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Abstract— Feedback from antennae – long, flexible tactile
sensors – enables cockroaches and other arthropods to rapidly
maneuver through poorly lit and cluttered environments.
Inspired by their performance, we created a wall-following
controller for a dynamic wheeled robot using tactile antenna
feedback. We show this controller is stable for a wide range
of control gains and robot system parameters. To test the
controller, we constructed a two-link antenna that uses poten-
tiometers and capacitive contact sensors. Experiments based
on the prototype demonstrate that our controller robustly
tracks unexpected corners ranging from −60◦ to +90◦.

I. INTRODUCTION

Contact and strain feedback from antennae enable cock-
roaches follow complex surfaces while running at speeds
up to 80cm/s [1]. Inspired by this performance, we created
a wall-following controller for a nonholonomic differential-
drive wheeled robot that incorporates feedback from a
multi-link antenna. To take full advantage of the perfor-
mance envelope of the robot, we adopt a second order
model that accounts for damping and inertial effects in
the motors, wheels and chassis. The resulting closed-loop
system is linearly stable under a wide range of control
gains and system parameters. To test the controller design,
we constructed a sensorized two-link antenna that measures
the distance from the robot to nearby objects.

Most prior curve- and wall- following work uses sensor
modalities such as vision [2]–[4] and sonar [5]–[8], since
such sensors are inexpensive and widely available. How-
ever, sonar and vision exhibit sensitivity to surface reflectiv-
ity and lighting conditions. For example, sonar performance
degrades in the presence of highly polished surfaces such as
glass walls, and vision fails without adequate light. Infrared
range-finders are also commonly used on mobile robots,
but surface properties can imperil their effectiveness [9],
[10]. Like ultrasonic sensors, infrared range-finders have a
minimum range within which they are unreliable [10], and
both sensors emit signals that betray their host’s stealth.

With these limitations in mind, we suspect that well-
designed “touch probes” such as antennae and whiskers
will provide a compelling alternative to existing proximity
sensors. Presumably, these touch probes are unaffected by
surface properties such as high specularity, and environ-
mental factors such as light and dust. In essence, most
obstacles that a robot can physically hit can be sensed by
touch.

Fig. 1. The Garcia robot with a two-link sensorized antenna.

Prior work on robotic touch probes derives inspira-
tion from two biological models: mammalian whiskers
and arthropod antennae. A probe based on a mammalian
whisker [11] consists of a cantilevered beam that is sensed
only at its base. The base of the beam is often actuated so
that the beam can be actively swept back and forth. Using
this basic idea, researchers have constructed whisker-like
touch sensors for object detection or recognition [9], [12],
[13]. Other whisker designs are more sensitive to small
features and can detect varying surface roughness [14].
Whisker-like sensors are also used as subsystems in more
complicated devices such as wall-following mobile robots.
Jung and Zelinsky [9] found that side-facing whiskers
report distance more accurately than sonar or infrared
sensors when following walls at about 3cm.

In contrast to mammalian whiskers, arthropod antennae
are highly sensorized and have numerous mechanorecep-
tors that sense bending and contact information along
the entire length of the antenna instead of solely at the
base [1], [15]. Barnes, et al. [16] constructed a passive,
large-deflection biomimetic lobster antenna equipped with
three bending sensors positioned along its length. They
found that their antenna can distinguish between deflections
caused by object contact and fluid flow in an underwater
environment. Cowan et al. [17] also used a high-deflection
antenna for wall following in a legged robot.
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Fig. 2. Robot schematic: A robot, with wheel base 2w, moves in the
plane with configuration q = (x, y, θ, α1, α2), where (x, y, θ) ∈ SE(2)
specifies the relative configuration of the robot frame axes, (xr, yr), to
the world frame axes, (xw, yw), and the wheel angles (not shown) are
given by (α1, α2) ∈ S1 × S1 = T2. Attached to the robot at (x0, y0)
relative to the robot frame is an antenna that measures the look-ahead
distance, x̂, and distance-to-wall ŷ. The link angles φi denote the angle
of the ith link with respect to the (i − 1)st link, and each antenna link
has length `i and i = 1, 2, 3.

This paper builds on prior work by using feedback from
a single passive, sensorized antenna to enable both wall
following and obstacle avoidance for a dynamic wheeled
mobile robot as shown in Fig. 1. By contrast, the wall-
following strategies discussed above [2], [5], [6], [9], while
effective, use two “sets” of sensors – one dedicated to
wall following, and one dedicated to obstacle avoidance.
The single forward-facing antenna described in this paper
potentially fill both roles: our wall-following controller
enables wall following, while negotiating unexpected sharp
bends in the wall with little additional effort.

II. MODEL AND CONTROLLER

This section describes a second order robot model and
stabilizing proportional-integral (PI) control system for the
robot-antenna system depicted in Fig. 2. We assume that
a multi-link antenna, with negligible link inertias, provides
sensor feedback from contact and angle sensors on each
link as shown. In the model, each DC motor-driven wheel
of the robot rolls without slipping, and we derive the equa-
tions of motion using the constraint reduction technique
presented by Ostrowski [18].

A. Robot Dynamics and Reduction

The robot’s position and orientation are described in
SE(2) using the coordinates (x, y, θ). Additionally, the
wheel positions are given by the angles (α1, α2). Letting
m, J , and Jw be the robot mass, robot inertia, and wheel
inertia respectively, the Lagrangian is written as

L(q, q̇) =
1
2
m(ẋ2 + ẏ2) +

1
2
Jθ̇2 +

1
2
Jw(α̇2

1 + α̇2
2) (1)

where q = (x, y, θ, α1, α2). The constraint equation,

Acq̇ = 0, (2)

where

Ac =

 cos θ sin θ 0 −ρ
2 −ρ

2
− sin θ cos θ 0 0 0

0 0 1 − ρ
2w

ρ
2w

 ,

arises from the assumption that the robot’s wheels roll
without slipping. The parameters ρ and w denote the wheel
radius and half of the wheel base, respectively (see Fig. 2).

Equivalently, (2) can be expressed asẋ
ẏ

θ̇

 =

ρ
2 (α̇1 + α̇2) cos θ
ρ
2 (α̇1 + α̇2) sin θ

ρ
2w (α̇1 − α̇2)

 , (3)

so that given the wheel velocities (α̇1, α̇2), one can inte-
grate (3) to obtain the pose (x, y, θ). This motivates us
to “reduce” the equations of motion to be in terms of
the wheel angles (α1, α2). Following Ostrowski [18], the
reduction proceeds by writing the equations of motion as

M̃ q̈ + AT
c λ = F, (4)

where λ ∈ R3 is a vector of Lagrange multipliers, F =
[0, 0, 0, τ1, τ2]T denotes the torques applied to the wheels
and M̃ = diag {m,m, J, Jw, Jw} is the diagonal (non-
reduced) inertia matrix.

Differentiating (2) with respect to time, substituting q̈
from (4), and solving for λ yields

λ = (AcM̃
−1AT

c )−1(AcM̃
−1F + Ȧcq̇). (5)

Upon subsituting (5) and (3) into the last two rows of (4),
the “reduced” dynamics can be written as

Mα̈ = τ, (6)

where

M =

[
Jw + mρ2

4 + Jρ2

4w2
mρ2

4 − Jρ2

4w2

mρ2

4 − Jρ2

4w2 Jw + mρ2

4 + Jρ2

4w2

]
.

Note that M is positive definite for all J, Jw,m, w, ρ > 0,
which will simplify the stability analysis below.

B. Motor Dynamics and Damping Forces

A DC motor model for each wheel is given as [19]

V − kemf α̇ = L
di

dt
+ Ri, τ = kτ i− cα̇, (7)

where V and i are the input voltage and motor current
respectively, and cα̇ is the frictional damping force. The
motor inductance, L, armature resistance, R, torque con-
stant kτ , back EMF constant, kemf and frictional damping
constant c are assumed to be the same for each motor.
Neglecting the term L di

dt by assuming that the electrical
dynamics are much faster the mechanical dynamics, (6)
and (7) can be combined into the new system model

α̈ = Amot α̇ + Bmot V, (8)

where

Amot = −
(

c + kτ
kemf

R

)
M−1, Bmot =

kτ

R
M−1.



Note that Bmot is invertible since it is just a scalar times
M−1. The inputs, V , will be functions of the antenna
measurement.

C. Antenna Measurements

We assume that the joints of the multi-link antenna
depicted in Fig. 2 have heavily “over-damped” springs-
dampers with “fast” mechanical time constants. In other
words, we assume that as the robot moves along the
wall, the link angles, φi(q), i = 1, 2, . . . , n change as an
algebraic function of the function of the robot pose. Let
k denote the index of the first contact sensor touching the
wall. It is straight forward to compute (x̂, ŷ), the point on
the antenna that is touching the wall as expressed in the
current robot coordinate system:[

x̂
ŷ

]
=
[
x0

y0

]
+

k∑
i=1

`i

[
cos(Ψi)
− sin(Ψi)

]
= h(φ(q)) =: ĥ(q) (9)

where Ψi =
∑i

j=1 φj(q) is the angle of the ith link with
respect to the robot frame, and `i is the length of the ith

link. We will refer to x̂ as the “look-ahead distance” and
ŷ as the “distance-to-wall”.

We do not need an explicit expression for the link angles,
φi(q). The stability proofs below in Sec. II-D only require
that the functions φi(q) (and thus also ĥ(q)) be smooth
and well defined in an open neighborhood of θ = 0, for a
range of distances from the wall. Furthermore, our antenna
design presented in Sec. III is instrumented with angular
sensors at each joint to directly measure each φi.

D. Linear Controller

To define our controller, we rewrite (8) in terms of the
linear and rotational velocity of the center of mass, (v, ω),
since this set of coordinates proves to be intuitive and
analytically simple. The velocities (v, ω) can be computed
from (α̇1, α̇2) using the similarity transform P :[

v
ω

]
= P

[
α̇1

α̇2

]
=

ρ

2

[
1 1
− 1

w
1
w

] [
α̇1

α̇2

]
. (10)

Applying P to (8) yields our state equations in terms of
v and ω: [

v̇
ω̇

]
= A

[
v
ω

]
+

u︷ ︸︸ ︷
B

[
V1

V2

]
, (11)

where

A = PAmotP
−1 =

[
− 2(kemfkτ+cR)

R(2Jw+mρ2) 0

0 − 2w2(kemfkτ+cR)
R(Jρ2+2Jww2)

]
,

B = PBmot =

[
kτ ρ

2JwR+mρ2R
kτ ρ

2JwR+mρ2R

− kτ ρw
Jρ2R+2JwRw2

kτ ρw
Jρ2R+2JwRw2

]
.

Note that B is invertible, since P and Bmot are both
invertible.

The system (11) can be controlled with a PI controller:[
u1

u2

]
=
[
−k1(v − v∗)− k2Σ
k3(ŷ − d∗)− k4ω

]
, Σ =

∫ t

0

(v−v∗)dt, (12)

where v∗ is the desired forward speed and d∗ is the
desired distance to the wall. To map the torques into motor
voltages, the control law (12) becomes V = B−1u.

Combining the kinematics (3), the change of coordinates
(10), the system dynamics (11), and the control law (12),
yields the complete nonlinear system equation as expressed
in the world coordinate system

ẏ

θ̇

Σ̇
v̇
ω̇

 =


v sin θ

ω
v − v∗

A

[
v
ω

]
+
[
−k1(v − v∗)− k2Σ
k3(ŷ − d∗)− k4ω

]
 , (13)

where x has been removed for simplicity since it does not
affect any of the other states. Equipped with the full state
equation, it is now possible to analyze the stability of the
proposed control law by linearizing the system and looking
at the roots of the characteristic polynomial. To do so, note
that ŷ can be removed from the control law (12) by noting
that ŷ = − y

cos θ − x̂(q) tan θ, where x̂(q) is found using
ĥ(q) in (9). Linearizing (13) around

[y, θ,Σ, v, ω]T = [−d∗, 0, ([A]1,1/k2)v∗, v∗, 0]T (14)

and taking Hurwitz determinants of of the characteristic
polynomial reveals sufficient conditions for asymptotic
stability:

a, b, k2, k3, v
∗, x̂∗ > 0, bx̂∗ > v∗, 2k2 > k3,

a2x̂∗ + abx̂∗ + k3x̂
∗2 > 2bv∗ + 3av∗ + 2k2x̂

∗.
(15)

The condition x̂∗ > 0 is satisfied by assuming that the
antenna is designed to have a positive look-ahead distance
when θ = 0. The remaining constraints can be satisfied
by a number of gain combinations, e.g.: a = 10, b = 4,
k2 = 8, k3 = 10, v∗ = 0.30, x̂∗ = 0.10.

An interesting observation about the conditions for sta-
bility is that they don’t depend on x̂(q) or its partials, as
these terms disappear during the linearization (specifically,
they get multiplied by sin θ0 or tan θ0 where θ0 = 0).
This observation leads to an important result for antenna
based navigation: the system is not affected by the antenna
configuration.

E. Switching Control Scheme

Though the linearized controller is stable near the sys-
tem’s equilibrium position, it fails to account for two
important cases when the robot is far from its equilibrium
and the antenna behaves poorly. Each of these cases is
handled by a separate heuristic algorithm as described
below. In the cases when these algorithms are applied,
the local stability proof in section II-D is no longer valid,
though the system seems stable in practice.

a) Regaining wall contact: If the robot loses contact
with the wall, the control scheme switches to an open loop
strategy that steers the robot in a smooth arc back towards
the wall. We have found anecdotally that steering the
robot “just past” where contact was lost often returns the
robot back within the basin of attraction of our controller



(12). A limited near-field range of operation is an inherent
limitation of tactile sensors, and in the future we intend to
treat this situation more carefully.

b) Recovering from corners: When the robot encoun-
ters a corner, the second rotational joint of the antenna
buries itself into the corner, causing the antenna to report
a constant distance to the wall. In response to this data,
the robot continues to run straight until the first rotational
joint touches the wall, causing k in (9) to change from 2
to 1. At this point, the robot is too close to the corner to
follow it using (12), so the controller applies a sharp torque
to the robot that steers it out of the corner and avoids a
collision. This situation does not seem to be an inherent
limitation of antenna sensors and we suspect that improved
antenna designs will mitigate this problem. At that point,
this heuristic will be unnecessary.

F. System Identification

Since not all of the parameters are supplied by the
robot manufacturer used in the experiments (Sec. V), we
performed system identification. To accomplish this, we
supplied the robot with known voltage commands, and
stored wheel velocities at a sampling interval ∆t. Due to
the structure of A = diag {a1, a2} and B, the dynamical
equation (11) for (v, ω) can be rewritten as[

v̇
ω̇

]
=
[
a1v
a2ω

]
+
[

(V1 + V2)b1

(−V1 + V2)b2

]
, (16)

where V ∈ R2 corresponds to input voltage, and
(a1, a2, b1, b2) are the four unknown parameters to be fit.

Since we have sampled data, we fit a discrete time
model based on the the structure of (16). The discrete time
matrices are

Ad = eA∆t, Bd =

(∫ ∆t

0

eA(∆t−σ)dσ

)
B. (17)

The simple structure of A and B ensure that the discrete
matrices have the same structures as their continuous
counterparts. Thus, letting xj =

[
v(tj) ω(tj)

]T
denote

the state at time tj , we can form a least squares fitting
equation of the form

 x2

...
xp+1

 =


x1

1 0 V 1
1 + V 1

2 0
0 x1

2 0 −V 1
1 + V 1

2
...

xp
1 0 V p

1 + V p
2 0

0 xp
2 0 −V p

1 + V p
2




ad
1

ad
2

bd
1

bd
2


(18)

where ad
1, a

d
2, b

d
1, b

d
2 are the discrete time entries of the

matrices Ad and Bd. Using the least-squares solution to
(18) provides the discrete time matrices Ad and Bd. To
get the continuous model, we see from (17),

A =
1

∆t
log Ad, B =

(
eA∆t

∫ ∆t

0

e−Aσdσ

)−1

Bd.

With these estimates and the direct measurements of ρ and
w of the robot, we can implement the controller.

Link 1

Potentiometers

Cam

Rubber Spring

Link 3

Link 2

Rubber Spring
Cam

Fig. 3. Left: The antenna is assembled by sliding the links onto the
potentiometer shafts (some spacers and other minor parts are omitted
from this figure for simplicity). The base of each potentiometer is fixed
to the center link. Right: Fully assembled model.

III. ANTENNA DESIGN AND CONSTRUCTION

We constructed a two-link passive tactile antenna with
three rigid polycarbonate segments hinged on commercial
potentiometers (see Fig. 3). The electrical resistance of
each potentiometer determines φi, the angle of the link
i with respect to link i − 1 (see Fig. 2). These angles
determine the distance and orientation of the body with
respect to the wall as described in Sec. II. A rubber spring-
cam mechanism acts as a torsion spring on each joint. The
inherent friction in the potentiometers serves to damp the
system. Touch sensors are integrated along the leading edge
of each link to determine the region of contact.

Each structural segment of the antenna consists of a
rigid linkage and a potentiometer. (see Fig. 3) The rigid
links are laser cut from 1/8” clear polycarbonate sheet. The
first segment is fixed rigidly to the robot and is considered
an extension of the body. The base of each of the two
potentiometers is fixed to the center link while the shaft of
each is fixed to the end of the adjacent link. This gives each
joint one degree of freedom with respect to the adjacent
links. Though this particular antenna uses two links, the
modular design enables the addition of more links.

A. Spring-Cam Design: Locally Linear Spring

The rubber spring-cam torsion springs constrain the
motion of each link about a preset nominal angle. For small
displacements, the torque applied by the spring is linear,
as shown below. For a given displacement θ, the length of
the spring is defined as

` =
√

`20 + 2r2
c − 2rc(rc + `0) cos θ + 2rc`0. (19)

The potential energy stored in the spring is E(θ) = 1
2κ(`−

γ)2, where κ is the spring constant of the rubber and γ is
the unstrained length of the spring. Taking the derivative
of the potential energy yields the torque, τ , applied by the
spring about the axis of the joint:

τ =
κrc(rc + `0)(`− γ)

`
sin θ. (20)

This expression for τ is locally linear about θ = 0 so long
as the spring is given a preset tension, i.e. γ < `0.

Stiffness of the springs is varied either through the preset
tension or the hardness of the rubber used. Based on the
results of simulations run (see Sec. IV), the links are given



progressively lower stiffness. Since the mass of each link
is dominated by the potentiometers, no effort is made to
optimize mass distribution.

B. Sensor Integration

Each joint is based on a 2 kΩ linear taper carbon volume
control potentiometer by Calrad Electronics. The poten-
tiometers are calibrated such that the measured resistance
corresponds linearly to a known angle. Based on angle-
voltage data, the linearity of the angle-resistance relation
has a correlation coefficient of better than 90%.

Capacitive touch sensors (QProx Research QT111D
Charge-Transfer Touch Sensors) are attached to each link,
on the leading edge of the joint. This enables the sensor to
determine which region of the antenna is in contact with the
wall. For each sensor, the integrated circuit and all required
circuitry are carried on board the robot while a single wire
lead is run to the antenna. To increase the sensitive area,
the leading edge of each link is coated with a conductive
epoxy. The same epoxy is used to fix the lead wire to the
conductive area.

IV. SIMULATIONS

To explore the antenna design space and controller
performance, we performed numerical simulations with
Matlab, using the full dynamical model of Sec. II. In
addition, we model the antenna as a fully dynamic, planar
n-link kinematic chain, coupled to the robot. To capture
dynamic effects, each link is represented by a point mass,
mi, and each joint has a torsional spring, ki, and damper,
bi.

A. Simulated Dynamics

We simulated the Euler-Lagrange equations for the robot
with dynamic antenna, based on the Lagrangian L = T−V ,
computed as follows. In terms of the configuration, qe =
(x, y, θ, α1, α2, φ1, . . . , φn), the kinetic energy is given by

T =
m

2
(ẋ2+ẏ2)+

J

2
θ̇2+

Jw

2
(α̇2

1+α̇2
2)+

n∑
i=1

mi

2
‖νi‖2

,

where νi denotes the velocity of the ith link mass (readily
computed from qe, q̇e). The potential energy stored in the
joint springs and is given by

V = −
n∑

i=1

ki cos(φi − φ∗i ), (21)

where φ∗i is the ith equilibrium angle. Note: V is in terms
of cosine potentials because they are continuous on S1.

Using the Lagrangian above, and the kinematic non-
holonomic constraints from (2), we implemented a Matlab
simulation of the controlled robot subject to (12). Several
additional forces were included in the simulation. The
walls, modeled as one-sided spring-dampers, exert normal
forces on every link. To ensure realistic simulations, the
wall spring/damper constants are at least two orders of
magnitude greater than those of the antenna joints. Sliding
friction between the antenna and wall was neglected.

B. Determining good initial antenna configurations

For simulation purposes, we determined reasonable ini-
tial antenna configurations as follows. For a given robot
configuration (x, y, θ), we found the antenna configuration,
φ1 . . . , φn, that gives the minimum potential energy (21),
subject to the inequality constraint that the antenna cannot
pass through the wall. Since there are n links, and each
one either touches or does not touch the wall, there are 2n

possible contact configurations. If S = {1, . . . , 2n}, then
for each subset s ⊂ S, |s| = p, we have p constraint
equations gs1(q) = · · · = gsp(q) = 0, each corresponding
to link si making contact with the wall. To minimize V (q)
subject to the constraints, we found the condition when
∇V =

∑p
i=1 µi∇gi, where µi are Lagrange multipliers.

C. Simulation Results

We designed our simulations so that we could readily
change parameters such as the number of links, spring and
damping constants, link masses and equilibrium configura-
tion. By examining how behavior changed with variation
of parameters, we formed hypotheses of which properties
might be important in the design of a real antenna. While
looking at robot behavior in negative angle turns (as in
the figure), we saw the need for contact sensors to detect
which link was touching the wall. These contact sensors
proved vital in detecting loss of contact with the wall and
collision avoidance. Furthermore, our simulations showed
that the first link must be short enough such that, when
it is touching the wall, ŷ never exceeds d∗, the desired
displacement from the wall.

Simulations of antenna relaxation indicated that set-
tling times improved by progressively decreasing mass
and stiffness along the length of the antenna. Intuitively,
decreasing mass and stiffness decreases the forces produced
at large displacements from the base, thus decreasing the
moments induced on the antenna. In experiments, the
antenna appeared to settle on a faster time scale than the
robot dynamics. Thus we did not attempt to optimize mass
distribution of the antenna.

V. EXPERIMENTS

For the experiments, the control law (12) ran at 50Hz
on an ARM processor embedded in a commercially avail-
able wheeled robot (Garcia from Acroname). An overhead
camera tracked two LED’s on Garcia to obtain the ground
truth position of the robot. For each of the trials, Garcia ran
autonomously at 10cm/s along walls with corners ranging
from −90◦ (a concave right angle corner) to +90◦ (a
convex right angle corner). The results for a run with a
−30◦ corner are shown in Fig. 4.

Table I summarizes the results of all of the experiments.
Garcia successfully followed walls that contained angles
between +90◦ and −60◦. Rise time was computed as the
time taken to rise from 10% to 90% of the final value. The
−90◦ runs failed because the first (most proximal) link
of the antenna hit the wall before the second or third link,
and the first link was rigidly attached to the robot causing a



Wall Angle (deg) # Trials % Success Rise Time(s)
+90 10 100% (unavailable)
+60 10 100% 3.0±0.11
+30 10 100% 2.4±0.2
-30 10 100% 0.52±0.18
-60 10 100% 0.64±0.06
-90 5 0% (unavailable)

TABLE I
SUMMARY OF EXPERIMENTS.

Fig. 4. Experimental Run: Top: The path traversed by the robot while
running along a −30◦ wall. Bottom: The angle of the robot during that
same trial. Note: the angle step occurs when the antenna first touches the
corner. At 96cm (denoted ◦) contact sensor 1 touches the wall (Sec. II-E).

hard collision. A more flexible antenna design should help
mitigate this problem. The negative angles (concave walls)
had faster performance because of the high controller gains
used whenever the more proximal links contacted the wall.

VI. DISCUSSION

Several problems arose during experimental testing due
to the fact that we used a rigid, low dimensional engi-
neering model for our antenna. Improving the design of
this antenna represents work-in-progress, and while the
simulations in Sec. IV provide useful hints that may help,
we seek more fundamental design principles for “good”
antenna size, shape and stiffness.

Next, we wish to equip hexapedal robots such as RHex
[20] and Sprawl [21] with antennae, by incorporating
“multi-stride” dynamics [22] into the controller design. The
integration of a high performance bio-inspired robot with a
dynamic bio-inspired sensor will provide new opportunities
to compare the performance of man-made robots with
natural creatures like the cockroach.
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