
Vision-Based Control on Lie groups

with Application to Needle Steering

by

Vinutha Kallem

A dissertation submitted to The Johns Hopkins University in conformity with the

requirements for the degree of Doctor of Philosophy.

Baltimore, Maryland

June, 2008

c© Vinutha Kallem 2008

All rights reserved



Abstract

This thesis presents vision-based control algorithms for systems evolving on Lie

groups. The thesis consists of two parts: (1) task-induced symmetry and reduction and

its application to needle steering and (2) kernel-based visual servoing.

The core of this thesis is motivated by image-guided control of flexible bevel-tip nee-

dles. Image guidance promises to improve targeting accuracy and broaden the scope of

medical procedures performed with needles. We build upon a previously proposed non-

holonomic kinematic model of flexible bevel-tip needle steering in which the needle is

inserted and rotated at its base in order to steer it in six degrees of freedom. As a first step

for control, we show that the needle tip can be automatically guided to a planar slice of tis-

sue as it is inserted by a physician; our approach keeps the physician in the loop to control

insertion speed. The distance of the needle tip position from the plane of interest is used

to drive an observer-based feedback controller. We prove that the complete six degree-of-

freedom pose of the needle tip can be estimated from just the three-dimensional needle tip

position measurements over time. This enables us to develop dead-beat and asymptotic

observers to recover needle-tip orientation for control.
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ABSTRACT

The task of driving a needle tip to a desired plane induces symmetry resulting in a

reduced system which greatly simplifies controller and observer design. We propose a

method to perform such reduction for generic nonholonomic kinematic systems on Lie

groups with left-invariant vector fields. This technique is used to develop controllers for

curve-following of a unicycle and subspace-following in needle steering. These subspace

controllers for needle steering are designed to work in conjunction with subspace planners

for the needle tip to reach a desired location in human tissue. We show that this task-

induced reduction lifts to mechanical systems as well.

In the second part of the thesis, we present kernel-based visual servoing algorithms.

In visual servoing, the goal is to control the motion of the robot/scene such that a set

of image features converge to a known constellation; this requires tracking these feature

points in every frame. Moving away form the traditional visual servoing approaches that

have treated tracking and control as two isolated problems, kernel-based visual servoing

paradigm fuses tracking and control by removing the need to explicitly track features in

a scene. In this method, a weighted average of the image (or its transform) is used as the

signal to the controller; the weighting function is a smooth kernel and the weighted average

is called the kernel measurement. Using smooth kernel functions, we design, develop,

and test controllers to navigate a robot to reach a desired goal in the three translational

and roll degrees of freedom for an eye-in-hand configuration. This work provides a new

framework to design vision-based controllers on natural images and their formal stability

characterization using Lyapunov theory.
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Chapter 1

Introduction

Vision is one of the most important sensors in animals and humans and also in robotic

systems. Vision-based control has applications in a wide variety of robotic tasks rang-

ing from automated highways, navigation of unmanned vehicles, factory manufacturing,

automated homes to medical interventions. In this work, we present vision-based con-

trol algorithms for robotic systems evolving on Lie groups. This thesis consists of two

parts: (1) task-induced symmetry and reduction and its application to needle steering and

(2) kernel-based visual servoing. In both these problems, the sense of vision is enabled

through cameras, and Lyapunov theory is used to show the stability of the controllers.

The core of this thesis is motivated by the design of feedback controllers for flexible

bevel-tip needle insertions into human tissue. When a flexible-bevel tip needle is inserted

into tissue, due to the geometry of the tip asymmetric cutting forces are generated on the

tip thus bending the needle. It has been shown that the needle follows a circular arc and
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CHAPTER 1. INTRODUCTION

if the base of the needle outside the tissue is rotated, the bevel direction reorients and the

needle bends in a new direction. This needle insertion has been modeled as a 6 degree-of-

freedom (DOF) nonholonomic system [85] with two inputs, namely the forward insertion

and the rotation at the base of the needle shaft. As a first step to controlling this system,

we consider the task of driving the needle to a desired plane. The feedback signal we use is

the tip position. We show that this task induces symmetry and therefore a reduction in the

configuration space, thus simplifying the design of an observer–controller pair to achieve

the task. Numerical simulations demonstrate the stability and robustness of the controller

in the face of parametric uncertainty and measurement noise. Physical experiments with

bevel-tip Nitinol needles inserted into a transparent tissue phantom under stereo image

guidance validate the effectiveness of our controller.

The phantom tissue used in our laboratory experiments is transparent and thereby en-

ables the use of a pair of stereo cameras as our imaging modality. In contrast in the operat-

ing room, the imaging modality would be 3D ultrasound, biplane fluoroscopy, MRI or CT

scans or some combination of these. Using any of these imaging modalities, the needle tip

position can be measured, but since the needle shaft diameter is approximately 1mm, it is

challenging to directly measure the orientation of the needle. However, we show that with

just the tip position measurements, the full 6-DOF pose of the needle is observable. We

develop dead-beat and asymptotic observers to estimate the needle orientation.

Inspired by this application to needle steering, we generalize the notion of task-induced

symmetry and reduction to other systems. Typically, the symmetries that one exploits
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CHAPTER 1. INTRODUCTION

to obtain dimensional reduction in a mechanical system are intrinsic to the mechanical

system at hand, e.g. invariance of the system’s Lagrangian to some group of motions. Here,

we consider symmetries that arise from an extrinsic control task, rather than the intrinsic

structure of the configuration space, constraints, or system dynamics. We illustrate this

technique with several examples, such as curve-following of a planar cart and subspace-

following of flexible bevel-tip needles. In these examples, the reduction in configuration

space enables us to design essentially global feedback controllers on the reduced systems.

We also demonstrate how the proposed technique dovetails with Lagrangian reduction for

second order systems.

In the second part of this thesis, we develop controllers for Kernel-Based Visual Servo-

ing (KBVS). Traditionally in visual servoing, a set of feature points are tracked and these

points are used either directly or indirectly as feedback signals to develop control algo-

rithms. This approach separates the problem into two subproblems, namely tracking and

control. In this work, we aim to eliminate the need for explicit tracking by combining

the two subproblems. We define the weighted sum of the image (or its transform) with a

smooth weighting function (called the kernel) as the kernel measurement of the image. We

then design visual servoing algorithms that drive the kernel measurement to that measured

at the goal location. We develop such algorithms for an “eye-in-hand” configuration over

four of the possible six degrees of freedom, namely the three degrees of translation, and

the roll about the optical axis of the camera. We implement these controllers on a 6-DOF

industrial robot and present experimental results.

3
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In summary, the contributions of the thesis are as follows:

- we design image-based controllers for steering flexible bevel-tip needles and imple-

ment the controllers in tissue phantom;

- we show that for the purpose of driving the needle to a desired plane, a reduced order

system suffices for the purposes of control and estimation;

- we develop an asymptotic observer to estimate the full 6-DOF pose from the 3D

position measurement when the needle is being driven to a desired plane;

- we generalize task-induction symmetry and reduction to kinematic systems on Lie

groups with left-invariant vector fields and then extend it to other mechanical sys-

tems;

- we develop kernel-based visual servoing controllers, a new paradigm where we elim-

inate explicit feature tracking to navigate a robot to a desired location in three trans-

lational and roll degrees of freedom.

1.1 Organization of thesis

The thesis is organized as follows. In the rest of this chapter we review some of the

concepts from geometric mechanics that are used in the thesis; readers familiar with these

concepts can skip this section. In Chapter 2 we present an introduction of needle steering

and a review of its nonholonomic kinematic model. In Chapter 3 we discuss the challenges

4
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in feedback control of flexible bevel-tip needles and present an image-guided observer-

controller to drive the needle to a desired 2D plane. We observe that to perform planar

control, only three of the six degrees of freedom of the system need to be considered. In

Chapter 4 we discuss the observability of the full 6-DOF pose of the needle from just its tip

position measurements and present dead-beat and asymptotic observers. We generalize the

concept of task-induced reduction to generic kinematic systems on Lie groups in Chapter 5

and extend it to mechanical systems as well. In Chapter 6 we present the KBVS algorithm

and experiments performed on a 6-DOF industrial robot. Finally, in Chapter 7 we discuss

future work and open questions resulting from this research.

1.2 Publications from the thesis

Parts of the thesis have been previously presented in the following publications [42–45]:

- V. Kallem, and N. J. Cowan. “Image-Guided Control of Flexible Bevel-Tip Needles”

in IEEE International Conference on Robotics and Automation (ICRA), Rome, Italy,

2007, pp 3015–2020.

- V. Kallem, D. E. Chang, and N. J. Cowan. “Task-Induced Symmetry and Reduction

in Kinematic Systems with Application to Needle Steering” in IEEE/RSJ Intelligent

Robots and Systems (IROS), San Diego, USA, October 2007, pp. 3302–3308.

- V. Kallem, M. Dewan, J. P. Swensen, G. D. Hager, and N. J. Cowan. “Kernel-Based

Visual Servoing” in IEEE/RSJ Intelligent Robots and Systems (IROS), San Diego,
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USA, October 2007, pp. 1975–1980.

- V. Kallem, and N. J. Cowan. “Image Guidance of Flexible Bevel-Tip Needles”, IEEE

Transactions on Robotics. Accepted.

1.3 Preliminaries

In this section, we review some of the key concepts from special Euclidean groups and

fiber bundles that are used in this thesis. For more detail, see [8, 40, 49, 60, 64].

1.3.1 Special orthogonal and special Euclidean groups

The Lie groups SO(n) and SE(n) are very common in robotics. The special orthogo-

nal group, SO(n), represents the rotation of rigid bodies in n dimensions and the special

Euclidean group, SE(n), represents the general rigid body motions in n dimensions. The

Lie algebra of SO(n) is so(n) which is the group of all skew-symmetric matrices in n

dimensions. se(n) = so(n)× Rn is the Lie algebra of SE(n).

Let the symbol s denote the semi-direct product operator. The special Euclidean

groups and special orthogonal groups are related by SE(n) = SO(n)sRn. If R1, R2 ∈

SO(n) and p1, p2 ∈ Rn, the product operation in the group obtained by the semi-direct

product of SO(n) and Rn is given by (R1, p1)∗ (R2, p2) = (R1R2, R1p2 +p1). Note that as

sets, SE(n) = SO(n) × Rn but as groups, SE(2) = SO(n)sRn. We identify the tangent

6



CHAPTER 1. INTRODUCTION

space TSE(n) of the Lie group SE(n) with

TSE(n) ' SE(n)× se(n), (1.1)

where se(n) is the Lie algebra of SE(n).

We follow the “wedge/hat” notation given in [64]. The “wedge/hat” isomorphism R '

so(2) is defined by

̂:ω↔

0 −ω

ω 0

 : ∨

where so(2) is the Lie algebra of SO(2). In a standard abuse of notation the “wedge/hat”

isomorphism RsR2 ' se(2) relates angular ω and translational v velocities to “twists”

ξ ∈ se(3) via

ξ∨ =

v

ω

 , and

v

ω


b

=

ω̂ v

0 0

 = ξ.

The “wedge/hat” isomorphism R3 ' so(3) is defined by

̂:


ω1

ω2

ω3

↔


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 : ∨

where so(3) is the Lie algebra of SO(3). In a standard abuse of notation the “wedge/hat”

isomorphism R3sR3 ' se(3) relates angular ω and translational v velocities to “twists”

7



CHAPTER 1. INTRODUCTION

ξ ∈ se(3) via

ξ∨ =

v

ω

 , and

v

ω


b

=

ω̂ v

0 0

 = ξ.

More details may be found in [60], for example. The identification (1.1) occurs via left

translation, i.e.

(g, ġ) 7→ (g, g−1ġ) = (g, ξ) (1.2)

where ξ = g−1ġ, ω =
(
R−1Ṙ

)∨
, and v = R−1ṗ.

1.3.2 Fiber bundles and principal bundles

Fiber bundles are used in the symmetry and the reduction literature to decouple systems

into smaller systems. Here we give a brief overview on them. Please refer to [40, 49] for

more detail.

Definition 1.3.1 LetQ be a differentiable manifold andG be a Lie group. The left (group)

action of G on Q is the function φ : G×Q 7→ Q defined such that

(i) if e is the identity element of G then φ(e, q) = q, ∀q ∈ Q

(ii) φ(g, φ(h, q)) = φ(gh, q), ∀g, h ∈ G and q ∈ Q.

In general, group actions can be defined on any set X , but for our purposes, it is enough to

define them for differentiable manifolds. The action is said to be free if for any two distinct

g, h ∈ G, φ(g, q) 6= φ(h, q) for all q ∈ Q.

8
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Definition 1.3.2 Let Q be a differentiable manifold and G be a Lie group that acts on Q.

Let q be an element of Q. The G orbit of q is defined as the set

Orb(q) = {gq ∈ Q : g ∈ G}.

Definition 1.3.3 Let Q be a differentiable manifold and G be a Lie group. The G-orbit

space is defined as the set containing all the orbits of Q. It is also called as the quotient

space and denoted as Q/G.

Definition 1.3.4 [40] A bundle is a triple (E, π,M) where E and M are differentiable

manifolds and the map π : E → M is a continuous map. The space E is called the entire

space, M is called the base space and the map π is called the projection map. The inverse

image π−1(x) is called the fiber over x ∈M .

If all the individual fibers π−1(x), for x ∈ M are diffeomorphic to a common space, F ,

then F is called the fiber of the bundle and such a bundle is referred to as a fiber bundle.

Locally, E = M × F ; if this relationship is global, the fiber bundle is trivial.

Definition 1.3.5 Let H be a Lie group. If the fiber bundle (E, π,M) is such that

(i) H acts freely on E, and

(ii) individual fibers π−1(x), for x ∈M , are diffeomorphic to H .

then it is called a H-principal bundle. Also, in this case M is homeomorphic to E/H .

9



CHAPTER 1. INTRODUCTION

All the bundles we deal with in this thesis are principal bundles.

Definition 1.3.6 Let (E, π,M) be a H-principal bundle. The map s : U ⊂ M → E is

called a local section if it is defined such that

π ◦ s = IdU

i.e.

π(s(r)) = r,∀r ∈ U.

This section, s, induces the local trivialization which is a local diffeomorphism defined

by the map:

ψ : H × U → π−1(U), (h, r)→ h s(r).

Its inverse ψ−1 : π−1(U)→ H × U is given by

ψ−1(q) = (q/s(π(q)), π(q)),

where the operation q2/q1, for q1, q2 ∈ E is defined as q2/q1 = {h ∈ H : hq1 = q2}.

If further the entire space is itself a Lie group (as in the cases discussed in this work),

the inverse map ψ−1 : π−1(U)→ H × U is given simply by

ψ−1(q) = (q (s(π(q)))−1, π(q)).
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Part I

Task-Induced Symmetry and Reduction

with Application to Needle Steering
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Chapter 2

Introduction to Needle Steering

Many diagnostic and therapeutic procedures require accurate needle targeting. In in-

terventional brachytherapy for cancer treatment, a physician repeatedly inserts a long thin

needle into human tissue, guides it to a target, and then delivers a radioactive seed. In

fine needle aspiration biopsy and needle core biopsy, the physician guides a needle to a

designated area to remove a small amount of tissue to test whether a tumor is malignant or

benign. In thermal ablation, a needle delivers localized thermal energy to destroy malignant

tissue. Needles are also used to anesthetize a part of the tissue locally. Successful outcomes

for needle-based interventions such as these critically depend on accurate targeting [65,90].

Improving needle targeting accuracy and expanding the applicability of needle interven-

tions in general, involves actively steering a needle as it is inserted into tissue. Physicians

often rely on pre- or intra-operative medical imaging to guide a needle to its target. Several

factors limit performance, including the amount of steering that a needle affords after it is
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inserted, noisy sensors, imperfect actuators, and tissue deformations. Furthermore, naviga-

tion in 3D under image guidance by manipulating the needle at its base (from outside the

patient) requires profound spatial reasoning skills and extensive training. In the past few

years, there has been a large effort to overcome these limitations by improving insertion ac-

curacy through usage of robotic systems or needle placement devices for needle insertions

and better imaging modalities, needle tissue interaction models, and planning algorithms.

Concurrently, new needle design research, such as on curved or pre-bent needles, flexible

needles, needles with a stylus at the tip and flexible bevel-tip needles has aimed to ex-

pand the applicability of needle insertions in medical procedures by their ability to reach

locations in the tissue that cannot be reached by traditional rigid symmetric-tip needles.

2.1 Previous work

Research on placement devices has focused on designing robots/devices that can be

used in tandem with existing imaging systems like fluoroscopy and MRI. Stoianovici et

al. [76] build a 2 degree-of-freedom (DOF) Remote Center of Motion (RCM) mechanism

designed to conjointly work with a radiolucent needle driver for percutaneous renal ac-

cess. The RCM robot is a 7-DOF robot that can be controlled by a joystick or directly

through a computer. The radiolucent needle driver does not impose any obstructions to

X-ray or CT scanning, and thus the RCM robot can be used along with existing X-ray

and CT scanners in the operating rooms. Wei et al. [88] build a 6-DOF robot for prostate

13
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needle interventions. Using real-time transrectal ultrasound (TRUS) guidance, the authors

obtained a target accuracy of less than a 1mm. DiMaio et al. [21] design a robot-assisted

needle placement device for prostate interventions to be used along with MRI guidance.

The device is built from non-ferrous materials and therefore the high resolution, high soft

tissue contrast of MRI images can be utilized to improve the needle targeting accuracy.

Sze [77] studies the use of curved needles to perform biopsies and drainages. The

needles are curved so that the radius of curvature is approximately that needed to avoid

sensitive organs or bones to reach a percutaneous target. Procedures were successively

conducted using real-time CT or MR images and required more than one pass, with the

needle curvature altered in between them. Carrasco et al. [12] also use manually curved

needles to perform liver biopsies.

Okazawa et al. [66] build a hand held steerable needle device; they modify an existing

needle by placing a stylet at the needle tip which can be to deployed to change the curvature

of the needle insertion path. Webster et al. [86] design and develop flexible bevel-tip nee-

dles that follow circular arcs when inserted into tissue. Engh et al. [27] add airfoil shaped

tips to these flexible needles and obtained tighter curvature of needle insertion paths. Di-

Maio and Salcudean [22] show that needles that are stiff relative to the surrounding tissue

can be steered by moving the base of the needle to deflect the tissue as the needle is inserted;

using finite elements methods, they model this effect as a kinematic control system with a

numerically determined Jacobian matrix that relates base motions to needle-tip motions.

Glozman and Shoham [31] model the interaction between a flexible symmetric-tip nee-
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dle and surrounding tissue using virtual springs to compute local deformations and use it

for planning purposes. Webster et al. [85] consider flexible bevel-tip needles that follow a

curved path due to asymmetric cutting forces at the needle tip; they model this effect using

a nonholonomic, kinematic system, and the present work builds directly on this model. In

both the rigid and flexible cases described above, the inputs to the needle base are treated

as inputs to a kinematic control system.

In an operating room image-guided needle insertions are performed using ultrasound,

CT scans or MR imaging or a combination of them. Segmenting or tracking the needle

in these images is non-trivial as these images are very noisy. Wei et al. [87] find the 3D

direction of the needle trajectory inside the tissue relative to the transducer using 3D TRUS

imaging. The needle segmentation is done using standard image differencing and intensity

thresholding then the voxels in the difference image which are not connected are thrown

away and a straight line is fit for the rest. This straight line is approximately the trajectory

the rigid needle followed in the tissue. Using this technique, the authors obtained an ac-

curacy of about 0.12◦. Ding et al. [24] also find the 3D direction of the needle trajectory

inside the tissue using 3D TRUS imaging. They present a computationally efficient method

that first finds a plane in which the trajectory of the rigid symmetric-tip needle lies in three

dimension and then performs a 1D search in this plane to find the needle trajectory direction

and obtain an accuracy of 1◦. While these methods are good for needle insertions done with

rigid-symmetric tip needles, they will not work for flexible bevel-tip needles since needles

do not follow straight lines. To find the 3D needle tip position, Abolhassani et al. [2] use a
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Aurora magnetic tracking system from Northern Digital Inc. by place its sensor coil inside

the needle. If the coil is small enough, this method is amenable to many kinds of hollow

needles.

When a rigid needle is inserted into tissue, the tissue deforms and this sometimes results

in the needle not reaching the target. Using linear 2D finite element models, Alterovitz

et al. [5] compute the necessary offset to the needle entry point into the tissue to pre-

compensate for these tissue deformations. DiMaio and Salcudean [22] define artificial

potential fields with repulsive potentials around obstacles and couple it with the numerical

Jacobian to find a path that drives a rigid needle to a desired goal location from an initial

position.

Alterovitz et al. [3] use soft tissue modeling and local nonconvex optimization to plan

paths for flexible bevel-tip needle interventions in 2D while avoiding polygon shaped ob-

stacles. They avoid obstacles by penalizing the needle paths that enter into or pass through

the obstacles. In this work, the authors assume that the bevel direction of the needle can

be chosen only once and is set at the beginning of the insertion. In [4], Alterovitz et al.

extend their planning algorithm to multiple bevel direction flips. In this work too, they limit

their planning to 2D and use dynamic programming for planning algorithms that generate

desired needle trajectories within a 2D plan, for flexible bevel-tip needle insertions. The

output of these 2D planners is a path that can be followed by alternating between forward

insertion (without rotation) of the needle into the tissue and 180◦ rotation (without inser-

tion) of the needle base. For workspaces with no obstacles, Park et al. [68] formulate the
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planning problem as diffusion-based motion planning on SE(3) to obtain feasible paths to

reach the target.

Given a set of polygon-shaped obstacles, there are multiple paths that the needle can

take to reach the target. If the models for tissue deformation and needle friction were per-

fect, the ideal path would be the shortest path. But since there are modeling errors, there

could be another possibly longer path that should be taken to reach the target. Alterovitz et

al. [6] develop a planning algorithm (based on a stochastic road map) for flexible bevel-tip

needles that maximizes the success of reaching the percutaneous target while avoiding ob-

stacles. Duindam et al. [25] propose a 3D motion planning algorithm for flexible bevel-tip

needle insertions with spherical obstacles in the workspace. They introduce two different

discretizations ((i) insert, stop and turn, and (ii) helical motions where the rotation speed

of the needle is proportional to the insertion speed) and nonlinear optimization to plan for

feasible paths.

Romano et al. [73] use the needle steering robot as a teleoperator slave, with the Free-

dom 6S haptic device as the master controller operated by a human under image guidance.

Experiments on the teleoperation of steerable needles show that subjects employ varied

strategies to perform the same task and with varying success; the success increased when

the human controlled both the insertion and rotation inputs.

When a flexible bevel-tip needle is inserted in to tissue, there could be differences in

the roll orientation of the base of the needle and that of the needle tip due to the friction

between the tissue and needle. That is, if the needle base is rotated, the needle tip might
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rotate less than the needle base; this creates torsional built up along the needle shaft. Reed

et al. [71] conducted torsional experiments on different kinds of artificial and biological

tissues. They found that plastisol, which we use as our tissue phantom, has some torsional

built up but is significantly lower than that observed in porcine gelatin and ballistics gel.

They have also noted that real tissue like chicken breast do not exhibit much torsional built

up, likely due to the presence of lubricating liquids like blood in the tissue. Reed [70] used

finite element methods to model the torsional effects, assuming that the tissue is rigid. The

author uses these models to reduce the roll orientation discrepancies between the base and

the tip of the needle.

Refer to Abolhassani et al. [1] for a recent survey on needle insertions, modeling and

simulations. Building on these recent improvements in needle placement, imaging, and

planning, we propose to use model-based feedback control theory for the first time, to the

best of our knowledge, for real-time image-based needle steering. This approach relies on

models of needle steering amenable to systems theory (as opposed to, say, finite element

models). Recent efforts make progress towards such “plant models” for manipulating a

needle from outside the patient. Among these needle insertion models, the one by Webster

et al. seems to be the most amenable to a systems-theoretic approach for control.

Of particular note in the present context is the work by Glozman and Shoham [32],

who develop a novel image-guidance strategy for flexible needles without a bevel tip. First

they plan a needle path that avoids obstacles in the workspace. Then at every time step

they invert a virtual spring model to obtain the translation and orientation of the needle
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base (the inputs) in order to drive the needle back to the planned path in one step. We build

on this notion by taking a systems-theoretic perspective and apply observer-based feedback

control to achieve a desired task. This enables us to articulate analytical performance limits

of our controller, such as the domain of attraction. Moreover, our approach only requires

the extraction of the needle tip position from images, rather than the entire needle curve,

thereby simplifying image segmentation.

2.2 Needle steering system overview

A flexible bevel-tip needle can be steered by rotation and insertion at the base of the

needle outside the patient [28, 85]. As the flexible bevel-tip needle (Figure 2.1) is inserted,

the asymmetry of the bevel creates a moment at the needle tip, deflecting the needle and

causing it to follow a circular arc. As the needle base is rotated, the bevel tip is reoriented in

space, so that subsequent insertion follows another circular arc in 3D space. If the rotation

amount is not a multiple of 180◦ then the new circular arc lies in a different plane from the

first one. A sequence of these arcs can be used to reach a point in the tissue while avoiding

sensitive organs and bones.

We use the setup shown in Figure 2.2, which is similar to that described in [85], for

image-guided needle steering experiments. In the setup, transparent tissue phantoms made

from plastisol, which is a mixture of liquid PVC plastics and the plasticizer adipate (M-F

Manufacturing Co., Inc., Fort Worth, TX), simulate human tissue. An overhead stereo pair
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Figure 2.1: Flexible bevel-tip needle. As the needle is inserted into tissue, the asymmetry
of the bevel creates a moment at the needle tip, deflecting the needle and causing it to
follow a circular arc. As the needle base is rotated, the bevel tip is reoriented in space, so
that subsequent insertion follows another circular arc.

Figure 2.2: The needle steering device inserts the needle into the tissue phantom while the
needle tip position is tracked using two overhead stereo cameras.
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of XCD-X710 firewire cameras (Sony Corporation, Tokyo, Japan) capture images of the

needle as it is inserted into the phantom by a 2-DOF needle insertion device. The insertion

device is comprised of a stepper-motor-driven linear stage that drives the insertion degree

of freedom and a DC servo motor that axially rotates the needle shaft. The rotary stage

is attached to the base of the needle shaft, and as the linear stage drives the rotary stage

forward, the needle advances into the tissue. A telescoping support sheath around the

needle shaft prevents the needle from buckling outside of the tissue. The needle itself

is a 0.7mm Nitinol wire (Nitinol Devices and Components, Fremont, CA), cut with an

approximately 45◦ bevel tip, and pre-bent by 10◦ at 9mm from the needle tip to enhance

steerability.

2.3 Review of bevel-tip needle kinematics

The insertion and rotation speeds comprise two inputs to the kinematic model for bevel-

tip flexible needle steering developed by Webster et al. [85]. The model is a generalization

of the nonholonomic bicycle model, and neglects torsional compliance of the needle shaft.

This model, depicted in Figure 2.3, is reproduced here for reader convenience.

In the model, `1, `2 determine the location of bicycle wheels with respect to the needle

tip. Parameter φ is the fixed front wheel angle relative to the rear wheel. Frame A is the

inertial world reference frame and frames B and C are attached to the two wheels of the

bicycle. In homogeneous coordinates, the rigid body transformation between frames A and
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Figure 2.3: Kinematic generalized bicycle model: Frame A is the inertial world reference
frame. Frames B and C are attached to the two wheels of the bicycle. This figure is
reproduced from [85] with permission from the authors.
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Figure 2.4: Kinematic generalized unicycle model of needle steering. This is same as the
generalized bicycle model in Figure 2.3 with `2 = 0 and keeping `1 and φ. The curvature
of the path the needle follows inside the tissue is given by κ = tanφ/`1. This figure is
reproduced from [85] with permission from the authors.
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B is given by the rigid body transformation matrix

g =

R p

0T 1

 ∈ SE(3), (2.1)

where

R ∈ SO(3), and p ∈ R3.

We assume that the imaging system measures p, the 3D location of frame B. For ease of

exposition, we call p(t) the needle tip throughout this thesis; in the non-generic case that

`2 = 0 (the unicycle model discussed in [85], Figure 2.4), p indeed coincides with the

needle tip.

Let v,ω ∈ R3 denote, respectively, the linear and angular velocities of the needle tip

written relative to frame A. Let V ∈ R6 be defined as

V =

 v

ω

 .

Webster et al. use Lie-group theory to find a “coordinate-free” differential kinematic model

on the special Euclidean group, SE(3):

V = (g−1ġ)∨ = V1v + V2ω, (2.2)
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where ∨ andˆdenote the usual isomorphism between se(3) and R6, v is the insertion speed,

ω is the rotation speed of the needle, and the control vector fields are given by

V1 =



0

0

1

κ

0

0



and V2 =



0

0

0

0

0

1



.

The vector field V1 corresponds to insertion of the needle into the tissue and V2 corre-

sponds to rotation of the needle outside the tissue (or human). Here, κ = tanφ/`1 is the

curvature that the needle follows. Insertion of the needle, v, causes the needle to move in

the body-frame z-axis direction, but also to rotate (due to the bevel tip) about the body-

frame x-axis. Rotation of the needle shaft, ω, causes pure rotation of the needle tip about

the body-frame z-axis. This nonholonomic system has degree of nonholonomy of four.

Note that this model is only valid for forward insertions of the needle into the tissue; dur-

ing the removal of the needle from the tissue, there are no cutting forces on the needle tip

and hence the needle follows the path (in reverse) it followed during the forward insertion

into the tissue.
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2.4 Discussion

The needle steering model proposed by Webster et al. [85] is amenable to using control

theory to automatically steer the needle to reach a target in the tissue using sensory informa-

tion obtained through imaging systems. We believe feedback controls is one the main in-

gredients necessary for improving the accuracy of needle insertions and for enabling more

medical procedures using percutaneous needle insertions. Further, our feedback control

approach will also keep the physician in the loop to increase the safety of the procedure.

In the following chapters (Chapters 3-5), we present image-guided control of flexible

bevel-tip needles into tissue. We discuss the challenges in automatic control of needle steer-

ing and propose an integration of high-level path planning and low-level control to reach a

desired target in the tissue. We design and implement a nonlinear observer-controller that

drives the needle to a desired 2D plane. This controller is designed to work together with a

high-level path planner [6] to drive the needle to a target in the nominal 2D plane. We show

that to design the controller we only need to consider three of the six degrees-of-freedom

of the needle steering system, thus resulting in a “reduced” system. The reduced system is

not nonholonomic thus allowing us to use Lyapunov theory to develop smooth controller

and show its stability. Using this task-induced reduction, we develop a full 6-DOF pose

estimator from just tip position measurements in Chapter 4. In Chapter 5 we extend the

reduction concept to other systems on Lie groups.
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Chapter 3

Image-Guided Control of Flexible

Bevel-Tip Needles

As discussed in the previous chapter, needle steering model is a nonholonomic system

of degree with the degree of nonholonomy four. Brockett [10] showed that nonholonomic

systems cannot be stabilized by a time invariant, continuously differentiable, state feedback

controller. This problem can be solved either by using time varying controllers, or by using

a hybrid time invariant feedback controller [39, 46, 53, 63]. Murray et al. [63] show that if

a nonholonomic system can be transformed to a chained form, then it can be steered using

sinusoidal inputs. However, the result holds was designed for local coordinates or when

the configuration space of the system is in Rn and hence will need further modifications for

Lie group systems when there are other constraints, such as when there are obstacles, field

of view constraints, etc.

26



CHAPTER 3. IMAGE-GUIDED CONTROL OF NEEDLES

In addition to the nonholonomy in the system, there is also an unilateral constraint

owing to the fact that the needle only curves when pushed forward in to the tissue (when the

needle is pulled back, no cutting forces are generated and thus the needle follows the same

path it went it during forward insertion into the tissue). The high degree of nonholonomy

along with the unilateral constraint in the insertion speed for needle steering renders global

feedback control to a point in SE(3) challenging, and likely impossible in practice. One

possible solution is to plan a path in SE(3) and execute feedback control to follow the path.

However, feasible paths cannot necessarily be tracked asymptotically. In fact, the natural

trajectory of the system, a circle of radius 1/κ, is not small-time locally “trackable”, i.e. if

there is an arbitrarily small perturbation, the needle cannot be driven back to the desired

trajectory in an arbitrarily small amount of time. To see this, refer to Figure 3.1. Let the red

dashed circle be of radius 1/κ, which is the natural radius of curvature of the path the needle

would follow in the tissue and let there be a small initial perturbation in the heading of the

needle (black, solid line in the figure). Since the radius of curvature of the actual needle

trajectory can never be less than 1/κ, and thus even for the smallest possible perturbation of

the needle heading, the needle must travel at least π/κ before re-intersecting (∗) the desired

path. Pitching out of the plane of the circle only exacerbates this issue, and the problem

cannot be overcome with control or replanning.

There are several potential ways to address this problem. One could be to plan paths

whose radius of curvature is always greater than 1/κ. We suspect such curves can be fol-

lowed arbitrarily closely (if not exactly), e.g. using “duty-cycling” [27, 62]. An alternative
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Figure 3.1: Small-time local controllability fails even for tracking a natural trajectory of
the needle, a circle (red, dashed) of radius 1/κ. Here, a small initial perturbation in the
heading of the needle (black, solid) is depicted. The radius of curvature of the actual needle
trajectory can never be less than 1/κ, and thus even for the smallest possible perturbation of
the needle heading, the needle must travel at least π/κ before re-intersecting (∗) the desired
path. Pitching out of the plane of the circle only exacerbates this issue, and the problem
cannot be overcome with control or replanning.

approach would be to develop low-level controllers that cooperate with the 2D planners by

Alterovitz et al. [4, 6]. Their planners, which rely on the needle staying within a specified

2D plane, construct a sequence of circular arcs of radius 1/κ that can be achieved via alter-

nating insertions and 180◦ rotations of the needle shaft. A real-time replanner corrects for

within plane deviations from the desired piecewise circular path. In effect, the low-level

2D plane-following controller ensures that the needle remains close to a desired 2D plane,

on top of which Alterovitz et al.’s planner can operate.

Real-time high-level re-planning and low-level control architecture can be generalized

to three dimensions, as depicted in Figure 3.2. We envision a “subspace planner” that

chooses feasible subspaces, upon which an Alterovitz-style planner [3] builds paths within
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Figure 3.2: A stylized depiction of a needle trajectory that remains within a sequence of
2D patches. The plane-following controller was reported in Section 3.1, and the sphere-
following problem is reported in Section 5.4.2.

each subspace. As a first step to the control of flexible bevel-tip needles, in the present

chapter, we develop controllers that drive the needle tip a desired 2D plane.

3.1 Driving the needle to a desired plane

As the needle is pushed through tissue, there is a small amount of tissue deformation

and the needle must be steered to avoid bones, delicate structures and sensitive organs

through which it cannot or should not pass. To address this problem, Alterovitz et al.

propose planning algorithms to generate desired needle trajectories within a 2D plane [3],

for the same type of needles used in the present study. The output of these 2D planners

is a path that can be followed by alternating between forward insertion (without rotation)
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k = 10

2D motion planning

(update plan using SMR)

k = 1

Flip

No flip

Torsion 

compensation

(execute flip)

k < 10
Pose estimation

(update planner and 

controller states)
Insert 1mm

k = k + 1

Planar control 

(update roll angle)

Figure 3.3: State-flow diagram: The estimator–planar controller pair operates at 1mm inter-
vals; the estimator estimates the needle tip orientation from the tip position measurements
and the planar controller maintains the needle tip near the desired plane. The planner oper-
ates at 1cm intervals and decides the bevel direction. If the planner commands a direction
change, then the torsion compensator ensures that the entire needle is rotated by 180◦. k is
a counter that corresponds to insertion distance [72].
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of the needle into the tissue and 180◦ rotation (without insertion) of the needle base. The

planners assume that during the process the needle stays in a known (nominal) 2D plane.

However, our numerical tests indicate that small errors of only a few degrees in needle tip

orientation cause the needle to deviate rapidly from the nominal 2D plane. The goal of this

chapter is to ensure that the needle tip is stabilized to the desired 2D plane. This integration

of high-level planning and low-level control in two dimensions is shown in Figure 3.3.

3.2 Reduced-order plant model

We use Z-Y-X fixed angles as generalized coordinates to parameterize R, the rotation

matrix between framesA andB. Let γ be the roll of the needle, β be the pitch of the needle

out of the plane and α be the yaw of the needle in the plane. Let the position of the origin

of frame B be p = [x y z]T ∈ R3 relative to the inertial frame A. We assume that an

imaging system measures the location of the origin of frame B. Note that by driving the

origin of frame B to the y-z plane, the needle tip will also be stabilized to the y-z plane.

Using this notation, q = [x y z α β γ]T ∈ U ⊂ R6 forms a (local) set of generalized

coordinates for the configuration of the needle tip. The coordinates are well defined on

U =
{

[x y z α β γ]T ∈ R6 : α, γ ∈ R mod 2π, β ∈ (−π/2, π/2)
}
. (3.1)
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One can show that the body frame velocity is given by

V = J q̇,where

J =

 RT 03×3

03×3 J22

 , and J22 =


cos β cos γ sin γ 0

− cos β sin γ cos γ 0

sin β 0 1

 .

The kinematic model (2.2) of the bevel tip flexible needle reduces to

q̇ = J−1V1v + J−1V2ω =



sin β 0

− cos β sinα 0

cosα cos β 0

κ cos γ sec β 0

κ sin γ 0

−κ cos γ tan β 1



v
ω

 . (3.2)

Due to the introduction of generalized coordinates, there are singularities at β = ±π/2 that

cause det J = cos β = 0.

To stabilize the needle to the y-z plane, the states y, z, and α need not be controlled.

Also, these states do not affect the dynamics of the remaining states, x, β, and γ. Let

r = [r1 r2 r3]T = [x β γ]T denote the state vector of the “reduced” order system. Note

that the configurations of this reduced space lie on S2 × R manifold and the “left-over”

states lie on SE(2).
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As we will see later in Chapter 5, this reduced system is the base space of the principal

fiber bundle
(
SE(3), π, S2×R

)
. The fiber space of this bundle is SE(2) and the projection

map of the bundle is given by

π(g) = π(R, p) = (R−1e1, pe1),

where g ∈ SE(3), and ei’s for i = 1, 2, 3 are principal unit vectors in three dimensions.

Observe that S2 × R = SE(3)/SE(2). The relevant space for the purposes of the present

controller is the reduced base space of the bundle and the fiber space can be ignored.

Tracking the needle tip with an imaging system typically enables us to measure only

the position of the needle and not its orientation (without performing any differentiation),

which in reduced coordinates is just the distance from the y-z plane, namely x. This system

can be represented in state space form:

ṙ = f1(r)v + f2(r)ω =


sin r2

κ sin r3

−κ cos r3 tan r2

 v +


0

0

1

ω,

w = f3(r) = r1.

(3.3)

Note that r = 0 corresponds to the desired equilibrium state of remaining within the y-z

plane to which we wish to stabilize the needle.
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3.2.1 Reparameterization based on insertion distance

We reparameterize the system in terms of insertion distance, l, enabling the physician

to control the insertion speed. By reparameterizing the kinematic models as functions

of arc length, rather than time, we allow for human control of insertion speed, and our

controller rotates the needle accordingly. This paradigm enhances safety by keeping the

physician in the loop in a manner that enables him or her to regulate the insertion speed

while monitoring the progress of corrective steering actions. A related paradigm is the

notion of shared control between humans and robots in teleoperation [33].

In a slight abuse of notation, we write ṙ where we mean dr/dl, and interpret the inser-

tion distance as “time” for convenience of exposition.1 This results in

ṙ =


sin r2

κ sin r3

−κ cos r3 tan r2

+


0

0

1

u

w = r1, where u = ω/v.

(3.4)

3.2.2 Feedback linearization

Using judiciously chosen generalized coordinates, we reduce the plant model to a third

order nonlinear system (3.4). This system can be feedback linearized (see, e.g. [47]) via a

1This is equivalent to setting v = 1 in (3.3).
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transformation of state and input coordinates:

s =

[
f3,Lf1f3,L2

f1
f3

]T
=

[
r1, sin r2, κ cos r2 sin r3

]T
(3.5)

and

ν =L3
f1
f3 + Lf2L2

f1
f3u = −κ2sin r2 + κ cos r2 cos r3u, (3.6)

where Lfif3 denotes the Lie derivative of f3 along fi for i = 1, 2. 2 The state equations in

the feedback linearized form are:

ṡ = As +Bν =


0 1 0

0 0 1

0 0 0

 s +


0

0

1

 ν

w = Cs =

[
1 0 0

]
s.

(3.7)

The system (A,B,C) is completely controllable and observable.

2If f is a scalar function on Rn and X a smooth vector field on Rn then Lie derivative of f at q =
[q1 · · · qn]T ∈ Rn is the derivative of f at q along X(q) = [X1(q) · · ·Xn(q)]T and is defined as LX(q)f =∑n
i=1

∂f
∂qi
Xi(q).
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3.3 Observer-based feedback control

In principle, the dead-beat observer (Section 4.2) and feedback-linearized plant model

(Section 3.2) “solves” needle guidance to a planar patch, assuming there is no noise: in

finite time, the dead-beat observer converges to the true state, enabling exact full-state

feedback in the linearized system. In practice, however, there is noise in the measurements

(see Section 3.4). Given the sensitivity of our dead-beat observer to noise, we consider an

alternative based on an asymptotic observer. The advantage of this is that since there are

only three states to estimate, and we expect to have reasonable estimates of sensor noise,

the observer can be quickly and effectively tuned using the Linear Quadratic Gaussian

framework, leading to successful simulations and laboratory experiments (Section 3.4).

The expense, as we will see, is theoretical: we must assume that the observer error is

negligible so that the feedback-linearizing change of coordinates described above can be

implemented.

3.3.1 Observer and controller design

Note that even though the change of coordinates from the nonlinear system (3.4) to the

feedback linearized system (3.7) is nonlinear, the first state—and, importantly, the output—

is identical for both systems. In other words the system is completely observable in both

coordinate systems based on the sensory measurement w = s1 = r1.

Hence, simple control system design techniques from linear system theory can be used
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to control this system. A full state Luenberger observer with the following dynamics esti-

mates all the states from the output:

˙̃s = As̃ +Bv + L(w − w̃)

w̃ = Cs̃.

(3.8)

The control input to the system is then given by full-state feedback, using the state estimate:

ν = −Ks̃. (3.9)

Because the system is linear and time-invariant, the separability principle allows us to select

the observer gain matrix, L, and proportional gain matrix, K, independently as we do in

our experiments.

Note that one theoretical difficulty arises because we must compute u from (3.6), which

requires exact knowledge of r. However, we do not know s nor r exactly, so we must use

s̃ to compute an estimate of r by plugging s̃ into the inverse of (3.5). This implies that the

estimator dynamics will have an input error. Here, we assume that the error computing u

is negligible. Another approach may be to enhance our sensory measurement: note that it

may be possible to measure the pitch, r2, if needle shaft orientation can be segmented in

both images in a neighborhood of the needle tip. In such a case, we can use a reduced-

state Luenberger observer instead of the full state observer simply to estimate the roll, r3.

Measuring the roll itself may be more challenging to extract depending on the imaging
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modality due to the very small size of the bevel-tip; it is infeasible with our experimental

setup using stereo imaging or for other imaging modalities used in the operating rooms.

3.3.2 Stability analysis

In the present framework, there are singularities at β = ±π/2 due to the introduction

of generalized coordinates. In addition, the nonlinear transformation from r to s also intro-

duces singularities at γ = ±π/2. This limitation seems inescapable: global linearization

is mathematically impossible for dynamical systems on the space of rigid transformations.

Fortunately, our feedback linearization scheme works for all needle positions and orienta-

tions except when the needle is orthogonal to the plane to which we are trying to stabilize.

We believe that this scenario is not of clinical significance; such large errors in orientation

should be addressed at the level of planning, not with low-level servo control.

That said, it is important for the above described controller never to take the system –

or even the state estimate! – to these singularities. In this section, we perform Lyapunov

stability analysis to find the region of attraction of the controller.

Let d ∈ R+ be a positive scalar such that d < 1
2

min(1, 1/κ). For s ∈ D = {s ∈ R3 :

‖s‖ ≤ 2d}, the coordinate transformation mapping r to s is well-defined and invertible.

This implies that β and γ never reach the singularities at ±π/2. By defining e = s− s̃ as
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the error in estimation, the closed-loop feedback system is now given by

ṡ

ė

 =

A−BK BK

0 A− LC


s

e

 .

The matrices K and L are chosen to make (A − BK) and (A − LC) Hurwitz (eigen-

values in the open left-half plane). Hence for every such K and L, there exist real symmet-

ric positive definite matrices P and R such that (A − BK)TP + P (A − BK) = −I and

(A−LC)TR+R(A−LC) = −I , respectively. Consider the setsDe = {e ∈ R3 : ‖e‖ ≤ d}

and Ds = {s ∈ R3 : ‖s‖ ≤ d}. We define a positive definite function V : Ds ×De → R

as:

V (s, e) = asTPs + beTRe where a, b ∈ R+.

Taking the time derivative of the function V , we obtain

V̇ (s, e) = −asTs− beTe + 2asTPBKe

= −a ‖s− PBKe‖2 − b ‖e‖2

+ aeT (KTBTP 2BK)e

Note that Q = KTBTP 2BK is a real symmetric positive semi-definite matrix. Hence we

can always choose a, b ∈ R+ with b > aλmax(Q). With this choice of a and b, we observe

that V is a Lyapunov function for the complete closed-loop feedback system.

Our goal is to ensure that neither the states, nor their estimates, encounter the singular-
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ities introduced by feedback linearization. Note that

V ≥ λmin(P ) ‖s‖2 + λmin(R) ‖e‖2 ≥ ε ‖s‖2 + ε ‖e‖2 ,

where ε = min(λmin(P ), λmin(R)). If c > 0 ∈ R is chosen such that c ≤ εd2, then for all

(s, e) ∈ S = {(s, e) ∈ Ds × De : V (s, e) ≤ c}, s, s̃ belong to the set D. If the initial

deviation of the system from the desired plane is such that the initial states are in S, then

the proposed controller will stabilize the needle to the desired plane without reaching any

singularities.

3.4 Results

3.4.1 Numerical simulations

Extensive simulations were conducted in MATLAB (The MathWorks Inc., Natick, MA)

to test our proposed controller. We used a discrete-time implementation of the system and

the controller-observer pair, to reflect our physical implementation as closely as possible.

The plant model was discretized assuming constant insertion by 1mm of the needle into the

tissue between samples. We assumed measurement noise of up to ±1mm with a uniform

distribution; this seems clinically reasonable given that 3D ultrasound imaging can be accu-

rate to within 0.8mm [23], and is approximately the same or slightly higher than the noise

of our tracking system. The parameter value for the model was taken to be 1/κ = 12.2cm,
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which is the radius of curvature of the needle used in laboratory trials.

In our simulations, we observed that if the entry point was too far away from the de-

sired plane, the estimator states (which are in the feedback-linearized coordinates) left

the region in which the inverse of the change of coordinates in (3.5) is well-defined. To

avoid such singularities, we performed estimator saturation, namely if the estimator states

left this region, they were projected to the closest point in that region. For example, if

[s̃1, s̃2, s̃3]T = [0, 1.5, 0]T , then it is projected to [s̃1, s̃2, s̃3]T = [0, 1, 0]T . Since we used

state feedback control in the feedback-linearized space, this pull-back affects only the mag-

nitude of the input and not the sign of the input. Our numerical tests suggested that this

saturated nonlinear observer worked quite well.

Two characteristic simulations are presented in Figure 3.4, with the same initial condi-

tions. In the first case, we tested the system without any feedback control, and it rapidly

diverged from the desired plane despite relatively small errors in roll, pitch and depth. In

the second simulation, our observer-based controller drove the needle to the desired plane

within about 5 cm of needle insertion.

We tested our controller over a uniform grid (10 × 10 × 10) of 1000 initial conditions

of up to ±3mm error in depth from the plane, and up to ±10◦ initial error in “pitch” (r2)

and up to ±30◦ initial error in “roll” (r3). In all cases, we seeded the initial condition of

the observer to s̃2 = s̃3 = 0◦, and for the first state, s̃1 = z1 + noise of up to 1mm. Each

initial condition was simulated 10 times with noise, for a total of 10,000 simulations. Each

insertion was to a length of 12cm. We found that 98.56% of initial conditions converged to
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Figure 3.4: Comparison amongst a simulation with no feedback control (first column), a
simulation with feedback control (second column), and an experimental trial (third col-
umn). The first three rows of plots show the three states (r1, r2, r3), respectively. In the
two simulations, the simulated ground truth state is known (solid black line), whereas in
the physical experiment, only its estimate (solid teal line) is known. In the feedback con-
trol simulation and physical experiment, the first state is measured at each time step (small
black circles). The fourth row is the cumulative rotational input given to the system. First
column: Open-loop simulation with initial conditions of r = [−3mm, 2◦, 15◦]. With no
control, the needle tip diverges the needle from the desired plane. Second column: Closed-
loop simulation with the same initial conditions. Noise in the needle tip position is modeled
as a random variable with a uniform distribution between±0.5mm. With the feedback con-
trol, the needle converges to the desired 2D plane within the noise levels. Third column:
One of the nine experimental trials, with approximately the same initial conditions as the
simulations (ground truth is not known). With feedback control, the needle tip converges
to the desired 2D plane.
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within ±1mm (the sensor noise floor); upon closer inspection of the remaining 144 runs in

which the states did not converge to within this tight tolerance in the finite needle insertion

distance, we found that they did not diverge.

We tested the controller using an incorrect value of κ (up to 20% error) and found that

the controller always converged, albeit slower than it would have if the correct κ was given.

Thus the system appeared is robust to parametric uncertainty; to select controller gains for

robustness to the parameter uncertainty see Section 3.5.

3.4.2 Experimental validation

Experiments were conducted on the needle steering device described in Section 2.3.

The tissue used in the experiments was approximately 35mm thick, and it was sufficiently

transparent for visual tracking purposes. We captured the images of the needle inside the

tissue using XVision [36]. This tissue phantom had a refractive index of 1.3. Refraction

was accounted for in our calculations by assuming that tissue’s top surface was horizontal.

The needle used for the experiments had a radius of curvature of 12.2cm when inserted into

the tissue.

In the experiments the goal was to reach the y-z plane that was 3mm above from the

initial x-position. The pitch was approximately zero, but neither the pitch nor the roll of the

needle tip were precisely known. The needle was inserted into the tissue for 12cm, which

is about the radius of curvature of the needle inside the tissue. Nine trials were conducted

on this experimental setup with varying pitch and roll initial conditions. Figure 3.4 shows a
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Figure 3.5: Nine experimental trials validate the controller. The mean value of r1 of the
nine trials is plotted against the insertion distance of the needle into the tissue (solid ma-
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Figure 3.4 is reproduced here (solid teal line). In all trials, the needle tip approaches the
desired 2D plane (r1 = 0, dashed black line) and stay within the noise levels of the position
measurements of approximately 1mm.
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comparison of a typical trial with our simulation results, and Figure 3.5 summarizes all nine

experimental trials. In each of the trials, the needle tip converged to the desired plane within

the noise levels of the position measurement. As with the simulations, these experiments

validate the efficacy of our controller–observer pair and the experiments further support

the nonholonomic model for flexible bevel-tip needle insertion developed by Webster et

al. [85]. It was interesting to note, however, that while the physical and numerical results

were qualitatively quite similar, the physical system exhibited a consistently more sluggish

response, which we suspect was due to neglected torsional damping due to friction between

the tissue and the needle shaft.

3.5 Robust control

In this section, we present a robust controller to drive the needle to the y-z plane in the

face of parameter uncertainty in κ. As before, we assume that we have full state access

(though in reality, we need to use an observer to estimate pitch and roll of the needle).

Consider the following change of coordinates:

s̄ =

[
r1, sin r2, cos r2 sin r3

]T
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and

ν̄ = cos r2 cos r3u. (3.10)

This change of coordinates is very similar to that in the feedback linearization of Sec-

tion 3.2.2. The state equations in these coordinates are

˙̄s = As̄s̄ +Bs̄ν̄ =


0 1 0

0 0 κ

0 −κ 0

 s̄ +


0

0

1

 ν̄,

w̄ = Cs̄s̄ =

[
1 0 0

]
s̄.

(3.11)

The system (As̄, Bs̄, Cs̄) is completely controllable and observable. We want to design

a feedback control ν̄ = −K̄s̄ such that it is robust to parameter uncertainty. Let K̄ =

[K̄1, K̄2, K̄3]. The characteristic equation of (As̄ −Bs̄K̄) is given by

λ3 + K̄3λ
2 + (κ2 + K̄2κ)λ+ K̄1κ = 0. (3.12)
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Using the Routh-Hurwitz criteria, one can show that if

K̄1 > 0,

K̄3 > 0, and

K̄2 >
K̄1

K̄3

− κ, (3.13)

then the system is stable. If the bounds on the uncertainty of parameter κ are known, then

the gain matrix K̄ can be chosen such that it satisfies (3.13) with κ ← κmax. Such a

controller will be robust to any parameter uncertainties in κ, as long as κ < κmax.

In this chapter, we have seen the controller–observer pair designed to drive the needle

to a desired 2D plane. The observer is designed in the reduced space estimates the pitch and

the roll of the needle from the tip position measurements. The fiber variables especially the

yaw of the needle need to be estimated too if the whole 6-DOF pose is necessary for any

purpose. For instance, this information is required for the implementation of 2D planners

of Alterovitz et al. [6]. In the next chapter, we discuss deadbeat and asymptotic observers

that estimate the full 6-DOF pose of the needle.
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Estimation of 6-DOF Needle Pose from

Position Measurements

Using images captured by the stereo cameras in our experimental setup, we track the

needle tip as the needle is being inserted into the tissue phantom and obtain the 3D position

of the needle tip through triangulation. Since the needle is thin, there is no direct method to

measure the orientation of the bevel using the stereo cameras. To our knowledge, the needle

orientation cannot yet be measured using any other imaging modality, be it ultrasound,

X-ray, fluoroscopy or MRI. However, this rotation information is necessary for control

purposes, as discussed in Chapter 3.

Traditionally, pose estimation from images such as in the structure from motion (SFM)

literature is performed based on sequential video images of a moving cloud of points; this

observation typically over-constrains the underlying rigid transformation. The problem is
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conceived as a nonlinear optimization problem, where the objective is to find the best-

fit rigid body transformation to the image data collected in two views, or in an image

sequence [7, 75, 80–83]. When the dynamical model of a system is known and only a part

of the rigid body transformation can be directly measured (as in the needle steering system),

the problem becomes one of designing an observer that converges—asymptotically or in

finite time—to the actual transformation. In this chapter, we show that the rotation of the

needle tip may be inferred from the measurements of the needle tip position over time, and

we then present dead-beat and asymptotic observers that exploit the task-induced reduction

to estimate the full needle pose.

4.1 Observability of orientation using position

measurements

Assume that we have a needle tip position over time, denoted by p(t). Assume also

that the forward insertion of the needle is held constant at v(t) = v. This assumption is

equivalent to parameterizing the system based on insertion distance rather than time (see

Section 3.2). Let e′is for i = 1, 2, 3 denote the principal unit vectors in three dimensions.1

Two successive time derivatives of p(t) and using the kinematic model (2.2) yield

ṗ(t) = R(t)e3v

1Here we use e′is for i = 1, 2, 3 and for i = 1, 2, 3, 4 to denote the principal unit vectors in three and four
dimensions respectively; the distinction will be clear from context.
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and

p̈(t) = −κR(t)e2v,

and their cross product is given by

ṗ(t)× p̈(t) = κR(t)e1v
2.

Provided that v > 0, the rotation of the needle tip, R(t), can be determined:

R(t) =
1

v

[
1
kv

ṗ(t)× p̈(t) − 1
k
p̈(t) ṗ(t)

]
. (4.1)

This analysis shows that the orientation is indeed observable from position measurements.

Equation (4.1) can directly be used as an observer, but in practice this would imply finite

difference approximations to first and second time derivatives of the needle tip position

because of the availability of only discrete samples of p(t).

4.2 Dead-beat observer and its convergence

properties

In this section we propose a dead-beat (or “batch”) observer to estimate the rotation

of the needle tip from position measurements. For notational convenience, we construct

the estimator for the initial state R(0) using the initial measurement and N future position
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measurements; it is straightforward to reformulate this estimator for any particular rotation,

R(j), at time step j, and the observer can based on future or past (or both) samples.

Consider the discrete version of the system (2.2), given by

g(k) = g(k − 1)U(k),

where U(k) = exp(V̂1v(k)∆t + V̂2ω(k)∆t). The inputs v(k) and ω(k) are assumed con-

stant over each time step. The above equation may be rewritten as

g(k) = g(0)Πk
i=1U(i) = g(0)Ū(k). (4.2)

Substituting the expression for g in (2.1) into (4.2), and comparing the fourth column on

both sides (corresponding to the 3D position), we have

p(k)− p(0) = R(0)


eT1 Ū(k)e4

eT2 Ū(k)e4

eT3 Ū(k)e4

 . (4.3)

Collecting the left-hand side of the above equation for all the samples into the matrix P ,

P =

[
p(1)− p(0) · · · p(N)− p(0)

]
,
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and similarly the right-hand side into the matrix Q,

Q =


eT1 Ū(1)e4

eT2 Ū(1)e4

eT3 Ū(1)e4

· · ·

eT1 Ū(N)e4

eT2 Ū(N)e4

eT3 Ū(N)e4

 ,

where N is the number of discrete samples, we obtain a linear equation in R(0):

P = R(0)Q. (4.4)

In this equation the unknown, R(0), can be estimated using constrained least-squares

optimization. Alternatively, R(0) may be estimated using the linear least-squares method

and then projecting the resulting matrix onto the SO(3) manifold [7]. If the rank of the

matrix Q is rank three, then the linear-least squares estimation is performed by taking the

right pseudo-inverse of Q . If the rank of the matrix Q is two, the third independent column

can be obtained by stacking an extra column on both sides of the equation; on the right-

hand side the extra column is the cross product of the two independent columns of Q and

on the left-hand side, the extra column is the cross product of the corresponding columns

of P .2 In general, any three successive samples do not lie on a straight line. 3 Hence, if we

2This is possible since rotation preserves the cross-product between two vectors i.e. if R ∈ SO(3) and
p, q ∈ R3 then R(p× q) = Rp × Rq.

3The are two exceptions to this rule: (1) if there is no rotation of the needle base during these samples,
then the three successive points will be collinear if v1∆t = m1

π
κ and v2∆t = m2

π
κ , for some m1,m2 ∈

{1, 2, 3, · · · }—in this case, the three points p0, p1 and p2 will be such that either they all are the same p0

or they on the diameter of a circle of radius 1
κ with p0 as one end point; (2) if there is rotation during the

sampling and if the rotations are such that (ω2∆t− ω1∆t) = mπ, for some m ∈ {· · · ,−2,−1, 0, 1, 2, · · · }
and if v1∆t = v2∆t—in this case, the three points p0, p1 and p2 will also be collinear. Both these degenerate
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have at least three samples, then the rank of the matrix Q is at least two. If there is noise in

the position measurements, the resultant matrix from the linear-least square step may not

lie on the SO(3) manifold and hence it may need to be projected onto the SO(3) manifold

using SVD methods. Once R(0) is estimated, R(k) can be calculated using (4.2).

We conducted simulations in MATLAB to study the impact of noise on the sample

size required to get a good estimate of R(0). In the simulations, a needle with radius of

curvature 12.2cm was inserted into the tissue by 1mm and rotated by 2◦ every sample. The

error metric used in these simulations was

arccos
(1− trace(R∗(0)R(0)−1)

2

)
, (4.5)

where R∗(0) represents the actual rotation at time zero and R(0) is its estimation using

the dead-beat observer. Figure 4.1 shows the error in the rotation estimate plotted against

the noise in position measurements, with each curve corresponding to distance the needle

was inserted. The distance inserted corresponds to the number of samples used in the

estimation, e.g. for 1
κ

= 12.2cm, there were 122 samples (spaced at 1mm).

From Figure 4.1, we can see samples collected over a large insertion distance lead to

a significantly more accurate estimate than fewer samples over a shorter distance. The

number of sample points needed for a good estimate increases with an increase in the mea-

surement noise. Another drawback of a dead-beat observer is the lack of tuning ability to

achieve faster convergence of the controller-observer pair to a desired goal. This makes

cases are easily avoided in the experimental setup.
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the dead-beat observer approach (in its current form) impractical for feedback control pur-

poses. But the dead-beat observer can be very useful when data is analyzed in a batch

mode, as well as for fitting the model parameters in (2.2), since the data set then will be

large enough for a good estimate of rotation of the needle tip.
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Figure 4.1: A dead-beat observer estimates the initial rotation of the needle tip, R(0),
in MATLAB simulations. Noisy needle tip position data was collected every 1mm of
insertion, with uniform noise ranging from ±0.01mm to ±10mm (x-axis). The estimation
error (4.5) increases with measurement noise, as shown (y-axis). Each curve corresponds
to a different insertion distance (and therefore, a different number of samples collected),
from 1

4κ
to 2

κ
. Samples collected over a large insertion distance leads to a significantly more

accurate estimate than fewer samples over a shorter distance. As shown, measuring needle
tip positions over an insertion distance of twice the radius of curvature provides accurate
estimation up to about 1mm of measurement noise, but performance degrades with shorter
insertion distances.
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4.3 Asymptotic observer using reduction and

state immersion

In this section, we present an asymptotic observer that uses the task-induced reduction

developed in Chapter 3. Previously, we have seen that to drive the needle to a desired 2D

plane (y-z plane without any loss of generality), only three of the six degrees of freedom

need to be considered. Using the task-induced reduction, and a change of coordinates

through feedback linearization, we obtain a linear system in these three states. Using this

linearized system, in Section 3.3, we developed an observer to estimate the x position, the

pitch of the needle tip (β) and the roll of the needle (γ) from just x position measurements.

In this section, we develop an observer for the the other three states (y, z and yaw (α)) by

embedding SE(2) into a higher dimensional manifold, R4.

4.3.1 Previous work on state immersion

Linearizing nonlinear systems has tremendous advantages in systems analysis, and in

designing controllers and observers. Jacobian linearization is a first order Taylor series

expansion. Though this is a good approximation of a nonlinear system near an equilibrium

point and is useful in analyzing stability properties, it is not always helpful. For example,

when the eigenvalues of the linear system lie on the imaginary axis, the stability properties

of the nonlinear system cannot be deduced from the linearized system. Feedback lineariza-
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tion is another technique through which a nonlinear system can be represented by a linear

system. Unlike Jacobian linearization, this technique is not an approximation. Here, an ex-

act change of coordinates of the state space variables (both the states and inputs) is obtained

by taking successive Lie derivatives of the output. Under some conditions, this technique

can result in a global change of coordinates and sometimes the system structure may only

result in a local (perhaps large) change of coordinates as in the case we presented in our

planar control; see Section 3.2.

While in feedback linearization there is a diffeomorphism from one state space to the

other, in Carleman linearization the configuration space is immersed in a higher dimen-

sional space to obtain a linear system. In Carleman linearization, an infinite Taylor series

expansion is performed on the system around an equilibrium point, and all the monomials

of the states variables are assigned as the new state variables. This technique results in

a bilinear system that has an infinite number of states in general. The Taylor expansion

in the Carleman linearization can be truncated to obtain a finite order bilinear system, but

this makes the linearization approximate. By increasing the order of the Taylor expansion,

better approximations can be obtained. We refer the reader to [50, 74] for more details on

this method.

In the next subsection, we present a linear model to represent three-state fiber dynamics

by state immersion into a finite higher dimensional manifold. We use the output and its

derivatives, in a similar manner as that in feedback linearization, and embed the SE(2)

manifold into R4 to obtain a linear system. Importantly, the technique we present is not an
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approximation and further the configuration space of our system is a Lie group.

4.3.2 Fiber space observer though state immersion

Assume that the needle tip is driven the needle a desired plane (the y-z plane). At this

configuration, the needle tip position and orientation is such that x = 0, β = 0 and γ = 0◦

or γ = 180◦. For the current analysis, let us assume that γ = 0◦ and let v = 1. The other

three states lie on the SE(2) manifold and evolve with the following dynamics:


ẏ

ż

α̇

 =


− sinα

cosα

κ

 . (4.6)

Consider a change of coordinates, ϕ : SE(2)← R4 defined by

ϕ

(

y

z

α


)

=



y

z

− sinα

cosα


. (4.7)
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Let h = [y, z, α]T . The Jacobian of the map ϕ is given by

∂ϕ

∂h
=



1 0 0

0 1 0

0 0 − cosα

0 0 − sinα



Note that the Jacobian, ∂ϕ
∂h

is full rank every where. Also ϕ is a smooth mapping and there is

a one-to-one mapping between SE(2) andϕ(SE(2)). Hence, the mapϕ is a diffeomorphism

between SE(2) and ϕ(SE(2)) ⊂ R4. In these coordinates, ~ ∈ ϕ(SE(2)), the dynamics are

~̇ = Ah~ =



0 0 1 0

0 0 0 1

0 0 0 −κ

0 0 κ 0


~. (4.8)

Thus, by embedding SE(2) into a higher dimensional R4, we obtain a linear system. Also,

since we can measure the needle tip position, the output states of this system are given by

yh = Ch~ =

1 0 0 0

0 1 0 0

 ~. (4.9)
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The system (Ah, Ch) is observable and the following Luenberger observer will estimate the

the state vector ~:
˙̃~ = Ah~ + Lh(yh − ỹh)

ỹh = Ch~̃,
(4.10)

where (Ah − LhCh) is Hurowitz. Note that in general h̃(t) does not lie on ϕ(SE(2)), but

as t→∞, it lies on ϕ(SE(2)). The state vector h can be estimated by

h̃ =


~̃1

~̃2

arctan 2(−~̃3, ~̃4)

 . (4.11)

4.3.3 Coupled reduced space and fiber space observers

Now, when the needle is being driven towards the desired plane (y-z plane), the reduced

space observer can feed into the fiber space observer to estimate the full 6-DOF pose of

the needle from just position measurements; see Figure 4.2. In this case, the fiber space

dynamics is given by 
ẏ

ż

α̇

 =


− sinα cos β

cosα cos β

κ sec β cos γ

 (4.12)
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Planar control 
(update roll angle)

Imaging modality
(measure position)

Physical system
(state evolution)

Reduced space 
observer

(estimate x, β, γ)

Fiber space 
observer

(estimate y, z, α)

xy, z

v, ω

full state 
estimate

x̃, β̃, γ̃

ỹ, z̃, α̃

g̃

Figure 4.2: Coupled reduced space and fiber space asymptotic observers. The reduced
space observer estimates x-position, pitch and roll of the needle tip from (noisy) x mea-
surements. The fiber space observer uses these estimates along with the (noisy) y and z
measurements and estimates the rest of the states of the needle.

and the fiber space observer is given by

˙̃~ = AhT~ + Lh(yh − ỹh)

ỹh = Ch~̃,
(4.13)
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where

T =



cos β̃ 0 0 0

0 cos β̃ 0 0

0 0 cos γ̃ sec β̃ 0

0 0 0 cos γ̃ sec β̃


.

Note that when the needle is stabilized to the desired plane (x = 0, β = 0◦ and γ = 0◦),

T = I and the observer converges to the one given in (4.10).

4.4 Simulation results

We perform MATLAB simulations to illustrate the working of the proposed observer.

The radius of curvature is assumed to be 12.2cm. Figure 4.3 is one such simulation with

no noise in the position measurements. Needle position data was collected every 1mm

of insertion. The figure shows the estimation errors in all the six degrees of freedom. The

left column shows the estimation errors of the reduced space variables and the right column

shows estimation errors in the fiber variables. The estimation error decreases from an initial

error and goes to zero asymptotically.

Figure 4.4 is an example simulation run, in which the measured position data is noisy.

Here, noisy needle tip position data was collected every 1mm of insertion, with measure-

ment noise that is uniformly distributed within ±1mm in each of three coordinates of the

position measurement. In this example, we can see that that the estimate errors decrease
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Figure 4.3: Asymptotic observer to estimate the full 6-DOF pose of needle steering from
just the position measurements in MATLAB simulations. The radius of curvature of the
needle in the tissue is taken as 12.2cm, tip position data is collected every 1mm of insertion
with no measurement noise. The estimation errors converge to zero in all the six degrees
of freedom.
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Figure 4.4: Asymptotic observer to estimate the full 6-DOF pose of needle steering from
just the position measurements in MATLAB simulations. The radius of curvature of the
needle in the tissue is taken as 12.2cm. Noisy needle tip position data is collected every
1mm of insertion, with measurement noise that is uniformly distributed within±1mm. The
estimation errors converge to zero in all the six degrees of freedom with a low steady-state
variance.
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Figure 4.5: Integration of planning and control in needle steering. The goal is to reach
the circular target shown in the figure. The workspace has polygon obstacles shown in the
figure as dark regions. The sampled trajectory of the needle is denoted by black dots. The
planar controllers acts every 1mm of needle insertion into the tissue to drive the needle
to the desired 2D plane and the the planner acts is implemented at 1cm insertion inter-
vals. With the integrated planning and control, the target is successfully reached by the
needle. [72]

but oscillate around 0 due to the presence of noise. It should be noted that high gains are

used in the planar controller and observer to obtain fast convergence of the needle to the

y-z plane. If less aggressive gains are used, then the steady state oscillations are lower, thus

reducing the steady state variance in estimation.
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4.5 Integration of planning and control

The full 6-DOF asymptotic observer and the planar controller from Chapter 3 has

been integrated with the 2D planner of Alterovitz et al. [6] and torsional compensator of

Reed [70]. Figure 4.5 shows how modules are integrated to reach a target inside the tissue.

Let the nominal plane be y-z plane. Stereo cameras track the needle tip position (x, y, z)

as the needle is inserted into the tissue. The observer uses these measurements to estimate

the orientation of the needle tip while the low-level planar controller drives the needle to

the plane. The high level planner uses the information of (y, z, α) and plans a path in the

nominal plane to reach a target by planning for when the needle base needs to be rotated

by 180◦ during needle insertion. When the planner acts to rotate the needle base by 180◦,

torsional compensator that orients the needle tip to the same orientation of the needle base.

In the experiments, the low level estimation and control act at 1mm intervals of needle

insertion while the high level planning is implemented at 1cm insertion intervals. Experi-

ments were done using plastisol tissue phantom with a needle that has a radius of curvature

of 6.1cm in the tissue. Given in Figure 4.5 is one of the integration trials [72]. The goal

is to reach the circular target shown in the figure. The workspace has polygon obstacles

shown in the figure as dark regions. With the integrated planning and control, the target is

successfully reached by the needle.
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Chapter 5

Task-Induced Symmetry and Reduction

In the previous chapters, we have seen how the task-induced reduction simplified the

control and estimation of needle steering. In this chapter, we generalize the notion of task-

induced reduction to other kinematic systems. We show that task-induced reduction can be

performed on kinematic systems on Lie groups whose vector field is left-invariant. We then

extend it to a class of mechanical systems and apply the reduction to specific examples in

planar cart, needle steering and differential drive robots.

Consider a task of following a desired line in a planar cart. The motion of a simple cart

in a plane, described by the usual kinematic equations of motion,

ẋ =v cos θ,

ẏ =v sin θ,

θ̇ =ω,
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where (x, y, θ) is the position and orientation of the cart in the plane and the pair (v, w) is

the forward and rotational velocity, treated as the control input. Suppose we are interested

in making the cart follow a line, for example the x-axis. There is a natural symmetry

induced by the task: any motion along the x-axis does not affect the control task. Hence

to follow the x-axis, we only need to consider two of the three states and their dynamics,

namely

ẏ =v sin θ,

θ̇ =ω.

In this example, reduction results from an extrinsic, “user-defined” control task, rather than

an intrinsic property of the system itself.

From the trivial system above, it is not clear if a similar reduction would be possible if

the goal were to follow some other shape, such as a circle, or if the equations of motion

were more complicated. In the following sections we present a framework to address these

questions and then demonstrate the approach with several examples on SE(2) and SE(3).
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5.1 Previous work on Lie group symmetry and

reduction

Previous work on reduction methods for mechanical systems deals with intrinsic sym-

metry in a system. If the Lagrangian of a mechanical system is invariant under the action

of a Lie group, then such a system is said to exhibit symmetry and the Lie group is known

as the symmetry group. In unconstrained systems with symmetry, mechanical connections

as defined in [59] can be used for reduction. Bloch et al. [9] define a nonholonomic con-

nection as a combination of mechanical and Ehresmann connections and use it to perform

Lagrangian reduction in the presence of nonholonomic constraints. Ostrowski [67] uses

these connections to reduce the systems whose configuration spaces are a direct product

of the symmetry group (also called the fiber) and a manifold called a shape space (also

called the base space). In the context of the present work, the symmetry group (or fiber)

for a mechanical reduction is conceived as a principal bundle in its own right. To elucidate

this connection, we compute a reduced system of equations for a differential drive mobile

robot, in which we first apply Lagrangian reduction and then apply task-induced reduction.

Hanssmann et al. [37] perform reduction to align coordinated rigid bodies relative to

one another. This alignment task induces symmetry, affording a task-induced reduction of

the coupled system dynamics. This reduction is harnessed to developed control laws that

align two rigid bodies based on the relative configuration between the bodies. While the

authors take a Hamiltonian approach, similar results can be obtained using the two-stage
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approach—Lagrangian reduction plus task-induced reduction—described in Section 5.5.

The work we present here relates conceptually to the literature on relative equilib-

ria [8,11,41,57]. Roughly speaking, given a Hamiltonian system with symmetry, a relative

equilibrium is a trajectory that is an equilibrium point of the reduced system. However,

our primary system of interest in the present work, needle steering, is inherently highly

symmetric; in fact, the needle evolves according to a left-invariant vector field on SE(3),

rendering SE(3) itself the intrinsic symmetry group. That observation itself does not prove

particularly useful from a design point of view; the tasks we introduce break some of

the symmetry. Then, the “left over” symmetry enables task-specific reduction and leads

us, at least in the specific examples presented, to an essentially global control strategy to

achieve the task. Moreover, task-induced reduction applies to both kinematic and mechani-

cal systems, whereas relative equilibria typically arise in mechanical systems with intrinsic

symmetries.

In Section 5.2, we present a general framework to perform task-induced reduction on

kinematic systems. In Sections 5.3 and 5.4 we apply this technique to a planar cart and

to needle steering. We show how task-induced reduction simplifies the control design to

achieve the tasks at hand. We then extend this technique in Section 5.5 to a class of La-

grangian systems. We use circle following of a differential drive robot as an example to

illustrate the task-induced reduction in mechanical systems.
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5.2 General framework

Let G be a finite dimensional Lie group. Consider the left-invariant 1 kinematic system

g−1ġ = ξ0 +
k∑
i=1

ξiui (5.1)

where g = g(t) ∈ G is the configuration to be controlled, ξi ∈ g are constant vectors

in the Lie algebra of G, k is the total number of scalar inputs to the system and ui’s for

i = 1, 2, . . . , k are inputs to the system. We consider cases where the control task is

encoded as the zero value of a functional ϕ : G → R defined on the configuration space.

One way to achieve the task is to design a (feedback) control policy such that ϕ(g(t))→ 0

asymptotically.

Let H be the subgroup 2 of G invariant to the task, namely

H = {h ∈ G : ∀g ∈ G,ϕ(hg) = ϕ(g)}. (5.2)

Intuitively, we ignore motions in the space H , since such motions get us no closer to or

further from our goal of bringing ϕ(g) to zero. In effect, we perform control only in

the space B that is “left over” after ignoring H . Since B is of lower dimension than G

(dimB = dimG − dimH), the kinematics (5.1) and task functional ϕ likely have a sim-

1A vector field X on a Lie group, G, is called left-invariant if for every g ∈ G, (ThLg)X(h) =
X(gh),∀h ∈ G, where Lg is a left translation of G.

2Note that H is a subgroup, since if h1 ∈ H and h2 ∈ H , then for all g ∈ G, we have ϕ(h1h2g) =
ϕ(h2g) = ϕ(g) (closure). Moreover, the identity e ∈ G is obviously in H . The inverse of every element in
h ∈ H is also in H , since ϕ(g) = ϕ(eg) = ϕ(hh−1g) = ϕ(h−1g).
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pler form on B than on G. In fact, in the examples that follow, the task functional reduces

to a candidate Lyapunov function.

Formally, we use H and G to construct a principal bundle. Since H is a subgroup of

G there exists a bundle projection π : G → B := G/H . Furthermore, since H does not

affect the control task, we consider the state evolution only in the base space. We use r to

represent coordinates for the base space B and h for those in the fiber H . Since the vector

field in (5.1) is G invariant and H is a subgroup of G, the vector field is also H invariant.

This results in a well defined vector field on B that does not depend on H .

Proposition 5.2.1 The vector field on the reduced space, B, can be calculated as

ṙ = f0(r) +
k∑
i=1

fi(r)ui (5.3)

where fi(r) = Tπ · gξi, and the fiber dynamics are given by

h−1ḣ = Ads(r)

(
ξ0 +

k∑
i=1

ξiui − s(r)−1Ts · ṙ

)
. (5.4)

Proof: Consider a local section s : U ⊂ B → G. By definition, a local section

s satisfies π ◦ s = IdU . This section, s, induces the local trivialization which is a local

diffeomorphism defined by the map:

ψ : H × U → π−1(U), (h, r)→ h s(r).
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Its inverse ψ−1 : π−1(U)→ H ×U is given by ψ−1(g) = (g (s(π(g)))−1, π(g)). To obtain

an expression for ṙ, differentiate r = π(g) to obtain

ṙ = Tπ · gξ0 +
k∑
i=1

Tπ · gξiui.

In order to show that the ṙ is a function of only r and ui, we exploit the fact that the

projection map is invariant to the left action of H . Using this fact, and choosing h(t) ∈ H

so that g = h s(r), we calculate ṙ as

ṙ =
d

dt
π(g) =

d

dt
π(h−1g)

= Tπ(h−1g) · h−1gξi

= Tπ(s(r)) · s(r)ξi.

From this equation it is clear that ṙ = f0(r) +
∑k

i=1 fi(r)ui. This is the reduced kine-

matic equation on the base space B. For completeness, we derive the kinematic equation

for the fiber variable h ∈ H . Though one can employ the concept of connections for a

global derivation, we content ourselves with the derivation in local coordinates.3 From the

definition of ψ we can rewrite g−1ġ as

g−1ġ =(h s(r))−1 d

dt
(h s(r))

= Ads(r)−1 h−1ḣ+ s(r)−1Ts · ṙ.

3In the examples that follow, the local chart covers all but a set of measure zero of the base space.
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This results in

h−1ḣ = Ads(r)

(
ξ0 +

k∑
i=1

ξiui − s(r)−1Ts · ṙ

)

which also depends only on r and u. The equation for the fiber variable h in (5.4) is

sometimes called the reconstruction equation [58].

The above construction can be summarized in a commutative diagram:

G

π /H

��

⊃ π−1(U)
ψ−1

//

π

��

H × U
ψ

oo

B = G/H ⊃ U

s

JJ

We illustrate this reduction method by applying it to the tasks of following lines and

circles with a planar cart. Then, we tackle the problem of steering flexible bevel-tip needles

to follow spheres and planes in R3. Finally, we describe how the task-induced reduction

presented here dovetails with Lagrangian reduction for mechanical systems with intrinsic

symmetries [9, 67].

5.3 Following curves with a planar cart

In this section we revisit the planar cart example (Figure 5.1(A)) from the beginning

of this chapter and apply the above reduction framework. We then show how this can be

applied to a more interesting problem of following a circle. These toy problems are useful

because they have similar (but simpler) structure to that of the needle steering problems
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Figure 5.1: Planar cart. (A) Planar cart moving on a 2D horizontal plane. The x-axis of
the body frame points along the forward velocity of the cart. (B) Cart following a line.
Dashed line is the desired line to be followed by the cart. Initially the cart starts away from
the desired line but with control, it follows the line. (C) Cart following a circle: Dashed
circle is the desired circle to be followed by the cart. Initially the cart is away from the
desired circle but with the application of the controller, it follows the circle. Axis scales are
dimensionless for purposes of demonstration.

discussed in Section 5.4.

Consider a body reference frame attached to the cart at (x, y) with the frame x-axis

pointing along the forward translational velocity of the cart. The configuration space G

is the group of transformations in 2D, namely G = SE(2) ∼= SO(2)sR2 ∼= S1sR2. To

denote an element g ∈ SE(2), we use both g = (R, p) ∈ SO(2)sR2 and its homogeneous

representation

g =

R p

0T 1

 , where R =

cos θ − sin θ

sin θ cos θ

 , p =

x
y

 . (5.5)
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The kinematic equation of the unicycle can be written as

g−1ġ =


Ω̂

v
0


0 0

 , where Ω̂ =

0 −ω

ω 0

 . (5.6)

We now consider two control tasks, following a line and following a circle.

5.3.1 Straight line following

To follow the x-axis, the cart’s position should be such that it is oriented parallel to

the x-axis and its y-coordinate should be zero. This is precisely the example discussed

in the introduction, and as shown, is trivial in local coordinates on SE(2); because of its

simplicity, it may seem that the machinery uses in this section is more complicated than

needed, but the example serves to illustrate the general framework in detail.

For the case when the cart is following the x-axis in the positive direction, this task can

be defined as a zero of the function ϕ defined as

ϕ(g) = ϕ(R, p) = (1− eT1R−1e1) +
1

2
(eT2 p)

2,

where ei’s for i = 1, 2 are principal unit vectors in two dimensions. When the cart is

following the x-axis in the negative direction, this task can be defined as a zero of the

function, ϕ(R, p) = (1 + eT1R
−1e1) + 1

2
(eT2 p)

2.
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The function ϕ is invariant to translations along the x-axis of the world frame. Hence

given this control task, the symmetry group is

H = {h ∈ SE(2) : ∀g ∈ SE(2), ϕ(hg) = ϕ(g)}

=


h ∈ SE(2) | h =


1 0 x

0 1 0

0 0 1

 , x ∈ R


∼= R.

Let B := G/H ∼= S1 × R. Define the projection map, π : G→ B by

π(g) = (R−1e1, e
T
2 p).

For all h ∈ H , π(hg) = π(R , p + xe1) = (R−1e1, e
T
2 p) = π(g). Therefore, π is H

invariant. Also, if g1 ∈ π−1(r) then g2 = hg1 ∈ π−1(r), ∀h ∈ H . Therefore π−1(r) ∼= H

for each r ∈ G/H . Let r = [r1 r2 r3]T ∈ R3 denote an element in B with r2
1 + r2

2 = 1.

Define a global section s : B = S1 × R→ SE(2) by

s(r) =


r1 r2 0

−r2 r1 r3

0 0 1

 .

Note that π ◦ s = IdB. Hence, the projection π : SE(2)→ S1 ×R defines a trivial bundle.

With this section, a global diffeomorphism ψ : H × B ∼= R × (S1 × R) → SE(2) can be
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constructed by ψ(h, r) = hs(r). This principal bundle can be represented by the following

diagram:

SE(2)

/R
��

B = S1 × R

s

JJ

Assuming that the forward velocity of the cart is held constant at v = 1, the dynamics in

the reduced space can be calculated as

ṙ =


0

0

−r2

+


r2

−r1

0

ω (5.7)

with a holonomic constraint given by r2
1 +r2

2 = 1. The reconstruction equation for the fiber

variable h = x is given by

ẋ = r1. (5.8)

Observe that R−1e1 is the unit vector along the x-axis of the world reference frame as

seen in the body reference frame. If the cart is following the x-axis, r = [±1 0 0]T

depending on whether the cart is following the line along the positive or negative x-axis.

We claim that choosing the following control input will result in the cart following the

desired line:

ω = kr2 − r3 for some k ∈ R+. (5.9)
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We use the task function reduced to the base space as a candidate Lyapunov function,

ϕ(r) = 1− r1 + 1
2
r2

3. The time derivative of ϕ, upon plugging (5.9), is ϕ̇(r) = −kr2
2 which

is negative semi-definite. Each level set Ωc = {r ∈ B : ϕ(r) ≤ c}, c > 0 is positive

invariant. The subset where ϕ̇ = 0 is given by E = {r ∈ S1 × R : r2 = 0} ⊂ Ωc.

The largest invariant subset in E contains only the points r = [±1 0 0]T . Therefore

from LaSalle’s invariance principle, we conclude that the cart follows the desired line.

Further by considering the local chart (r2, r3) and by eigenvalue analysis we can see that

the equilibrium point r = [1 0 0]T is stable and the other one is a saddle. The additional

(unstable) critical point is a topological obstruction: our essentially global controller is the

most that can be expected of a smooth feedback on S1 × R. To follow the line in the other

direction, simply let ω = r3 − kr2 for some k ∈ R+.

In Figure 5.1(B) we show an anecdotal trajectory (in simulation) the cart follows using

the above developed controller. As we can see from the figure, the cart is initially far away

from the x-axis and it asymptotically follows the desired line.

5.3.2 Circle following

Suppose we are interested in making the cart follow a circle given by X = {(x, y) ∈

R2 | x2 + y2 − ρ2 = 0}. This task can also be described as the zero of the function, ϕ

defined by

ϕ(g) = ϕ(R, p) =
1

2

∥∥ρe2 −R−1p
∥∥2
.
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One can show that H = {g = (R, p) : p = 0} ' SO(2) < SE(2) is the largest subgroup

that leaves ϕ invariant. Construct a fiber-bundle π : SE(2)→ SE(2)/SO(2) with

π(g) = π(R, p) = R−1p.

Notice that B := SE(2)/SO(2) ∼= R2. If we introduce a global section s : R2 → SE(2)

given by

s(r) =

I2×2 r

0 1


for r ∈ B, then we can see that π defines a trivial bundle. This SO(2)-bundle can be

summarized by the following diagram:

SE(2)

/SO(2)

��
B = R2

s

JJ

Let r = [r1 r2]T . Assuming that the forward velocity of the cart is constant (say, v = 1),

the reduced space dynamics are given by

ṙ = R−1ṗ−R−1Ṙr =

1

0

+

 0 1

−1 0

 rω (5.10)

and the fiber variable θ satisfies

θ̇ = ω. (5.11)
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Observe that r = R−1p is the vector from the center of the desired circle to the origin

of the body frame, written in the body frame. This implies that if the cart is following the

desired circle clockwise then r = [0 ρ]T , and if it is following the desired circle counter-

clockwise then r = [0 − ρ]T . We show that choosing the following control input will

result in the cart following the desired circle clockwise:

ω = −1 + r1k

ρ
, for some k ∈ R+. (5.12)

Again we use the task function (restricted to the base space) as a candidate Lyapunov

function, namely ϕ(r) = 1
2
r2

1 + 1
2
(r2 − ρ)2. Then the time derivative of the Lyapunov

function is ϕ̇(r) = r1(1 + r2ω) + (r2 − ρ)(−r1ω) = −kr2
1. We note that ϕ̇(r) is negative

semi-definite and that the invariant subset of the set where ϕ̇(r) = 0 consists of only

r = [0 ρ]T . As before, one can show using LaSalle’s invariance principle that the cart

follows the desired circle clockwise. To follow the circle counter-clockwise, set ω = 1+rk
ρ

.

Note that the convergence is global.

Figure 5.1(C) shows an example simulation of the circle following by a cart. The cart

starts away from the desired circle and asymptotically follows the desired circle.

5.4 Applications to needle steering

In Chapter 3 we use local coordinates to parameterize the configuration space, SE(3),

and perform a coordinate-based reduction “by hand” by noting that the three configuration
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variables central to the control task evolved independently of the others. Here, we apply

the general framework developed in Section 5.2 for two additional tasks.

It is important to understand how the planning and control architecture relates to the

methodology outlined in Section 5.2. In needle steering, the entire spaceG is all of SE(3)—

positions and orientations of the needle tip in the tissue. The space in which the planner

acts—that is, motions within a surface—is the symmetry group, or fiber, that defines the

projection from the entire space into the base space. The base space is where the low-level

controller operates in an effort to drive the needle back to the desired surface.

5.4.1 Stabilizing the needle tip parallel to a plane

Without any loss of generality, let the desired plane be the y-z plane. The configuration

space G is SE(3). The control task is to stabilize the needle tip to a plane parallel to the

y-z plane. In other words, it is desired that the circle the needle tip traces at steady state,

during insertion without any rotation at the base, be parallel to the y-z plane.

The task can be described as the zero of the function, ϕ given by

ϕ(g) = ϕ(R, p) = 1− eT1R−1e1

where g ∈ SE(3) is represented as in (2.1) and ei’s for i = 1, 2, 3 are the principal unit

vectors in three dimensions. This form of the function ϕ is for the cases when the needle

tip in steady state undergoes rotation about the positive x-axis. In the case when the needle
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tip undergoes rotation about the negative x-axis, the function, ϕ, can be defined as ϕ =

ϕ(R, p) = 1 + eT1R
−1e1.

Here the symmetry group is

H = {h ∈ SE(3) : ∀g ∈ SE(3), ϕ(hg) = ϕ(g)}

=
{
x ∈ SE(3) | x = (eê1θ, p) where θ ∈ R and p ∈ R3

}
= X ∼= SO(2)sR3 ∼= SE(2)× R.

The symmetry group, H , can be thought of as a combination of 2D transformations in the

y-z plane and translations along the x-axis relative to the world frame. With these group

definitions, B := G/H = S2. Define a projection map from G to B as

π(g) = π(R, p) = R−1e1.

Choose an open subset U of B as the unit sphere excluding the (−1, 0, 0) point. That is

U = S2 − {(−1, 0, 0)}. Define the bundle section on U , s : U → π−1(U) ⊂ G as

s(r) = (e$̂(r)π, 0),

where $(r) = e1+r
‖e1+r‖ . This section can be seen in Figure 5.2. With this section, locally

g ∈ G can be expressed as g = hs(r) ' (h, r), where h ∈ H and r ∈ B. To completely
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Figure 5.2: Illustration of the bundle section. Unit vector $ bisects r and e1. If the r is
rotated about $ as axis by π then it coincides with e1. The circle through the points r and
(1, 0, 0) is a latitude of S2 drawn perpendicular to$. Note that π ·s(r) = (e$̂(r)π)−1e1 = r.

cover S2, consider U ′ = (S2−{(1, 0, 0)}) and a similar section can be constructed.4 These

make the map π a principal bundle which can be summarized by the following commutative

diagram:

SE(3)

π /SO(2)×R3

��

⊃ π−1(U)
ψ−1

//

π

��

H × U
ψ

oo

B = S2 ⊃ U = S2 − {(−1, 0, 0)}

s

JJ

We assume that the insertion speed is held constant at v = 1. Base space elements can

be written in coordinates as r = [r1 r2 r3]T ∈ R3 with r2
1 + r2

2 + r2
3 = 1. The base space

4One can choose s′(r) = (eê3πe$
′π, 0), where $′ = −e1+r

‖−e1+r‖ .
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dynamics are

ṙ =


0

κr3

−κr2

+


r2

−r1

0

ω. (5.13)

The fiber variable h = (eê1θ, p) ∈ H satisfies

θ̇ê1 = Ads̄(r)

(
κê1 + ωê3 − s̄(r)−1∂s̄(r)

∂r
ṙ

)
,

ṗ = eê1θs̄(r)e3,

(5.14)

where s̄(r) = e$̂(r)π.

For the task to be completed, the state in the reduced system should be r = [±1 0 0]T .

Choosing the following control input we show that the task is achieved:

ω = kr2, for some k ∈ R+. (5.15)

Once again, we use the task function in base coordinates as a candidate Lyapunov function,

namely ϕ(r) = 1−r1. The time derivative of the Lyapunov function is ϕ̇(r) = −kr2
2 which

is negative semi-definite in r. The set where ϕ̇ = 0 is given by E = {r = [r1 r2 r3]T ∈

S2 | r2 = 0}. The largest invariant set in E contains only the points r = [±1 0 0]T .

Hence, from LaSalle’s invariance principle, we can conclude that the needle tip can be

stabilized to a plane parallel to the desired plane. Notice that asymptotically the fiber
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dynamics become

θ̇ = κ,

ṗ = (0, sin θ,− cos θ)T .

This shows us that the fiber variables trace a circle of radius 1/κ, which we knew from the

needle steering model. Further by considering the local chart (r2, r3) and by eigen-value

analysis one can show that the equilibrium point r = [1 0 0]T (corresponding to the needle

tip tracing a circle of radius 1/κ parallel to the y-z plane counter clockwise) is stable, and

the other equilibrium point unstable. For the needle tip to trace the circle clockwise, let

ω = −kr2 for some k ∈ R+.

Figure 5.3(A) shows an example simulation run. The initial condition is such that

without any control the needle tip would trace circle not parallel to the y-z plane. With the

use of the above developed controller, the needle tip in steady state traces a circle parallel

to the desired y-z plane.

5.4.2 Controlling the needle tip to a sphere

In this section we use the reduction technique developed in section 5.2 to control the

needle tip to the surface of a sphere with radius ρ > 1/κ. If the needle tip stays on the

surface of the desired sphere at steady state it has to follow a circle of radius % = 1/κ. Let

d =
√
ρ2 − %2. If the needle is staying on such a circle on the surface of the sphere, the
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Figure 5.3: (A) Needle tip driven so that at needle tip trajectory becomes parallel to the y-z
plane. (B) Needle tip driven to the desired sphere. Initially the needle tip is away from the
desired sphere (drawn in the figure) but with the application of the controller, it converges
to the surface of the sphere. Axis scales are in cm.

position vector of the center of the sphere written in the body frame is given by R−1p. This

must be [−d % 0]T or [d % 0]T depending on which direction the needle tip is following

the circle of radius %.

In this example, the control task can also be described as the zero of the function

ϕ(g) = ϕ(R, p) =

∥∥∥∥∥R−1p−
[
−d, %, 0

]T∥∥∥∥∥
2

or

ϕ(g) = ϕ(R, p) =

∥∥∥∥∥R−1p−
[
d, %, 0

]T∥∥∥∥∥
2

depending on the direction the needle tip follows the circle. It is easy to see thatH = SO(3)

leaves the function, ϕ, invariant. Hence, the symmetry group, H , for this control task is

SO(3). The base space, B := G/H = R3. The bundle projection π : SE(3)→ R3 is given
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by

π(g) = R−1p

where g = (R, p) ∈ SO(3)sR3 ∼= SE(3). This bundle is trivial because we can construct

a global section s : R3 → SE(3) as

s(r) =

I3×3 r

0T 1

 .

Given (R, r) ∈ H × B = SO(3) × R3, the corresponding g ∈ SE(3) can be calculated

as g =

R Rr

0 1

. This principal bundle can be represented by the following commutative

diagram:

SE(3)

/SO(3)

��
B = R3

s

JJ

Assuming v = 1, the dynamics in the base space can be written as

ṙ =


0

κr3

1− κr2

+


r2

−r1

0

ω (5.16)
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and the fiber variable R ∈ H = SO(3) satisfies

R−1Ṙ = κê1 + ê3ω. (5.17)

The control input

ω = −k(dr2 + %r1) for some k ∈ R+ (5.18)

makes the base variable, r, converge to [−d % 0]T . Consider the reduced task functional

as the candidate Lyapunov function: ϕ(r) = 1
2
(r1+d)2+ 1

2
(r2−%)2+ 1

2
r2

3. Its time derivate,

ϕ̇(r) = ω(dr2 + %r1) = −(dr2 + %r1)2, is negative semi-definite. The invariant subset of

the set where ϕ̇(r) = 0 contains only r = [−d % 0]T . Again using LaSalle’s invariance

principle we can conclude that the needle tip stays on the surface of the desired sphere. To

follow the circle in the desired sphere in the other direction, choose ω = dr2 − %r1.

Figure 5.3(B) is an anecdotal simulation of the needle staying on the surface of a desired

sphere. The needle starts away from the desired sphere and asymptotically converges to the

surface of the sphere.
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5.5 Task-induced reduction on mechanical sys-

tems

In this chapter we present how the above developed task-induced reduction extends to

the Lagrangian systems. In the first stage, we perform a previously developed mechanics-

based “intrinsic” reduction to separate the configuration space into a shape space and a

symmetry (Lie) group. We then perform task-induced reduction to further reduce the sym-

metry group into a base space and a fiber as in Section 5.2.

5.5.1 Review of Lagrangian reduction on mechanical sys-

tems

Consider the mechanical system whose configuration space is Q, Lagrangian is

L(q, q̇), (q, q̇) ∈ TQ and whose constraints, if they exist, are nonholonomic and writ-

ten as w(q)q̇ = 0. Assume that the the Lagrangian and the constraints are invariant to a left

action of a Lie group, G. It has been previously shown that such a system can be decoupled

into the symmetry group, G and the shape space, S = Q/G,5 namely Q = G×S (locally).

The reduced equations are given in Proposition 5.5.1.

Proposition 5.5.1 (Ostrowski [67]) For the above described mechanical system, assume

that the input forcing occurs only in the shape space and that no constraint lies completely
5In the literature the space S = Q/G is referred as both shape space and as base space. In the current

work, we only refer to it only as the shape space and B = G/H (defined in Section 5.2) as the base space.
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in the shape space. The reduced system equations can be written as

M(σ)σ̈ =− C(σ, σ̇)σ̇ −N(σ, σ̇,Π) + τ (5.19)

Π̇ =f(σ, σ̇,Π), (5.20)

where σ ∈ S denotes the shape variable, Π ∈ g∗ denotes the generalized momenta and τ

the generalized input force on the systems. The symmetry group variable, g ∈ G, can be

reconstructed as

g−1ġ = −A(σ)σ̇ + Ī−1(σ)Π. (5.21)

If there are m nonholonomic constraints, then there are n − m generalized momenta,

where n is the dimension of the Lie group, G. In particular, for principally kinematic

systemsm = n thus resulting in no generalized momenta. In other words, for these systems

the group variable can be reconstructed from the nonholonomic constraint equations and

this simplifies the reduced system equations further. More details on the structure and

computations can be found in propositions 4.3 and 5.1 in [67] and also in [8, 9].

5.5.2 General framework

Observe that the symmetry group dynamics given in (5.21) is a left-invariant vector

field on the Lie group, G. Assume that there is a task defined completely on the group

space. If this task induces a symmetry as described in previous sections, we can further
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decompose G. As before, we consider cases where the control task is encoded as the zero

value of a functional ϕ : G→ R defined on the configuration space. LetH be the subgroup

of G invariant to the task, namely

H = {h ∈ G : ∀g ∈ G,ϕ(hg) = ϕ(g)}.

Since H is a subgroup of G, there exists a bundle projection π : G → B := G/H . Also

since H does not affect the control task, we consider the state evolution only in the base

space.

Corollary 5.5.2 The reduced equations in the base space, B = G/H , are

ṙ = f1(r, σ,Π) + f2(r, σ)σ̇ (5.22)

where f1(r, σ, p) = Tπ · gĪ−1p and f2(r, σ) = −Tπ · gA(σ) and those in the fiber, H , are

h−1ḣ = Ads(r)
(
−A(σ)σ̇ + Ī−1(σ)Π− s(r)−1Ts · ṙ

)
. (5.23)

Proof: Following the proof for the proposition 5.2.1, the base dynamics (5.22) result

from the observation that the vector field on G is left-invariant to G and the projection π

is invariant to H , which is a subgroup of G. The fiber dynamics (5.23) is exactly the same

computation as (5.4).
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Locally, Proposition 5.5.1 decomposes an entire configuration space as the cross prod-

uct of the symmetry group and shape space, namely Q = G× S ≡ G× (Q/G). Corollary

5.5.2 can be conceived as further decomposing G into a base and fiber in its own right, due

to the task-induced symmetry fiber H , so that we have

Q =

G︷ ︸︸ ︷
H ×

B︷ ︸︸ ︷
(G/H)×

S︷ ︸︸ ︷
(Q/G) (5.24)

at least locally, or globally in the case that G = H × B and Q = G × S are both trivial

bundles. Here, Q is decomposed via the mechanical reduction of Proposition 5.5.1, and G

is further decomposed via the task reduction of Corollary 5.5.2.

5.5.3 Circle-following of a differential drive robot

We illustrate task-induced reduction on mechanical systems via an example: circle-

following of a differential drive robot moving on a 2D horizontal plane as shown in Fig-

ure 5.4(A). Let g ∈ SE(2) be the position and orientation of the differential drive robot and

(σ1, σ2) be the wheel angles. Let ρw be the wheel radius andw be the half-distance between

the wheel axes, and m, J and Jw be the mass of the robot, inertia of the robot and inertia of

the wheels respectively, and τ = [τ1, τ2]T be the motor torques at the wheels. The configu-

ration space of the robot is Q = SE(2)× S1 × S1. Ostrowski [67] showed the Lagrangian

reduction can be performed on this robot, decoupling the configuration space into the fiber
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Figure 5.4: (A) Differential drive robot. World and body reference frames are shown. The
body frame’s x-axis is along the forward translational velocity of the robot. (B) Differen-
tial drive robot following a circle. Dashed circle is the desired circle to be followed by the
differential drive robot. Initially the robot is away from the desired circle but with the ap-
plication of the controller, it follows the circle. Axis scales are dimensionless for purposes
of demonstration.

SE(2) and the base space S1 × S1 = T 2. This system has three nonholonomic constraints

describing the no-slip condition making this a principally kinematic system. The dynamics

in the reduced space are given by

M

σ̈1

σ̈2

 =

τ1

τ2

 , (5.25)

where

M =

Jw + mρ2w
4

+ Jρ2w
4w2

mρ2w
4
− Jρ2w

4w2

mρ2w
4
− Jρ2w

4w2 Jw + mρ2w
4

+ Jρ2w
4w2

 .
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The symmetry group dynamics are

g−1ġ =


0 −ς̇2 ς̇1

ς̇2 0 0

0 0 0

 , (5.26)

where

ς1 =
ρw
2

(σ1 + σ2) and ς2 =
ρw
2w

(σ1 − σ2)

is a reparameterization of the shape space, ς̇1 is the forward velocity and ς̇2 is the angular

velocity of the robot. Also, let u1 = ρw
2

(e1 + e2)TM−1τ and u2 = ρw
2w

(e1 − e2)TM−1τ ,

where e1 = [1, 0]T and e2 = [0, 1]T . In these new coordinates, the shape space dynamics

are given by ς̈1
ς̈2

 =

u1

u2

 . (5.27)

Consider the task of making the differential drive robot follow a circle of radius ρwhose

center is at the origin of the world frame. Observe that the symmetry group dynamics

resemble the equations of motion of a planar cart with the forward and angular velocities

of the cart given as functions of the wheel velocities. As in Section 5.3.2, we perform a

task-induced reduction with SO(2) as the fiber. The task-induced reduced space is given
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by r = R−1p, where g = (R, p). The dynamics of the reduced space is given by

ṙ =

1

0

 ς̇1 +

 0 1

−1 0

 rς̇2 (5.28)

and the fiber variable, θ, satisfies

θ̇ = ς̇2. (5.29)

We now use the control scheme developed in Section 5.3.2 along with an integrator

back-stepping algorithm [47] to make the differential drive robot follow the desired circle.

One can show that the following control law makes the robot follow the desired circle

u =
∂φ

∂r
Aς̇ −

(∂ϕ
∂r
A
)T
− k(ς̇ − φ), k ∈ R+,

where

A =

1 r2

0 −r1

 , φ =

 1

−(1 + r1)/ρ

 ,

and

ϕ =
1

2
r2

1 +
1

2
(r2 − ρ)2.

Global convergence of this controller can be shown using the Lyapunov function, V =
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ϕ + 1
2
‖ς̇ − φ‖2. Figure 5.4(B) is an example simulation of the circular wall-following

in a differential drive robot. The robot is initially away from the desired circle but, it

asymptotically follows the desired circle.
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Kernel-Based Visual Servoing
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Chapter 6

Kernel-Based Visual Servoing (KBVS)

Visual servoing (VS) entails moving either a camera or the camera’s visual target such

that the image of the target converges to a known desired image. In this work, we consider

the eye-in-hand configuration for which the camera is mounted on the robot’s end effec-

tor. In this case, the visual servoing controller aims to control the end effector such that

its position relative to certain features in the scene converges to a desired position. Tra-

ditionally, a visual servoing system consists of two sub-problems or processes: (i) feature

tracking and (ii) feedback control. An image processing unit processes the images of the

scene captured by the camera and tracks the feature points frame to frame. The feedback

controller then uses these feature locations in the images as feedback signals either directly

or indirectly and sends control commands to the robot. This separation, though convenient,

does not allow for tuning the whole system together; the sub-problems are usually tuned

independently assuming the other sub-problem is solved perfectly.
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Here we propose a novel method to perform visual servoing without separating the

tracking and control tasks. We build on spatial kernel-based tracking algorithms [15, 20,

29, 35] to design vision-based feedback controllers to drive the robot to a position where

the image of the target scene converges to a known image. In this method a weighted

sum of the image with the weights given by a smooth kernel function is the feedback

signal to the controller. We use Lyapunov theory to prove the stability of the controllers

and obtain formal regions of convergence. Further, we present experimental results on the

implementation of this KBVS approach along four of the six degrees of motion, namely all

the three translational degrees and roll about the camera’s optical axis.

6.1 Previous work

6.1.1 Visual servoing

There are three main visual servoing techniques classified based on the error signals to

the feedback controller:

3D visual servoing: Also called position-based visual servoing, in this method the

Cartesian coordinates of the robot end-effector are calculated from the feature positions in

the image from a known camera model and the geometry of the target [38, 54, 89]. The

end-effector position error from the desired position is used as the feedback signal to the

controllers. This allows the control design to be simple and not sensor modality dependent

99



CHAPTER 6. KERNEL-BASED VISUAL SERVOING

(other than sensing errors).

2D visual servoing: Also called image-based visual servoing, here the features’ error

from their desired locations is used directly as the feedback signal for the controller [16–18,

34,38,61,92]. This error along with the image Jacobian relating the motions of the features

in the image to the motions of the end-effector is calculated or estimated to determine the

control inputs. Even though the feature position error is completely determined in the image

space, the image Jacobian calculation in general needs the 3D position and orientation of

the end effector. Since the feedback signal is completely in the sensor space, this method is

thought to be more robust to camera calibration errors. The main problem in this method is

that sometimes the image Jacobian can lose rank and the feedback signal can lie in its null

space, thus making the control ineffective. Also, for nonholonomic systems, this method

cannot be directly applied.

2-1
2
D visual servoing: In 2-1

2
D visual servoing [55,56,79,91] the feedback error signal

is a combination of feature locations and 3D end effector location (up to a scale) and orien-

tation. For this method, only the estimates of 3D information suffice and hence, it is robust

to camera modeling errors while keeping the control in the task space.

Kragic and Christensen [52] use a combination of 2D and 3D visual servoing methods

to perform tasks motivated by service robotics problems where the robots are given a task

to fetch a particular object. They use object recognition to recognize the object and use 2D

visual servoing methods for the gross motions of the robots towards the object. In the final

stage, the authors use 3D visual servoing techniques for precise motions of the robots and
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object manipulations. For an experimental comparison of 2D, 3D and 2-1
2
D visual servoing

techniques see Gans et al. [30]. We refer to [38] for a tutorial on visual servoing and to

[51] for a newer survey on visual servoing algorithms.

While most of these visual servoing algorithms involve tracking feature locations frame

to frame, there has been some recent work on vision-based control without feature tracking.

Deguchi [19] defines a high dimensional space whose dimensions encode all the image

pixels and the camera/target motions. Since motion of the camera/target and the resulting

image are related, they lie on a lower dimensional surface within this high dimensional

space. The authors use this relationship and use numerical methods to find the equation

defining the surface and its Jacobian to perform visual servoing. Tahri and Chaumette [78]

perform visual servoing via moments which is related to the KBVS approach presented

here. Polynomial functions defined on the image pixel location can be used as spatial

kernels (see 6.2.1 for kernel definition) and kernel measurement can be thought of as a

collection of generalized moments of feature space around the kernel center.

6.1.2 Kernel-based tracking

In kernel-based tracking, a spatial weighted average of the image is taken to obtain a

kernel measurement (see 6.2.1). Tracking is then cast as finding the optimal kernel place-

ment in each frame of the image sequence to minimize the difference in the kernel measure-

ments. Comaniciu et al. [15] bin each pixel location into one of the finite number of bins

(clusters) with the binning function defined on the image features at that location. Then,
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a weighted spatial average is taken to obtain a histogram vector, which is the kernel mea-

surement. Tracking the region of interest then becomes equivalent to moving the location

of the kernel center in the second frame so that a cost function based on the Bhattacharyya

coefficient is minimized.

Hager et al. [35] extend the tracking algorithm to multiple kernels for tracking com-

plex motions by defining kernels that depend on only degree of motion and invariant other

motions. Fan et al. also use multiple kernels to track articulated objects like human hands.

Dewan and Hager [20] develop optimal kernels for tracking purposes to improve the track-

ing performance in terms of lesser iterations needed for tracking convergence and lower

computational cost.

6.2 Kernel-based visual servoing controllers

In this section we develop KBVS controllers for a subset of generic camera motions in

SE(3). We first describe our overall method for a simplified simple 1D translation parallel

to the image, and then extend it to 2D parallel translation (x-y), translation along the optical

axis (z), and roll about the camera optical axis (θ).

In this work, we make some simplifying assumptions. First, we consider the “eye-in-

hand” configuration in which the camera is mounted on the robot end effector, and the

target is stationary. Further, we assume a kinematic motion model for the robot, whose

control inputs are its joint velocities. We treat image pixels as continuous variables over
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all of R2 measured in continuous time, rather than discrete variables over a finite image

measured in discrete time. The visual targets are assumed to be planar and parallel to the

image plane of the camera, thus having a uniform scaling of the target. In practice these

assumptions are clearly violated; see experimental results Section 6.4. In all the analysis

below the image or its transformations are treated as signals that are directly measured.

Definition 6.2.1 Let K : R2 → R be a real-valued piecewise continuous function defined

on the location space of the image. Given a signal, s(w, t) (such as the image pixel in-

tensities) the kernel-projected value of the signal at time t, called the kernel-projected

measurement or simply kernel measurement is defined as the scalar

ξ(t) =

∫
I
K(w)s(w, t)dw, (6.1)

where w ∈ I = R2 is the image spatial indexing variable. The function K is known as the

kernel.

As the camera moves relative to the target, the signal, s(·, t), changes thus affecting the

kernel-projected value. At the goal, let the signal be s0 = s(·, 0) and the kernel-projected

measurement at the goal be denoted by ξ0 = ξ(0). The aim of KBVS is to drive the

robot/camera to goal configuration by driving ξ(t)→ ξ0.
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Figure 6.1: Experimental configuration. Camera is mounted on a 6-DOF industrial robot.
The camera is looking at a planar scene in front of it.

6.2.1 1D Translation

Consider a robot with a camera mounted on it as shown in Figure 6.1. Image intensity

at each pixel is taken as the signal, ignoring illumination changes. Since, we are interested

in translation only along one direction, we assume that the image is one-dimensional, that

is w ∈ R. Let the kernel projection of the image at the goal be ξ0 at the position x = 0

(without loss of generality). Our goal is to determine a control input u that will drive the

kernel-projected measurement to ξ0, thus driving x(t)→ 0.

Assume that the camera moves parallel to the scene according to the simplified dynam-

ics

ẋ(t) = u(t), (6.2)

where u(t) is the robot control input. For the remainder of the chapter, we assume the
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signal only depends on time via the camera motion, which in the 1D case here implies, in

an abuse of notation, that s(w, t) = s(w, x(t)). Since the scene is a unit distance away from

the image plane, s(w, x(t)) = s0(w − x(t)). Through a change of variables, w̄ = w + x,

and recalling that I = R2, the kernel-projected measurement ξ can be rewritten as

ξ =

∫
I
K(w)s0(w − x)dw =

∫
I
K(w̄ + x)s0(w̄)dw̄. (6.3)

From (6.3), observe that even when the images or the signal are discontinuous and hence

not differentiable, the kernel-projected measurement is analytically time differentiable as

long as the kernel is smooth. As we show below, we exploit the differentiability of ξ(t) in

the design of KBVS controllers.

Consider a candidate Lyapunov function V = 1
2
(ξ − ξ0)2. Applying the chain rule, we

have

V̇ =(ξ − ξ0)
∂ξ

∂x
ẋ

=(ξ − ξ0)
[ ∫
I

∂K(w̄ + x)

∂x
s0(w̄)dw̄

]
ẋ

=(ξ − ξ0)
[ ∫
I
K ′(w̄ + x)s0(w̄)dw̄

]
ẋ

=(ξ − ξ0)
[ ∫
I
K ′(w)s0(w − x)dw

]
u

whereK ′(w) = ∂K(w)
∂w

. Note that in the last step, we revert the coordinates back to w. Now,
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choose the input, u, as

u = −(ξ − ξ0)

∫
I
K ′(w)s(w, x)dw (6.4)

which only requires the current signal projection, ξ, the signal projection at the goal, ξ0,

the kernel function derivative, K ′, and the current signal, s(w, t), which depends on t only

through x(t) (see above). With this choice, V̇ becomes

V̇ =− (ξ − ξ0)2

(∫
I
K ′(w)s(w, x)dw

)2

.

Assuming the candidate Lyapunov function, V , is positive definite in the configuration

variable, then V̇ is negative semi-definite. The assumption that V > 0 admittedly depends

on the signal and kernel properties, although it appears from our experiments (Section 6.4)

to be a valid (locally) generic assumption and, in any case, can be numerically tested and

optimized [20]. This choice of input guarantees stability (in the Lyapunov sense) of the

controller with mild assumptions on the image and kernel.

For practical applications, it is crucial to obtain at least local asymptotic stability. If the

kernel-image pair is such that in a neighborhood around the goal,
∫
I
∂K(w)
∂w

s0(w − x)dw 6=

0 (again, which appears to be true generically), local asymptotic stability is guaranteed.

∂K(w)
∂w

becoming zero is analogous to the image error lying in the null space of the Jacobian

in tracking literature [13].

For good practical performance of the controller, the Lyapunov function in the con-

figuration space of the robot should be quadratic near the goal, the Hessian at the goal
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should be positive (for the 2D KBVS algorithms developed below, the Hessian have posi-

tive eigenvalues with condition number as close to one as possible). This provides us with

an objective function that likely can be optimized for larger regions of attraction and better

performance.

6.2.2 2D Translation

Let the motion of the camera relative to the target be 2D translation parallel to the image

plane of the camera. Let the configuration of the robot be denoted by q = [x, y]T ∈ R2.

Assume that the camera moves parallel to the optical axis according to

q̇ = u, (6.5)

where u ∈ R2 is the robot control input. Since the target scene is a unit distance away from

the image plane s(w, q(t)) = s0(w − q(t)). Through a change of variables, w̄ = w + q,

and recalling that I = R2, the kernel-projected measurement ξ can be rewritten as

ξ =

∫
I
K(w)s0(w − q)dw =

∫
I
K(w̄ + q)s0(w̄)dw̄. (6.6)
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Consider a Lyapunov function candidate V = 1
2
(ξ−ξ0)2. Applying the chain rule, we have

V̇ =(ξ − ξ0)
∂ξ

∂q
q̇

=(ξ − ξ0)
[ ∫
I
K ′(w̄ + q)s0(w̄)dw̄

]
q̇

=(ξ − ξ0)
[ ∫
I
K ′(w)s0(w − q)dw

]
u,

where K ′(w) = ∂K(w)
∂w

∈ R1×2. Note that in the last step, we revert the coordinates back

to w. Now, choose the input, u, as

u = −(ξ − ξ0)

∫
I
∇K(w)s(w, q)dw, (6.7)

where∇K = (∂K
∂w

)T ∈ R2. With this choice V̇ becomes

V̇ = −(ξ − ξ0)2

∥∥∥∥∫
I
∇K(w)s(w, q)dw

∥∥∥∥2

.

Similar to the ideas presented in [20], an alternate way of doing 2D translation is to

decouple it into two 1D translations using two independent x and y directional kernels.

Each kernel is invariant to the motion in the other direction thereby providing independent

controllers. For example, a kernel oriented in the x direction can be formed by stacking a

Gaussian kernel along every pixel in the y direction. As discussed in [20], we also found

that using the two independent kernels provides better results than using a single kernel.

The experiments presented for the 2D translation case in section 6.4 use the two kernel
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approach.

6.2.3 Translation along optical axis

Cideciyan [14] uses a spatial Fourier transform (FT) of images for tracking and regis-

tration to decouple translation and scaling. We seek to capitalize on this invariance of the

magnitude of the FT to translation to develop controllers for depth and rotation that can

integrated with the previously developed 2D controllers in the x-y plane. As a first step,

we consider motions in depth only.

Here, we consider motions of a camera along its optical axis. Even though this cor-

responds to a translation as in the previous two cases, there is a fundamental difference

between the two: 2D x-y translations simply translate the image, while motions in depth

scale the image. Thus, we seek an appropriately transformed signal and control strategy.

Specifically, we use the magnitude of the FT of the image as the signal.

Let I0 denote the image at the goal, and F0 the magnitude of its spatial FT. We assume

that the goal corresponds to unity depth (without any loss of generality). Let the inertial

world reference frame be such that the z-axis is parallel to the camera’s optical axis. In this

frame, the camera is moving along the z-axis according to

ż(t) = u, (6.8)

with goal z0 = 1. At any generic position of the camera, the image I is a scaled version of
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I0, i.e.

I(w, z) = I0(w/z).

One can show that the magnitudes of the spatial FT of these images (F and F0 respectively)

are related by

F (v, z) = z2F0(zv), v ∈ R2.

We define the kernel-projected measurement as

ξ =

∫
I
K(v)F (v, z)dv =

∫
I
K(v̄/z)F0(v̄)dv̄, (6.9)

where v̄ = zv. At the goal we have ξ0 =
∫
I K(v)F0(v)dv. Our aim is to drive the robot

to z = 1 by driving ξ(t) → ξ0. Consider a Lyapunov function candidate: V = 1
2
(ξ − ξ0)2

and choosing the input as

u = (ξ − ξ0)

∫
I
K ′(v)vF (v, z)dv, (6.10)

then V̇ = −1
z
(ξ − ξ0)2

∥∥∫
I K

′(v)vF (v, z)dv
∥∥2. If z > 0, V̇ is negative semi-definite,

which is a realistic assumption for objects seen by the camera.
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6.2.4 Rotation about the optical axis

In this section we develop KBVS for rotation of the camera relative to the target about

its optical axis. Let the robot dynamics be

θ̇ = u, (6.11)

where u is the control input. As in the case of scaling, we use the magnitude of the spatial

FT of the image as the signal. Let I0 and F0 denote the image and signal at the goal, where

θ = 0 (without any loss of generality). At any generic roll position of the camera, the image

I is a rotated version of I0:

I(w, θ) = I0(Rθw),where Rθ =

 cos θ sin θ

− sin θ cos θ

 ∈ SO(2).

The magnitudes of the spatial FT of these images are related by

F (v, θ) = F0(Rθv), v ∈ R2. (6.12)

We define the kernel-projected measurement as

ξ =

∫
I
K(v)F (v, θ)dv =

∫
I
K(RT

θ v̄)F0(v̄)dv̄, (6.13)
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where v̄ = Rθv. At the goal, the kernel-projected measurement is ξ0 =
∫
I K(v)F0(v)dv.

As before, our aim is to drive the robot to θ = 0 by driving ξ(t)→ ξ0. Consider a Lyapunov

function candidate: V = 1
2
(ξ − ξ0)2. Choose the control input as

u = −(ξ − ξ0)

∫
I
K ′(v)JvF (v, θ)dv, (6.14)

where J = R−π
2
. With this choice of u, V̇ = −(ξ − ξ0)2

∥∥∫
I K

′(v)JvF (v, θ)dv
∥∥2, which

is negative semi-definite.

6.2.5 Extensions to SE(2) + depth motions

In the above controllers, we used the image as the signal for the x-y translations and

the magnitude of the FT of the image as the signal for depth and roll. As discussed before,

the FT of the image removes any translation effects while controlling depth and roll. For

3D translational control, one can execute the depth controller first, since it is invariant to

translation, and then run the 2D x-y controller. Similarly, to control all of SE(2) (identified

with x, y, and roll), one can control for roll first, since it is again invariant to translation,

and then control in the 2D plane. Furthermore, all four degrees of freedom (x, y, z, and

roll) can be controlled in a similar manner. In the experiments discussed below, we control

all the four degrees of freedom (SE(2) and depth) simultaneously.
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6.3 Assumptions and their practicality

In the design of the above KBVS controllers, we made several simplifying assumptions

which might not hold in real experiments. We assume that the spatial indexing of the image,

w or w is a continuous variable while in practice it is discrete (pixels locations are discrete).

For modern hight resolution cameras (480×640 or higher) this assumption seems mild and

is handled in practice by treating the image intensities as a piecewise constant function

with intensities being constant along a each pixel length. To improve computation speed,

this can also handled by evaluating the kernel function and its derivatives at discrete pixel

locations and storing them ahead of the experiment. The kernel measurements can now

be calculated as the dot product of two matrices—image intensities and kernel matrix.

Similarly the control inputs can be calculated as dot products of relevant matrices.

The other major assumption we make is that we assume that the image captured by

the camera is infinite. This assumption in the 1D and 2D cases is handled by using finite

support kernels (e.g. a truncated Gaussian with small standard deviation). In the depth and

the roll cases, we handle this by using scenes that have black regions in their boundaries,

thus making the fast FT exact. In future, this class of images used for depth and roll cases

need to be expanded. One way to expand the applicability is to find an important feature

region in the image/scene and make the rest of the image be made to have an intensity of

zero. This approach though will need some kind of coarse feature region tracking frame

to frame. Binning functions similar to the ones used in Kernel-based tracking methods

[15, 35] can be used for these purposes.
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We also assume that the target scene of the camera is planar. This assumption made the

controller design simpler but we have seen in our laboratory experiments that this assump-

tion can be violated to a certain extent. It has been observed that the controllers work when

the scene largely consists of of planar patches even though the scene is not completely

planar. The formal bounds on how much this assumption can be violated is left as future

research.

6.4 Experiments

In this section we present the experimental results of the KBVS controllers developed in

this chapter for an eye-in-hand configuration. Experiments are performed on an American

Robot Merlin 6200 series robot arm. This robot has six degrees of freedom located at the

waist, shoulder, elbow and 3-DOF wrist. The camera attached to the robot’s end effector

is a grayscale Basler 602fc firewire camera. The resolution of the camera is 480 × 640

pixels. The robot is controlled via a dedicated workstation running Linux with real-time

extensions. In order to facilitate algorithm development and implementation, the software

infrastructure allows for direct control of the robot and the capture of images directly from

the GNU Octave mathematical software [26].

Below are five sets of experiments that show the convergence of the KBVS controllers.

In the first set, the robot moves in the 2D plane parallel the image plane of the camera.

In the second the robot moves along the optical axis of the camera and in the third set the
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robot rotates about the camera’s optical axis. Then we present experiments that combine

these degrees of freedom. In the fourth set, the robot is allowed in move in three degrees of

freedom: two translations parallel to the camera’s image plane and one more translational

motion along the camera’s optical axis. In the fifth set of experiments, the robot is allowed

to move in all the three translational degrees of freedom and also in the roll DOF about

the camera’s optical axis. We have conducted 10 sets of experiments with random initial

conditions in each of these sets.

6.4.1 2D Translational motion

CAA B

Figure 6.2: (A) 2D goal image. (B) Difference between the goal and the initial displace-
ment images. (C) Difference between the goal and the final images.

In these experiments the robot is allowed to translate parallel to the image plane of a

camera mounted on it. Figure 6.2(A) shows the image of the scene at the goal location.

From the goal location, the camera is moved away in the two translational directions (ap-
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Figure 6.3: Convergence in the 2D translational DOFs. Two experimental trials are plotted;
solid line represents one trial and dashed line represents the other. The first row shows the
convergence in x-position and the second in y-position. Left column: Convergence in
Lyapunov functions defined for each of the DOFs to zero. Right column: Convergence of
position errors relative to the goal location to zero.
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proximately) parallel to the image plane. The kernels used for the experiments are:

Kx(w) =
1

sqrt(2π)σx
e
− (w1−µx).2

2σ2
x ,

Ky(w) =
1

sqrt(2π)σy
e
− (w2−µy).2

2σ2
y ,

where µx = µy = −100 and σx = σy = 70 and Kx and Ky are kernels in the x and y

directions. w represents the pixel indexing of the image.

We conducted 10 trials with random initial positions. In these experiments, the mean

initial position error was 6.98 cm with a standard deviation of 0.72cm. The trial was

stopped when the difference of between the current kernel measurement and that at the

goal location was below a certain threshold; in these experiments this was chosen as 0.1

which is 0.02−0.03% of the goal kernel measurement in each direction. In all the trials, the

position converged to the goal position with a mean position error of 0.31cm and standard

deviation of 0.15cm. In Figure 6.9 we show two of the 10 trials; these trials represent the

maximum and minimum of the inital displacement of the robot from its goal location. The

left column is show the convergence of Lyapunov functions defined on each of the DOFs

and the right column shows convergence in the error of respective DOFs relative to the goal

location.
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BA C

Figure 6.4: (A) Depth goal image. (B) Difference between the goal and the initial displace-
ment images. (C) Difference between the goal and the final images.
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Figure 6.5: Convergence in depth DOF. Two experimental trials are plotted; solid line
represents one trial and dashed line represents the other. Left: Convergence in Lyapunov
functions to zero. Right: Convergence of depth error relative to the goal location to zero.
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6.4.2 Depth motion

In these experiments the robot is allowed to translate along the camera’s optical axis.

Recall that the signal for the depth DOF controller is the magnitude of the FT of the image.

As discussed in Section 6.3, since the field of view is finite, the depth controller needs the

coarse image segmentation to make the intensity of the image background zero. In our

experiments, we perform a simple color segmentation and assign a value of zero to the

background and one to the rest of the image. The kernel function used is:

Kz(v) = e−
1
8
||v||2 ,

where v represents the spatial indexing for the FT.

We conducted 10 trials with random initial positions. In these experiments, the mean

initial position error was 8.02cm with a standard deviation of 4.52cm. The trial was stopped

when the difference of between the current kernel measurement and that at the goal location

was below a threshold; in these experiments this was chosen as 5 which is 0.02% of the

goal kernel measurement. In all the trials, the position converged to the goal position with

a mean position error of 0.06cm and standard deviation of 0.065cm. In Figure 6.7 we show

two of the 10 trials; these trials represent the two extremas of the inital depth displacement

of the robot from its goal location. The left column shows the convergence in Lyapunov

function and the right column shows convergence in depth position error.
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6.4.3 Roll motion

A CB

Figure 6.6: (A) Roll goal image. (B) Difference between the goal and the initial displace-
ment images. (C) Difference between the goal and the final images.
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Figure 6.7: Convergence in roll DOF. Two experimental trials are plotted; solid line rep-
resents one trial and dashed line represents the other. Left: Convergence in Lyapunov
functions to zero. Right: Convergence of roll error relative to the goal location to zero.

In these experiments the robot is allowed to rotate about the camera’s optical axis. As

in the depth case, the signal to the controller is the FT of the background segmented case.

The kernel function used is:

Kθ(v) = e−
1
8
v2

1 + e−
1
8
v2

2 ,
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where v represents the spatial indexing for the FT.

We conducted 10 trials with random initial positions. In these experiments, the mean

initial position error was 12.67◦ with a standard deviation of 1.51◦. The trial was stopped

when the difference of between the current kernel measurement and that at the goal location

was below 5 which is 0.02% of the goal kernel measurement. In all the trials, the position

converged to the goal position with a mean position error of 0.52◦ and standard deviation of

0.53◦. In Figure 6.7 we show two of the 10 trials; these trials represent the two extremas of

the inital roll displacement of the robot from its goal location. The left column shows the

convergence in Lyapunov function and the right column shows convergence in roll error

relative to the goal location.

6.4.4 3D Translational motion

B CA

Figure 6.8: (A) Three translational DOFs goal image. (B) Difference between the goal and
the initial displacement images. (C) Difference between the goal and the final images.

In these experiments the robot is allowed in move in all the three translational degrees of

motion. Recall that the signal for the depth DOF controller is the magnitude of the FT of the

image and that for the other two translational DOFs is the image itself. Since the magnitude
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Figure 6.9: Convergence in three translational DOFs. Two experimental trials are plotted;
solid line represents one trial and dashed line represents the other. Left: Convergence in
Lyapunov functions defined for each of the DOFs to zero. Right: Convergence of position
errors relative to the goal location to zero.
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of the FT does not depend on the translations motions parallel to the image plane, the

vector field given by (6.10) is independent of the other two translational directions. Hence,

as discussed in Section 6.2.5, we can first control the depth independently and once this

controller has converged, we can turn on the 2D controller. But in laboratory settings, one

might have to do more than one iteration to obtain the full convergence in all the three

DOFs as the target scene is not exactly parallel to the image plane of the camera (in our

experimental trials we have observed that two iterations are usually enough). To steer clear

of deciding when to switch from one controller to the other, we added the perpendicular

vector fields given by (6.10) and (6.7). We have made sure that depth convergence is faster

by choosing higher gains for this controller compared to the other two controllers.

Figure 6.8(A) shows the image of the scene at the goal location. From the goal location,

the camera is moved away in the three translational directions. The controller acts to bring

the robot/camera to the goal. The kernels used for the experiments are:

Kx(w) =
1

sqrt(2π)σx
e
− (w1−µx).2

2σ2
x ,

Ky(w) =
1

sqrt(2π)σy
e
− (w2−µy).2

2σ2
y ,

Kz(v) = e−
1
8
||v||2 ,

where µx = µy = −100 and σx = σy = 70 and Kx, Ky and Kz are kernels in the x, y and

z directions. w represents the pixel indexing of the image and v is the spatial indexing for

the FT.
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We conducted 10 trials and in all of them the robot converged to the goal with a mean

position error of 0.46cm and standard deviation of 0.2cm. The initial position difference

from the goal location in these 10 trials has a mean of 8.74cm with a standard deviation of

0.75cm. In Figure 6.9 we show two of the 10 trials; these trials represent the maximum and

minimum of the inital displacement of the robot from its goal location. The left column

shows the convergence in Lyapunov functions defined on each of the DOFs and the right

column shows convergence in the errors in the respective DOFs. From this figure, we can

see that the Lyapunov function defined in the y direction goes up and then comes down.

This happens because the controller in the y direction is dependent on the depth DOF and

once the depth has converged to its value at the goal, the Lyapunov function defined on the

y coordinate converges to zero and the goal location is reached in all the three DOFs. In

general, the depth DOF converges faster than the other two.

6.4.5 SE(2) and depth motion

B CA

Figure 6.10: (A) SE(2) and depth goal image. (B) Difference between the goal and the
initial displacement images. (C) Difference between the goal and the final images.

Here we discuss the experiments that are conducted when the robot moves in all the
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Figure 6.11: Convergence in SE(2) and depth DOFs. Two experimental trials are plotted;
solid line represents one trial and dashed line represents the other. Left: Convergence in
Lyapunov functions defined for each of the DOFs to zero. Right: Convergence of position
errors relative to the goal location to zero.
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three translational DOFs and roll DOF about the camera’s optical axis. As in the previous

case, we have conducted the experiments by adding the vector fields in the four DOFs

given by (6.7), (6.10) and (6.14). Figure 6.10(A) shows the image of the scene at the goal

location. From the goal location, the camera is moved away in the three translational and

roll directions. The controller acts to bring the robot/camera to the goal. The kernels used

for the experiments are:

Kx(w) =
1

sqrt(2π)σx
e
− (w1−µx).2

2σ2
x ,

Ky(w) =
1

sqrt(2π)σy
e
− (w2−µy).2

2σ2
y ,

Kz(v) = e−
1
8
||v||2 ,

Kθ(v) = e−
1
8
v2

1 + e−
1
8
v2

2 ,

where µx = µy = −100 and σx = σy = 70 andKx, Ky, Kz andKθ are kernels in the x, y, z

and roll (θ) directions. w represents the pixel indexing of the image and v is the spatial

indexing for the FT. Note that with the chosen depth kernel, the depth kernel measurement

and control is invariant to not just 2D translations but also to roll. Roll kernel measurement

and control is invariant to just 2D translations. Hence, the depth DOF must converge before

the roll DOF can converge to the goal.

We conducted 10 trials and in all of the trials the robot converged to the goal with a

mean position error of 0.44cm with standard deviation of 0.21cm and mean roll error 0.56◦

with standard deviation of 0.39◦ in roll DOF. The initial position difference from the goal
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location in these 10 trials has a mean of 8.94cm with a standard deviation of 0.48cm in

the translational DOFs and a mean of 12.01◦ with standard deviation of 3.15◦ in the roll

DOF. In Figure 6.11 we show two of the 10 trials; these trials represent the maximum and

minimum of the inital roll displacement of the robot from its goal location. As in the last

experiment set, the depth DOF converges first and the rest of the DOFs converge later.
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Conclusions

The focus of this thesis is on the applications of vision as a sensor for feedback control

of systems on Lie groups. In the first part, we present a feedback controller that stabilizes a

flexible bevel-tip needle to a desired 2D plane. We note that this task induces a symmetry

on the system, resulting in a reduced order three-state system. This task-induced reduction

simplifies the controller and observer design. In practice, only the 3D position (but not

orientation) of the needle tip can be measured using an imaging system. First, we show that

the full 6-DOF pose is observable given only these position measurements and then design

dead-beat and asymptotic observers that estimate the full pose of the needle from just the

position measurements. We then extend the notion of task-induced symmetry and reduction

to other kinematic systems defined on Lie groups and to other mechanical systems. In the

second part, we present kernel-based visual servoing as a novel image-based algorithm

that does not need feature tracking to servo a robot with a camera mounted on it to a goal
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location.

Image-guided control of needle steering

Flexible bevel-tip needles show great promise in extending the applications of percuta-

neous needle insertions. These needles can be used to reach places in the tissue that cannot

be accessed by straight-line trajectories while avoiding sensitive organs. Also, these nee-

dles can be controlled for steering after they are inserted into the tissue, thus facilitating

the use of run-time feedback control or replanning. We have designed feedback controllers

to drive the needle to a subspace of its configuration space using task-induced reduction.

These controllers are designed to work in conjunction with subspace planners to reach a

target location in the tissue.

We have also implemented a nonlinear observer–controller pair to drive the needle to a

desired 2D plane in tissue phantom made from plastisol, using stereo-image guidance. This

controller has been successfully integrated with the 2D planners of Alterovitz et al. [6] and

the torsional compensator of Reed [70] to drive the needle to a desired target location while

avoiding polygon-shaped obstacles.

An important next step is to evaluate the performance of this controller by conducting

tests on a variety of tissues (phantom, ex vivo, and live) using ultrasound or fluoroscopy

imaging systems. Due to tissue inhomogeneity, implementing control on real tissue might

benefit from an adaptive version of our controller that would “learn” the model parameters

while stabilizing the needle to a 2D plane. Alternately, if bounds on the parameter κ are
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known, then the robust controller presented in Section 3.5 can be used.

In the present work, we have studied stability properties of the planar controller and

empirically studied its convergence properties (in terms of the needle insertion length).

When the planar controller is being used along with the path planners, the needle could be

rotated by 180◦ every time the planner is being called. Due to the torsional effects present

between the tissue and the needle, this could adversely affect the performance of the planar

controller and indirectly also the performance of the motion planner. Hence, for the purpose

of pure motion planning, the high level planning loop should be fast (neglecting the time

needed for re-planning) but for the better performance of the planar controller the planning

loop must be run as slow as possible. Also, one can imagine that the faster the low-level

estimation and control loop, the better it is. But, since the system is parametrized with

respect to insertion distance of the needle into the tissue, this can result a really long time

for a given amount of needle insertion distance. An understanding of these trade-offs to

would be very helpful in designing better integrated planning and controller system.

If a path has curvature less than κ, then such a path may be followed by using path-

following controllers. Such controllers would not ever follow these paths exactly but could

follow it very closely. Designing these path-following controllers is an interesting open

question.
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Observers on the group of rigid-body transformations

In this thesis, we develop dead-beat and asymptotic observers on the group of rigid-

body transformations. While this work specifically deals with needle steering, similar

computations may apply to other systems on the group of rigid motions. The dead-beat

observer on SO(3) that we develop in this thesis is essentially a least-squares solution over

a finite number of samples. There has been some research done on (asymptotic) adaptive

identification on SO(3), such that given a stream of measurements, the estimator converges

to the correct constant parameter which lies on the SO(3) manifold [48]. But, controllers,

such as in this thesis, typically require the estimation of a rigid transformation that changes

with time.

We present a local asymptotic observer that estimates the full 6-DOF pose of the nee-

dle from just the position measurements. This observer uses task-induced reduction and

state immersion but is in local coordinates. An asymptotic observer on rigid-body trans-

formations that does not require local coordinates would be ideal. We know of no work to

date that addresses this problem of developing model-based asymptotic observers on rigid

groups in a statistically sound way; recent work by Wang et al. [84] error propagation on

SE(3) and SO(3) and Park et al. [69] on probability density estimation on SE(3) and SO(3)

could be helpful in developing such observers.
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Task-induced reduction

We develop a general framework to perform task-specific reduction in kinematic sys-

tems on Lie groups. We apply this method to two systems: a planar cart (as an illustrative

example), and flexible bevel-tip needle steering with configuration spaces SE(2) and SE(3),

respectively. In both the examples, task-induced reduction enables us to design essentially

global feedback controllers on the reduced systems. We envision that the methodology

presented in this thesis will form the basis for a new planning and control framework for

needle steering.

We extend this framework to mechanical systems whose Lagrangian and constraints are

left-invariant to a Lie group. From previous work on “intrinsic” Lagrangian reduction, it

is known that dynamics on the shape space can be obtained from the reduced Lagrangian,

while a reconstruction equation generates motions in the symmetry group. This reconstruc-

tion equation describes how motions in the shape space produce Lie group motions. As we

show in the differential drive robot example, certain control tasks enable us to perform a

second “extrinsic” (task-specific) reduction, thus further decomposing the symmetry group

into a base and fiber. Such an analysis is also amenable to other mechanical systems like

skateboards, bicycles, and snake robots. As in the needle steering case, task-induced sym-

metry will likely facilitate planning and control for other mechanical systems.

In all the examples in Sections 5.3 and 5.4, task-induced reduction simplifies control

design. Further, in the kinematic systems, the task-functional served as a Lyapunov func-

tion and the control input was chosen accordingly. In the differential drive robot example,

132



CHAPTER 7. CONCLUSIONS

the task-functional was again used as a part of the Lyapunov function. In all these cases,

the task-functional was used as a guiding mechanism for controller design. This suggests

that there may be a general control theory for systems exhibiting task-induced symmetry,

at least for some class of mechanical systems. Specifically, we expect this to hold for

principally kinematic systems whose base variables are completely controllable. For these

systems, we speculate that integrator back-stepping is possible, thus reducing the mechani-

cal control problem to that of kinematic control. This direction of future research, we think,

will be very useful in controlling complicated higher-dimensional systems.

Kernel-based visual servoing

We present kernel-based visual servoing algorithms to control an eye-in-hand robot to a

goal location without any feature tracking. This paradigm combines the traditional tracking

and control subproblems in visual servoing by eliminating the need for tracking feature lo-

cation in a image sequence frame-to-frame. In this approach, a weighted sum of the image

or its transformations is used as signal to the feedback controller. We use Lyapunov theory

to show the stability of these controllers. This approach provides formal guarantees on the

convergence/stability of visual servoing algorithms. We develop KBVS algorithms for a

subclass of rigid-body motions—the three translational DOFs and roll about the camera’s

optical axis—and implement them on a 6-DOF industrial robot. Controllers for the pitch

and the yaw motions are not developed and we suspect that using stereo cameras instead of

a single camera may simplify this.
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There is a strong correlation between the performance of the KBVS controllers and the

choice of a kernel function for a given target scene. In the experiments, we use Gaussian

kernel functions for all the target scenes. These functions and their mean and variances

are selected in an ad-hoc way. We have observed that having a large variance typically in-

creases the region of convergence but the convergence is slower and if variance is low, then

the region of convergence is small but the local performance of the controller increases. The

advantages of both kinds of kernels can be harnessed by adaptively changing the variance

of the kernel function. This would only require a few additional computations of kernel

measurement at the goal location. Also, different classes of kernel functions (apart from

Gaussian functions) may be used to improve the performance of the KBVS controllers.

Also, we have not verified the effects/advantages of using multiple kernels in the controller

performance. Future work on kernel optimization for a given target scene would be highly

desirable.
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