It has
been shown that flexible bevel-tip needles have better maneu-
verability than rigid symmetric needles and thus improve the
physicians’ performance [6], [14]. A flexible bevel-tip needle
can be steered by rotation and insertion at the base of the
needle (outside the patient). During insertion, the asymmetry
of the bevel creates a moment at the needle tip, deflecting
the needle and causing it to follow a circular arc. As the
needle is rotated, the bevel tip is reoriented in space, so that
subsequent insertion follows an arc in a new plane.

We use the kinematic model developed by Webster et
al. [14] for a bevel tip flexible needle. It is modeled as
a generalisation of the nonholonomic bicycle model, and
neglects torsional compliance of the needle shaft (Figure 2).
In this model, /1, ¢5 determine the location of bicycle wheels
with respect to the needle tip. Parameter ¢ is the fixed front

wheel angle relative to the rear wheel. Frame A is the inertial
world reference frame and frames B and C' are attached to
the two wheels of the bicycle. In homogeneous coordinates,
the rigid body transformation between frames A and B is
given by the rigid body transformation matrix:

g = [(?T ﬂ € SE(3) where R € SO(3) and p € R®.

13)
Webster et al. obtain a kinematic model for needle steering:

g7l =&+ Sw,

where v is the insertion speed, w is the rotation speed of
the needle, and the control vector fields are given by &) =
001 x 00 ad &= 00 0 0 1]

If the needle is inserted into the tissue without any rotation
at the base, it stays in a 2D plane within the tissue. The
location of the 2D plane depends on the initial insertion
conditions of the needle into the tissue. Also, in the 2D plane
the needle follows a circle of curvature x = tan ¢/¢;.

A. Motivation: Path Planning on Subsurface Patches

The high degree of nonholonomy for needle steering (four
[14]) renders global feedback control to a point in SE(3)
challenging, and likely impossible in practice. One possible
solution is to plan a path in SE(3) and execute feedback
control to follow the path. However, feasible paths are not
necessarily asymptotically trackable. In fact, following the
natural trajectory of the system, a circle of radius 1/k, is
not small-time locally trackable, in the sense that there exist
arbitrarily small perturbations cannot be driven back to the
desired trajectory in an arbitrarily small amount of time. To
see this, refer to Figure 3.

Fig. 3. Small-time local controllability fails even for tracking a natural
trajectory of the needle, a circle (green, dashed) of radius 1/k. Here, a
small initial perturbation in heading of the needle (black, solid) is depicted.
The radius of curvature of the actual needle trajectory can never be less
than 1/k, and thus even for the smallest possible perturbation of the needle
heading, the needle must travel at least w/k before re-intersecting (x) the
desired path. Pitching out of the plane of the circle only exacerbates this
issue, and the problem cannot be overcome with control or replanning.

There are several potential ways to overcome this problem.
One could plan paths whose radius of curvature is always
greater than 1/k. We suspect such curves can be followed
arbitrarily closely (if not exactly), although the high degree
of nonholonomy of the system may render this challenging.

An alternative approach would be to develop low-level
controllers that cooperate with the 2D planners by Alterovitz



Fig. 4. A stylized depiction of a needle trajectory that remains within a
sequence of 2D patches. The plane-following controller was reported in [9],
and the sphere-following problem is reported in this paper (Section IV-C).

et al. [1], [2]. Their planner, which relies on the needle
staying within a specified 2D plane, constructs a sequence of
circular arcs of radius 1/ that can be achieved via alternat-
ing insertions and 180° rotations of the needle shaft. A real-
time replanner corrects for within plane deviations from the
desired piecewise circular path. In the prior work, Kallem
and Cowan [9] designed and implemented in simulation
and laboratory experiments an observer-controller pair that
steers a needle to stay within a desired 2D plane. In effect,
this low-level 2D plane-following controller ensures that the
needle remains close to a desired 2D plane, on top of which
Alterovitz et al.’s planner can operate.

Our long-term research will generalize this real-time re-
planning and low-level control architecture, as depicted in
Figure 4. We envision a “subspace planner” that chooses
feasible subspaces, upon which an Alterovitz-style planner
[1] builds paths within each subspace.

It is important to understand how the planning and control
architecture relates to the methodology outlined in Section
II. In needle steering, the entire space G is all of SE(3) —
positions and orientations of the needle tip in the tissue. The
space in which the planner acts — that is, motions within a
surface — is the symmetry group, or fiber, that defines the
projection from the entire space into the base space. The
base space is where the low-level controller operates in an
effort to drive the needle back to the desired surface.

The prior work by Kallem and Cowan [9] used local
coordinates to parameterize the configuration space (SE(3)),
and performed a coordinate-based reduction “by hand” by
noting that the three configuration variables central to the
control task evolved independently of the others. Here, we
apply the general framework developed in Section II for two
additional tasks.

B. Controlling the Needle Tip to a Plane Parallel to a
Desired 2D Plane

Without any loss of generality, let the desired plane be
the y — z plane. The configuration space, G is SE(3). The
control task is to stabilize the needle tip to a plane parallel
to the y — z plane. In other words, it is desired that the circle
the needle tip traces at steady state, during insertion without

Fig. 5. Illustration of the Bundle Section: Unit vector zw bisects r and ej.
If the r is rotated about wo as axis by 7 then it coincides with e1. The circle
through the points » and (1,0, 0) is a latitude of S? drawn perpendicular
to w.

any rotation at the base be parallel, to the y — z plane. The
task can be described by a surface X C SE(3) given by

X ={2z €SE(3) |z = ("’ p) where § € Rand p € R®} .

The task can also be described as the zero of the function,
o defined as:

¢(9) = p(R,p) =1—e] Re

where g € SE(3) is represented as in (13) and e;’s for i =
1,2, 3 are the principal unit vectors in three dimensions. This
form of the function ¢ is for the cases when the needle tip
in steady state undergoes rotation about the positive z-axis.
In the case when the needle tip undergoes rotation about
the negative x-axis, the function, ¢ can be defined as ¢ =
¢(R,p) =1+ ef Rey.

Note that X is also a subgroup of G = SE(3). Hence the
symmetry group is

H = {h € SE(3) : Vg € SE(3), ¢(hg) = ¢(9)}
= X =2 SO(2)®R? = SE(2) x R.

The symmetry group, H, can be thought of as a combination
of 2D transformations in the y — z plane and translations
along the z-axis relative to the world frame. With these group
definitions, B := G/H = S?. Define a projection map from
G to B as

m(g) =7(R,p) = R 'ex.

Choose an open subset U of B as the unit sphere excluding
the (—1,0,0) point. That is U = S% — {(—1,0,0)}. Define
the bundle section on U, s: U — 7~ 1(U) C G as

s(r) = (¥, 0),
where w(r) = HZIZH' This section can be seen in Figure
5. With this section, locally ¢ € G can be expressed as
g = hs(r) ~ (h,r), where h € H and r € B. To
completely cover S? consider U’ = (5% — {(1,0,0)}) and
a similar section can be constructed. These make the map
7 a fiber bundle which can be summarized by the following




commutative diagram:

SE(3) D *Y(U)
1 ¥
Trl/SO(2)><]R3 si’lﬂ

B =52 ) U=5-{(-1,0,0}

We assume that the insertion speed is held constant at v =
1. This assumption is equivalent to parameterization of the
system with the length of the needle inserted in to the tissue
(when the insertion speed is not zero). Base space elements
can be written in coordinates as r = [r1, 2, T’3]T € R3 with
r? + 13 + 73 = 1. The dynamics of the base space can be
calculated as:

0 T2
r= | krs | + |—r1| w. (14)
—KTo 0

The fiber variable h = (e®1? p) € H satisfies
~105(r)

éél = Adg(T) <I€é1 + Wég - 5(7’) P
/g

/)
15)
p _ eélﬂe‘fz(r)
where 5(r) = @ ()7,
For the task to be completed, the state in the reduced
system should be r = [:I:l, O,O]T. Choosing the following
control input we show that the task is achieved:

T
€3,

w = kry, for some k € RT. (16)

Once again, we use the task function in base coordinates as
a candidate Lyapunov function, namely ¢(r) =1 — 7. The
time derivative of the Lyapunov function is ¢(r) = —kr3
which is negative semi-definite in 7. The set where ¢ = 0 is
given by E = {r = [r1,r2, ’I“3]T € S?|ry = 0}. The largest
invariant set in I contains only the points r = [:I:l, 0, O]T.
Hence, from LaSalle’s invariance principle, we can conclude
that needle tip can be stabilized to a plane parallel to the
desired plane. Notice that asymptotically the fiber dynamics
become

0 = r,

p=(0,sin6, — cos ).

This shows us that the fiber variables trace a circle of radius
1/k, which we knew from the needle steering model. Further
by considering the local chart (ro,r3) and by eigen-value
analysis we can see that the equilibrium point r = [1, 0, 0}
(corresponding to the needle tip tracing a circle of radius 1/
parallel to the y — z plane counter clockwise) is stable, and
the other equilibrium point unstable. For the needle tip to
trace the circle clockwise, let w = —kry for some k£ € Rt.

C. Controlling the Needle Tip to a Spherical Surface

In this section we use the reduction technique developed
in II to control the needle tip to the surface of a sphere with
radius p > 1/k. If the needle tip stays on the surface of

the desired sphere at steady state it has to follow a circle of
radius o = 1/k. Let d = y/p? — 02. If the needle is staying
on the desired circle on the sphere, the position vector of
the center of the sphere written in the body frame is given
by R~'p. This must be [—d, o, O]T or [d, o, O]T depending
on which direction the needle tip is following the circle of
radius o.

In this example, the control task can also be described as
the zero of the function

©(9) = ¢(R,p) = HR‘lp— [—d, @,O]TH2

or
2

o) =) =[5t~ [0

depending on the direction the needle tip follows the circle.
It is easy to see that H = SO(3) leaves the function, ¢,
invariant. Hence, the symmetry group, H for this control
task is SO(3). The base space, B := G/H = R3. The bundle
projection 7 : SE(3) — R3 is given by

m(g) =R 'p
where ¢ = (R,p) € SO(3)®R? = SE(3). This bundle is
trivial because we can construct a global section s : R? —
SE(3) as
Isxs 1
s(r) = { 8;3 1] .

Given (R,7) € H x B = SO(3) x R3, the corresponding

g € SE(3) can be calculated as g = g 1r . Assuming
v = 1, the dynamics in the base space can be written as
0 T2
r= RT3 + | —r|w 17
1—kry 0
and the fiber variable R € H = SO(3) satisfies
R™'R = kéy + é3w. (18)
The control input
w = —k(dry + ory) for some k € RT (19)
makes the reduced space converge to r = [—d, 0, O]T

Consider the reduced task functional as the candidate Lya-
punov function: (r) = 1(ry + d)*> + 1(ro — 0)*> + 1rd.

Its time derivate, (1) = w(dry + or1) = —(dre + or1)?,
is negative semi-definite. The invariant subset O; the set
where ¢(r) = 0 contains only r = [—d,0,0] . Again

using LaSalle’s invariance principle we can conclude that
the needle tip stays on the surface of the desired sphere. To
follow the circle in the desired sphere in the other direction,
choose w = dry — ory.



V. CONCLUSIONS

We developed a general framework to perform task-
specific reduction in kinematic systems on Lie groups. We
applied this method to a two systems, a planar cart (as an
illustrative example) and flexible bevel-tip needle steering
with configuration spaces SE(2) and SE(3) respectively. In
the examples, the reduction enabled us to design essentially
global feedback controllers on the reduced systems. Also,
the task functional became a Lyapunov function in reduced
coordinates. We envision that the methodology presented in
this paper will form the basis for a new planning and control
framework for needle steering.

This paper considered only kinematic systems, but we
believe our results can be used along with reduction tech-
niques for mechanical systems (e.g. [13]) to perform a two-
stage reduction. In the first stage, mechanics-based “intrin-
sic” reduction can separate the configuration space into a
shape space and a symmetry (Lie) group. The dynamics
on the shape space can be obtained from the so-called
reduced Lagrangian, while a reconstruction equation gen-
erates motions in the symmetry group. This reconstruction
equation takes the place of the Lie group kinematics (1) in
this paper. Certain control tasks may enable us to perform
a second “extrinsic” (task-specific) reduction, thus further
decomposing the symmetry group into a base and fiber, as
described in this paper.
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APPENDIX
A. Lie Groups

A Lie group, is essentially a smooth group which is also a
smooth manifold. The groups discussed in this paper in detail
are the Euclidean groups SE(2) = SO(2)®R? and SE(3) =
SO(3)®R3. The symbol ® denotes semi-direct product. If
Ry, Ry € SO(2) and py, p2 € R2, the product in the group
obtained by semi-direct product of SO(2) and R? is given by
(R1,p1) * (R2,p2) = (R1Ra, Rips + p1). Note that as sets,
SE(2) = SO(2) x R? but as groups, SE(2) = SO(2)®R2.

We identify the tangent space T'SE(3) of the Lie group
SE(3) with

TSE(3) ~ SE(3) x se(3), (20)

where se(3) is the Lie algebra of SE(3). The “wedge/hat”
isomorphism R? ~ s0(3) is defined by

w1 0 —Ws3 w9
- Wo | < w3 0 —Wwi v
w3 —Wwsy Wi 0

where s0(3) is the Lie algebra of SO(3). In a standard abuse
of notation the wedge/hat isomorphism R3@R? ~ se(3)

relates translational v and angular w velocities to “twists”
& € se(3) via

S R A

More detail can be found in [12], for example. The identifi-
cation (20) occurs via left translation, i.e.

(9.9) — (9:97"9) = (9,9 Q1)

\V
where £ = g71§, w = (R—lR) ,and v = R~1p.
B. Fiber Bundles

A bundle [7] is a triple (E, 7, M) where E and M are
differentiable manifolds and the map = : £ — M is a
continuous map. The space FE is called the entire space,
M 1is called the base space and the map m is called the
projection map. The inverse image 71 () is called the fiber
over z € M. If all the individual fibers 7—1(z), for z € M
are diffeomorphic to the common space F, then F' is called
the fiber of the bundle and such a bundle is referred to as
a fiber bundle. Locally, E = M x F; if this relationship is
global, the fiber bundle is trivial. A natural bundle structure
arises in the case that a group H, called the symmetry group,
acts on the entire space, F, in which case M = E/H can
be defined as the quotient space, and H is the fiber.
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