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Abstract—Lie group symmetry in a mechanical system can lead
to a dimensional reduction in its dynamical equations. Typically,
the symmetries that one exploits are intrinsic to the mechanical
system at hand, e.g. invariance of the system’s Lagrangian
to some group of motions. In the present work we consider
symmetries that arise from an extrinsic control task, rather than
the intrinsic structure of the configuration space, constraints,
or system dynamics. We illustrate this technique with several
examples. In the examples, the reduction enables us to design
essentially global feedback controllers on the reduced systems.
We also demonstrate how the proposed technique dovetails with
Lagrangian reduction.

We apply task-induced symmetry and reduction to a recently
developed 6 DOF kinematic model of steerable bevel-tip needles.
The resulting controllers cause the needle tip to track a subspace
of its configuration space. We envision that the methodology
presented in this paper will form the basis for a new planning
and control framework for needle steering.

I. INTRODUCTION

Reducing the dynamics of a system into smaller subsystems
potentially simplifies control, planning or estimation tasks.
For example, in [1], [2] reduction of snakeboard dynamics
into lower dimensional subsystems enables gait generation for
the snakeboard. Often, such dimensional reduction is obtained
by exploiting intrinsic symmetries in the mechanical system
at hand, e.g. invariance of the system’s Lagrangian to some
group of motions. Here, we use symmetries that arise from an
extrinsic control task, rather than the intrinsic structure of the
configuration space, constraints, or system dynamics. We show
that such a “task-induced” symmetry can result in a reduction
in a class of kinematic and mechanical systems.

Previous work on reduction methods for mechanical systems
deals with intrinsic symmetry in a system. If the Lagrangian
of a mechanical system is invariant under the action of a Lie
group, then such a system is said to exhibit symmetry and the
Lie group is known as the symmetry group. In unconstrained
systems with symmetry, mechanical connections as defined
in [3] can be used for reduction. Bloch et al. [4] define
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a nonholonomic connection as a combination of mechanical
and Ehresmann connections and use it to perform Lagrangian
reduction in the presence of nonholonomic constraints. Os-
trowski [5] uses these connections to reduce the systems whose
configuration spaces are a direct product of the symmetry
group (also called the fiber) and a manifold called a shape
space (also called the base space). A general and comprehen-
sive theory of Lagrangian reduction is studied in [6]. In the
context of the present work, the symmetry group (or fiber)
for a mechanical reduction is conceived as a principal bundle
in its own right. To elucidate this connection, we compute a
reduced system of equations for a differential drive mobile
robot, in which we first apply Lagrangian reduction and then
apply task-induced reduction.

Hanssmann et al. [7] perform reduction to align coordi-
nated rigid bodies relative to one another. This alignment
task induces symmetry, affording a task-induced reduction of
the coupled system dynamics. This reduction is harnessed
to developed control laws that align two rigid bodies based
on the relative configuration between the bodies. While the
authors take a Hamiltonian approach, similar results can be
obtained using the two-stage approach—Lagrangian reduction
plus task-induced reduction—described in Section V.

The work we present in this paper relates conceptually to
the literature on relative equilibria [8]–[11]. Roughly speaking,
given a mechanical system with symmetry, a relative equilib-
rium is a trajectory that is an equilibrium point of the reduced
system. However, our primary system of interest in the present
work, needle steering, is inherently highly symmetric; in fact,
the needle evolves according to a left-invariant vector field on
SE(3), rendering SE(3) itself the intrinsic symmetry group.
That observation itself does not prove particularly useful from
a design point of view; the tasks we introduce break some
of the symmetry. Then, the “left over” symmetry enables
task-specific reduction and leads us, at least in the specific
examples presented, to an essentially global control strategy
to achieve the task. Moreover, task-induced reduction applies
to both kinematic and mechanical systems, whereas relative
equilibria typically arise in mechanical systems with intrinsic
symmetries.

In Section II, we present a general framework to perform
task-induced reduction on kinematic systems. In Sections III
and IV we apply this technique to a planar cart and to needle
steering. We show how task-induced reduction simplifies the
control design to achieve the tasks at hand. This culminates in
a novel approach for the control of steerable needles, which
was the principal motivation for us to study this problem.
We then extend this technique in Section V to a class of



Lagrangian systems. We use circle following of a differen-
tial drive robot as an example to illustrate the task-induced
reduction in mechanical systems.

II. GENERAL FRAMEWORK

Let G be a Lie group.1 Consider the left-invariant kinematic
system

g−1ġ = ξ0 +
k∑
i=1

ξiui (1)

where g = g(t) ∈ G is the configuration to be controlled,
ξi ∈ g are constant vectors in the Lie algebra of G, k is the
total number of scalar inputs to the system and ui’s for i =
1, 2, . . . , k are inputs to the system. We consider cases where
the control task is encoded as the zero value of a functional
ϕ : G→ R defined on the configuration space. Let H be the
subgroup of G invariant to the task, namely

H = {h ∈ G : ∀g ∈ G,ϕ(hg) = ϕ(g)}. (2)

One way to achieve the task is to design a (feedback) control
policy such that ϕ(g(t))→ 0 asymptotically.

Intuitively, we ignore motions in the space H , since such
motions get us no closer to or further from our goal of bringing
ϕ(g) to zero. In effect, we perform control only in the space
B := G/H that is “left over” after ignoring H . Since B is
of lower dimension than G (dimB = dimG − dimH), the
kinematics (1) and task functional ϕ likely have a simpler form
on B than on G. In fact, in the examples that follow, the task
functional reduces to a candidate Lyapunov function.

Formally, we use H and G to construct a principal bundle.
Since H is a subgroup of G there exists a bundle projection
π : G→ B = G/H . Furthermore, since H does not affect the
control task, we consider the state evolution only in the base
space. We use r to represent coordinates for the base space B
and h for those in the fiber H . Since the vector field in (1) is
G invariant and H is a subgroup of G, the vector field is also
H invariant. This results in a well defined vector field on B
that does not depend on H .

Proposition 2.1: The vector field on the reduced space, B,
can be calculated as

ṙ = f0(r) +
k∑
i=1

fi(r)ui (3)

where fi(r) = Tgπ · gξi, and the fiber dynamics are given by

h−1ḣ = Ads(r)

(
ξ0 +

k∑
i=1

ξiui − s(r)−1Ts · ṙ

)
. (4)

Proof: Consider a local section s : U ⊂ B → G. By
definition, a local section s satisfies π ◦ s = IdU .2 This
section, s, induces the local trivialization which is a local
diffeomorphism defined by the map:

ψ : H × U → π−1(U), (h, r)→ h s(r).

1We assume the reader is familiar with notions from Lie group theory and
principal bundles as it relates to reduction. The appendix reviews some basic
facts about the Lie groups SE(2) and SE(3). For more detail, see [8], [12].

2For all r ∈ U , π(s(r)) = r.

Its inverse ψ−1 : π−1(U) → H × U is given by ψ−1(g) =
(g (s(π(g)))−1, π(g)).

To obtain an expression for ṙ, differentiate r = π(g) to
obtain

ṙ = Tgπ · gξ0 +
k∑
i=1

Tgπ · gξiui.

In order to show that the ṙ is a function of only r and ui,
we exploit the fact that the projection map is invariant to the
left action of H . Using this fact, and choosing h(t) ∈ H so
that g = h s(r), we calculate ṙ(t) as

ṙ(t) =
d

dτ
π (g(t+ τ))

∣∣∣
τ=0

=
d

dτ
π
(
h−1(t)g(t+ τ)

) ∣∣∣
τ=0

= Th−1gπ · h−1(t)ġ(t)

= Th−1gπ · h−1g

(
ξ0 +

k∑
i=1

ξiui

)

= Ts(r)π · s(r)ξ0 +
k∑
i=1

Ts(r)π · s(r)ξiui.

From this equation it is clear that ṙ = f0(r) +
∑k
i=1 fi(r)ui.

This is the reduced kinematic equation on the base space B.
For completeness, we derive the kinematic equation for the
fiber variable h ∈ H . Though one can employ the concept of
connections for a global derivation, we content ourselves with
the derivation in local coordinates.3 From the definition of ψ
we can rewrite g−1ġ as

g−1ġ =(h s(r))−1 d

dt
(h s(r))

= Ad−1
s(r) h

−1ḣ+ s(r)−1Ts · ṙ.

This results in

h−1ḣ = Ads(r)

(
ξ0 +

k∑
i=1

ξiui − s(r)−1Ts · ṙ

)
which also depends only on r and u. The equation for the
fiber variable h in (4) is sometimes called the reconstruction
equation [13].

The above construction can be summarized in a commuta-
tive diagram:

G

π /H

��

⊃ π−1(U)
ψ−1

//

π

��

H × U
ψ

oo

B = G/H ⊃ U

s

II

We illustrate this reduction method by applying it to the
tasks of following lines and circles with a planar cart. Then,
we tackle the problem of steering flexible bevel-tip needles to
follow spheres and planes in R3. Finally, we describe how the
task-induced reduction presented in this paper dovetails with
Lagrangian reduction for mechanical systems with intrinsic
symmetries [4], [5].

3In the examples that follow, the local chart covers all but a set of measure
zero of the base space.



III. FOLLOWING CURVES WITH A PLANAR CART

In this section we apply “task-induced” reduction to two
planar cart examples (Figure 1(A)) as it provides us with a
simple system to illustrate the “task-induced” symmetry and
reduction technique presented above. In the first example, we
apply the technique to line-following of the cart. We then
show how this can be applied to a more interesting problem
of following a circle. These toy problems are useful because
they have similar (but simpler) structure to that of the needle
steering problems discussed in Section IV.

Consider a body reference frame attached to the cart at
(x, y) with the frame x-axis pointing along the forward
translational velocity of the cart. The configuration space G
is the group of transformations in 2D, namely G = SE(2) ∼=
SO(2)sR2 ∼= S1sR2. To denote an element g ∈ SE(2),
we use both g = (R, p) ∈ SO(2)sR2 and its homogeneous
representation

g =
[
R p
0T 1

]
, where R =

[
cos θ − sin θ
sin θ cos θ

]
, p =

[
x
y

]
. (5)

The kinematic equation of the unicycle can be written as

g−1ġ =

Ω̂
[
v
0

]
0 0

 , where Ω̂ =
[

0 −ω
ω 0

]
. (6)

We now consider two control tasks, following a line and
following a circle.

A. Straight Line Following

To follow the x-axis, the cart’s position should be such
that it is oriented parallel to the x-axis and its y-coordinate
should be zero. This is precisely the example discussed in
the introduction, and as shown, is trivial in local coordinates
on SE(2); because of its simplicity, it may seem that the
machinery in this paper is more complicated than needed, but
the example serves to illustrate the general framework in detail.

For the case when the cart is following the x-axis in the
positive direction, this task can be defined as a zero of the
function ϕ defined as

ϕ(g) = ϕ(R, p) = (1− eT1 Re1) +
1
2

(eT2 p)
2,

where ei’s for i = 1, 2 are principal unit vectors in two
dimensions. When the cart is following the x-axis in the
negative direction, this task can be defined as a zero of the
function, ϕ(R, p) = (1 + eT1 Re1) + 1

2 (eT2 p)
2.

The function ϕ is invariant to translations along the x-axis of
the world frame. Hence given this control task, the symmetry
group is

H = {h ∈ SE(2) : ∀g ∈ SE(2), ϕ(hg) = ϕ(g)}

=

h ∈ SE(2) | h =

1 0 x
0 1 0
0 0 1

 , x ∈ R

 ∼= R.

Let B := G/H ∼= S1 × R. Define the projection map, π :
G→ B by

π(g) = (R−1e1, e
T
2 p).

For all h ∈ H , π(hg) = π(R , p + xe1) = (R−1e1, e
T
2 p) =

π(g). Therefore, π is H invariant. Also, if g1 ∈ π−1(r) then
g2 = hg1 ∈ π−1(r), ∀h ∈ H . Therefore π−1(r) ∼= H for each
r ∈ G/H . Let r =

[
r1, r2, r3

]T ∈ R3 denote an element in B
with r2

1 + r2
2 = 1. Define a global section s : B = S1 ×R→

SE(2) by

s(r) =

 r1 r2 0
−r2 r1 r3

0 0 1

 .
Note that π ◦ s = IdB . Hence, the projection π : SE(2) →
S1 × R defines a trivial bundle. With this section, a global
diffeomorphism ψ : H ×B ∼= R× (S1 ×R)→ SE(2) can be
constructed by ψ(h, r) = hs(r). This principal bundle can be
represented by the following diagram:

SE(2)

/R
��

B = S1 × R

s

II

Assuming that the forward velocity of the cart is held constant
at v = 1, 4 the dynamics in the reduced space can be calculated
as

ṙ =

 0
0
−r2

+

 r2

−r1

0

ω (7)

with a holonomic constraint given by r2
1 + r2

2 = 1. The
reconstruction equation for the fiber variable h = x is given
by

ẋ = r1. (8)

Observe that R−1e1 is the unit vector along the x-axis of
the world reference frame as seen in the body reference frame.
If the cart is following the x-axis, r =

[
±1, 0, 0

]T
depending

on whether the cart is following the line along the positive or
negative x-axis. We claim that choosing the following control
input will result in the cart following the desired line:

ω = kr2 − r3 for some k ∈ R+. (9)

We use the task function reduced to the base space as a
candidate Lyapunov function, ϕ(r) = 1− r1 + 1

2r
2
3 . The time

derivative of ϕ, upon plugging (9), is ϕ̇(r) = −kr2
2 which is

negative semi-definite. Each level set Ωc = {r ∈ B : ϕ(r) ≤
c}, c > 0 is positive invariant. The subset where ϕ̇ = 0 is
given by E = {r ∈ S1 × R : r2 = 0} ⊂ Ωc. The largest
invariant subset in E contains only the points r =

[
±1, 0, 0

]T
.

Therefore from LaSalle’s invariance principle, we conclude
that the cart follows the desired line. Further by considering
the local chart (r2, r3) and by eigenvalue analysis we can see
that the equilibrium point r =

[
1, 0, 0

]T
is stable and the

other one is a saddle. The additional (unstable) critical point
is a topological obstruction: our essentially global controller

4We assume that v = 1 for ease of presentation of the controller without
any loss of generality. This assumption is equivalent to choosing the control
input as »

v
ω

–
=

»
1

kr2 − r3

–
for some k ∈ R+.

in the Lyapunov analysis.



A B C

World Frame
x

y

!Bod
y F

ram
e

(x,y)

vy x

 -3  -2  -1 0 1 2 3

 -2

 -1

0

1

2

World 
Frame

x

y
v

x

y

v

0 1 2 3 4 5 6 7

1

2

3

4

-1

x

y
v

x

y
vx

y
World 
Frame

Fig. 1. Planar cart. (A) Planar cart moving on a 2D horizontal plane. The x-axis of the body frame points along the forward velocity of the cart. (B) Cart
following a line. Red dotted line is the desired line to be followed by the cart. Initially the cart starts away from the desired line but with control, it follows
the line. (C) Cart following a circle: Red dotted circle is the desired circle to be followed by the cart. Initially the cart is away from the desired circle but
with the application of the controller, it follows the circle. Axis scales are dimensionless for purposes of demonstration.

is the most that can be expected of a smooth feedback on
S1 × R. To follow the line in the other direction, simply let
ω = r3 − kr2 for some k ∈ R+.

In Figure 1(B) we show an anecdotal trajectory (in simu-
lation) the cart follows using the above developed controller.
As we can see from the figure, the cart is initially far away
from the x-axis and it asymptotically follows the desired line.

B. Circle Following

Suppose we are interested in making the cart follow a circle
given by X = {(x, y) ∈ R2 | x2 + y2 − ρ2 = 0}. This task
can also be described as the zero of the function, ϕ defined
by

ϕ(g) = ϕ(R, p) =
1
2

∥∥ρe2 −R−1p
∥∥2
.

One can show that H = {g = (R, p) : p = 0} ' SO(2) <
SE(2) is the largest subgroup that leaves ϕ invariant. Construct
a fiber-bundle π : SE(2)→ SE(2)/SO(2) with

π(g) = π(R, p) = R−1p.

Notice that B := SE(2)/SO(2) ∼= R2. If we introduce a global
section s : R2 → SE(2) given by

s(r) =
[
I2×2 r

0 1

]
for r ∈ R, then we can see that π defines a trivial bundle. This
SO(2)-bundle can be summarized by the following diagram:

SE(2)

/SO(2)

��
B = R2

s

II

Let r =
[
r1, r2

]T
. Assuming that the forward velocity of the

cart is constant (say, v = 1), the reduced space dynamics are
given by

ṙ = R−1ṗ−R−1Ṙr =
[
1
0

]
+
[

0 1
−1 0

]
rω (10)

and the fiber variable θ satisfies

θ̇ = ω. (11)

Observe that r = R−1p is the vector from the center of
the desired circle to the origin of the body frame, written in
the body frame. This implies that if the cart is following the
desired circle clockwise then r =

[
0, ρ
]T

, and if it is following
the desired circle counter-clockwise then r =

[
0,−ρ

]T
. We

show that choosing the following control input will result in
the cart following the desired circle clockwise:

ω = −1 + r1k

ρ
, for some k ∈ R+. (12)

Again we use the task function (restricted to the base space) as
a candidate Lyapunov function, namely ϕ(r) = 1

2r
2
1 + 1

2 (r2−
ρ)2. Then the time derivative of the Lyapunov function is
ϕ̇(r) = r1(1 + r2ω) + (r2 − ρ)(−r1ω) = −kr2

1 . We note that
ϕ̇(r) is negative semi-definite and that the invariant subset
of the set where ϕ̇(r) = 0 consists of only r =

[
0, ρ
]T

.
As before, one can show using LaSalle’s invariance principle
that the cart follows the desired circle clockwise. To follow
the circle counter-clockwise, set ω = 1+rk

ρ . Note that the
convergence is global.

Figure 1(C) shows an example simulation of the circle
following by a cart. The cart starts away from the desired
circle and asymptotically follows the desired circle.

IV. APPLICATIONS TO NEEDLE STEERING

Long thin needles are used to perform percutaneous ther-
apies in many diagnostic and therapeutic procedures. It has
been shown that flexible bevel-tip needles have better maneu-
verability than rigid symmetric needles and thus improve the
physicians’ performance [14], [15]. A flexible bevel-tip needle
can be steered by rotation and insertion at the base of the
needle (outside the patient). During insertion, the asymmetry
of the bevel creates a moment at the needle tip, deflecting the
needle and causing it to follow a circular arc. As the needle is
rotated, the bevel tip is reoriented in space, so that subsequent
insertion follows an arc in a new plane.
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Fig. 2. (A) Needle steering kinematic model. Frame A is the inertial world reference frame. Frames B and C are attached to the two wheels of the bicycle.
This figure is reproduced from [14] with permission from the authors. (B) Small-time local controllability fails even for tracking a natural trajectory of the
needle, a circle (red, dotted) of radius 1/κ. Here, a small initial perturbation in the heading of the needle (black, solid) is depicted. The radius of curvature of
the actual needle trajectory can never be less than 1/κ, and thus even for the smallest possible perturbation of the needle heading, the needle must travel at
least π/κ before re-intersecting (∗) the desired path. Pitching out of the plane of the circle only exacerbates this issue, and the problem cannot be overcome
with control or replanning.

We use the kinematic model developed by Webster et
al. [14] for a bevel tip flexible needle. It is modeled as
a generalization of the nonholonomic bicycle, and torsional
compliance of the needle shaft is neglected (Figure 2(A)). In
this model, `1 and `2 determine the location of bicycle wheels
with respect to the needle tip. Parameter φ is the fixed front
wheel angle relative to the rear wheel. Frame A is the inertial
world reference frame and frames B and C are attached to the
two wheels of the bicycle. In homogeneous coordinates, the
rigid body transformation between frames A and B is given
by the rigid body transformation matrix:

g =
[
R p
0T 1

]
∈ SE(3) where R ∈ SO(3) and p ∈ R3. (13)

Webster et al. obtain a kinematic model for needle steering,

g−1ġ = ξ1v + ξ2ω,

where v is the insertion speed, ω is the rotation speed of
the needle, and the control vector fields are given by ξ∨1 =[
0 0 1 κ 0 0

]T
and ξ∨2 =

[
0 0 0 0 0 1

]T
.

Ideally when the needle is inserted into the tissue without
any rotation at the base, it stays in a 2D plane within the tissue.
The location of the 2D plane depends on the initial insertion
conditions of the needle into the tissue. Also, in the 2D plane
the needle follows a circle of curvature κ = tanφ/`1.

A. Motivation: Path Planning on Subsurface Patches

The high degree of nonholonomy for needle steering (four
[14]) renders global feedback control to a point in SE(3)
challenging, and likely impossible in practice. One possible
solution is to plan a path in SE(3) and execute feedback
control to follow the path. However, feasible paths cannot
necessarily be tracked asymptotically. In fact, the natural
trajectory of the system, a circle of radius 1/κ, is not small-
time locally “trackable”, in the sense that there exist arbitrarily
small perturbations that cannot be driven back to the desired
trajectory in an arbitrarily small amount of time. To see this,
refer to Figure 2(B).

There are several potential ways to overcome this problem.
One could plan paths whose radius of curvature is always

greater than 1/κ. We suspect such curves can be followed
arbitrarily closely (if not exactly), although the high degree of
nonholonomy of the system may render this challenging.

An alternative approach would be to develop low-level
controllers that cooperate with the 2D planners by Alterovitz
et al. [16], [17]. Their planners, which rely on the needle
staying within a specified 2D plane, constructs a sequence of
circular arcs of radius 1/κ that can be achieved via alternating
insertions and 180◦ rotations of the needle shaft. A real-time
replanner corrects for within plane deviations from the desired
piecewise circular path. In prior work, Kallem and Cowan
[18] designed and implemented in simulation and laboratory
experiments an observer-controller pair that steers a needle
to stay within a desired 2D plane. In effect, this low-level
2D plane-following controller ensures that the needle remains
close to a desired 2D plane, on top of which Alterovitz et al.’s
planner can operate.

Our long-term research will generalize this real-time re-
planning and low-level control architecture. We envision a
“subspace planner” that chooses feasible subspaces, upon
which an Alterovitz-style planner [16] builds paths within each
subspace.

It is important to understand how the planning and control
architecture relates to the methodology outlined in Section
II. In needle steering, the entire space G is all of SE(3)—
positions and orientations of the needle tip in the tissue. The
space in which the planner acts—that is, motions within a
surface—is the symmetry group, or fiber, that defines the
projection from the entire space into the base space. The base
space is where the low-level controller operates in an effort to
drive the needle back to the desired surface.

To the best of our knowledge, prior work by Kallem and
Cowan [18], [19] is the only previous work done on controlling
the flexible bevel-tip needle. In this work, the authors use local
coordinates to parameterize the configuration space (SE(3)),
and performed a coordinate-based reduction “by hand” by
noting that the three configuration variables central to the
control task evolved independently of the others. Here, we
apply the general framework developed in Section II for two
additional tasks.



Fig. 3. Illustration of the bundle section. Unit vector $ bisects r and e1. If
the r is rotated about $ as axis by π then it coincides with e1. The circle
through the points r and (1, 0, 0) is a latitude of S2 drawn perpendicular to
$. Note that π · s(r) = (e$̂(r)π)−1e1 = r.

B. Stabilizing the Needle Tip Parallel to a Plane

Without any loss of generality, let the desired plane be the
y− z plane. The configuration space G is SE(3). The control
task is to stabilize the needle tip to a plane parallel to the y−z
plane. In other words, it is desired that the circle the needle
tip traces at steady state, during insertion without any rotation
at the base, be parallel to the y − z plane.

The task can be described as the zero of the function, ϕ
given by

ϕ(g) = ϕ(R, p) = 1− eT1 Re1

where g ∈ SE(3) is represented as in (13) and ei’s for i =
1, 2, 3 are the principal unit vectors in three dimensions. This
form of the function ϕ is for the cases when the needle tip in
steady state undergoes rotation about the positive x-axis. In the
case when the needle tip undergoes rotation about the negative
x-axis, the function, ϕ, can be defined as ϕ = ϕ(R, p) =
1 + eT1 Re1.

Here the symmetry group is

H = {h ∈ SE(3) : ∀g ∈ SE(3), ϕ(hg) = ϕ(g)}
=
{
x ∈ SE(3) | x = (eê1θ, p) where θ ∈ R and p ∈ R3

}
= X ∼= SO(2)sR3 ∼= SE(2)× R.

The symmetry group, H , can be thought of as a combination
of 2D transformations in the y − z plane and translations
along the x-axis relative to the world frame. With these group
definitions, B := G/H = S2. Define a projection map from
G to B as

π(g) = π(R, p) = R−1e1.

Choose an open subset U of B as the unit sphere excluding
the (−1, 0, 0) point. That is U = S2 − {(−1, 0, 0)}. Define
the bundle section on U , s : U → π−1(U) ⊂ G as

s(r) = (e$̂(r)π, 0),

where $(r) = e1+r
‖e1+r‖ . This section can be seen in Figure

3. With this section, locally g ∈ G can be expressed as
g = hs(r) ' (h, r), where h ∈ H and r ∈ B. To
completely cover S2, consider U ′ = (S2 − {(1, 0, 0)}) and
a similar section can be constructed.5 These make the map π

5One can choose s′(r) = (eê3πe$
′π , 0), where $′ = −e1+r

‖−e1+r‖ .

a principal bundle which can be summarized by the following
commutative diagram:

SE(3)

π /SO(2)×R3

��

⊃ π−1(U)
ψ−1

//

π

��

H × U
ψ

oo

B = S2 ⊃ U = S2 − {(−1, 0, 0)}

s

II

We assume that the insertion speed is held constant at v = 1.
Base space elements can be written in coordinates as r =[
r1, r2, r3

]T ∈ R3 with r2
1 + r2

2 + r2
3 = 1. The base space

dynamics are

ṙ =

 0
κr3

−κr2

+

 r2

−r1

0

ω. (14)

The fiber variable h = (eê1θ, p) ∈ H satisfies

θ̇ê1 = Ads̄(r)

(
κê1 + ωê3 − s̄(r)−1 ∂s̄(r)

∂r
ṙ

)
,

ṗ = eê1θ s̄(r)e3,

(15)

where s̄(r) = e$̂(r)π .
For the task to be completed, the state in the reduced system

should be r =
[
±1, 0, 0

]T
. Choosing the following control

input we show that the task is achieved:

ω = kr2, for some k ∈ R+. (16)

Once again, we use the task function in base coordinates as a
candidate Lyapunov function, namely ϕ(r) = 1−r1. The time
derivative of the Lyapunov function is ϕ̇(r) = −kr2

2 which is
negative semi-definite in r. The set where ϕ̇ = 0 is given by
E = {r =

[
r1, r2, r3

]T ∈ S2|r2 = 0}. The largest invariant
set in E contains only the points r =

[
±1, 0, 0

]T
. Hence,

from LaSalle’s invariance principle, we can conclude that the
needle tip can be stabilized to a plane parallel to the desired
plane. Notice that asymptotically the fiber dynamics become

θ̇ = κ; ṗ = (0, sin θ,− cos θ)T .

This shows us that the fiber variables trace a circle of radius
1/κ, which we knew from the needle steering model. Further
by considering the local chart (r2, r3) and by eigen-value
analysis one can show that the equilibrium point r =

[
1, 0, 0

]T
(corresponding to the needle tip tracing a circle of radius 1/κ
parallel to the y − z plane counter clockwise) is stable, and
the other equilibrium point unstable. For the needle tip to trace
the circle clockwise, let ω = −kr2 for some k ∈ R+.

Figure 4(A) shows an example simulation run. The initial
condition is such that without any control the needle tip would
trace circle not parallel to the y − z plane. With the use of
the above developed controller, the needle tip in steady state
traces a circle parallel to the desired y − z plane.

C. Controlling the Needle Tip to a Sphere

In this section we use the reduction technique developed in
section II to control the needle tip to the surface of a sphere
with radius ρ > 1/κ. If the needle tip stays on the surface of
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Fig. 4. (A) Needle tip driven so that at needle tip trajectory becomes parallel to the y − z plane. (B) Needle tip driven to the desired sphere. Initially the
needle tip is away from the desired sphere (drawn in the figure) but with the application of the controller, it converges to the surface of the sphere. Axis
scales are in cm.

the desired sphere at steady state it has to follow a circle of
radius % = 1/κ. Let d =

√
ρ2 − %2. If the needle is staying on

such a circle on the surface of the sphere, the position vector
of the center of the sphere written in the body frame is given
by R−1p. This must be

[
−d, %, 0

]T
or
[
d, %, 0

]T
depending

on which direction the needle tip is following the circle of
radius %.

In this example, the control task can also be described as
the zero of the function

ϕ(g) = ϕ(R, p) =
∥∥∥R−1p−

[
−d, %, 0

]T∥∥∥2

or
ϕ(g) = ϕ(R, p) =

∥∥∥R−1p−
[
d, %, 0

]T∥∥∥2

depending on the direction the needle tip follows the circle. It
is easy to see that H = SO(3) leaves the function, ϕ, invariant.
Hence, the symmetry group, H , for this control task is SO(3).
The base space, B := G/H = R3. The bundle projection
π : SE(3)→ R3 is given by

π(g) = R−1p

where g = (R, p) ∈ SO(3)sR3 ∼= SE(3). This bundle is
trivial because we can construct a global section s : R3 →
SE(3) as

s(r) =
[
I3×3 r
0T 1

]
.

Given (R, r) ∈ H × B = SO(3) × R3, the corresponding

g ∈ SE(3) can be calculated as g =
[
R Rr
0 1

]
. This principal

bundle can be represented by the following commutative
diagram:

SE(3)

/SO(3)

��
B = R3

s

II

Assuming v = 1, the dynamics in the base space can be written
as

ṙ =

 0
κr3

1− κr2

+

 r2

−r1

0

ω (17)

and the fiber variable R ∈ H = SO(3) satisfies

R−1Ṙ = κê1 + ê3ω. (18)

The control input

ω = −k(dr2 + %r1) for some k ∈ R+ (19)

makes the base variable, r, converge to
[
−d, %, 0

]T
. Consider

the reduced task functional as the candidate Lyapunov func-
tion: ϕ(r) = 1

2 (r1 +d)2 + 1
2 (r2−%)2 + 1

2r
2
3 . Its time derivate,

ϕ̇(r) = ω(dr2 + %r1) = −(dr2 + %r1)2, is negative semi-
definite. The invariant subset of the set where ϕ̇(r) = 0 con-
tains only r =

[
−d, %, 0

]T
. Again using LaSalle’s invariance

principle we can conclude that the needle tip stays on the
surface of the desired sphere. To follow the circle in the desired
sphere in the other direction, choose ω = dr2 − %r1.

Figure 4(B) is an anecdotal simulation of the needle staying
on the surface of a desired sphere. The needle starts away from
the desired sphere and asymptotically converges to the surface
of the sphere.

V. TASK-INDUCED REDUCTION ON MECHANICAL
SYSTEMS

In this section we present how the above developed task-
induced reduction extends to the Lagrangian systems. In the
first stage, we perform a previously developed mechanics-
based “intrinsic” reduction to separate the configuration space
into a shape space and a symmetry (Lie) group. We then
perform task-induced reduction to further reduce the symmetry
group into a base space and a fiber as in Section II.

Consider the mechanical system whose configuration space
is Q, Lagrangian is L(q, q̇), (q, q̇) ∈ TQ and has only
nonholonomic constraints of the form w(q)q̇ = 0. Assume
that the Lagrangian and the constraints are invariant to a left
action of a Lie group, G. It has been previously shown that
such a system can be decoupled into the symmetry group, G
and the shape space, S = Q/G,6 namely Q = G×S (locally).
The reduced equations are given in the following Proposition.

6In the literature the space S = Q/G is referred as both shape space and
as base space. In the current work, we only refer to it only as the shape space
and B = G/H (defined in Section II) as the base space.



Proposition 5.1: (Ostrowski [5]) For the above described
mechanical system, assume that the input forcing occurs only
in the shape space and that no constraint lies completely in
the shape space. The reduced system equations can be written
as

M(σ)σ̈ =− C(σ, σ̇)σ̇ −N(σ, σ̇,Π) + τ (20)

Π̇ =f(σ, σ̇,Π), (21)

where σ ∈ S denotes the shape variable, Π ∈ g∗ denotes
the generalized momenta and τ the generalized input force
on the systems. The symmetry group variable, g ∈ G, can be
reconstructed as

g−1ġ = −A(σ)σ̇ + Ī−1(σ)Π. (22)

If there are m nonholonomic constraints, then there are n−
m generalized momenta, where n is the dimension of the Lie
group, G. In particular, for principally kinematic systems m =
n thus resulting in no generalized momenta. In other words,
for these systems the group variable can be reconstructed from
the nonholonomic constraint equations and this simplifies the
reduced system equations further. More details on the structure
and computations can be found in propositions 4.3 and 5.1
in [5] and also in [4], [8].

Observe that the symmetry group dynamics given in (22) is
a left-invariant vector field on the Lie group, G. Assume that
there is a task defined completely on the group space. If this
task induces a symmetry as described in previous sections, we
can further decompose G. As before, we consider cases where
the control task is encoded as the zero value of a functional
ϕ : G→ R defined on the configuration space. Let H be the
subgroup of G invariant to the task, namely

H = {h ∈ G : ∀g ∈ G,ϕ(hg) = ϕ(g)}.

Since H is a subgroup of G, there exists a bundle projection
π : G→ B := G/H . Also since H does not affect the control
task, we consider the state evolution only in the base space.

Corollary 5.2: The reduced equations in the base space,
B = G/H , are

ṙ = f1(r, σ,Π) + f2(r, σ)σ̇ (23)

where f1(r, σ, p) = Tπ · gĪ−1p and f2(r, σ) = −Tπ · gA(σ)
and those in the fiber, H , are

h−1ḣ = Ads(r)
(
−A(σ)σ̇ + Ī−1(σ)Π− s(r)−1Ts · ṙ

)
.
(24)

Proof: Following the proof for the proposition 2.1, the
base dynamics (23) result from the observation that the vector
field on G is left-invariant to G and the projection π is invariant
to H , which is a subgroup of G. The fiber dynamics (24) is
exactly the same computation as (4).

Locally, Proposition 5.1 decomposes an entire configuration
space as the cross product of the symmetry group and shape
space, namely Q = G × S ≡ G × (Q/G). Corollary 5.2 can
be conceived as further decomposing G into a base and fiber
in its own right, due to the task-induced symmetry fiber H ,

so that we have

Q =

G︷ ︸︸ ︷
H ×

B︷ ︸︸ ︷
(G/H)×

S︷ ︸︸ ︷
(Q/G) (25)

at least locally, or globally in the case that G = H × B and
Q = G×S are both trivial bundles. Here, Q is decomposed via
the mechanical reduction of Proposition 5.1, and G is further
decomposed via the task reduction of Corollary 5.2.

A. Circle-Following of a Differential Drive Robot

We illustrate task-induced reduction on mechanical systems
via an example: circle-following of a differential drive robot
moving on a 2D horizontal plane as shown in Figure 5(A). Let
g ∈ SE(2) be the position and orientation of the differential
drive robot and (σ1, σ2) be the wheel angles. Let ρw be the
wheel radius and w be the half-distance between the wheel
axes, and m, J and Jw be the mass of the robot, inertia of the
robot and inertia of the wheels respectively, and τ = [τ1, τ2]T

be the motor torques at the wheels. The configuration space
of the robot is Q = SE(2)× S1 × S1. Ostrowski [5] showed
the Lagrangian reduction can be performed on this robot,
decoupling the configuration space into the fiber SE(2) and the
base space S1×S1 = T 2. This system has three nonholonomic
constraints describing the no-slip condition making this a
principally kinematic system. The dynamics in the reduced
space are given by

M

[
σ̈1

σ̈2

]
=
[
τ1
τ2

]
, (26)

where

M =

[
Jw + mρ2w

4 + Jρ2w
4w2

mρ2w
4 − Jρ2w

4w2

mρ2w
4 − Jρ2w

4w2 Jw + mρ2w
4 + Jρ2w

4w2

]
.

The symmetry group dynamics are

g−1ġ =

 0 −ς̇2 ς̇1
ς̇2 0 0
0 0 0

 , (27)

where

ς1 =
ρw
2

(σ1 + σ2) and ς2 =
ρw
2w

(σ1 − σ2)

is a reparameterization of the shape space, ς̇1 is the forward
velocity and ς̇2 is the angular velocity of the robot. Also, let
u1 = ρw

2 (e1 + e2)TM−1τ and u2 = ρw

2w (e1 − e2)TM−1τ ,
where e1 = [1, 0]T and e2 = [0, 1]T . In these new coordinates,
the shape space dynamics are given by[

ς̈1
ς̈2

]
=
[
u1

u2

]
. (28)

Consider the task of making the differential drive robot
follow a circle of radius ρ whose center is at the origin of
the world frame. Observe that the symmetry group dynamics
resemble the equations of motion of a planar cart with the
forward and angular velocities of the cart given as functions
of the wheel velocities. As in section III-B, we perform a task-
induced reduction with SO(2) as the fiber. The task-induced



Fig. 5. (A) Differential drive robot. World and body reference frames are shown. The body frame’s x-axis is along the forward translational velocity of the
robot. (B) Differential drive robot following a circle. Red dotted circle is the desired circle to be followed by the differential drive robot. Initially the robot
is away from the desired circle but with the application of the controller, it follows the circle. Axis scales are dimensionless for purposes of demonstration.

reduced space is given by r = R−1p, where g = (R, p). The
dynamics of the reduced space is given by

ṙ =
[
1
0

]
ς̇1 +

[
0 1
−1 0

]
rς̇2 (29)

and the fiber variable, θ, satisfies

θ̇ = ς̇2. (30)

We now use the control scheme developed in Section III-B
along with an integrator back-stepping algorithm [20] to make
the differential drive robot follow the desired circle. One can
show that the following control law makes the robot follow
the desired circle

u =
∂φ

∂r
Aς̇ −

(∂ϕ
∂r
A
)T
− k(ς̇ − φ), k ∈ R+,

where

A =
[
1 r2

0 −r1

]
, φ =

[
1

−(1 + r1)/ρ

]
,

and

ϕ =
1
2
r2
1 +

1
2

(r2 − ρ)2.

Global convergence of this controller can be shown using
the Lyapunov function, V = ϕ + 1

2 ‖ς̇ − φ‖
2. Figure 5(B)

is an example simulation of the circular wall-following in a
differential drive robot. The robot is initially away from the
desired circle but, it asymptotically follows the desired circle.

VI. DISCUSSION AND FUTURE WORK

We develop a general framework to perform task-specific
reduction in kinematic systems on Lie groups. We apply this
method to two systems: a planar cart (as an illustrative exam-
ple), and flexible bevel-tip needle steering with configuration
spaces SE(2) and SE(3), respectively. In both the examples,
task-induced reduction enables us to design essentially global

feedback controllers on the reduced systems. We envision that
the methodology presented in this paper will form the basis
for a new planning and control framework for needle steering.

We extend the framework to mechanical systems whose
Lagrangian and constraints are left-invariant to a Lie group.
From previous work on “intrinsic” Lagrangian reduction it
is known that dynamics on the shape space can be obtained
from the reduced Lagrangian, while a reconstruction equation
generates motions in the symmetry group. This reconstruction
equation describes how motions in the shape space produce
Lie group motions. As we show in the differential drive robot
example, certain control tasks enable us to perform a second
“extrinsic” (task-specific) reduction, thus further decomposing
the symmetry group into a base and fiber. Such an analysis is
also amenable to other mechanical systems like skateboards,
bicycles, and snake robots. As in the needle steering case, task-
induced symmetry will likely facilitate planning and control
for other mechanical systems.

In all the examples in Sections III and IV, task-induced
reduction simplifies control design. Further, in the kinematic
systems, the task-functional serves as a Lyapunov function
and the control input is chosen accordingly. In the differential
drive robot example, the task-functional is again used as a
part of the Lyapunov function. In all these cases, the task-
functional provides a guiding mechanism for controller design.
This suggests that there may be a general control theory for
systems exhibiting task-induced symmetry, at least for some
class of mechanical systems. Specifically, we expect this to
hold for principally kinematic systems whose base variables
are completely controllable. For these systems, we speculate
that integrator back-stepping is possible, thus reducing the
mechanical control problem to that of kinematic control. This
direction of future research, we think, will be very useful in
controlling complicated higher-dimensional systems.
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APPENDIX

The Lie groups discussed in this paper in detail are
the Euclidean groups SE(2) = SO(2)sR2 and SE(3) =
SO(3)sR3. The symbol s denotes semi-direct product. If
R1, R2 ∈ SO(n) and p1, p2 ∈ Rn, the product in the group
obtained by the semi-direct product of SO(n) and Rn is given
by (R1, p1)∗(R2, p2) = (R1R2, p1 +R1p2). Note that as sets,
SE(n) = SO(n) × Rn but as groups, SE(n) = SO(n)sRn.
We identify the tangent space TSE(3) of the Lie group SE(n)
with

TSE(n) ' SE(n)× se(n), (31)

where se(n) is the Lie algebra of SE(n). More details may
be found in [21], for example.

In particular for n = 3, the isomorphism R3 ' so(3) is
defined using the “wedge/hat” operators by

̂:

ω1

ω2

ω3

↔
 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 : ∨

where so(3) is the Lie algebra of SO(3). In a standard abuse of
notation the wedge/hat isomorphism R3sR3 ' se(3) relates
translational v and angular ω velocities to “twists” ξ ∈ se(3)
via

ξ∨ =
[
v
ω

]
, and

[
v
ω

]b
=
[
ω̂ v
0 0

]
= ξ.

The identification (31) can be rewritten as

(g, ġ) 7→ (g, g−1ġ) 7→ (g, ξ) (32)

where ξ = g−1ġ, ω =
(
R−1Ṙ

)∨
, and v = R−1ṗ.
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