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Abstract

In this dissertation, we model biological sensorimotor behaviors of two species,

a cockroach following a wall and a human running on a split-belt treadmill, to elucidate

the neural processing that underlie locomotor control in biological systems: (1) We model

the horizontal musculoskeletal dynamics of antenna-based wall following for the American

cockroach, Periplaneta americana, as a dynamic planar unicycle with an idealized antenna.

Performing nonlinear regression on the transient responses of blinded cockroaches running

along various wall perturbations, we show that the stabilizing neural feedback requires not

only the distance-to-wall information but also the rate of approach to the wall. We corrob-

orate this result using a robotic platform equipped with an artificial antenna, a numerical

simulation of antenna-based lateral leg spring (LLS) model, and a comparison with a neu-

rophysiological experiment. (2) For human running, we model the sagittal-plane feedback

control strategies during early and late adaptation phases of split-belt treadmill running.

For the early adaptation phase, we assume spring-loaded inverted pendulum (SLIP) body

mechanics with compositions of one-step deadbeat feedback controllers; we show that the

compositions of slow-belt feedback controllers best represented the steady-state human
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running data. We compare the eigenvalues of the linearized stride-to-stride return map dur-

ing late adaptation with those during baseline tied-belt running. Our result suggests larger

eigenvalues (i.e. slower recovery rate) during late adaptation, suggesting that adapted split-

belt is not simply the dynamic composition of a fast steps and slow steps.

Primary Reader: Noah J. Cowan

Readers: Amy J. Bastian, Louis L. Whitcomb
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Chapter 1

Introduction

Locomotion is defined as the act of moving from one place to another. While the definition

of locomotion may seem simple, diverse and unique ways that animals achieve locomotion are truly

astonishing and are anything but simple. A gecko Gekko gecko does not fall when running upside

down on a ceiling because of the van der Waals forces between the ceiling and the gecko’s hairy

toes [4]. A mature termite Nasutitermes corniger uses its wings to fly in search of a mate to start a

new colony; after finding a mate, the couple simply shed their wings because they no longer need to

search for a mate [114]. Both an earthworm Lumbricus terrestris and a millipede Illacme plenipes

burrow into the earth but the former does so without legs and the latter burrows with its more than

650 legs [69]. For army ants, locomotion is a collaborative effort where soldier ants form bridges

or ledges with their bodies so that worker ants can quickly and safely travel across [41].

Biologists seek to identify general principles describing how these organisms move from

one place to another. To successfully navigate and maneuver in a complex environment, animals ex-

tract salient sensory information, transduce this information into neural signals, and integrate them

1



CHAPTER 1. INTRODUCTION

Figure 1.1: Animals of different shapes and sizes share similar qualitative vertical and fore-aft foot
force patterns (shown in the middle of the figure). For each animal, stance legs (filled circle) and
swing legs (open circle) are shown during two consecutive steps. The COM motion during each
stance follows similarly as a SLIP. (Image credit: [50]; copyright c©2006 Society for Industrial and
Applied Mathematics. Reprinted with permission. All rights reserved.)

with the dynamics of a locomoting musculoskeletal system. On the engineering side, we seek de-

sign inspirations for robust sensorimotor control strategies for robots that provide an environmental

responsiveness to conditions outside of controlled laboratory settings. In this thesis, we seek to

demonstrate how mutual, reciprocal inspiration can benefit both the neuromechanics and robotics

fields. Specifically, we consider the following behaviors of two species: antenna-based wall follow-

ing in American cockroaches (Part I) and split-belt treadmill running in humans (Part II). For both

cases, we begin with mathematical representations (or models) of their body mechanics. Through

biological and robotic experiments and computational simulations, we propose different control

strategies that the animals might employ in response to perturbations, providing insights into their

neural processing.
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1.1 Modeling Musculoskeletal Body Mechanics

Legged locomotion results from complex, nonlinear, dynamically coupled interactions

between an animal and its environment. Despite this complexity, simple patterns often emerge

that are consistent with low-dimensional mechanical models [33]. Holmes et al. [50] suggest that

animals of different shapes and sizes can have qualitatively similar force patterns in the vertical

and horizontal planes. Figure 1.1 suggests that animals of different shapes and sizes can have

qualitatively similar force patterns in the vertical and fore-aft directions.

We utilize the notion of templates and anchors [33, 50] to systematically formulate the

synthesis of sensory, body, and neural controller dynamics; such a formulation makes the model

amenable to formal mathematical analyses. A template is the simplest model that captures a specific

behavior, while an anchor is a more complex, representative model of the behavior. Templates and

anchors are not just “simple models” and “complex models”; there must be a natural embedding of

the template behavior within the anchor [33].

In order to understand the complex body mechanics of running animals, researchers have

simplified the problem by decoupling the mechanical models into the sagittal and horizontal planes.

Horizontal plane locomotion in sprawled-posture animals is well characterized by the lateral leg

spring (LLS) template (Fig. 1.2A; Section 3.1 and Chapter 6) [96, 97], because animals bounce

side-to-side. Similarly, legged locomotion in the sagittal plane is consistent with a spring loaded

inverted pendulum (SLIP) template (Fig. 1.2B; Chapter 10) [9, 16, 72, 101], a result that scales

across the number of legs and three orders of magnitude of body mass [10, 30]. Surprisingly, both

templates exhibit passive, dynamic stability when perturbed, thus requiring minimal neural feedback

[2, 34, 95, 105]. The LLS template reveals that horizontal plane dynamics are asymptotically stable

3
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(Blickhan and Full 1987). Errors induced by collapsing
leg groups linked in such stance phases to a single
virtual leg are discussed in Sect. 4.

A full stride begins at left touchdown at time t ¼ tn
with spring relaxed at leg angle / ¼ þb relative to body
orientation; the left stance phase ends when the spring is
again relaxed, the body having ‘run past its foot.’ At this
instant (tnþ1) the left leg is raised to begin its swing phase
and the right leg is set down at angle #b; its stance
phase, and the stride, ends with spring relaxation at right
liftoff/left touchdown. Choosing a linear spring, the
model is entirely characterized by six physical parame-
ters: leg stiffness, k, and relaxed length, l, the pivot
position relative to the COM, d, along with m; I , and b.
Balancing the linear and angular momentum results in
three equations of motion for COM translation
rðtÞ ¼ ðxðtÞ; yðtÞÞ and body orientation hðtÞ during stance:

m€rr ¼ RðhðtÞÞf; I€hh ¼ ðrFðtnÞ # rÞ & RðhðtÞÞ f ; ð1Þ

where RðhÞ is the rotation matrix, needed to transform
leg forces f (relative to the body) to the inertial frame;
rFðtnÞ denotes touchdown foot position, expressed via
d; l; b, and body angle hðtnÞ at touchdown, and &

denotes the vector cross product. Normalizing length
with respect to l and nondimensionalizing time ~tt, the
parameters reduce to four nondimensional groups:

~kk ¼ kl2

mv2
; ~II ¼ I

ml2
; ~dd ¼ d

l
; and b; with ~tt ¼ vt

l
: ð2Þ

Here v is a representative speed (e.g., COM velocity
magnitude at touchdown, or average forward speed hvi)
and

ffiffiffi

~kk
p

is a Strouhal number characterizing the ratio of
storable potential to kinetic energy. For fixed ~kk; ~II ; ~dd, and
b, solutions of (1) describe identical paths in ðx; y; hÞ
space, scaled by l, at rates determined by ~tt.

Global conservation of total energy, and conservation
of angular momentum about the foot in each stance
phase assist in integration of (1), complete accounts of
which appear in (Schmitt and Holmes 2000b). At
touchdown/liftoff the foot position instantaneously
switches to rFðtnþ1Þ, and integration continues. Simple
codes may be written for numerical simulations in, for
example, the MATLAB environment.

The ‘hip pivot’ P may be fixed, or may move depen-
dent on leg angle / relative to body; the rule

d ¼ d0 þ d1 /# p
2

" #

ð3Þ

exemplifies both cases (d1 ¼ 0, fixed; d1 6¼ 0, moving).
The latter moving center of pressure (COP) protocol can
better reproduce torques resulting from variations
among individual foot forces. (Specified torques could
also be applied at P : see Schmitt J and Holmes P,
unpublished work, 2002) Moreover, in place of passive,
SLIP-like force generation resulting from leg compres-
sion in which f derives from a potential function
depending on leg length ðr# rFðtnÞÞ, leg forces fðtÞ may
be wholly prescribed as functions of time, or via
combinations of these limiting, ‘event-driven,’ and
‘clock-driven’ strategies. In fact the prescribed force
studies of Kubow and Full (1999), in which representa-
tive forces were applied at foot positions, motivated the
present generalized models, which we believe are better
suited to represent the effects of mechanical feedback or
‘preflexes’ in gait stabilization. Further information and
detailed analyses of these models appear in Schmitt and
Holmes (2000b, 2001).

3 Steady periodic gaits

3.1 Families of gaits and stability

The dynamical behavior of the model (1) is conveniently
described in terms of touchdown values of COM
velocity magnitude vðtÞ ¼ jvðtÞj ¼ j _rrðtÞj and COM
velocity heading dðtÞ relative to body axis, body
orientation, or yaw angle hðtÞ relative to a fixed reference
frame, and body angular velocity _hhðtÞ ' xðtÞ; see Fig. 1.
Integration of (1) (Schmitt and Holmes 2000b) produces
a stride or step map F specifying these variables at each
touchdown instant t ¼ tnþ1 in terms of their values at the
preceeding touchdown t ¼ tn:

Fig. 1a–c. Overhead views of a cockroach (a), a cartoon of the lateral
leg-spring bipedal model during one stride of period s (b), and model
details (c). O denotes a fixed ‘origin’ on the ground, F is the current
foot position F 0 (not shown) is the next foot position on the opposite
side of the body, andG is the body center of mass (COM). P is the leg
attachment point (also called center of pressure, COP) which may
move or be fixed with respect to G according to the prescribed
position function dðtÞ. f1 and f2 are components of force generated in
the leg with respect to body axes e1; e2; rðtÞ ¼ ðxðtÞ; yðtÞÞ is the mass-
center position with respect to inertial frame ex; ey . hðtÞ is the body
orientation, and /ðtÞ is the leg angle relative to body. The leg
positions with respect to the body at the start of each step are sketched
in gray; (b is the leg angle with respect to the body centerline at
touchdown. dðtÞ, shown in a, is the angle of the mass center velocity
vðtÞ with respect to the body centerline

344

(A) (B)

Figure 1.2: (A) Cockroach running is modeled in the lateral plane as a lateral leg spring (LLS)
model (Section 3.1; [96]); the three stance legs, indicated by the three small arrows, are represented
by a single virtual massless spring leg. (Image credit: [95]; with kind permission from Springer
Science+Business Media:Figure 1(a) in [95]) (B) Human running is modeled in the sagittal plane
as a spring-loaded inverted pendulum (SLIP). (Image credit: [100])

in all states except direction and speed, which are neutrally stable and thus both require active

control [96, 97]. In this thesis, we use the LLS model as a motivation for our proposed antenna-

based planar unicycle (APU; Chapter 4) and antenna-based LLS (ALLS; Chapter 6) models for

cockroach wall following. For human running we use the SLIP model as our body mechanics

template (Chapter 10).

1.2 Modeling Neural Control

In a popular book Gödel, Escher, Bach: An Eternal Golden Braid [49] written by D.R.

Hofstadter, the author explains the operation of human brains using an analogy with electronic

computers: In electronic computers, there are many layers of abstractions starting from silicon
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Figure 1.3: Layers of abstractions from transistors (hardware) to high-level programs (software).
(Image credit: [49])

transistors up to high-level software programs (Fig. 1.3). Operations or instructions available in one

layer come from abstractions created by “chunking” many operations from the layer below. The

benefit of creating a series of abstract layers is that at the highest level, user-friendly programs (e.g.,

Matlab) can be written without the need to keep track of the details, say, at the transistor level.

Similarly, our brains can employ many layers of these abstractions starting from neurons in the

bottom-most layer that yield high-level operations or “intelligence” in the top layer.

Instead of a bottom-up approach where a synaptically-interconnected gross neural net-

work model of biologically-relevant neurons are modeled, in this thesis, we take a “task-level” ap-

proach where we find the simplest control law (in the classical control theory sense) that abstractly

represents the cockroach and human feedback control strategy during high-speed running. The mod-

els we present in this thesis are behavior specific and thus do not capture the complex dynamics—

for example, for cockroaches, the switching between escape response and wall following—that may

emerge out of more elaborated neural-network-based models [18]. However, the sheer complexity

of their neural network hampers formal mathematical analysis (e.g., stability analysis) whereas our
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approach elucidates the general functions of the neural network as a whole, nevertheless allowing

one to predict how actual neural signals may look [21, 22].
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Part I

Cockroach Locomotion
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Chapter 2

Motivation

Cockroaches demonstrate remarkable locomotor and navigational capabilities. American

cockroaches (Periplaneta americana) can run up to 1.5 m/s (or 50 body lengths/s), even changing

their gait to bipedal in order to attain high speeds [37]. When scaled for body length, this is equiv-

alent to humans running at 200 mph! Furthermore, they can use their antennae as tactile probes to

track a wall without visual cues (Figs. 2.1 and 4.7), following along the wall up to 80 cm/s [13,22].

They can also navigate changes in wall orientation up to 25 times/s and can begin to respond to a

wall angle change in as little as 30 ms [13].

For such an extraordinary system, we seek to identify general principles about how the

organism extract salient sensory information, transduce this information into neural signals, and in-

tegrate it with the tuned dynamics of a musculoskeletal system to successfully navigate in a complex

environment. As a biological investigation, antenna-based wall following lends itself to mathemat-

ical modeling at several levels as well as behavioral and neurophysiological experimentation. This

in turn gives us novel strategies for the design and control of antenna-based mobile robots.
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Figure 2.1: Top view of an P. americana running along a corridor with sensory obstacles.

anchortemplate
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Physical Systems

Garcia RHex

APU ALLS SimSect

Figure 2.2: Our research program involves multiple levels of modeling, and biological and robotic
experimentations. Here, we present three models: the antenna-based planar unicycle (APU, Chap-
ter 4), a model for our Garcia robot (Chapter 5), and the antenna-based LLS (ALLS, Chapter 6).
Importantly, each level of modeling admits the same control structure, including parameters (up
to a scale factor), that was fitted to cockroach wall-following data (Chapter 4). The two physical
systems involved in this study are P. americana (Chapter 4) and a differential drive mobile robot
(Chapter 5). Eventually, we plan to extend our modeling effort to more elaborated anchors, such as
the planar, multi-legged model proposed by Seipel et al. [104], or the spatial SimSect model devel-
oped by Saranli et al. [90] of RHex [91]. As well, we plan to extend our experimental robotics work
to include a RHex-like six legged robot, endowed with an artificial antenna.

2.1 Roadmap

A schematic overview of our research program, which includes modeling, robotic devel-

opment, and experimental biology, is depicted in Fig. 2.2. This thesis addresses the antenna-based

task-level control of body angle using three models along the template–anchor axis and the results

from robotic and ethological experiments.

In Chapter 4, we develop the antenna-based planar unicycle (APU) model (Section 4.1)

to capture the antenna-based wall-following behavior of running cockroaches; from the APU model

9



CHAPTER 2. MOTIVATION

and tools from classical controls theory, we predict that the American cockroaches cannot use P

(proportional) control alone (Section 4.2). In Section 4.3, we perform cockroach wall-following ex-

periments; we refute (Section 4.4) the null hypothesis (cockroaches use only P control) and support

the next simplest control law—PD (proportional-derivative) control.

In Chapter 5, we support the efficacy of the PD controller gains, found for the cockroaches

(Section 4.4), in a real-world setting with unmodeled effects, including a flexible antenna and its

friction with the wall, by implementing a robotics platform (Section 5.2.2) using the equivalent PD-

gains (up to a scale factor; Section 5.2.3) and validating through physical experiments its overall

stability (Section 5.3).

In Chapter 6, we develop an extension to the LLS model which captures the salient yaw

dynamics of actual running cockroaches (Section 6.1); we show the efficacy of the PD-controller

gains (Section 4.4) in a legged setting by implementing the PD gains on the antenna-based LLS

(ALLS) model (Section 6.2) and validating its overall stability (Section 6.3).

We end Part I with a discussion (Chapter 7) of our results and a conclusion (Chapter 8).

In the next chapter, we briefly review the lateral leg spring (LLS) model and provide a background

in the behavior and body design of American cockroaches.

2.2 Dissemination

The majority of what is reported in this dissertation are from the following publications

(with some corrections and added details):

- N. J. Cowan, J. Lee, and R. J. Full. “Task-level control of rapid wall following in
the American cockroach.” J. Exp. Biol., 209(9):1617–1629, 2006;

- J. Lee, A. Lamperski, J. Schmitt, and N. J. Cowan. “Task-level control of the
lateral leg spring model of cockroach locomotion.” In M. Diehl and K. Mombaur,
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editors, Fast Motions in Biomechanics and Robotics: Optimization and Feedback
Control, volume 340 of Lecture Notes in Control and Information Sciences, pages
167–188. Heidelberg: Springer-Verlag, 2006;

- J. Lee, O. Y. Loh, and N. J. Cowan. “A hierarchy of neuromechanical and robotic
models of antenna-based wall following in cockroaches.” In Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst., pages 3547–3553, San Diego, CA, USA, October
2007;

- J. Lee, S. N. Sponberg, O. Y. Loh, A. G. Lamperski, R. J. Full, and N. J. Cowan.
“Templates and anchors for antenna-based wall following in cockroaches and
robots.” IEEE Trans. Robot., 24(1):130–143, Feb. 2008.
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Chapter 3

Background: American Cockroaches

and LLS Model

American cockroaches Periplaneta americana (Fig. 3.1A and B), despite what their name

suggests, originated in Africa and comprise one of the 47 species in the genus Periplaneta [85].

Adult cockroaches’ body length averages about 4 cm (excluding their antenna). As shown in

Fig. 3.1, cockroaches have six legs, two antennae (long, slender appendages on their head), and

two cerci (short antenna-like sensors on the opposite ends of their bodies). One of the attributes

of arthropods, such as P. americana, is their exoskeletons; unlike humans whose skeletal structure

(endoskeletons or bones) is surrounded by muscles, arthropods have a hard cuticle skin (exoskele-

ton) that provides structure to the animal, and their muscles operate from the inside of the shell. To

understand how these insects use their antenna to follow along a wall, we begin with a review of a

model that captures the salient features of sprawled-posture insects’ body mechanics: a lateral leg

spring (LLS) model.
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CHAPTER 3. BACKGROUND: AMERICAN COCKROACHES AND LLS MODEL

(A) (B)

Figure 3.1: (A) Dorsal view of an American cockroach (Periplaneta americana). (Image credit:
[58]) (B) A view of ventral side of P. americana. (Image credit: [119]) The two images are scaled
to closely match the actual size of P. americana.

3.1 Review: Lateral Leg Spring (LLS) Model

Developed by Schmitt and Holmes, the lateral leg spring (LLS) models insect locomo-

tion, specifically that of the cockroach Blaberus discoidalis [96, 97]. Cockroaches run using an

alternating tripod gait [15]. Experiments have shown that the forces produced by this tripod of legs

can be well represented by a single effective leg [32, 37]. Since the total mass of the legs of the

insect is less than 6% of the total mass, the LLS model approximates each alternating tripod as a

single massless, spring-loaded virtual leg that attaches to the midline of the body at a point called

the center of pressure (COP). As illustrated in Fig. 3.2, the COP is offset from the center of mass

(COM) by a displacement, d, where d may lie in front of the COM (d > 0) or behind the COM

(d < 0). The model assumes that the foot pivots freely without slipping about its attachment to the

ground, rfoot, and that the leg can rotate freely about the COP. This implies that no moments about

the foot or COP can be generated, and forces will be applied to the body along the length of the
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Figure 3.2: A schematic diagram of lateral leg spring model.

leg. A full stride for the model consists of a left and right step phase. A step phase begins with

the relaxed spring extended at an angle ±β0 with respect to the body centerline. The body moves

forward, compressing and extending the elastic spring, until the spring returns to its original length,

at which point the leg is lifted, the next leg is placed down, and the cycle repeats.

Changes in the foot placements between left and right step phases result in a hybrid dy-

namical system. Systems with piecewise-holonomic constraints such as these can display asymp-

totic stability [86]. For gaits encountered in the LLS model, periodic motions exhibit neutral

eigendirections due to energy conservation and SE(2) invariance. Therefore, stability is partially

asymptotic in the sense that perturbations to periodic orbits in the direction of the eigenvectors

of conserved quantities and symmetries do not grow or decay, but simply result in movement to

a different, stable gait. Gaits in the LLS model display partial asymptotic stability in the head-

ing direction and angular velocity as a result of angular momentum trading between left and right

step phases. The mechanical structure of the model therefore self-stabilizes the locomotion sys-
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tem [96].1 If d < 0 then the gaits are asymptotically stable in heading and angular velocity, i.e. the

body approaches straight trajectories if the trajectory begins in the basin of attraction for the stable

periodic orbit. If d = 0, the periodic orbits exhibit neutral stability in angular velocity and asymp-

totic stability in heading. If d > 0, periodic orbits are unstable. To show stability, one can take

Poincaré sections at the beginning of a full stride, and numerically approximates the fixed points

and eigenvalues of the linearized return map.

While the energetically conservative fixed and moving center of pressure models of

[96, 97] reproduce many salient features of the kinematics and forces exhibited experimentally

by Blaberus discoidalis, detailed comparisons illuminate limitations of the LLS. In particular, the

fixed COP models previously investigated consider only COPs on the fore-aft body axis, and con-

sequently only produce sinusoidal variations in θ; in contrast, the animal produces cosinusoidal

variations [115]. This is due to the fact that, under biological plausible oscillations of the body

orientation, a fixed COP located behind the center of mass along the fore-aft body axis is only ca-

pable of producing a positive or negative moment, rather than a moment that changes sign during

each step phase. Additionally, fore-aft and lateral force profile magnitudes are typically reversed in

comparison to those observed experimentally. Allowing the leg attachment point to vary from fore

to aft in the moving COP model serves to address the qualitative discrepancies in the moment and

yawing profiles [95]. However, while qualitatively correct yaw and moment profiles are produced

by the model, quantitative comparisons reveal that the profile amplitudes in each remain an order of

magnitude smaller than those observed experimentally. An activated muscle model introduced by

Schmitt and Holmes [98] attempts to correct the moment and yawing oscillations by introducing hip
1Together with the small amount of feedback required to detect the lift-off condition, and to detach the stance leg and

attach the swing leg at the appropriately scheduled touch-down angle relative to the body.
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torques and muscle activation. While these authors obtained moment profiles that matched those

of actual cockroaches, they are obtained at the expense of increased model complexity and inverted

fore-aft force profiles.

In this thesis, we use the LLS model as an “anchor” (discussed in Chapter 1) to develop

even simpler representation of cockroach running: antenna-based planar unicycle template (Chap-

ter 4). We come back to the LLS model in Chapter 6 to develop antenna-based LLS (ALLS) model.

We show that a lateral placement of the COP produces the desired yaw dynamics without the need

to move the COP during each stance phase (Appendix B).

3.2 American Cockroach: Antenna and Behavior

A cockroach antenna is composed of actuated joints at the base of the antennae, Fig. 3.3,

between pedicle and scape and between scape and head, and the passive components called flag-

ellum, which consist of ∼150 small segments (Fig. 3.4). The flagellum is covered with various

receptors that allow not only mechanoreception (touching or bending of the antenna) but also olfac-

tion, taste, thermoreception, and hygroreception [102].

During slow exploratory behaviors, cockroaches actively sweep their antennae to provide

rich information about their environment for self-orientation [76,77,78] and for slow-speed walking

[28]. Basal receptors (Fig. 3.3), as opposed to flagellar receptors, initiate escape turns, while prior

flagellar [20] or visual [120] stimuli either directly or indirectly influence the response.

Once elicited an escape response, rapidly running cockroaches use antennal feedback

to follow surfaces with remarkable consistency, while holding the base of their antenna at nearly

fixed angles relative to their body [13]. The dominant information for task-level control of this

16



CHAPTER 3. BACKGROUND: AMERICAN COCKROACHES AND LLS MODEL

Figure 3.3: Scanning electron micrograph of P. americana’s head. Scale bar = 1000 µm; Co:
Compound eye; Fl: Flagellum; Pd: Pedicle; Oc: Ocellus; Sc: Scape. (Image credit: [102])

behavior originates from the flagellum (Fig. 3.4), with little-to-no contribution from the base of the

antenna [13], though antenna base angle regulation likely requires basal proprioception. The long,

passive, unactuated flagellum bends in response to objects in its environment and transduces contact

and strain stimuli to neural impulses for control. Using this sensory input, cockroaches can execute

quick wall-following maneuvers measuring up to 25 volitional body turns per second [13].
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After the tenth segment, the diameter of the segments
progressively decreased, and the six large sensilla tended
to protrude obliquely at about 40–60° (see sensilla in Fig.

1D). The number of sensilla also increased. Four to six
small chaetic sensilla were added proximally between the
large sensilla (Fig. 1D), and various types of basiconic

Fig. 1. Scanning electron micrographs of chaetic sensilla on the
antenna in the female cockroach Periplaneta americana. A,B: The
pedicel and the proximal 26 segments of the flagellum, viewed ven-
trally (A) and dorsally (B). Each flagellar segment is numbered. The
approximate locations of individual sensilla in which at least one
receptor afferent was completely stained are indicated by arrows.
Three of forty-six sensilla successfully stained were small sensilla
(their approximate locations are indicated by S). On each segment, six
large sensilla are arranged around its circumference approximately
equidistant from each other (see I–VI on the fourth flagellar segment).
C: Chaetic sensilla on 1–4 flagellar segments. The sensilla protrude

almost perpendicularly to the longitudinal axis of the antenna.
D: Sensilla on 19–21 flagellar segments. The large sensilla protrude
obliquely at an angle of 40–60°. Small chaetic sensilla are positioned
proximally between large sensilla. E: Sensilla on the twentieth seg-
ment (magnified from E in A and D). The shaft of each chaetic
sensillum is externally grooved, and the tip is bent like a peg. Various
types of basiconic sensilla (BS) are seen between chaetic sensilla.
F: Chaetic sensillum on the flagellum (magnified from the large sen-
sillum in E). A single terminal pore is detected in almost all chaetic
sensilla on flagellar segments. Scale bars ! 500 "m in A,B; 100 "m in
C,D; 20 "m in E; 1 "m in F.

294 H. NISHINO ET AL.

Figure 3.4: Scanning electron micrograph of P. americana’s antenna. Scale bar = 100 µm (Image
credit: [74])
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Chapter 4

Antenna-Based Planar Unicycle

In this chapter, we assume that control of rapid locomotion must be embedded in both

neurosensory circuitry and an animal’s mechanical system, and that a neuromechanical model of a

sensory mediated behavior can lead to specific, testable hypotheses regarding afferent neural pro-

cessing. From this assumption, we tested task-level control hypotheses using the antennal sensory

system because of the behavior’s effectiveness at high speeds, the ease of measuring performance,

and the availability of well-developed mechanical models upon which we can build.

To build upon prior mechanical locomotor templates, we incorporate antennal sensing

and neural control of running direction directly into one mechanosensory template of antenna-based

wall following. In contrast to the LLS model, which aims to capture the within-stride dynamics of

cockroach locomotion [95, 104], our model focuses on the multi-stride dynamics.
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Figure 4.1: (A) Depiction of a cockroach following a straight wall. L is the farthest point ahead of
the cockroach’s point of rotation (POR), as measured along the body axis, that the antenna contacts
the wall. The bold arrow at the bottom indicates the leading point on the antenna that is in contact
with the wall. (B) Unicycle model of the running cockroach. The model parameters are `, the
preview distance; d, the antenna measurement; v∗, the forward running speed; ω, the angle of the
cockroach body relative to the wall (positive is measured counter clockwise (CCW) for all angles,
angular velocities and moments; note that θ < 0 in this figure); ω, the angular velocity of the body;
u, the moment applied by the legs about the POR. The preview distance ` may be less than L since
the model does not account for neural and muscle activation delays. In the model, the angle of the
POR velocity, φ, is the same as the body angle, θ, so φ is not shown for clarity.

4.1 Model: Antenna-Based Planar Unicycle (APU)

Consider a cockroach running on a horizontal flat substrate, following a straight vertical

wall. The inertial frame’s X-axis points along the wall, and the Y-axis points into the arena, as

shown in Fig. 4.1. We model the cockroach as a planar rigid body. Let (x, y) denote the position of

a point we call the point of rotation (POR). Let v∗ denote the forward speed of the POR, and φ the

velocity heading of the body POR, so that (v∗ sinφ, v∗ cosφ) is the POR velocity vector. Denote

the body angle by θ, and let ω = dθ/dt denote the rotational velocity of the body. Cockroaches

apply forces with their legs that keep the two angles θ and φ aligned during turning [54], therefore

we model the body angle and the heading as coincident at all times, namely

φ = θ. (4.1)
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Under these modeling assumptions, the rigid body kinematics are given by

θ̇ = ω

ẋ = v∗ cos θ (4.2)

ẏ = v∗ sin θ

where dot is used to indicate the time derivative, e.g. ẋ = dx/dt. At each instant, the body moves

forward in the heading direction at speed v∗ (assumed constant), while pivoting about the POR

at angular velocity ω. The general robotics literature refers to this kinematic model as a “planar

unicycle” [11].

We assume that the cockroach antenna measures the distance d from the body centerline

to the wall (Fig. 4.1B) a fixed distance ` ahead of the body center, and we assume that the an-

tenna is massless and does not impose force to its environment nor to the cockroach. Under these

assumptions,

d = ` tan θ + y sec θ. (4.3)

Differentiating, and substituting the kinematics (4.2) yields

ḋ = θ̇` sec2 θ + v tan θ + yθ̇ tan θ sec θ (4.4)

≈ `θ̇ + vθ (linearization),

or, in transfer function form,

D(s)
Θ(s)

=
`s+ v

s
. (4.5)

Equation 4.3 describes how the antenna measurement, d, changes as a function of the motion of

the cockroach. We distinguish the model’s effective preview distance, `, from the physical con-

tact distance, L, which denotes the distance ahead of the animal that the antenna is touching the

21



CHAPTER 4. ANTENNA-BASED PLANAR UNICYCLE
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Figure 4.2: Block diagram of simplified control model. The “mechanics” box represents the tor-
sional dynamics, and relates the body moment, u, to the body angle, θ. The “sensing” box is a
simplified model of the antenna sensing kinematics, and it dynamically relates the cockroach an-
gle, θ, to the antenna sensor measurement, d. We fit a simplified neural controller (in the dashed
box), in which the error between a nominal “desired” wall-following distance, d∗, and the measured
distance, d, is fed back through a PD controller. This control model enabled us to test PD control
(KD 6= 0) against P control (KD = 0).

wall (Fig. 4.1A). The preview distance, `, is based on the information available to the cockroach

from a variety of potential mechanosensory receptors (e.g. campaniform sensilla, hair sensilla, and

marginal sensilla). The antenna may encode distance, d, to the wall via a variety of surrogate signals

such as contact point, strain, antennal forces, contact area, or bend, or some combination, that are

all likely to be highly correlated with the distance to the wall during wall following. Finally, neural

and muscle activation delays may decrease the effective preview distance (Section 4.2). To turn, a

cockroach must generate a net polar moment, u [54]. The polar moment of inertia, J , and damping

coefficient, B, parameterize the “yaw” dynamics,

Jθ̈ +Bθ̇ = u. (4.6)

Damping is used to model stride-to-stride frictional and impact losses. The animal does not run in

a preferred direction, so we do not include a torsional spring force that would orient the animal.

Combining the two linear differential equations, (4.4) and (4.6), yields an open-loop dy-

namical system model of cockroach wall following. One can express a transfer function, G(s),
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between the moment, u, and the antenna measurement, d, as

G(s) =
`s+ v∗

s
· 1
Js2 +Bs

. (4.7)

The dynamical system model (4.4), (4.6) summarized by the linearized transfer function (4.7), has

eight parameters, including the dimensionless angle, θ, and seven dimensional quantities: complex

frequency, s; head-to-wall distance, d; input moment, u; polar moment of inertia, J ; damping,

B; preview distance, `; and forward velocity, v∗. These reduce to four dimensionless groups:

ũ = u`/Bv∗, J̃ = Jv∗/B`, d̃ = d/`, θ; with s̃ = s`/v∗, where s̃ is the dimensionless complex

frequency. Then, from (4.7) the dimensionless transfer function relating ũ and d̃ can be written as

G̃(s̃) =
s̃+ 1

s̃2(J̃ s̃+ 1)
. (4.8)

The dimensionless inertia

J̃ =
Jv∗

B`
(4.9)

plays an important role in our model since its value determines the ease of stabilization via closed-

loop feedback (Fig. 4.2). If the cockroach uses negative feedback from the antenna-based distance

measurement d, then J̃ constrains the control structures that can stabilize the system.

Feedback Control: P Control The simplest possible feedback strategy, proportional feedback

control (P control), assigns an input moment proportional to the “tracking error,”

u = −KP (d− d∗), (4.10)

where d∗ is the steady-state distance that the cockroach neural control system attempts to maintain

and KP is the feedback gain. For stability, the poles (zeros of the denominator) of the closed-loop
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system, KPG/(1+KPG), must have negative real parts. In nondimensional terms, the closed-loop

poles are given by the solutions of the characteristic equation

J̃ s̃3 + s̃2 + K̃P s̃+ K̃P = 0, (4.11)

where K̃P is the dimensionless proportional gain. Routh’s stability criterion (see [31]) reveals that

the system is stable (i.e. the roots of (4.11) have negative real parts) if and only if 0 < J̃ < 1 and

K̃P > 0.

Feedback Control: PD Control We hypothesize (for reasons expanded upon in Section 4.2) that

P control will not be sufficient to guarantee stability. To test our hypothesis, we fit a closed-loop

model to a set of behavioral observations. The closed-loop model couples the dynamics of (4.2),

(4.3), (4.4), and (4.6) with a proportional-derivative (PD) controller,

u = −KP (d− d∗)−KDḋ, (4.12)

where KD is the gain of the derivative term, which encodes rate of approach to the wall. This

additional derivative term helps to stabilize the system, allowing a greater range of allowable values

for J̃ . Note that setting KD = 0 reduces the controller to P control. The nesting of models enables

statistical hypothesis testing of the P-Hypothesis (null) against the PD-Hypothesis (alternative).

During model fitting, we obtain estimates for `, as well as the ratios KP /J, KD/J, and B/J . The

resulting values enable us to estimate the dimensionless inertia, J̃ .

4.2 Prediction: P Control Is Insufficient

The proposed controller for the planar unicycle demonstrates the necessary integration of

mechanics and sensing during rapid running (Fig. 4.2). Stable control requires a consideration of
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mechanics, sensing, and delay. Our simple PD-controlled unicycle model provides a mechanism

to investigate these three components, which all contribute to the neuromechanical performance

limitations inherent in wall following.

Our hypothesis that P control would be insufficient is motivated by root-locus analysis of

the system G̃(s̃) in (4.8) under P control (4.10), as shown in Fig. 4.3. Under P control, for J̃ near

1, two complex conjugate roots will dominate the response leading to large oscillations every time

the cockroach encounters an angled wall. For a given gain K̃P , the system becomes increasingly

damped as J̃ decreases. At the critical value J̃crit = 1/9, the system can be critically damped with

K̃P = 3, with a triple root at s̃ = −3. For any J̃ < J̃crit and an appropriate choice of K̃P the

closed-loop system have one distinct real pole and one double real pole. This analysis leads to three

distinct cases:

1. J̃ ≥ 1. The system cannot be stabilized with P control.

2. J̃crit < J̃ < 1, where J̃crit = 1/9. For all choices of the gain KP , the system will be

under-damped and therefore oscillatory.

3. J̃ ≤ J̃crit. The system can be stabilized with P control, and for an appropriate choice of KP ,

the system can be either under damped, over damped, or critically damped.

Equation 4.9 indicates that J̃ increases with speed. If J̃ remains bounded below J̃crit for behaviorally

relevant speeds, then we would hypothesize that P control will be sufficient. If J̃ exceeds unity (or

even J̃), then we would hypothesize the need for a more complex compensation mechanism that

includes adding velocity dependent feedback via a proportional-derivative (PD) controller (4.12).

Unfortunately, we cannot independently measure all of the parameters that determine J̃

(4.9), and it would therefore seem impossible to make a prediction as to whether or not P control
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is sufficient. However, one additional insight leads to the hypothesis that P control is insufficient:

delay can destabilize a control system. Two separate calculations below predict that ethologically

observed neural delays of 30 ms or more preclude P control for stability. As seen, our experimental

results bear out this prediction.

A delay of T seconds, arising from neural processing and generation of muscular forces,

adds a multiplicative term e−sT to the open-loop transfer function G(s) in (4.7):

G(s) =

delay︷︸︸︷
e−sT ·

antenna︷ ︸︸ ︷
`s+ v∗

s
·

mechanics︷ ︸︸ ︷
1

Js2 +Bs
. (4.13)

The term e−sT adds pure phase lag. This can be seen by evaluating e−sT along the imaginary axis,

along which it has unity gain and negative phase. Recall that lower values for J̃ make P control

possible, so assume for simplicity that J̃ = 0. In this case, the delayed version of the dimensionless

transfer function (4.8) simplifies to

G̃(s̃) = e−s̃T̃ · s̃+ 1
s̃2

, (4.14)

where T̃ = Tv∗/` is the dimensionless delay. We use measured latency of approximately 30 ms for

a cockroach to respond to an outward wall projection during wall following in P. americana [13].

That result nearly matches the latency of the antennal escape response for this species [120]. Since

longer preview distances simplify control, we assume that the preview distance is ` = 4.5 cm (which

corresponds to the contact distances, L, that we measured). With these optimistic assumptions, as

the running speed approaches the maximum observed running speed of P. americana of 1.5 m/s

[37], the dimensionless delay approaches a critical value of T̃ = 1, at which point the cockroach

cannot be stabilized with P control for any choice of proportional feedback gain, KP . This can be

seen by using the Nyquist stability criterion (Fig. 4.4). A Nyquist plot is constructed by evaluating
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Figure 4.3: Root locus plots (see, e.g. [31]) of the transfer function of G̃(s̃) given by (4.8) for five
characteristic values of the dimensionless inertia, J̃ . Each plot depicts the locus of poles (roots of
the denominator) of the closed-loop system (Fig. 4.2) under P control. The three open-loop poles
(roots of the denominator of (4.8)) are indicated by X’s, and therefore there are three branches of
the root locus (magenta, green, blue). There is an open-loop zero (root of the numerator of (4.8)) at
-1, indicated by a circle. The small inset plot (d vs. t) for each root locus depicts a typical response
of the hypothetical closed-loop system. For stability, all of the poles of the closed-loop system must
be in the open left-half-plane, that is, they must have negative real parts. (A) For J̃ < 1/9, all of
the poles are in the left-half-plane; the inset shows an over-damped response of d vs. t. (B) For
J̃ = 1/9, the system would be critically damped with KP= 3. (C) For 1/9 < J̃ < 1, the system
would be underdamped under P control. (D) For J̃ = 1, the system would be oscillatory for all
choices in gain, KP . (E) For J̃ > 1, the system would be unstable. Since J̃ approaches or exceeds
1 for behaviorally relevant running speeds (4.13), these graphs preclude the possibility of P control.
Stability can be greatly improved by adding a derivative feedback term, as in (4.12), enabling larger
values of J̃ .
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Figure 4.4: Three Nyquist plots of the system in (4.14) are shown for three characteristic values
of the dimensionless neural delay, T̃ , , assuming that J̃ = 0. Delay cannot be handled using the
root locus method; thus, we resort to Nyquist’s stability criterion (see, e.g. [31]). (A) T̃ < 1. (B)
T̃ = 1. (C) T̃ > 1. Each plot is constructed by evaluating the transfer function in (4.14) along the
imaginary axis. Because the open-loop system has no open right-half-plane poles, the closed-loop
system is stable if the Nyquist plot does not encircle -1 on the complex plane. As can be seen, this
is only possible for the case that (A) T̃ < 1, whereas for (B-C) T̃ ≥ 1, there will always be at
least two encirclements of -1, and thus at least two right-half-plane poles. Stability can be greatly
improved by adding a derivative feedback term, as in (4.12), enabling larger values of T̃ .

the transfer function (4.14) along the imaginary axis, namely G̃(jω), from 0 to ∞. Residue theory

from complex analysis can be used to show that if this plot encircles the -1 point, the closed loop

transfer function is unstable. In our case, for T̃ ≥ 1, the Nyquist plot always encircles the -1 point at

least twice independent of the feedback gain; thus under P control the closed loop transfer function

must have at least two unstable poles when T̃ ≥ 1. For values of T̃ slightly lower than 1, P control

will be highly oscillatory. Adding a velocity feedback component can mitigate this problem by

adding phase lead which can counteract to some extent the phase lag introduced by the delay.

28



CHAPTER 4. ANTENNA-BASED PLANAR UNICYCLE

4.3 Experiment: Cockroach Wall Following

4.3.1 Animal Husbandry

Adult male American cockroaches Periplaneta americana L. were acquired from Carolina

Biological Supply Company (Burlington, NC, USA) and housed in a ventilated plastic container.

Cockroaches were exposed to a L:D cycle of 12 h:12 h and given fruits, vegetables, dog chow, and

water ad libitum.

4.3.2 Wall-Following Arena

Our arena was similar to that used by Camhi and Johnson [13]. A rectangular arena,

85 cm×45 cm×15 cm (length×width×height), was enclosed with a corrosion-resistant aluminum

sheet wall (Figs. 4.5 and 4.6). The upper half of the aluminum wall was coated with petroleum jelly

to prevent the cockroaches from escaping. A long, high-density fiber (HDF) block, 50 cm×5 cm×

5 cm, was used as a part of the observation wall to view the cockroach’s wall following behavior.

To induce turning, we placed HDF boards cut at angles of 30◦ and 45◦ in the middle of the first wall.

Depending on where the cockroach started, it ran along either wall first using its right or left antenna

for wall following. We noted this, but did not distinguish between the two scenarios for modeling.

Henceforth, we refer to the wall that the cockroach initially tracks, either using their left or right

antenna, as the control wall and refer to the wall that induces a turning behavior as the angled wall.

The two walls collectively constitute the observation walls.

Two high-speed video cameras (Kodak EktaPro 1000, Eastman Kodak Company,

Rochester, NY, USA) positioned approximately 1.5 m above the arena (Fig. 4.5A) captured the

cockroaches’ running behavior. A half-silvered mirror placed in front of each camera at 45◦ de-
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Camera 2
Camera 1

Fiber-optic
Illuminator

Arena

A

B

 Approx. 1.5m

Control Wall

Angled Wall

Camera 2

Camera 1

Figure 4.5: Illustration of wall-following arena viewed from side and from each camera. (A) Two
high-speed cameras were positioned above an enclosed arena. The field-of-view of each camera
was centered on an observation wall. Half-silvered mirrors in front of each camera reflected light
from a fiber-optic illuminator onto the retroreflective running substrate, providing a stark silhouette
of the cockroach despite very low ambient light. (B) The arena viewed from above showing the two
cameras’ overlapping fields of view.
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Figure 4.6: Image of the wall-following arena illustrated in Fig. 4.5A. In this image, the room light
is on to show the setup.
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Figure 4.7: Multiple exposures of a cockroach running along an angled wall during a single trial.

flected light shone from a 150 W fiber-optic illuminator onto the running surface. There was little-

to-no ambient lighting during the experiment. The two camera views of the observation walls

overlapped slightly for camera calibration purposes and to ensure continuity of data from each trial

(Fig. 4.5B). Each camera’s field of view covered 35 cm in length of its respective wall, with an

average resolution of 0.8 mm per pixel. The cameras synchronously captured images at 500 frames

per second.

We captured video images (Fig. 4.7) of running cockroaches under low light using a

retroreflective sheet from 3M (St Pauls, MN, USA) as the running substrate. Proper alignment

of the lighting evenly illuminated the retroreflective running substrate and markers, simplifying de-

tection and tracking of the cockroach, because the non-retroreflective walls, cockroach body and

legs appeared as sharp silhouettes.
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4.3.3 Animal Preparation

We prepared cockroaches inside a 4◦C cold room as follows. After initially cooling the

animals for 15-20 min, we anesthetized them using CO2. While anesthetized, we attached two

small round retroreflective markers to each animal’s wings, approximately aligned with the body

fore-aft axis, enabling us to estimate the cockroach’s position and body angle from video images.

The markers did not restrict the wings in any way. To block their visual senses, we covered their

compound eyes and ocelli using a white nail polish, taking care to avoid the head/scape joint. This

preparation process took less than 40 min per group of five cockroaches. After this preparation, the

cockroaches recovered at room temperature for at least 24 h before testing.

4.3.4 Kinematics

Prior to a set of trials with a cockroach, we placed it in the arena for several minutes to

acclimate. When the insect walked into position at the initial part of the control wall, we induced

an escape response by tapping the running substrate with a long stick near the posterior of the

cockroach. Trials were accepted when the animal ran rapidly along the wall and executed a turn at

the angled wall. Trials were rejected when (1) the cockroaches stopped or climbed the wall while

they were in view of the cameras, (2) the distance of their POR to the wall deviated by more than

2.5 cm while running along the angled wall; this typically occurred when the animal appeared to

voluntarily leave the wall and run into the open space of the arena, (3) their body (excluding their

legs) collided with the angled wall, or (4) their antenna was not in a “bent backward” posture when

the antenna first encountered the angled wall; this eliminated trials in which the tip was pointing

forward, thereby wedging the antenna in the corner.
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Figure 4.8: Three-dimensional lego blocks with retroreflective markers (gray circles). This object
is placed in the arena in view of both cameras; the known relative marker positions and the markers
seen from the cameras are used for camera calibration.

After each successful trial a cockroach rested for 2-3 min while we downloaded the

recorded images to our workstation. When the animal stopped exhibiting the escape response from

our perturbation or did not achieve any acceptable trials for 30 min, we switched to a different

individual. An individual was never used for experiments twice in the same day.

Before each set of experiments, we captured an image from both cameras of a three-

dimensional, non-coplanar block with retroreflective markers (Fig. 4.8). The geometry of the mark-

ers was measured with a set of digital calipers. Using these data, we calibrated the cameras using

the direct linear transform.

We extracted four quantities from each trial. first, our custom scripts (Matlab, The Math-

Works, Inc., Natick, MA, USA) tracked the cockroach’s two body markers to obtain the body’s POR

(see below) and body angle, (x, y, θ), for all frames (Fig. 4.7). We visually verified the tracking data
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by superimposing the predicted marker measurements onto the raw images. Second, custom Mat-

lab scripts automatically determined (and visual inspection confirmed) the frame number for each

posterior extreme position (PEP) of the outside hindleg, contralateral to the observation wall. Third,

we manually determined the time at which the antenna ipsilateral to the wall first came in contact

with the angled wall. This time is the start time of the perturbation, t = 0. Fourth, we randomly

selected 20 frames from which we manually digitized the antenna-wall contact points, 10 frames

from the control wall and 10 frames from the angled wall. If the antenna was not in contact with

the wall in the selected frame, a new frame was randomly selected. From these data, we obtained L

(see Fig. 4.1A). The distance L provides an upper bound on the preview distance, ` (see Fig. 4.1B).

4.3.5 Finding the Point of Rotation

Since we modeled the cockroach as a unicycle, the 2-D position of the running cockroach

was represented by its point of rotation (POR). To estimate the POR, we used the positions of the

two retroreective markers that were attached on the foreaft axis of the cockroachs wings. Assuming

an ideal, no-slip unicycle, the following equation holds:

αω = v⊥, (4.15)

where α is the distance between the POR and the rear marker, ω is the instantaneous rotational

velocity, and v⊥ is the instantaneous velocity of the rear marker in the direction that is perpendicular

to the heading (see Fig. 4.9). After approximating ωi and v⊥i using two consecutive image frames,

i and i+ 1, we performed a least-squares fit to find the best α, i.e.

α =
∑n−1

i=1 ωiv
⊥
i∑n−1

i=1 ω
2
i

, (4.16)

where n is the total number of frames in a given trial, and thus found the POR.
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Figure 4.9: Instantaneous motion of the unicycle model. The two empty circles correspond to the
two retroreflective markers that are used to finding the point of rotation locate the position of the
POR (denoted as two concentric circles). v is the forward velocity; ω is the rotational velocity; v⊥

is the component of the velocity of the rear marker perpendicular to the body’s fore-aft axis; α is
the distance between the rear marker and the POR.

4.3.6 Data Filtering and Normalization

For each trial, we collected a time series of cockroach positions and angles spaced at 2 ms

intervals. We zero-phase forward-filtered and reverse-filtered the data with a five pole, low-pass

Butterworth filter with a cut-off frequency of 62.5 Hz, nearly three times the maximum observed

frequency of angular motion [13] during wall following. The origin of the reference coordinate

system coincided with the corner where the control wall met the angled wall, with X-axis parallel

to the angled wall, pointing in the direction of running, and Y-axis perpendicular to the angled wall,

pointing into the open arena.

Because our model (Fig. 4.1) inherently does not capture the detailed mechanics within

each stride, we averaged the cockroach motion during each stride to estimate its state. We used the

outer (contralateral to the wall) hind-leg PEP frame to segment the data into individual strides and

averaged the data over each stride to obtain the values (xjk, y
j
k, θ

j
k, ω

j
k, v

j
k, t

j
k), where k = 1, 2, . . .

indicates the stride number and j = 1, . . . , N indicates the trial number. The position during the

kth stride, (xjk, y
j
k), was computed as the mean POR location over all frames of a given stride.

Likewise, we computed the mean angle of the body axis, θjk, during the kth stride. We calculated
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the speed, vjk, as the change in position of the POR between successive contralateral hindleg PEPs

divided by the stride duration, tjk+1 − tjk. Similarly we calculated the angular velocity, ωjk, as the

change in angle divided by the stride period. The first stride (k = 1) for each trial was selected as

the stride that began after the antenna first contacted the angled wall. The steady-state distance, d∗,

was approximated for each trial by averaging the last three strides in view. We observed that most

cockroaches had regained quasi-steady running by this point, which was typically at least 20 cm

and at least 5 strides after the perturbation.

To test the model for speed dependent parameters, we segmented it into two groups, ‘slow’

and ‘fast.’ The average speed was computed for each trial as the mean of the individual stride speeds,

vjk, for that trial. The fast group was comprised of trials whose average speed was greater than or

equal to the median speed. The slow group were trials less than the median average speed. For each

trial, the stride frequency was computed using the average time between successive outer hindleg

PEPs.

For visualization purposes, we processed the data as follows. Each trial was normalized

to distance traveled along the angled wall, with x = 0 corresponding to the point where the control

wall meets the angled wall. This corresponds to the start time of the perturbation, t = 0, at x = 0.

In all trials, x increased monotonically through the trial. The data were linearly interpolated with

resampling at x = 0, 0.1, . . . , 30.0 cm resulting in a sequence of normalized observations (yjk, θ
j
k),

at the same x positions along the wall. Lastly, we grouped and averaged trials of similar speed, so

that simulated trajectories could be compared with averaged actual trajectories.
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4.3.7 Dynamic Model Fitting and Testing

To fit the parameters of our model we compared model simulations of each stride with the

actual data from each stride, as follows. First, we combined the equations for the dynamics (4.6),

antenna distance measurement (4.3), and PD-control input (4.12) into a single third order, nonlinear

differential equation: 
ẏ

θ̇

ω̇

 = fp(y, θ, ω) :=


v∗ sin θ

ω

−B
J ω −

KP
J d− KD

J ḋ

 , (4.17)

where

d = ` tan θ + y sec θ, (4.18)

ḋ = ω` sec2 θ + v∗ tan θ + yω tan θ sec θ. (4.19)

For convenience, we rewrite the last equation in (4.17) as

ω̇ = −B̂ω − K̂Pd− K̂Dḋ (4.20)

where B̂ , B/J , K̂P , KP /J , and K̂D , KD/J . There are four independent parameters

p = (`, B̂, K̂P , K̂D). Note that the position along the wall, x, can be omitted from the formulation.

We assume the parameters p and the speed v∗ are constant during a trial. Given a set of parameters,

p, and the cockroach state, (yjk, θ
j
k, ω

j
k), at stride k of trial j, the flow, Φ, predicts the state of the

cockroach during the subsequent stride:
ŷjk+1

θ̂jk+1

ω̂jk+1

 = Φfp

4tjk
(yjk, θ

j
k, ω

j
k), (4.21)
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where the “hatted” quantities, (ŷjk+1, θ̂
j
k+1, ω̂

j
k+1), are model estimates for the subsequent stride of

the same trial, and 4tjk = tjk+1 − tjk is the stride duration. We evaluated the flow (4.21) by simu-

lating the dynamics (4.17) for the full duration of a stride (using fourth order Runge-Kutta O.D.E.

integration) obtain the prediction of the state at the next stride of the same trial. We assumed the

residual error, (ŷjk+1, θ̂
j
k+1) − (yjk+1, θ

j
k+1), between the model and the measured cockroach po-

sition and angle was an independent and identically distributed Gaussian noise process with zero

mean and unknown covariance. This assumes that each stride is an independent sample for nonlin-

ear regression. We fit the full nonlinear dynamics, rather than the linearized dynamics, since our

perturbations included relatively large angles (up to 45◦). After the antenna had first contacted the

angled wall, only the first four stride-to-stride transitions (k = 1, 2, 3, 4) were considered for each

trial, because after that point, most animals had almost fully recovered from the perturbation, and

including more strides amounted to fitting small fluctuations that occurred during straight wall fol-

lowing. To fit the parameters of the controlled mechanosensory system, we followed the nonlinear

statistical modeling framework described by [38].1 We used Gauss-Newton optimization to mini-

mize the least-squares error between the observed stride states, and the stride-to-stride predictions

thereof, namely

p̂ = arg min
p

N∑
j=1

4∑
k=1

ŷ
j
k+1 − yjk+1

θ̂jk+1 − θjk+1


T

M̂−1

y
j
k+1 − yjk+1

θ̂jk+1 − θjk+1

 (4.22)

whereN was the number of trials used for fitting (with four strides per trial), and M̂ is the estimated

noise covariance matrix [38]. For computing confidence intervals (P = 0.05 significance), we
1 Gallant’s approach allows us to find the best fit for the parameters p = (`, B̂, K̂P , K̂D), while accounting for how

random variations in the trials lead to uncertainty in the parameters. This is analogous to linear regression, e.g. fitting a
line y = mx+ b. Here, our “x” data are the states at the start of each stride, and our “y” data are the states at the end of
each stride; the slope and intercept in linear regression are analogous to our unknown parameters, p. As is well known
in linear regression, random fluctuations in the data affect parameter variances, and we arrive at similar results here, in a
nonlinear setting.
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assumed 4N − 4 degrees of freedom (4N independent state transitions and 4 fitted parameters).

Because our goal was to test the overall model structure and the importance of derivative feedback

for control, we did not fit the parameters to each individual animal. Moreover, doing so may be

experimentally infeasible due to the large number of successful trials that are required for fitting.

Thus, we fit all of the data simultaneously, and then divided the data into two groups by speed

to determine if control system parameters were speed dependent. We also checked for very large

variations between individuals by rerunning the statistics with data from each individual omitted.

Because P control results from simply setting KD = 0 in (4.12), the P-control and PD-control

hypotheses can be written

HP : KD = 0 (4.23)

HPD : KD 6= 0. (4.24)

We tested the hypothesis HP against the alternative HPD using a nonlinear version of the Student’s

t-test with 4N − 4 degrees of freedom and P = 0.05 significance.

4.4 Results and Discussions

We accepted a total of 59 trials from 11 individual cockroaches (mass=0.770± 0.113 g,

body length=3.70± 0.17 cm, antenna length=4.36± 0.41 cm, shortest antenna=3.81 cm, longest

antenna=4.91 cm, means± s.d.). The speeds ranged from 24.7 to 63.6 cm/s (7− 17 strides/s), all

of which were above that of metachronal walking [117], and below the speeds for which four- and

two-legged running emerges in P. americana [37]. Therefore the stepping pattern was consistent for

all speeds in the study: the animals always exhibited an alternating tripod gait [25].
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Figure 4.10: Relationship between stride-averaged φ and θ. Each data point consists of the averaged
φ and θ values during a stride. We analyzed 1079 strides observed in 59 trials from 11 individuals.
The best fit line (solid line) and the model, φ = θ (broken line), are both shown.

4.4.1 Model Validation

The planar unicycle assumption requires (4.1) to hold, namely φ = θ. To validate this

assumption, we performed a least-squares fit of the stride-averaged φ and θ to the linear model,

φ = β1θ + β0. The result was β1 = 1.00 ± 0.01 and β0 = 2.18 ± 30◦ (P = 0.05), with an R2

of 0.96 (see Fig. 4.10). The non-zero value of β0 may have resulted from the inconsistencies in the

placement of the two visual markers along the foreaft axis of the cockroach’s body. Alternatively,

occasionally, the cockroaches exhibited a wedging behavior during which they ran at a slight angle

toward the observation wall.

4.4.2 P Control Is Insufficient

Table 4.1 shows the results of model fitting. For both slow running (35.2± 3.8 cm/s,

7− 13 strides/s, 29 trials) and fast running (48.3±6.0 cm/s, 10− 17 strides/s, 30 trials), the null
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Figure 4.11: Average cockroach distance to the wall y (A,B) and body angle θ (C,D) as a function
of distance traveled along the 45◦ angled wall for two different speed groups (Slow A,C and Fast
B,D). The actual cockroach data (black) is compared to predictions from the PD-control model (red)
using the parameters from Table 1. To show the importance of the derivative gain, KD, we tested
the controller with the KD = 0 (P control, blue); note that for P control, performance degrades
with increasing speed as expected. The derivative gain significantly improved the fit for the speeds
tested.
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hypothesis HP was strongly rejected in favor of HPD (t-test; slow: P = 0.01; fast: P < 0.001).

Figure 4.11 shows the average trajectory of a cockroach when encountering a 45◦ angled wall, in

addition to the model simulation. Here the model simulation trajectory is generated by simulating

the fitted model using only the initial condition of the averaged data trajectory. This is different

from stride-to-stride predictions (4.21) we make to find the parameters for the model. The general

agreement between the simulated trajectory and the averaged cockroach data suggests that salient

frequencies in the data are captured by our fitting technique [66]. To see the importance of the

derivative gain, KD, we tested the model with KD = 0. In this scenario, the model predicts large

excursions of the cockroach that would cause successive collisions with the wall interleaved with

large departures into the open space, which is quite atypical. Clearly, the derivative gain in the

model is behaviorally critical. When data from each individual were in turn omitted, there was no

statistically significant difference in the parameters, so we concluded that any outlier effects were

negligible. It was not possible to fit the model parameters to a single individual due to the large

number of trials required to perform an accurate fit of the parameters.

There was no statistically significant dependence of the model parameters on speed, so

we also fit all 59 trials 41.9± 8.3 cm/s simultaneously to the model, which decreased the 95%

confidence intervals of the parameters. The R2 value was 0.75. Again, HP was strongly rejected in

favor of HPD (t-test, P < 0.001).

The model’s effective preview distance, `, is based on the information available to the

animal from mechanosensory receptors along the antenna. Therefore, the contact distance, L, mea-

sured along the body axes from the POR to the farthest antenna-wall contact point, provides an ap-

proximate upper limit for the antenna preview distance. The preview distance will likely be shorter
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than the contact distance due, for example, to delays. We randomly selected and manually digitized

this contact point for 20 frames from each accepted trial. The contact distance averaged over all

slow trials, Lslow = 4.72± 0.65 cm, and fast trials, Lfast = 4.40± 0.53 cm, were significantly

different (P = 0.04, one-way analysis of variance). As the cockroach ran faster, the antenna contact

distance decreased because the animal ran closer to the wall [13], and/or experienced increased drag

of the antenna against the wall at higher speeds.

As another test of the P-control hypothesis, we directly fit the model with only three free

parameters p = (`, B̂, K̂P ), using the same approach as before. This pure P-control model proved

inadequate because the best preview distance (` = 9.29± 2.95 cm) was significantly longer than

the values for Lwe observed for fast and slow running, and also significantly longer than the longest

antenna length for any of the individuals we tested. Therefore we reject the simplistic P-control

model in favor of the PD-control model, which better captures the data, and does so with physically

realistic parameters.

4.4.3 Basis of Planar Unicycle Model

Our model for running is most similar to a unicycle viewed in the horizontal plane

(Fig. 4.1). The planar unicycle takes advantage of the unique performance of the lateral leg-spring

(LLS) model [96, 97] (see Section 3.1), allowing for simple control of body angle. The LLS model

has been remarkably effective in modeling the dynamics of cockroach running [62, 96, 95, 98]. It

consists of a rigid body that bounces from side-to-side as it moves forward with a pair of virtual

leg-springs representing the summed behavior of an animal’s legs. The leg-springs are attached at

a fixed (or moving) point called the center of pressure. Six states describe the LLS: the center-of-

mass position (x, y), body angle θ, velocity ω, forward speed v∗, and the COM velocity heading
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relative to the body axis, δ. Schmitt and Holmes’s analysis [96, 97] that for a wide range of center-

of-pressure locations (for example, fixed behind the COM), the discrete stride-to-stride dynamics

partially asymptotically self-stabilize to an isolated equilibrium point in both angular velocity and

relative heading. In other words, if an external force slightly perturbs steady-state running, those two

variables return to steady state as a result of mechanical feedback [35]. Stability results from losses

and gains of angular momentum incurred in leg-to-leg transitions with minimal sensory feedback.

In addition, the forward speed and body angle are neutrally stable, so that small perturbations might

slightly increase or decrease the speed or send the model off in a somewhat different direction, but

they will asymptotically acquire the new steady-state after the perturbation.

Our unicycle model captured the overall trajectories of cockroaches by utilizing the

within-stride dynamics responsible for much of the passive self-stability of the LLS model [96,97].

Specifically, in our planar unicycle, the stride-averaged body axis angle remained coincident with

the POR’s velocity vector. We reduced the passively stable relative heading of the LLS model to

an algebraic constraint, δ = 0, a simplification supported by our data when averaged over each

stride (Fig. 4.10). We added rotational damping to cause the angular velocity to decay to zero after

perturbations, enabling the body angle to reach a new steady direction, much like the LLS model

predicts. Because our objective was to capture the angular dynamics of antenna-based control, we

made one further simplifying assumption—the animal holds its forward speed constant. To enable

task-level control of the otherwise neutrally stable body angle, θ, we incorporated into our model

an input moment, u, about the POR, and an antenna that measures distance, d. Finally, we assumed

that a PD controller linked the measurement, d, to the input moment, u (Fig. 4.2). We then fit this

control model to data experimentally to determine the parameters of the model. This enabled us to
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test whether velocity feedback information was necessary for control.

4.4.4 Alternative View of the Effects of Delay

We suggest a different perspective (compared to Section 4.2) on the role of delay by as-

suming that the delayed signal simply decreases the preview distance. This alternative explanation

leads us to the same conclusion as with Section 4.2 that P control is insufficient. One might reason-

ably expect the preview distance to vary according to

` ≈ L− v∗T

where L is the maximum contact distance. In other words, the faster the cockroach runs, the less

the effective preview distance due to the delay. Recalling that J̃ = Jv∗/B`, we expect that

J̃ ≈ Jv∗

B(L− v∗T )
(4.25)

Again we assume T = 30 ms. As P. americana approach their maximum speed 1.5 m/s, J̃ ap-

proaches infinity, independent of the specific values of J and B. For speeds far less than the maxi-

mum, J̃ > 1. This supports the notion that P control will fail as an adequate explanation for control

at behaviorally relevant running speeds. Moreover, as the animal increases in speed, the need for a

more complex control mechanism will increase. At a running speed of v∗ = 42 cm/s (the average

speed of the fast group of cockroaches) a delay of at least T = 30 ms will reduce the preview dis-

tance by at least 1.3 cm. Thus, if L = 4.4 cm (the average value for fast trials), the preview distance

should be at most 3.1 cm. This is slightly longer than our experimentally fitted value of ` = 2.6 cm

for fast trials (Table 4.1), and therefore it is feasible.

Because v∗ is measured and ` and B̂ are fitted (Table 4.1), we can calculate the nominal

value for J̃ using the formula J̃ = v∗/B̂` for each speed group. Based on the best-fit PD-control
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parameter, at slow speeds, J̃ is given by

J̃slow = 1.02

while the value for fast running is

J̃fast = 1.79.

Figure 4.11 (B,D) shows that P control cannot stabilize the behavior at high speeds, be-

cause J̃fast > 1. PD control is required and we would predict that neural signals from antennae will

show a distinct phasic response corresponding to velocity feedback. At the slow speeds tested, how-

ever, P control may be possible, since J̃slow ≈ 1, but with P control the cockroach wall-following

dynamics would be very highly oscillatory no matter what the choice of gain, KP (Fig. 4.11 (A,C)).

One expects J̃ to decrease further at slower speeds, and at the slowest speeds the system would be

easily controlled by simple P control. While we suspect that to be the case, we did not test such

speeds; for consistency, we used the escape response behavior to elicit running, so the slowest trials

captured for this study were those with continuous non-stop running at over 20 cm/s. This is distinct

from the more intermittent walk/pause style walking seen during exploratory locomotion described

by [42], and examined (along with fast runs) for wall following by Camhi and Johnson [13]. To test

whether P control suffices at these slow speeds one would need to model the intermittent walking

behavior, which is beyond of the scope of the present study.

The data and analyses presented in this thesis refute the P-controlled dynamic unicycle

model of wall following, and support (though do not prove) a simple alternative, a PD-controlled

dynamic unicycle. The PD-controlled model matches the data and, according to the theoretical

analysis, enables stable wall following. Our experimental and theoretical observations do not pre-

clude more complex and elaborate alternatives. For example, acceleration feedback may also play
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a critical role in some circumstances (though a more elaborate set of perturbations may be needed

to tease this out). Our controlled experiments also do not support or refute more complex neural

transfer functions that might be required for following more complex surfaces or avoiding isolated

obstacles.

4.4.5 Multimodal Role of Antennae in Mechanosensory Integration

Behaviors mediated by antennal feedback involve a complex combination of basal and

flagellar mechanoreceptors, not to mention feedback from myriad other sensory stimuli, including

vision [120] and olfaction [94]. Understanding of the neural control strategies underlying sensori-

motor function is further confounded by the need to identify the behavioral context, such as wall

following and random exploration [53], wind following [12], and tunneling versus climbing [45].

We believe that understanding task-level neural control of rapid running requires the inte-

gration of sensing and mechanics. A neuromechanical model opens up a wide range of tools from

control theory—such as root locus analysis and Nyquist’s stability criterion—to make specific pre-

dictions regarding neural function. The neural processing requirements for stability derived from

such a neuromechanical model lead to novel, testable motor control predictions. In this chapter,

we employed a simple neuromechanical model of wall following that predicts the need for neural

coding of both antennal distance (proportional) and velocity (derivative) for stable wall following.

Based on the results in this thesis, our prediction would be to see both a tonic response (position)

and a phasic response (velocity) of antenna perturbations (Section 7.3).
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Robotic Integration of Bio-Inspired

Antenna

In this chapter, we report the integration of a custom artificial antenna with a mobile robot

platform to test the efficacy of using the APU as a template model for our biological system. Since

Sponberg et al. [108] (Section 7.3) suggest that sensory signals encoding distance-to-wall, d, and its

rate, ḋ, may indeed be available for cockroaches, we test whether the same PD-controller gains (up

to a scale factor) that are fitted in Chapter 4 are sufficient for stable wall following in our robotic

platform despite effects such as antenna-to-wall friction and non-trivial forward speed dynamics.

A positive result would indicate the sufficiency of the PD controller—including the specific gains

fitted to the cockroach—despite the APU model neglecting many complexities inherent to real-

world antenna-based wall following.
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5.1 Garcia Robot

Our physical instantiation of the unicycle-like robot is called Garcia (Acroname, Inc.,

Boulder, CO, USA) shown in Fig. 5.2. It is a three-wheeled robot, with two drive wheels sharing the

same axis of rotation and a third passive omni-directional wheel, with zero caster sweep space, for

balance. This machine was used previously by Lamperski et al. [60] to demonstrate the feasibility of

wall following using a multi-rigid-linked antenna as its distance sensor. An on-board XScale ARM

processor updates our control law at 50 Hz using sensory information from the antenna. During

each trial, we log internal states such as the voltages from the four flex sensors (and hence the

perceived distance to the wall) and the encoder-measured velocities of the two wheels. In addition,

we use an overhead camera to obtain the ground-truth position of the robot for post analysis.

The primary difference between the theoretical unicycle model and the Garcia robot is the

need for forward velocity control. Lamperski et al. [60] has shown that the dynamical equations for

the robot are of the form v̇
ω̇

 = A

v
ω

 +

u︷ ︸︸ ︷
B

V1

V2

, (5.1)

where

A =

−γ 0

0 −B̂

 , B =

 b1 b1

−b2 b2

 .
Here, V1 and V2 are the input voltages for the left and right wheels, respectively, v is the forward

speed, and ω is the angular velocity of the robot. The parameters B̂, γ, b1, b2 > 0 are expressed

in terms of the armature resistance, the torque constant, the back electromotive force constant, a

frictional damping constant for each wheel, the wheel radius, the lateral offset of each wheel from

the center, the robot’s moment of inertia in the yaw direction, the moment of inertia of each wheel,
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Figure 5.1: An overview of the cast urethane antenna construction process. Four flex sensors are
enclosed in urethane casting with precurved tip. This bio-inspired antenna provides robot-to-wall
distance information for the Garcia robot. This antenna is designed and built by Owen Loh [63,64].

and the mass of the robot. We used the values A and B that Lamperski et al. reported for the robot

in [60].

5.2 Robotics Model: Implementation

5.2.1 Antenna Design

To provide tactile feedback to our mobile robot, we use an artificial antenna (Fig. 5.1)

designed and built by Owen Loh [63, 64]. The design is based on observations of cockroaches and

their antennae while wall following [13, 93, 102, 111].

The raw data provided by the antenna consists of an amplified voltage output, Vi, from

each flex sensor. To extract the distance to the wall d from the voltage outputs, we performed

a least-squares fit: while maintaining antenna-wall contact, we recorded voltages from each flex

sensor as we varied the distance d and angle of the robot relative to the wall. We obtained a least-

squares fit for the affine relationship d = aTV + b. Here we do not consider the two proximal flex
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Figure 5.2: The cast urethane antenna with embedded flex sensors mounted on the Garcia robot.

sensor measurements; the high stiffness near the base of the antenna and the addition of the support

structure in the middle of the antenna have limited their motions and did not contribute significantly

to the calculation of d. The omission of the most proximal sensory data is consistent with Camhi

and Johnson’s [13] result that wall following requires distal receptors in the flagellum without the

sensory data from the base.
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5.2.2 Integrating the Antenna with the Garcia Robot

For wall following, we combined the antenna-based PD controller suggested by the APU

model (Section 4.1), together with a proportional-integral forward speed controlleru1

u2

 =

−KV (v − v∗)−KIΣ

−K̂P (d− d∗)− K̂Dḋ

 , Σ =
∫ t

0
(v − v∗)dt, (5.2)

where v∗ is the desired forward speed and d∗ is the desired distance to the wall. To map the torques

into motor voltages, the control law (5.2) is written V = B−1u, since B is invertible.

Inserting (5.2) into (5.1), we have

ẏ

θ̇

Σ̇

v̇

ω̇


=



v sin θ

ω

v − v∗

−γv −KV (v − v∗)−KIΣ

−B̂ω − K̂P (d− d∗)− K̂Dḋ


, (5.3)

where d is the same as (4.3). Linearizing the system at its equilibrium point (y, θ,Σ, v, ω) =

(d∗, 0,−B̂v∗/KI , v
∗, 0)T , we obtain the characteristic polynomial

p(s) = (s2 + (γ + KV )s + KI) · [s3 + (B̂ + K̂D`)s2 + (K̂P ` + K̂Dv
∗)s + K̂P v

∗]. (5.4)

The second-order polynomial factor has negative roots if

KV > −γ and KI > 0, (5.5)

and, by Routh’s stability criterion, the latter third-order polynomial factor has negative roots if

K̂P > 0, K̂D > −B̂
`
, and

K̂D

K̂P

v∗ >
v∗

B̂ + K̂D`
− `, (5.6)
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Table 5.1: Parameter values for P. americana (from Chapter 4) and the Garcia robot.

v∗ (m/s) ` (m) B̂ (s−1) K̂P (m−1s−2) K̂D(m−1s−1)

P. americana 0.352 0.027 12.7 2600 433

Garcia 0.5 0.139 3.53 39.16 23.49

where γ, B̂, v∗, ` > 0. Notice that the conditions for forward stability—which are constraints on

KV and KI—are decoupled from the conditions on rotational stability—which are constraints on

K̂P and K̂D.

5.2.3 Dynamically Scaled Parameters of P. americana

We found the necessary parameters for the Garcia robot using the principle of similitude;

the APU’s torsional dynamics equation (4.20) and the last row of (5.3) are identical, namely they

are of the form

ω̇ = −B̂ω − K̂P (d− d∗)− K̂Dḋ, (5.7)

where B̂, K̂P , and K̂D are known quantities for the cockroach (Chapter 4). Selecting two funda-

mental quantities, v and `, leads to the following dimensionless ratios:

B̃ =
B̂`

v∗
, K̃P =

K̂P `
3

v∗ 2
, K̃D =

K̂D`
2

v∗
. (5.8)

Setting the desired velocity for the Garcia robot to be 0.5 m/s and assuming B̂ to be constant, we

calculated the dimensionally-scaled look-ahead distance for the Garcia robot. We found values for

K̂P and K̂D in a similar way. The calculated values are shown in bold in Table 5.1 (second row).
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Figure 5.3: The Garcia robot’s internal states during a trial with parameters from Table 5.1. The
onset of the angled wall contact occurs at t = 1 s. (A) Measured forward speed (solid) with v∗ =
0.5 m/s (dashed). (B) Measured raw (solid black) and filtered (solid gray) d values with d∗ =
0.17 m (dashed); to reduce noise, we low-pass filtered raw distance measurements: dk = λdk-1 +
(1 − λ)draw,k where λ = 0.7 (trial and error); ḋ was estimated via finite difference. (C,D) Body
angle and position obtained from overhead camera images.
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Figure 5.4: The raw amplified voltage values from the four flex sensors embedded in our antenna;
they are shown for their qualitative form. The flex sensor at the base of the antenna (A), which is
not used to calculate the value draw in Fig. 5.3B, shows the onset of the angled wall contact with a
sharp peak. The second flex sensor from the base (B) registers zero motion because it is anchored
to the rigid support base discussed in the main text. The two distal flex sensors (C,D) are used to
calculate the measurement draw shown in Fig. 5.3B. The third flex sensor (C) flexes more (indicated
by the decrease in voltage values) as it encounters the initial part of the angled wall. Meanwhile, the
remaining distal part of the antenna (D) conforms to the wall by decreasing its flexion (indicated by
the increase in voltage values).
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5.3 Experiment: Robotic Wall Following

The experimental setup for the Garcia robot was similar to that of the cockroach behav-

ioral experiment in Section 4.3. The robot followed a wall that consisted of a straight control wall

to allow the robot to reach its steady state and an angled wall to act as a “step” perturbation to

the internal state, θ. We used the parameter values for the Garcia robot shown in Table 5.1 with

KV = 1 s−1 and KI = 1 s−2. This set of parameters satisfied stability conditions (5.5) and (5.6).

We ran 30 trials at v∗ = 50 cm/s with the 30◦ angled wall; all 30 trials resulted in

successful turning. Figures 5.3 and 5.4 show a subset of states that were collected during a typical

trial; the rest of the trials were very similar. Our somewhat arbitrary choice of speed gains (KV ,KI )

produced substantial oscillations in the forward speed, but nevertheless reached steady state speed

within about two seconds and did not imperil wall-following performance. The body-angle transient

responses for the APU model and the Garcia robot were comparable (Fig. 7.1): the rise time, peak

time, and overshoot for the Garcia was 0.60 s, 1.23 s, and 2.5%, respectively. For the APU from

Chapter 4, dimensionally mapped into Garcia’s scale, these were 0.50 s, 1.20 s, and 17.3%.

The Garcia robot failed to negotiate turns of angles greater than about 40◦ because the

distal end of the rigid antenna support catches the angled wall, forcing the robot to turn inward

toward the wall. We believe this problem will be addressed through the design of more flexible

antennae with more appropriately tapered mechanical stiffness.

Typically, the robot followed the wall with a constant error in d: in Fig. 5.3B the robot

maintains the measured distance of 0.18–0.19 (solid) despite the commanded value (d∗) of 0.17

(dashed). This was likely caused by non-negligible forces produced by the artificial antenna against
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the wall1: adding a torsional spring term, c(d− dmax), to the last line of (5.3) shifts the equilibrium

distance from the wall to (K̂Pd
∗ + cdmax)/(K̂P + c). For negligible stiffness c, the equilibrium

distance is d∗ as expected.

Figure 5.4 shows that flex sensors 3 and 4 (C, D) do not necessarily return to their original

configuration after encountering the angled wall. One possible explanation could be that there is a

range of “stable” configurations of the antenna for a given d due to friction, memory effects, or other

factors. While the effects of these phenomena need to be addressed in future designs of the artificial

antenna, the fact that the Garcia successfully navigated along the wall despite those factors suggests

sufficiency of modeling assumptions in the APU model to represent the wall-following behavior of

American cockroaches.

1To quantify cockroach antenna reaction forces, we used the force levers that Dudek and Full [27] used to measure
passive leg forces in cockroaches; the antennal forces fell below the noise floor of the sensors. This (and our qualitative
observation) suggests that cockroach antennal forces are negligible compared to leg forces.
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The Antenna-Based Lateral Leg Spring

In the previous models, the control input is some abstract torque applied to the body

through a continuous actuation. A fundamental question that remains is how such a control input

might be applied to control stride-to-stride dynamics in a legged organism. To guide further de-

velopment in maneuverable legged robots and generate hypotheses for how the biological system

modifies its motor output, we require an more representative, anchored mathematical model than

our APU model. To address this question, in this chapter, we employ a model called the lateral leg

spring (LLS) which has shown to capture the within-stride dynamics of cockroach locomotion [95].

After providing a simple control strategy for this model (Section 6.1), we implement the same PD

gains found in Chapter 4 and use antenna-like sensory feedback (Section 6.2) to show a stable

wall-following behavior in a legged model.
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Figure 6.1: (A) A schematic model of the LLS model; θ is the body angle w.r.t. the x-axis in inertial
frame {U}, v is the speed of the COM, δ is the velocity angle w.r.t. the x-axis of the body frame
{B}, ζ is the distance from the foot placement to the COM, ψ is the angle from the x-axis of the
foot frame {F} to the COM, η is the leg length, [a1, a2]T is the location of the COP written in {B}.
(B) Illustration of multi-step dynamics and its equivalent representations.

6.1 Model: LLS (2D Placement of COP)

In Section 3.1, we introduced the lateral leg spring (LLS) model developed by Schmitt

and Holmes [96]. In their model, the center of pressure (COP) is placed along the fore-aft axis of

the model. In this section, we relax that condition and allow the COP to be placed anywhere on the

2D plane of the LLS body.

Suppose the COP position for a left-step is parameterized bya1

a2

 =

b1 + c1(ψ − θ)

b2 + c2(ψ − θ)

 , (6.1)
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where a1 and a2 are along x and y-axis of the LLS body frame, {B} and bi’s and ci’s are constants.

A special case of this parameterization is when a2 = 0 and c1 = 0 (Section 3.1) [96,97]: if a1 < 0,

δ and ω are asymptotically stable; if a1 = 0, ω becomes neutrally stable; if a1 > 0, the system

becomes unstable. When a1 < 0, the body mechanics alone can stabilize the LLS system [96].

However a fixed COP on the fore-aft axis yields yaw dynamics that do not match biological data.

Placing the COP laterally offset to the side (a2 = const < 0) better matches the yaw dynamics,

and that the system can achieve stability even if the COP lies in front of the COM as long as it is

appropriately offset to the side (see Appendix B; [62]) as shown in Fig. 6.2.

Hamiltoniam Dynamical Equation We restrict ourselves to c1 = c2 = 0 in (6.1), in which case

the Hamiltonian for a left step can be written

H =
p2
ζ

2m
+

p2
ψ

2mζ2
+
p2
θ

2I
+
k(η − l0)2

2
(6.2)

from which the equations of motion are

ζ̇ =
pζ
m
, ṗζ =

p2
ψ

mζ3
− k(η − l0)

η

(
ζ − a2 cosφ+ a1 sinφ

)
,

ψ̇ =
pψ
mζ2

, ṗψ = −k(η − l0)
η

(
ζa1 cosφ+ ζa2 sinφ

)
,

θ̇ =
pθ
I
, ṗθ = −ṗψ, (6.3)

where φ = ψ − θ and p’s are the conjugate momenta. The leg length η = η(ζ, ψ, θ, a1, a2) can be

determined from Fig. 6.1A.

6.1.1 Hybrid Step-to-Step Dynamics

For task-level control of the multi-stride dynamics we seek a compact representation of

the step-to-step dynamics. Let {Ak} denote the location of the body frame at the beginning of the
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Figure 6.2: Maximum non-unity eigenvalue for the linearized return map at various fixed-COP
positions around the COM. Parameters used for P. americana are shown in the caption of Fig. 6.3.

kth step. In other words, gk is the transformation from {Ak} to the world frame {U}. For k odd,

we take a mirror image around the x-axis of frame {Ak} at the beginning of the kth step (k odd),

simulate the dynamics using the equations of motion for a left step, and then take another mirror

image around the x-axis. In this way, the right step map is computed in terms of the left one. This

can be expressed in terms of local coordinates q = (v, δ, θ, ω, x, y)T as first “flipping” (δ, θ, ω, y),

integrating the left step map, and then flipping back, namely

fR(q) = MfL
(
Mq), (6.4)

where M = diag {1,−1,−1,−1, 1,−1}. Note that MM = I . We chose to flip about the x-axis

for notational simplicity, but in principle any left-handed frame would work. This mapping leaves

the right step map left-invariant under SE(2).

For finding symmetric steady-state gaits, it will be convenient to define a special step-to-
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step return map that amounts to an “integrate and flip” (see Fig. 6.1B). For a complete stride that

includes a left step and then a right step, the stride-to-stride mapping is given by fL−R = fR ◦ fL,

namely

fL−R : q 7→MfL(MfL(q)) = (f ◦ f)(q), (6.5)

where f(q) := MfL(q).

This approach eliminates the need to distinguish between left and right steps for control

purposes. Note, however, that f is not left-invariant, even though both fL and fR are left-invariant.

The resulting state evolution is given simply by

qk+1 = f(qk), (6.6)

keeping in mind that for odd steps, the value for qk in this step-to-step formulation has already been

“flipped.”

6.1.2 Reduced Return Map

To simplify controller analysis and design, we use translational symmetry and energy

conservation, as first reported in [62]. Recall that the left- and right-step mappings, fL and fR are

invariant to SE(2), but the step-to-step return map, f = MfL is not. However, that mapping is

invariant to pure x motions (had we chosen a different left-handed frame, translational invariance

would have been in the direction of the axis of symmetry of the reflection to that frame). This was

by design: our goal for control is wall following, and for simplicity, we have chosen to follow the

x-axis. Thus x is removed by setting x = 0 at the beginning of each step. To remove v note that the

Hamiltonian equation

H =
1
2
mv2 +

1
2
Iω2 +

1
2
k(η − l0)2 = H0 (6.7)
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is constant because the system energy is globally conserved. So, at each step

v =
[

2
m

(
H0 −

1
2
Iω2 − 1

2
k(η − l0)2

)]1/2

. (6.8)

Thus we have the following transformation

TH : (δ, θ, ω, y) 7→ (v, δ, θ, ω, 0, y) (6.9)

that assigns x = 0 and computes v from (6.8). Note that TH is invertible and T−1
H is the transfor-

mation that simply removes the v and x coordinates. Then, we define the reduced variables and

mapping

qr = (δ, θ, ω, y), f r(qrk, uk) = T−1
H

(
f(TH(qrk), uk)

)
. (6.10)

6.2 Model: Antenna-Based LLS (ALLS) Under PD Control

In the Appendix A, we find the LLS parameters for P. americana and show how we

simulate the equations of motion for the LLS model; a simulation of LLS using those parameters

is shown in Fig. 6.3. Based on the the same antenna model (4.3) used previously, we (numerically)

“embed” the PD-controlled APU template in the LLS model providing a candidate mechanism for

legged-locomotion heading control via antennal feedback.

As a preliminary control task, we chose to have the antenna-based LLS (ALLS) follow on

top of a line or a virtual “wall” that is coincident with the x-axis. The result was an equilibrium point

qr = (δ, θ, ω, y)T such that qr = f r(qr, 0). To address controllability, we numerically linearized

the return map around a nominal equilibrium trajectory, to obtain

ek+1 = Aek + Buk, zk = Cek (6.11)

65



CHAPTER 6. THE ANTENNA-BASED LATERAL LEG SPRING

Figure 6.3: A full stride of LLS at its equilibrium point with the following parameters: m =
0.77× 10−3 kg, J = 1.0× 10−7 kgm2, l0 = 0.0165 m, k = 0.766 N/m, β = 1.051 rad, a1 =
0 m, a2 = −0.003 m, v(0) = 0.359 m/s. In the last subplot, dashed and solid lines are a1 and a2,
respectively.
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where A = (∂f r/∂qr)(qr, 0), B = (∂f r/∂u)(qr, 0), C = (∂h/∂qr)(qr, 0), ek = qrk − qr,

zk = [dk − d, ḋk − ḋ]T , uk := a1,k, and h = [d, ḋ]T . We used a1 rather than a2 as our control

input because in Fig. 6.2 the gradient of the eigenvalues is greater in the direction of x−axis than

y−axis of {B}. That is, a small displacement in a1 gives us a greater control than that of a2; this

is consistent with Full and Koditschek’s hypothesis, “maneuvers require minor neuromechanical

alterations” [33]. In addition, updating the control input once per step (rather than continuously)

resonates with the notion that inherent mechanical stability of puts less demands on neural feedback

[33]. In (6.11), the condition number for the controllability and observability matrices are 7445 and

390, respectively, so the system is controllable and observable.

Here we make several approximations to the ALLS model to simplify control and connect

the ALLS to a simpler model in our research program (Fig. 2.2). The third row of the linearized

discrete dynamics (6.11) for parameters for P. americana can be written as

ωk+1 − ωk = −(1.96)ωk − (1.08)(δk − δ) + (611.86)uk. (6.12)

Since our simulations suggest that δk − δ remains at least an order of magnitude smaller than the

other terms during transients, we neglect δk − δ and consider ω̇ ≈ (ωk+1 − ωk)fs, where fs =

10.8 Hz (see Appendix A) is the stride frequency. Thus we approximate (6.12) with a continuous-

time system,

ω̇ ≈ −B̂ω + u′, (6.13)

where B̂ ≈ 21.2 and u′ ≈ (6608)uk. This equation mirrors the unicycle model (4.20), and despite

the fairly crude approximations, the coefficient B̂ ≈ 21.2 in the LLS approximation (6.13) is within

the confidence intervals of the fitted parameters for B̂ in cockroaches (Table 5.1). Also note that

the u in (4.20) is a moment (scaled by inertia), whereas in the ALLS model, the control input is
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the COP position. Hence the coefficient multiplying the control uk in (6.13) is absorbed into u′ for

comparison purposes.

The similarity between the APU (4.20), and the approximate LLS (6.13), reveals a possi-

ble embedding of the PD-controlled APU into the ALLS. In fact, by setting u′k = −K̂Pdk − K̂Dḋk

with the same control parameters fitted to the cockroach yields a closed-loop system of ek+1 =

(A+BKC)ek with all of its eigenvalues (−0.64± j0.16 and−0.13± j0.49) inside the unit circle,

i.e., the closed-loop system is stable around the equilibrium trajectory.

6.3 Simulation: ALLS Wall Following

A simulation for this controller using the parameters for P. americana is shown in

Fig. 7.1(E). In this control law, the COP lies nominally along the body y-axis, namely a1 = 0

and a2 = −3 mm (for the left step); the feedback controller varies the COP in the a1 direction.

The most parsimonious controller sufficient to stabilize high-speed wall following in the

APU model is a continuous PD controller mapping antenna measurements to a continuous moment

about the COM. As shown, this control law applies with essentially no modification to the control

of a legged running model, ALLS, by mapping sensor values to the COP position during each step.

This result further supports the hypothesis that such a simple PD controller may underly task-level

locomotion control of the American cockroaches.
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Discussion

This thesis takes a multifaceted view (Fig. 7.1) of a sensory-feedback-driven locomotor

behavior observed in P. americana [13]: high-speed antenna-based wall following. In Chapter 4,

we model this behavior (Fig. 7.1A) as a simple PD controller acting on the APU model (Fig. 7.1B).

Next, we confirm that the PD controller (including the gains) fitted to cockroach behavior is suffi-

cient in a real-world setting: our robot tuned with dimensionally scaled parameters and controller

gains stably follows walls using our bio-inspired artificial antenna (Fig. 7.1(D)), and exhibits tran-

sient behavior comparable to both the simulated APU and the cockroach itself. To test the feasibility

of the same PD controller in a legged system, we use a modified version of the LLS model [96,97]—

namely, antenna-based LLS (ALLS)—in which the controller has authority over the position of the

center of pressure (COP) at the start of each step as a function of antennal feedback. Importantly,

we fit the parameters for the “open-loop” LLS model (leg stiffness, leg touchdown angle, etc.) dur-

ing steady-state running, independent to how we fit the APU which involved fitting the closed-loop

system including the controller gains to the angled-wall perturbation. Nevertheless, we find that the

69



CHAPTER 7. DISCUSSION

Figure 7.1: Subplots (A,B,D,E) show the task-space trajectories of several models and physical
systems from our research program (Fig. 2.2); *’s and ◦’s indicate COM position and body angle,
respectively, at the start of every stride (or dimensionally equivalent stride); (B,D,E) have dimen-
sionally equivalent parameters and the same PD-control law as discussed in the text. (A) A typical
trial of P. americana (the cockroach is shown every other stride); the cockroach is following the wall
at ∼ 45 cm/s. (B) APU model simulation using the parameters given in Table 5.1, first row. (C)
Neural recording near the base of flagellum. (Image credit: [64]) (D) The Garcia robot experiment,
where the robot is shown every other “stride”; the robot uses parameters given in Table 5.1, second
row. (E) The ALLS model simulation, shown at the start of every step with *’s indicating COM, x’s
indicating COP, and straight lines emanating from COP indicating the effective leg.
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POR

Figure 7.2: Chaplygin sleigh. The skate provides a nonholonomic constraint. d is positive as shown.
The two small circles indicate frinctionless sliders.

torsional dynamics of the LLS model can be numerically “reduced” to those of the APU model,

with very close agreement in parameters. Using the same PD gains as the APU model, the ALLS

model exhibits stability and a similar transient response (Fig. 7.1(E)) as the cockroach.

7.1 Multilevel Modeling

To elucidate the behavior of antenna-based wall following of the American cockroaches,

we formulate our research program using templates and anchors [33] (Fig. 2.2), enabling us to

address specific questions at each level in the hierarchy, as well as make quantitative connections

between levels. For example, the simplest template, the APU model, neglects within-stride dynam-

ics but nevertheless reveals a candidate task-level control law. We then anchor the controlled APU

in the Garcia and ALLS models. At the same time, the successive elaboration of features in more

complex models (e.g. forward speed control in the Garcia and within-stride dynamics of the LLS)

allows us to address increasingly refined questions about the underlying biological system.
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7.2 Chaplygin Sleigh and APU

The rotational damping termB discussed in Section 4.4.3 can justified more directly if we

consider a Chaplygin sleigh shown in Fig. 7.2. It is a planar unicycle (Section 4.1) but with the COM

offset from the point of rotation. The equations of motion can be written as (Appendix C, [86])

v̇ = dω2 (7.1)

ω̇ = − md

J +md2
vω (7.2)

where m is the mass, J is the moment of inertia, v is the forward speed, ω is the angular velocity,

and d is the distance of the POR (or skate) behind the COM. This has a family of equilibria of the

form (v, ω) = (v0, 0). The linearization is given by ˙̃v

˙̃ω

 =

0 0

0 − md
J+md2

v0


ṽ
ω̃


which has a zero eigenvalue and an eigenvalue with sign opposite to v0. The second equation

˙̃ω = − md

J +md2
v0︸ ︷︷ ︸

“−B̂”

ω̃ (7.3)

resembles (4.20) without the input moment. This equation shows how the forward speed v0, mass

m, and POR offset d play a roll in the dynamics of angular velocity.

Using non-fitted parameter values m = 0.77× 10−3 kg (from Section 4.4), J =

1.0× 10−7 kgm2 (from Appendix A.1), d = 5× 10−3 m (assuming the COM is center of body),

and v0 = 0.419 m/s (from Table 4.1), we get mdv0/(J +md2) ≈ 13.5 which is remarkably close

to 16.1, the best-fit value of B̂ from behavioral experiments fitting the APU model (Table 4.1).
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Figure 7.3: Electroantennogram setup to observe afferent signals from the flagellum under a simu-
lated experiment that mimics a wall-following behavior. A live American cockroach is placed on its
back (ventral side up) with its body and the base of its flagellum restrained. The RC servo drives the
wall segment closer to the cockroach thus bending the antenna at a rate that resembles the sensory
signal during first few strides of angled-wall following. A tungsten electrode is inserted near the
base of the flagellum to provide extracellular recording from the antennal nerve; D: distal part of
the antenna, P: proximal part of the antenna. (Image credit: [64])

7.3 Cockroach Antenna Neural Recordings

Sponberg et al. [108] examined P. americana’s primary antennal afferents for possible

encoding of both position and velocity information with appropriate temporal filtering for the cock-

roaches’ wall-following behavior. Their experimental setup (Fig. 7.3) created “open-loop” sensory

perturbation similar to that given in Section 4.3 but without the cockroach actually moving. Their

result (Figs. 7.4 and 7.1(C)) supported the hypothesis that antennal mechanoreceptors can serve as

effective inputs to the proposed PD controller because the correlates of distance and rate of approach

to a wall appear directly in the antennal nerve and the time course of the neural response closely

matches the kinematics of turning. That is, their result provided further evidence that PD-like con-

trol may exist in cockroach wall following, although some care must be taken when comparing

closed- and open-loop experiments [47, 84].
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Figure 7.4: Comparison of the antenna neural recording to the kinematic data of a running cock-
roach. (A) The position (dashed) and orientation (solid) of a cockroach running along a wall
(Fig. 4.7); strides are marked by asterisks (*). (B) Normalized neural RMS power (mean (black)
with confidence interval (gray)) of the antenna when the wall approached toward the cockroach
and stopped; it has been scaled to approximately match the kinematic traces above. (C) Raw neural
recording voltage (black) and background voltage (gray). (D) Time trace of the actual wall displace-
ment (black) and delay-accounted wall displacement (gray). The vertical lines indicate (from left to
right) the stimulation onset, RMS peak time, and settling time. (Image and caption credit: [64])
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7.4 Biologically-Inspired Tactile Sensors

Toward our goal of a robotic model of wall following, our antenna design captures several

key features cockroach antennae. However, due to the constraints of our prototyping process, the

antenna stiffness was not well matched to its biological counterpart: unlike that of the cockroach,

this stiffness produced a non-negligible force between the robot and the wall causing an offset in

the robot’s distance to the wall. To remedy this issue we need to better characterize the cockroach

antenna mechanics, similar to a prior study of crayfish antennae [113]. Then, we need to design our

antenna to match important parameters such as the stiffness profile. We believe that Shape Deposi-

tion Manufacturing, also used for manufacturing the robot legs [3, 17], offers a viable solution.

In addition to enhancing our inquiry into a biological system, bio-inspired antennae offer

potential benefits to robotics. Ours consists of a ten dollar 50KΩ flex sensor cut into four pieces

enclosed in urethane, rendering it inexpensive, low power, and mechanically robust. In addition,

our antenna is insensitive to low or extremely bright ambient light (unlike vision and IR), does not

emit energy (unlike sonar and IR), and does not require a specific wall type (unlike sonar, IR, and

vision, which may fail for common urban surfaces such as fences, highly specular walls, or glass).

Other researchers have built tactile sensors inspired by arthropod antennae. Our work

builds directly on [23] who use a single unmodified flex sensor to control a hexapod on a treadmill.

Our design is similar to Barnes et al. [6] who embed three bend sensors in a passive, large-deflection

antenna inspired by lobsters that distinguishes between contact with solid objects versus water cur-

rents [5]. Whereas our design focuses on control in the horizontal plane, Lewinger et al. [65] use

two cockroach-inspired stiff antennae to traverse sagittal-plane obstacles. Our antenna uses no basal

information, but whisker-inspired devices [56, 57, 68, 88, 99, 116], by contrast, use only basal infor-
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mation, since whiskers themselves are insensitive hairs [46].

7.5 Robotics for Biology

Physical models can provide an important link between biological experimentation and

mathematical modeling. In biology, complexity can obscure generalizing principles, and varying pa-

rameters to test a system’s responses is often difficult and time consuming. In addition, it is difficult

to capture an animal’s internal states (e.g., neural recordings) while minimizing interference with the

animal’s natural behavior. Mathematical models can reveal idealized responses, but inevitably ne-

glect the complexity of interaction with the surrounding environment. Experimental robotics allows

the embodiment of control hypotheses in the context of difficult-to-model real-world phenomena

where, in comparison to biology, it is much easier to vary system parameters and monitor system

state variables. These can help in generating, refuting, and supporting biological hypotheses [50].

In this thesis, we use our robot to support the hypothesis of the efficacy of the PD

controller—which is stable in our mathematical model—in a real-world setting. Two further ob-

servations can be made. (1) Our result supports Camhi and Johnson’s [13] claim that cockroach

wall following is mediated by the flagellum (not the base) of the antenna: our robot successfully

follows a wall using feedback from the two distal flagellar antenna segments. (2) Figure 5.4 reveals

that the base flex sensor can potentially provide a sensory cue faster than that from the rest of flex

sensors, particularly if we account for the typical conduction velocity (1− 4 m/s) for non-giant

invertebrate neurons. This observation is consistent with the experiment by Comer et al. [20] where

they show the important role that the mechanoreceptors at the base of the antenna play in triggering

an escape response.
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Other researchers have considered robotics to address biological behaviors [118]. For

example, Chapman and Webb [18] implement a neural circuit on a mobile robot where IR sensors

act as the robot’s “antennae”; their robot exhibits an escape response followed by a wall-following

response, much like that of a cockroach.

7.6 ALLS for Biology and Robotics

In this thesis, we show that the ALLS model exhibits stable wall following using exactly

the same PD gains as the APU (Chapter 4). We propose two hypotheses from our result. (1) The

afferents or the CNS suppresses (via a low-pass or notch filter) the sensory input frequency near

their stride frequency; this hypothesis is motivated by the fact that the sensory signals seem to show

a low-pass filtered response consistent with the time course of the stride-to-stride kinematics [64].

Alternative hypotheses are that (A) an efferent copy might be used to cancel out the frequencies ob-

served by the antenna [111], or (B) the mechanics of the the antenna alone can filter the oscillation.

To test the effect of the lateral oscillations on the antenna filtering, legged robots such as RHex [91]

or even wheeled robots such as Garcia could be used; the Garcia robot would have to emulate, up to

some limit, the within-stride dynamics of the ALLS. (2) Increasingly anchored models which repre-

sent cockroach kinematics with increasing biofidelity can be used to tease apart the contributions of

individual legs during turning [54]. We hypothesize that the motion of the COP from step to step is

governed by our PD controller. To test this, an experimental paradigm may consist of cockroaches

following along a wall with perturbations [13, 22] while individual leg forces and kinematics are

measured to recover COP motions [115]. Together, these data could be used to approximate the

mapping from antennal measurements to COP motions.
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In this thesis, we numerically reduce the ALLS model to represent the APU’s PD con-

troller for the ALLS. A more formal reduction is warranted. For example, Poulakakis and Griz-

zle [81] provide a formal approach to apply a controller defined for a Spring-Loaded Inverted Pen-

dulum (SLIP) model of sagittal-plane running to a more anchored model. Similarly, it may be

interesting to address how the PD controller for the APU model would be applied to its higher an-

chors such as ALLS, ALLS with three legs [104], or 3D SLIP/ALLS model [90,92,103]. This may

help in generating hypotheses such as the placement of the COP in 3D which can generate not only

motions in yaw but also motions in pitch and roll.

Shifting COP location based on sensory stimuli may provide an alternative bio-inspired

control strategy for hexapedal robots [91]. The shifting of the COP can be achieved by touching

down three legs that collectively generate a force vector pointed at the desired COP position, similar

to that of cockroaches [54, 115]. The sagittal-plane motions that result from 3D models or legged

robots may lead to important design requirements for artificial sensors; for example, the antenna

may be need to be stiffer along the sagittal plane than along the lateral plane [67, 89, 111].

7.7 Within-Modality Sensory Integration

Animals rely on a myriad of sensors—proprioceptors, vestibular, exteroception, etc.—

when moving. Proper integration of sensory information is crucial to minimize the loss of important

data. Understanding how animals integrate these sensory modalities is a challenging task because

different sensory modalities may have weights that vary independently depending on environmen-

tal conditions. Rather, we ask a simpler question: how do cockroaches integrate sensory inputs

from both of their antennae during high-speed wall following (Fig. 7.5). How cockroaches process
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(A) (B) (C)

Figure 7.5: Preliminary experiments to address how a cockroach might integrate sensory informa-
tion from both of its antennae. A cockroach that is following a wall using its right antenna is faced
with (A) impulse-like signal, (B) step-like signal, or (C) ramp-like signal from its left antenna. How
would the new information from its left antenna contribute to its right antenna wall-following con-
trol strategy? Also in (B), will it continue to follow the right wall or will it start to follow the left
wall using its left antenna?

within-modality signals may provide new ideas in corridor-following mobile robots as well as in

bee vision [110] and cockroach antennal decision making [18, 44].
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Conclusion

In Part I of this thesis, we show that the synergy between robotics and biology enables

mutual discoveries for both fields. We take a multidisciplinary approach that incorporates mathe-

matical modeling, robotic experiments, and ethology to provide a glimpse into the neuromechanical

control of one of the fastest terrestrial insects, the American cockroach [73]. Our biological mod-

eling reveals a new idea for the control of legged robots under sensory feedback: stride-to-stride

center-of-pressure placement may provide a simple mechanism for task-level control based on sen-

sory feedback. Implementation of legged robot control based on this idea may in turn help biology

by providing a new vehicle to test specific inter-leg coordination strategies for modulating the COP.
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ALLS Simulation

A.1 Simulation Methods

We simulate the LLS model using Matlab (The MathWorks Inc., Natick, MA, USA) using

the convention in Section 6.1.1: for every right-leg step, convert it to a left-leg step, simulate the

within step dynamics, and then convert it back to a right-leg step. This enables us to specify the COP

position using (6.1) and integrate the equations of motion derived from (6.3) without the explicit

representations of a left or right step in the equations. We use Matlab’s ode45 with time varying

step size to integrate the equations of motion. The integration for a step terminates as soon as the

compressed leg returned back to its relaxed length l0.

We find the equilibrium point q = (v, δ, θ, ω, y)T using the Levenberg–Marquardt method

in Matlab’s fsolve function. While fixing the state v to a desired value, the function minimizes

the error difference of a step, f(q) − q. We find the step-to-step return map Jacobian, A, about the

equilibrium point using a central difference approximation. The ith columns are given by [A]i =

(f r(q + eiε) − f r(q − eiε))/2ε, where ε = 1 × 10−6 and ei is the i-th column of 4 × 4 identity
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Figure A.1: (A) Stride length versus speed and (B) stride frequency versus speed of the first 4 strides
(prior to angled-wall contact) of 43 trials from the data from Chapter 4. The solid line is the linear
fit of the data. The dashed line is the linear fit of the data collected by Full and Tu [37]. Unlike Full
and Tu, we use cockroaches that are blinded and elicited an escape response and following a wall
(Section 4.3). We assume that the data is adequate for our preliminary fitting of the LLS model,
and we reduce the bias incurred from wall following by matching the waveform characteristics (e.g.
stride length and stride frequency) rather than the waveform itself.

matrix. Similarly, we find the stride-to-stride return map Jacobian to determine the stride-to-stride

eigenvalues for Fig. 6.2.

We use the following parameters and measurements of P. americana: m =

0.77× 10−3 kg, J = 1.0× 10−7 kgm2, v̄(avg velocity) = 0.352 m/s, Ls(stride length) =

0.033 m, fs(stride frequency) = 10.8 Hz, vlateral,max = 0.04 m/s, and θmax = 0.03 rad. We use

the rectangular prism approximation [115] to find the moment of inertia in the yaw direction. The

stride length and the stride frequency has been found from Fig. A.1.

A.2 Parameters for P. americana

The values for leg rest length l0, leg spring constant k, initial leg touch down angle β0,

and fixed COP position a2 are chosen to satisfy constraints on the stride length, stride frequency,
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and maximum lateral velocity. Because the system is underdetermined, we make sure that these

parameters are within an order of magnitude from the dimensionally scaled values of Blaberus

discoidalis used in [95]. A simulation of LLS model using these set of values are shown in Fig. 6.3.

The magnitude of the body oscillation is about an order of magnitude smaller than that of the actual

cockroach because of LLS’s simplification of the tripod legs into a single virtual leg; a single leg

cannot generate enough torque to match that of the original three legs while having the parameter

values that are physically realizable [62, 95].
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Analysis of COP Placements

Just for this appendix, we use the convention defined in Lee et al. [62] to match that of

Fig. B.1.1 Using that convention, we get, for the left-leg stance, the Hamiltonian of the LLS system

implemented with a linear spring

H =
p2
ζ

2m
+

p2
ψ

2mζ2
+
p2
θ

2I
+
k(η − l0)2

2
(B.2)

where ζ, ψ, k, l0, I , and m denote the distance from the foot placement to the COM, the angle from

the foot placement to the COM, the linear spring stiffness, the relaxed leg length, the moment of

inertia, and the mass, respectively. The length of the leg is given in terms of the COP location by

η =
[
b21 + b22 + ζ2 + φ

(
2b1c1 + 2b2c2 + (c21 + c22)φ

)
+ 2ζ

(
(b1 + c1φ) cosφ+ (b2 + c2φ) sinφ

)]1/2
. (B.3)

1You can covert from the convention defined in Section 6.1 as the following: a1 → d2, b1 → b2, a2 → −d1,
b2 → −b1. Further, »

d1

d2

–
,

»
b1 + c1(ψ − θ)
b2 + c2(ψ − θ)

–
. (B.1)
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θ
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δ

η
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Figure B.1: A schematic model of the LLS model, showing the coordinates used by Lee et al. [62].

Hamilton’s equations of motion with our new COP and the linear leg spring model are given by

ζ̇ =
pζ
m
, ṗζ =

p2
ψ

mζ3
− k(η − l0)

η

(
ζ + (b1 + c1φ) cosφ+ (b2 + c2φ) sinφ

)
,

ψ̇ =
pψ
mζ2

, ṗψ = −k(η − l0)
η

(
b1c1 + b2c2 + (c21 + c22)φ

+ ζ(b2 + c1 + c2φ) cosφ− ζ(b1 − c2 + c1φ) sinφ
)
,

θ̇ =
pθ
I
, ṗθ = −ṗψ,

(B.4)

where φ , ψ − θ.

B.1 Effects of Various COP Placements

In order to match the LLS system with an actual cockroach data (Fig. B.2), we need to

understand the effects of bi and ci (or di(kT )) on the overall system. To do so, our initial attempt is

to consider various protocols for the COP placements:

(a) Increment d1 while d2 = 0;

85



APPENDIX B. ANALYSIS OF COP PLACEMENTS

Figure B.2: Left: A stride of the original LLS model (d1 ≡ 0) with a fixed COP (solid) and a moving
COP (dashed). The used parameters for the fixed COP are: v = 0.226 cm/s, k = 2.4 N/m, β0 =
1 rad, l0 = 0.0102 m, d2 = −0.0025 m; for the moving COP are: v = 0.2235 m/s, k =
3.52 N/m, β0 = 1.125 rad, l0 = 0.0082 m, d2 = 0.0025 m → −0.0025 m. Right: Experimental
measurements of Blaberus discoidalis from several sources, [36, 37, 59]; figure from [95]. (Notice,
since the right figure doesn’t start from t = 0, the stride period is roughly the same between the two
figures.)

(b) Increment d2 while d1 = 0;

(c) Increment the amplitude of a moving d2 while d1 = 0;

(d) Increment the offset of a moving d2 while d1 = 0;

(e) Increment d1 while d2 is moving;

Figure B.3 illustrates these protocols schematically for a left step; for a right step, the COP path

is mirrored about the body y-axis. For each protocol and their parameter increments, we found

the corresponding equilibrium points and simulated a full stride (starting with a left step) from the

equilibrium points. The results from the simulations are shown in Figs. B.4, B.5, and B.6. For each

incrementing parameter, we plotted the result using different shades of gray. The first two columns

of a subfigure shows the COM velocity and leg-spring forces in lateral and forward directions (i.e.
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Figure B.3: COP placement protocols for a left step with respect to the body frame {B}. The
solid dots indicate fixed COP positions; the arrows indicate the direction, magnitude, and offset of
moving COPs.

x and y directions in the inertial frame {U}), the body angle, and the moment. The last column

shows d1 (solid line) and/or d2 (dashed line) as a function of time, COM path, and the eigenvalues

as a function of the incrementing parameter. The rest of the parameters (i.e. k, v, β0, and l0) were

chosen to closely match the stride length and frequency of cockroach data [95].

Protocol (a): Fixed COP on lateral axis. Figure B.4(a) shows results of a simulated

LLS model in which we fixed the COP at various positions along the x-axis of the body frame

{B}. As desired, when d1 > 0, the profiles of the body angle, θ, and the moment waveforms

resemble actual cockroach data (Fig. B.2), as well as that of the moving COP proposed by Schmitt

and Holmes [97] (reproduced in Fig. B.2, Left). Note that the positive cosinusoidal waveforms of

the body angle (which agrees with the biological data) for a fixed COP only occur when d is on the

positive x-axis of {B}. Fig. B.4(a) indicates that the increase in |d1| amplifies the body angle and

the moment waveforms while the other measurements, including the stride length and frequency,

remain relatively constant. This isolated effect of d1 will be useful later on when we fit the data to

another waveform. In addition, the eigenvalue plot shows that the system becomes unstable when

d1 < 0 and stable when d1 > 0.

Protocol (b): Fixed COP on fore-aft axis. As a comparison to the previous result,

Fig. B.4(b) shows the effects of different locations d2 for a fixed COP. Although the body angle
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(a) Increment d1 = {−0.2, . . . , 0.2 cm} while d2 = 0.

(b) Increment d2 = {−0.2, . . . , 0.2 cm} while d1 = 0.

Figure B.4: See text for description of each COP protocol. The parameters used in this figure are:
m = 0.0025 kg, I = 2.04×10−7 kg m2, k = 3.52 Nm−1, v = 0.2275 m/s, l0 = 0.0127 m, β0 =
1.12 rad (or 64.2 ◦). Note, unlike Fig. B.2, these figures have scaled units (e.g. cm and mN) for
clarity.
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(c) Increment the amplitude of moving d2 from 0 to 0.2 cm while d1 = 0.

(d) Increment the offset of moving d2 from 0 to 0.2 cm while d1 = 0.

Figure B.5: The parameters used here are: m = 0.0025 kg, I = 2.04 × 10−7 kg m2, k =
3.52 Nm−1, v = 0.2235 m/s, l0 = 0.0082 m, β0 = 1.125 rad.
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(e) Increment d1 = {−0.2, . . . , 0.2 cm} (solid) while d2 (dashed) is moving

from 0.2 to −0.2 cm.

Figure B.6: Parameters used are: m = 0.0025 kg, I = 2.04× 10−7 kg m2, k = 3.52 N/m,
v = 0.2235 m/s, l0 = 0.0082 m, β0 = 1.125 rad.
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is sinusoidal (not cosinusoidal, like the cockroach), the location of d2 does have a larger impact on

the magnitude of body angle and the stability of the system (steeper slope for the moving eigen-

value) than d1 in the previous protocol. We speculate that one cause of this differences in impact

level is due to the large value of β0; since β0 = 1.12 > π/4, the leg force is oriented primarily in

the lateral direction rather than the fore-aft direction. Thus, changes in d2 cause greater moment

arm changes than the equal changes in d1. We will utilize this effect in Sect. 6.2 by using d2 as

our control input. We also note that the body velocity (and position) and foot forces of this figure

matches the previous figure. Although not shown, as the fixed COP position traverses in this neigh-

borhood, without the restriction of d1 = 0 or d2 = 0, the body velocity and foot force waveforms

remain relatively constant. On the other hand, the waveforms for the body angle and the moment

go through phase and amplitude changes.

Protocol (c): Incrementing magnitude of a moving COP on the fore-aft axis. For fore-aft

COP motion along the body frame y-axis, Fig. B.5(c) shows the effects of changing the magnitude

of COP motion. Unlike the previous protocols, varying the magnitude of a moving COP causes

large changes to all the kinematics, step length, and step frequency. Although it is not shown here,

further increase in magnitude (also observed in [95]) or reversing the direction (i.e. aft to fore) of

the moving COP drives the system unstable.

Protocol (d): Forward Shifting of a Moving COP. Figure B.5(d) shows the effects of

shifting a moving COP in y direction in {B}. It shows that, as the offset b2 increases (or decreases,

although not shown), the body loses its cosinusoidal waveform and eventually becomes unstable.

We emphasize that the system does not go unstable as soon as the offset b2 > 0 nor b2 < 0. Also

the instability does not necessarily occur even though the moving COP remains in front of the COM
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most of the time. Along with Protocol (c), we introduce one possible explanation of these results in

Sect. B.3.

Protocol (e): Lateral Shifting of a Moving COP. Lastly, we look at the result of incre-

menting the lateral offset to a moving COP, as shown in Fig. B.6(e). The result resembles that

of Protocol (a) in Fig. B.4(a); the changes in d1 mostly affect the magnitude of body angle and

moments, but the waveforms all remain qualitatively the same shape. Also, the increase in d1 has

amplified the waveforms, and the moving COP has stabilized the system even with d1 < 0, in

contrast to the results of Fig. B.4(a).

From the results from these protocols, we conclude that we can achieve the desired cos-

inusoidal waveforms by laterally offsetting a fixed COP or moving COP. However, both cases

produce body angle and moment variations that remain an order of magnitude smaller than those

of a cockroach. This can be remedied with a very large—possibly non-physical—COP offset of

d1 = 0.025 m ≈ 2l0 and d2 = 0, which means that the virtual foot touchdown position will be far

off to the positive x-axis in {B} along with the COP. The resulting magnitude of the body angle was

about 2 ◦ (or 0.035 rad) with the moment of 0.3× 10−4 N m. This is within an order of magnitude

of the cockroach variations 5.7◦ (or 0.1 rad) and 1× 10−4 N m in Fig. B.2.

B.2 Stability as a Function of Fixed COP Position

Figures B.4(a) and B.4(b) showed the stability plot of the LLS with a fixed COP along

the x and y-axis of {B}, respectively. Figure B.7 shows a contour plot of the maximum non-unity

eigenvalues as a function of more general 2D fixed COP positions. Note that the neutrally stable

(i.e. maxλ = 1) gait corresponding to (d1, d2) = (0, 0) found by Schmitt and Holmes [96] lies
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Figure B.7: Maximum eigenvalue (neglecting two invariant unity eigenvalues for energy and di-
rection) of the linearized return map as a function of our new, two dimensional COP locations.
The dark gray indicates the parameter regime of maximum stability and the neutral stability occurs
when the contour reads 1. Eigenvalues greater that 3 are empty. The parameter values used are:
v = 0.25 m/s, k = 2.4 Nm−1, l0 = 0.01 m, β0 = 1 rad, and −0.02 m < d1, d2 < 0.02 m.

along a neutral stability contour through the origin of the d-plane. There is a large stable region

(maxλ < 1) “inside” the neutral stability contour and an abrupt area of instability in the lower-

right corner of the plot. Notice that the stable region (maxλ < 1) extends to a part of d2 > 0 region

for d1 > 0. This indicates that we can achieve stability for the fixed COP that is in front of COM,

as long as it is sufficiently offset to the right (d1 > 0). We also notice that around the origin, the

gradient of the eigenvalues is greater in the direction of y-axis than x-axis of {B}. This hints that

a small displacement of the fixed COP in d2 should give us a greater control than that of d1. We

utilize this notion in Sect. 6.2.

Our long-term goal is to match the LLS to biological or robotic locomotion performance,

possibly using the LLS as a plant model for control. Therefore, we examined the equilibrium state

values, δ∗, θ∗, and θ̇∗, in Fig. B.8, as a recipe for future comparisons to biological and robotic
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(a) λ (b) δ∗

(c) θ∗ (d) θ̇∗

Figure B.8: Contour map of the maximum non-unity eigenvalue and the equilibrium points δ∗, θ∗,
and θ̇∗. The parameter values are the same as Fig. B.7.

systems. As expected, the two contours θ∗ = 0 and θ̇∗ = 0 indicate purely oddly symmetric

(sinusoidal) and evenly symmetric (cosinusoidal) yaw motions, respectively, and these symmetries

only occur on those contours.
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Figure B.9: Comparison between moving and fixed COP. m = 0.0025 kg, I = 2.04 ×
10−7 kg m2, k = 3.52 Nm−1, β0 = 1.125 rad. Moving COP (dashed) v = 0.2235 m/s, l0 =
0.0082 m, d1 = 0m, d2 = 0.002 → −0.002 m. Fixed COP (solid) v = 0.2275 m/s, l0 =
0.0128 m, d1 = 0.005 m, d2 = 0m.

B.3 Comparing Fixed vs. Moving COP Models

From the observations above, we consider the relationship between a fore-aft moving

COP and a fixed, laterally offset COP. These two scenarios generate similar waveforms; in fact,

using very similar parameters, we can nearly match the body motions and forces using these two

strategies, as shown in Fig. B.9. To find a good match, we relied on trial and error, using Figs. B.4(a)

and B.5(c) as a guide to adjust d1 and d2 and we referred to [95] to adjust l0, β0, and k. As shown,

the body angle (yaw) motions match nearly exactly, while for the other measurements, the fixed COP

exceeded the moving COP somewhat in magnitude, although the results are qualitatively similar.

We compare the moving COP model to a model with a fixed COP on the positive x-axis

of {B}, as follows. As the LLS moves through a left step, the leg intersects the body centerline at
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Figure B.10: Comparison between a moving COP and an effective fixed COP during a left step
under different protocols. Fixed COP is denoted by a filled dot, and the moving COP is denoted by
a gray arrow.

a point that moves fore-aft, as depicted in Fig. B.10(a). Suppose there is another LLS system with

a moving COP that traces out the same path, and has the same foot touchdown position as the fixed

COP case. With appropriate parameters (and possibly a nonlinear leg spring), the fixed COP LLS

model might approximate the moving COP model. By approximating the moving COP with the

fixed COP in this way, we can predict which moving COP protocols might be stable on the basis

of the stability contour map (Fig. B.7, Sect. B.2). Using this approach, we address below (without

formal proofs) unanswered questions from Chap. B.1.

In Protocol (c), we considered increasing the magnitude of a moving COP. We approxi-

mate this case using the effective fixed COP and effective β0 shown in Fig. B.10(b) and (c); a larger

magnitude can be created by moving the effective fixed COP in the x direction and/or decreasing

the value of leg touchdown angle β0. From Fig. B.4(a), we saw that the increase in d1 for a fixed

COP improved stability and amplified the body angle and moment, which agrees with increasing

the magnitude of fore-aft motion in the moving COP, as shown in Fig. B.5(c). Similarly, a moving

COP that is shifted forward, as in Protocol (d), can be approximated by shifting the effective fixed

COP forward, as shown in Fig. B.10(d). Figure B.8(a) shows that the effective fixed COP will first

be stable, but eventually it will be unstable as the offset increases further.

Earlier, we indicated that the system became unstable when the moving COP moved from
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back to front (i.e. aft to fore) along the body centerline. As Fig. B.10(e) shows, the effective fixed

COP would then be placed on the left side of the body centerline which, according to Fig. B.8(a),

would probably make the system unstable. This also suggests we can achieve stability for a forward

moving COP if we choose our offsets carefully.

In Protocol (e), we increased the lateral offset of a moving COP. We can represent this

simply by laterally shifting the effective fixed COP which is similar to Protocol (a), Fig. B.4(a).

Indeed that is what we observed in Fig. B.6(e). This explains why the system remained stable when

d1 < 0; the effective fixed COP position was to the right of the COM (d1 > 0). This implies that

for cockroaches, if their mechanics limit the magnitude of d2 , i.e. they cannot have a large c2, then

an increase d1 will achieve the desired stability, or vice versa; this would explain the shift in the

moving COP observed in cockroaches [115].

In summary, the moving COP model is more complex than the fixed COP, but they have

similar performance in matching biological data. Thus, in this thesis, we assume the COP is fixed to

the right of the COM within each step, but let the controller adjust the location of the COP between

steps.
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Derivation of Chaplygin Sleigh Using

Lagrange–D’Alembert Principle

Here we derive the equations of motion for the Chaplygin sleigh shown in Fig. 7.2. The

no-slip constraint at the skate says the skate cannot slide sideways, that is, the skate’s velocity, which

is given by ẋ
ẏ

 +
d

dt

d cos θ

d sin θ


in the plane must have no projection onto [− sin θ, cos θ]T , i.e.

[
− sin θ cos θ −d

]
︸ ︷︷ ︸

ΓT


ẋ

ẏ

θ̇


︸︷︷︸
q̇

= 0 (C.1)
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The COM equations of motion are given by Newton’s laws
m 0 0

0 m 0

0 0 J

 q̈ = λΓ (C.2)

where the only external force is the constraint force, λΓ. Note that the constraint equation (C.1)

implies that differential displacements are of the form

δq =


δx

δy

δθ

 =


1 0

0 1

− sin θ
d

cos θ
d


δx
δy

 (C.3)

where (δx, δy) is free. Thus, we take

δq ·




m 0 0

0 m 0

0 0 J

 q̈ − λΓ

 = 0 (C.4)

and note that δq is orthogonal to Γ, and (δx, δy) is free. This yields

1 0 − sin θ
d

0 1 cos θ
d



m 0 0

0 m 0

0 0 J

 q̈ = 0

=⇒ mẍ− sin θ
d

Jθ̈ = 0

mÿ +
cos θ
d

Jθ̈ = 0

(C.5)

Differentiating the constraint equation, we have

−θ̇
[
cos θ sin θ

]ẋ
ẏ


︸ ︷︷ ︸

v

+
[
− sin θ cos θ

]ẍ
ÿ

− dθ̈ = 0 (C.6)
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where v ∈ R is the forward speed. Multiplying the equations (C.5) by sin θ and − cos θ, respec-

tively, and adding them together with m times (C.6), we have

mẍ sin θ − sin2 θ
J

d
θ̈ −mÿ cos θ − cos2 θ

J

d
θ̈ −mθ̇v −m sin θẍ+m cos θÿ −mdθ̈ = 0

−J +md2

d
θ̈ −mvθ̇ = 0

=⇒ θ̈ = − md

J +md2
vθ̇

Finally, noting that v = ẋ cos θ + ẏ sin θ, we have

v̇ =
���������:0
(ẍ cos θ + ÿ sin θ) + (−ẋ sin θ + ẏ cos θ)︸ ︷︷ ︸

dθ̇

θ̇ = lθ̇2

The fact that the first term cancels to zero can be seen by multiplying (C.5) by 1
m [cos θ, sin θ].

Letting ω = θ̇, and putting it all together, we have

v̇ = dω2

ω̇ = − md

J +md2
vω

(C.7)

This has equilibria of (v, ω) = (v0, 0). The linearization is given by ˙̃v

˙̃ω

 =

0 0

0 − md
J+md2

v0


ṽ
ω̃


which has a zero eigenvalue and an eigenvalue with sign opposite to v0. We cannot conclude that

this is stable from the linearization due to the zero eigenvalue. However, the system is nevertheless

stable, because energy is conserved, so mv2 + Jω2 ≡ E0 = constant, i.e.

v = ±
√

(E0/m)− (J/m)ω2 (C.8)

So, as ω → 0 in a neighborhood of ω = 0, v can only change by a small amount.
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Human Locomotion
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Chapter 9

Motivation

Healthy humans adapt their gait when walking on a split-belt treadmill—a treadmill that

has separate belts for the left and right legs with independent speed controls [83]. During the initial

phase of walking on the split-belt treadmill with one belt going faster than the other, the subjects,

not having been acclimated to walk on the treadmill, exhibit asymmetric interlimb coordination

(phasing of the two legs) resulting in a limping gait Fig. 9.1 [83]. Adaptation, without the subjects’

conscientious effort, takes place gradually over the course of several minutes, leading to a more

symmetric interlimb coordination. The indication that learning takes place is that when the subjects

are asked to walk on a tied treadmill (i.e., both belts turning at the same speed like a typical exercise

treadmill) after the adaptation: although temporarily, the subjects exhibit a limping gait! For patients

with cerebral damage, this after-effect can be beneficial: they temporarily stop limping.

In Part II of this thesis, we seek to understand how our bodies adapt during this locomotor

task. We identify different facets of human feedback control through various perturbations using

the split-belt treadmill.
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Figure 9.1: Leg kinematics at slow (first row) or fast (seconds row) leg touchdown. During slow
baseline the subject has similar leg kinematics. During early adaptation the split-belt condition
causes different shapes at fast or slow touchdowns. During late adaptation the legs become more
symmetric. During post adaptation the learning has retained and causes asymmetric gait even
thought the belts are turning at the same speed. (Image credit: [83]; used with permission)

9.1 Biology: Humans

9.1.1 Gaits

In a paddock, horses employ one of three gaits to move around at different speeds

(Fig. 9.2, right axis): walk (1-1.5 m/s), trot (2.5-4 m/s), and gallop (5-6 m/s) [51]. These gaits

are defined by observing relative phasing of the four legs [39]. Why are their preferred speeds clus-

tered around those three regions? Why do they need different gaits for different speeds? Why not

“walk” at all speeds? After training horses to move at a gait beyond their preferred speeds, Hoyt

and Taylor [51] measured the horses’ rate of oxygen consumption to assess their metabolic rate at

different speed and gait combinations. Their results (Fig. 9.2, left axis) showed that horses change

their gait to minimize their metabolic rate.

Two of the gaits employed by humans are walking and running. Walking is defined as
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Figure 9.2: Oxygen consumption rate as a function of gait and speed. Notice the minimum of those
three curves are indeed the preferred speeds and gaits for those horses. (Reprinted by permission
from Macmillan Publishers Ltd: Nature [51], copyright 1981)

a gait where the kinetic energy of the COM and the gravitational potential energy are anti-phase;

running is defined as a gait where the two energies are in-phase. Alternatively, walking can be

defined as a gait with more than 0.5 duty cycle and running with less than 0.5 duty cycle, where a

duty cycle is defined as (stance time of a leg)/(stride time). During walking, the trajectory of the

COM produces semi-circular arcs; running can be represented by a hopping pogo stick. Similar

to the results of Hoyt and Taylor’s experiment, humans exhibit gait transitions from walking to

running at a speed (∼2.2 m/s) where oxygen-consumption curves for walking and running cross
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each other [70].

One explanation for why humans cannot maintain walking gait at high speeds can be

easily understood in terms of an inverted pendulum under the force of gravity. Near vertical, the

centripetal acceleration is v2/`, where v is the linear velocity of the COM (walking velocity) and ` is

the length of the pendulum (a human hip height). If v increases such that the centripetal acceleration

exceeds the downward acceleration from gravity g, then the COM will vault and the leg will lose

its contact with the ground. If we divide the centripetal acceleration by g, we get a dimensionless

parameter called the Froude number, v
2

g` . For humans with leg length of 0.9 m, the walking speed

v at which the Froude number exceeds 1 (i.e., start to vault) is 3 m/s, which is close to an observed

maximum human walking speed [1].

But for higher speeds, why do humans run instead of vault our way forward? Srinivasan

and Ruina [109] show that running and walking gaits naturally arise to minimize metabolic cost

of operating a prismatic-actuated pendulum while achieving a desired forward speed. Their results

suggest a simple mechanistic explanation for why we run instead of vault but also why we walk in

the first place at lower speeds.

9.1.2 Mechanics and Control of Locomotion

The tasks of walking and running rely on a neuromechanical system, coupled with force

interaction with a static or dynamic environment. The process by which humans achieve muscle co-

ordination to produce locomotive behavior is shown in Fig. 9.3. Although human brains, containing

more than 100 billion neurons, have well-defined regions, the details of their function are unknown.

Pathways between regions in the brain are necessary not only to achieve locomotion but also to

perform basic human functions. Various sensory signals, such as those delivered along visual, au-
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ditory, vestibular, and cutaneous afferents, are integrated and processed through different regions in

the brain to induce or alter locomotive patterns (Fig. 9.3(A)). The processed commands are then sent

to the interneurons and motorneurons in the spinal cord to modulate and shape locomotive patterns.

Finally, the motorneurons activate muscles in the legs in a coordinated manner and yield the final

locomotive behavior (Fig. 9.3(B)). To understand this complex array of neuronal connections and

signals, we can examine the process at different timescales during locomotion.

Within one- to two-step timescales Oscillatory motions of our legs during running are attributed

to a collection of interneurons (called a central pattern generator, or CPG) in our spinal cord

(Fig. 9.3(B)). This collection of interneurons is capable of generating basic rhythmic patterns with-

out inputs from the brain and proprioceptive/cutaneous afferents; the descending and reflex inputs

from both legs shape and modulate the CPG to provide rapid responses to dynamic and noisy envi-

ronmental conditions [112]. Along with these basic rhythmic signals are muscle synergies: multiple

leg muscles are activated in a coordinated manner from a lower dimensional command. These spinal

reflexes and muscle synergies create a basic locomotive, self-stabilizing behavior. CPG’s, preflexes

(tuned musculoskeletal mechanics [33]), and reflexes place less demand on the higher centers of the

brain and allow humans to operate at high speeds, when such operation from the brain would have

otherwise been prohibitive due to neural transmission delays.
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Within two- to ten-step timescales Task-level control during running (e.g., following a curved

line) is mediated by the higher centers of the brain, integrating messages from visual, vestibular,

and other sensory afferents (Fig. 9.3) [79]. Due to neural processing and transmission delays, the

recovery rate at this level operates at a slower time scale, with comparatively less-frequent descend-

ing commands than from the spinal neural network. However, as discussed above, this delay may be

accounted for through the inherent stability in the low-level system (CPG, preflexes, and reflexes)

or through the use of predictive mechanisms in the cerebellum [7].

More than ten-step timescales Human motor adaptation and learning operate at the slowest

timescales. Researchers attribute basic motor learning capability to the cerebellum [61]. Fur-

thermore, learning can occur simultaneously at different timescales [107]. One hypothesis in the

function of the cerebellum is that with an internal representation of body dynamics, the cerebellum

uses observed discrepancies between the expected sensory afferents and the actual received sensory

afferents to alter its internal representations, until the discrepancy is removed. The details of these

operations, however, are not well known. For example, what exactly are the set of sensory signals

responsible for adaptation (e.g., visual flow, sound of the treadmill, holding of the rail, the need to

stay on the treadmill)?

To understand learning as well as introduce some of the terminologies to be used in the

remaining part of this thesis, we consider our motivating example by Reisman et al. [83]. Reisman

et al. used a split-belt treadmill to create a constant asymmetric perturbation. Healthy subjects

walked on a tied-belt condition (when both belts were turning at the same speed), then walked on

a split-belt condition (where one belt was going faster than the other) for 10 minutes. During the

first few minutes of walking (early-adaptation) subjects limped because they were not accustomed
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to walking in such condition. Here, the limping motion is defined as an asymmetry in the left

and right step lengths where a left step length is the distance between two feet at the left feet heel

strike and a right step length is the distance between the two feet at the right feet heel strike. As

shown in Fig. 9.1, the subjects eventually changed their gait by altering the interlimb coordination,

e.g., leg touchdown angle relative to the other leg. After 10 minutes (late-adaptation) the subjects

walked in a more symmetric gait, leading to similar step lengths for both legs. The evidence for

learning was observed when they walked on a tied-belt after the training: the subjects temporarily

exhibited a limping gait (after effect). But eventually the gait improved (wash-out) back to their

normal symmetrical gait. Choi and Bastian [19] showed that similar adaptation behavior occur in

running.

These different time-scale operations show diverse strategies that our CNS and muscu-

loskeletal system employ spatially (CPG’s are located in the spine and not further away near the

higher centers of the brain) and temporally.

9.2 Modeling: Human Movement

Using a spring-loaded inverted pendulum (SLIP) as a template (Chapter 1), Seyfarth et

al. [105] reported that for high speeds, SLIP model can attain passive stability; Rummel and Sey-

farth [87] showed that a two-segment leg model with a torsional spring at the knee joint attained

passive stability at even lower speeds. Seyfarth et al. [106] showed that a constant-speed leg re-

traction strategy which further improved SLIP’s “passive” stability.1 Güther et al. [43] showed that

when people are perturbed in stepping heights, human control strategy resembles that of these “al-
1Passive is a slight oversimplification: some neural feedback is required, for example to detect lift-off and to regulate

the swing leg to achieve a desired touch-down angle.
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most” passive-control strategies used to maintain a stable running with minimal neural feedback.

Daley and Biewener [24] examined within-step energy recovery strategies of guinea fowls using

step-down perturbations. Jindrich and Full [55] showed that the peak ground reaction forces from

lateral impulse perturbation were quicker than what neural mechanisms could explain, suggesting

that preflexes (tuned musculoskeletal mechanics) play a significant role in stabilization.

A more formal stability characterization has been performed on human walking: dynamic

stability of human walking [52] was quantified under the effects of space flights [71], the effects of

walking speed [29], the effects of vision [8], the effects of lateral perturbation [75], the control of

angular momentum balance [48], and the effects of walking on a treadmill versus overground [26].

However, to the best of our knowledge, this thesis presents the first approach to identify directly the

dynamics of human running through systematic perturbation experiments.

9.3 Roadmap

The goal of the next two chapters is to identify task-level feedback control strategies used

by humans during split-belt running at different stages of adaptation. In Chapter 10, we begin (Sec-

tion 10.1.1) by reviewing the SLIP model and introduce notations and coordinate transformations

used for the remaining part of this thesis. In Section 10.2.2, using a SLIP model as our template

for human running and a deadbeat feedback control, we generate possible control strategies that

humans might employ during early adaptation of split-belt running.

In Chapter 11, we address two of the challenges addressed in Chapter 10. We gain insight

on how humans recover from perturbations by fitting a linear model to running data and see how

the recovery rates (eigenvalues) change as a function of running speed and during late adaptation.
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9.4 Dissemination

The majority of what is reported in this dissertation has been presented in the following

conferences:

- J. Lee, J. Choi, A. Bastian, and N. Cowan, “Fitting the Closed-Loop Dynamics of
Human Running on a Split-Belt Treadmill,” Society for Integrative and Compar-
ative Biology, Boston, MA, Jan 3-7, 2009;

- J. Lee, J. Choi, S. Carver, A. Bastian, and N. Cowan, “Toward a Neuromechani-
cal Model for Adaptation and Control of Human Running,” Fourth International
Symposium on Adaptive Motion of Animals and Machines, Cleveland, OH, June
1-6, 2008.
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Chapter 10

Spring-Loaded Inverted Pendulum

(SLIP) Model With Deadbeat Feedback

Control

In this chapter, we make two basic assumptions: (1) humans run with a control target of

spring-loaded inverted pendulum (SLIP) template and [9, 100] (2) humans use a one-step deadbeat

feedback control strategy during overground running (deadbeat in y suggested by Chapter 11).

Using these assumptions, we ask how humans might control running when they encounter the split-

belt condition for the first time (without adaptation). Do humans quickly alternate between two

controllers or do they use just one type of controller? To address this question, we begin by a

brief review of the SLIP model in Sections 10.1.1 and 10.1.2. In Section 10.1.3, we discuss one of

many differences between overground running and treadmill running and how the difference may

lead to different feedback control strategies between the two settings. In Section 10.2 we introduce
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CHAPTER 10. SLIP MODEL WITH DEADBEAT FEEDBACK CONTROL

Figure 10.1: Overground running of the SLIP model (moving from left to right). Each i-th step has
five phases denoted in superscripts: AP1, apex prior to i-th stance; TD, touchdown; MC, maximum
compression; LO, liftoff; AP2, apex after i-th stance. A black spring leg represents one leg and a
gray spring represents the other leg.

the deadbeat feedback controller and discuss how humans might employ different feedback control

strategies. We compare our SLIP simulations under different control strategies to human trial data

in Section 10.3.

10.1 SLIP Model and Simulation

10.1.1 Review: SLIP Model

The spring-loaded inverted pendulum (SLIP) bas been a convenient template for control

[9, 50]. Unlike the lateral leg spring (LLS) model (Chapter 6), SLIP tries to capture animal running

dynamics in the sagittal plane [9, 101] or in 3D [14, 103].

The SLIP model is a point mass with a massless prismatic spring leg (Fig. 10.1) that

bounces like a pogo stick. When the SLIP is in contact with the ground, it is said to be in a stance

phase; when airborne, it is said to be in a flight phase. Alternating between the two phases produces

a forward running motion. When the model is in flight phase, it prepares for the next step by placing

its next leg at a predefined length and angle.

As shown in Fig. 10.1, steps are indexed by a subscript i. Associated to an i-th step
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or stance, there are five well-defined phases: (1) apex prior to the stance (AP1; instant that COM

attains its maximum height), (2) touchdown (TD; instant that a foot makes contact with the ground),

(3) maximum compression (MC; instant that the COM is closest to the stance foot), (4) liftoff (or

toe off) (LO; instant that the stance foot leaves the ground), and (5) the apex after the stance (AP2).

10.1.2 SLIP: Equations of Motion

During the flight phase, we simply model the dynamics of the SLIP model as a freely

falling mass and we use COM forward position x, height y, forward speed ẋ, and vertical speed ẏ

as our state:

ẍ = 0 (10.1)

ÿ = −g.

During the stance phase, we have a spring-mass system (for convenience, using generalized coordi-

nates):

m`2ψ̈ + 2m` ˙̀ψ̇ − gm` sin(ψ) = 0 (10.2)

m῭−m`ψ̇2 + k(`− `0) + gm cos(ψ) = 0.

where ψ is the leg angle, ` is the leg length, `0 is the rest leg length, k is the leg stiffness, g is the

gravity, and m is the mass.

The simulation of a running SLIP model alternates between (10.1) and (10.2): the sim-

ulation switches from (10.1) to (10.2) when the COM reaches the height of the next touchdown.

During the stance phase, the leg spring compresses and decompresses; when the leg length returns

back to it rest length, the next iteration of (10.1) and (10.2) ensues.
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10.1.3 Tied-Belt Treadmill vs. Overground Running

In general, many differences exist (e.g., optic flow and head wind) between overground

locomotion and tied-belt treadmill locomotion [26]. From a feedback control perspective, a new

goal is imposed on a human subject when using a treadmill: the subject has to maintain steady

fore-aft position to avoid hitting the treadmill railing in the front or to avoid falling off the back of

the treadmill. When translated to overground running, this constraint is much like you running next

to another runner who is running at a constant speed; if you drift forward, you must slow down, and

if you drift back, you must speed up to run side by side with the other runner.

To address the aforementioned difference between treadmill and overground running, we

define two reference frames: the position of a subject running on a treadmill (1) observed from a

fixed frame on the ground (W ; world frame) and (2) observed from a fixed frame attached to the belt

of the treadmill (B; belt frame). For the belt frame, it might be helpful to assume that the treadmill

has a sufficiently long belt (e.g., moving airport walkways) so that the frame attached to the belt

does not loop back. For now, we assume that there is just one belt for both legs and that the belt

is moving at a constant speed v0. Using W and B to denote references frames where appropriate

along with the notation defined in Section 10.1.1, we define the following:

• tstep,i(steptime) , tAP2
i − tAP1

i ;

• tstance,i(stancetime) , tLOi − tTDi ;

• xW,AP1
i is the forward position (w.r.t. the “world” frame) of the runner at apex prior to i-th

stance. Obviously xW,AP1
i ≡ xW,AP2

i−1 ;

• xB,AP2
i = xB,AP1

i + (tAP2
i − tAP1

i )v0; forward position of the COM written w.r.t. the belt
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Figure 10.2: Comparison between the actual belt speed and the perceived belt speed. The upper
figure is the same as the one shown in Fig. 10.1; the figure is not drawn to match the changing belt
speeds. The lower figure shows the the actual belt speed (thick gray line) and our assumed perceived
belt speed (thin black line). This shows that the belt speed during the flight phase is composed by
vLObelt,i and vTDbelt,i+1 and does not depend on the actual belt speed.

frame;

• yAP1
i is the height of the runner at apex prior to i-th stance. Note, yW,AP1

i ≡ yB,AP1
i and

yAP1
i ≡ yAP2

i−1 ;

• ẋW,AP1
i is the forward speed (seen from ground) of the runner at apex prior to i-th stance.

Note, ẋW,AP1
i ≡ ẋW,AP2

i−1 ;

Now suppose that the treadmill is allowed to have a piecewise linear speed profile. As

shown in Fig. 10.2, the only speeds that matter to the SLIP model during the aerial phase is its

stance phase belt speeds; changes during the flight phase do not affect the SLIP model. To account

for ambiguities in the belt speed, we introduce “perceived belt speed,” as shown in the thin black

line in Fig. 10.2; the perceived belt speed during LO to AP2 is the actual belt speed at liftoff, vLObelt,

and the perceived belt speed during AP1 to TD is the actual belt speed at touchdown, vTDbelt . The

perceived belt speed could have been changed anywhere between the LO and TD. Note that an
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implicit assumption is that the SLIP ignores the belt acceleration at its liftoff that could provide a

cue for the belt acceleration that it will encounter next. From here on, belt speed is referred to in

the “perceived” sense. Since there may be a jump in the belt speed at apex (e.g., the apex following

step i in Fig. 10.2), we use + or − to distinguish the apex state before (AP1−) and after (AP1+)

the jump. For that we have the following additional notions:

• vTDbelt,i is the treadmill speed at i-th stance touchdown; vLObelt,i is the treadmill speed at LO;

• abelt,i , (vLObelt,i − vTDbelt,i)/tstance,i is the averaged acceleration of the treadmill; we assume

that the treadmill exhibit constant accerleration during the stance phase;

• xB,AP2
i = xB,AP1

i + (tTDi − tAP1
i )vTDbelt,i + (tAP2

i − tLOi )vLObelt,i + abelt,it
2
stance,i/2 +

vTDbelt,itstance,i; Forward position of the COM w.r.t. a fixed frame attached on the belt;

• ẋB,AP1−
i is the forward speed of the person at i-th apex seen from vLObelt,i−1 (not vAPbelt,i). Note,

ẋW,AP1
i = ẋB,AP1−

i − vLObelt,i−1 = ẋB,AP1+
i − vTDbelt,i.

Using these representations, we can now convert between treadmill running and overground run-

ning.

10.1.4 Tied-Belt Treadmill vs. Split-Belt Treadmill

Other than differences in the physical setup, from a modeling perspective, there is no

difference between split-belt treadmill running and tied-belt treadmill running assuming (a) there

are no double stances and (b) the tied-belt treadmill can change its belt speed arbitrarily fast. Using

the convention introduced above (Fig. 10.2), running on a split-belt treadmill is simply running on

a tied-belt treadmill with a square-waveform belt-speed profile (Fig. 10.3A). This is not the case for
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walking because during double support phases, each leg is in contact with belts of different speeds;

in such a case, the placement of the belt frame {B} becomes unclear.1

10.2 Deadbeat Feedback Control

We use Poincaré sections and return maps to assess the stability of the SLIP model [101,

14]. We select the Poincaré section when the COM reaches each apex (i.e., ẏ = 0). Then our state

associated to step i reduces to qAP1
i = [xAP1

i , yAP1
i , ẋAP1

i ]. The return map from qAP1
i to qAP1

i+1 is

qAP1
i+1 = hs(qAP1

i , ui) (10.3)

where ui is the control input (e.g., leg touchdown angle) and the subscript s indicates “slow belt.”

The return map’s equilibrium point is denoted (qs,∗, us,∗).

The return map for another belt speed (fast) would be (dropping AP1 to avoid clutter)

qi+1 = hf (qi, ui) (10.4)

with the corresponding equilibrium point at (qf,∗, uf,∗).

10.2.1 Deadbeat Control

An asymptotic controller brings a system’s state to its equilibrium asymptotically; that

is, the state approaches the equilibrium as time grows but it will never reach the equilibrium in a

finite time. In comparison, a deadbeat controller [14,82] brings the state to its equilibrium in a finite

time. In this section, we find a control law ui = gs(qi) such that it brings the apex state (10.3) to its

1This additional information during double stance phases (direct measurement of differences in belt speeds) may
promote faster adaptation.
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equilibrium in one step. That is, we find gs(qi) such that

qs,∗ = qi+1 = hs(qi, ui = gs(qi)). (10.5)

To do so, we linearize our return map to find the deadbeat controller. Linearizing (10.3), we get

qi+1 = hs(qi, ui) = hs(qs,∗, us,∗)︸ ︷︷ ︸
qs,∗

+
∂hs
∂qi

∣∣∣∣
(qs,∗,us,∗)

(qi − qs,∗) +
∂hs
∂ui

(ui − us,∗)

(10.6)

qi+1 − qs,∗ =
∂hs
∂qi

(qi − qs,∗) +
∂hs
∂ui

(ui − us,∗) (10.7)

=
∂hs
∂qi︸︷︷︸
A

(qi − qs,∗) +
∂hs
∂ui︸︷︷︸
B

∂gs
∂qi︸︷︷︸
K

(qi − qs,∗) (10.8)

0 = qi+1 − qs,∗ = (A+BK)(qi − qs,∗) (Deadbeat) (10.9)

In order to achieve deadbeat, we selectK such that (A+BK) becomes zero. If the size of the input

ui and the states qi are the same, we can find K by

∂gs
∂qi

≡ K = −B−1A = −
(
∂hs
∂ui

)−1 ∂hs
∂qi

. (10.10)

Inserting K (10.10) into the Taylor series expansion of our deadbeat controller yields

ui = gs(qi) = gs(qs,∗) +
∂gs
∂qi

(qi − qs,∗) (10.11)

= gs(qs,∗)︸ ︷︷ ︸
us,∗

−
(
∂hs
∂ui

)−1 ∂hs
∂qi

(qi − qs,∗). (10.12)

From the Implicit Function Theorem, a local solution ui to (10.5) exists if ∂hs
∂ui

is not singular [14].

Now we can easily find a deadbeat controller for the fast belt:

ui = gf (qi) = gf (qf,∗)︸ ︷︷ ︸
uf,∗

−
(
∂hf
∂ui

)−1 ∂hf
∂qi

(qi − qf,∗). (10.13)
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10.2.2 Early Adaptation Control Strategy

Suppose human subjects use ui = gs(qi) (slow-belt deadbeat controller) when running

on a slow-belt treadmill (with (qs,∗, us,∗)) and use ui = gf (qi) (fast-belt deadbeat controller) when

running on a fast-belt treadmill (with (qf,∗, uf,∗)). What would happen if those subjects ran on the

split-belt treadmill for the first time (before any adaptation)?

We simulate the SLIP model running on the split-belt treadmill using five different strate-

gies as shown in Fig. 10.3: In (B), the model uses the slow-belt controller gs(qi) for both legs. In

(C), the model uses the fast-belt controller gs(qi) for both legs. In (D), it selects a controller that

matches what it had just experienced; this leads to wrong controller-belt matches. In (E), it selects

the right controller but delayed; here, the controller is based on return maps from MC to MC2. In

(F), it selects the right controller all the time because it anticipates correct belt speeds and loads

the right controller; the desired equilibrium trajectories and deadbeat-controller gains for the slow

(s) and fast (f) belt speeds are assumed to be “stored” in the brain, and are recalled as need for the

different schemes.

Before we start the simulation, we still need to decide q∗ and u∗’s. As we will see in Chap-

ter 11, humans do not achieve deadbeat in the fore-aft position xW,AP1
∗ in treadmill running. Instead

we use qB,AP1
i,∗ = [xB,AP1

i,∗ , yAP1
∗ , ẋB,AP1

∗ ] where xB,AP1
i,∗ = xB,AP1

i−1,∗ + vbelt,∗tstep,∗; the fore-aft

control would be like controlling the fore-aft position to match the footprints on the ground. As our

control input, ui, we selected compression (kci ) and decompression (kdi ) stiffnesses (representing

leg braking and propulsive forces, resp.) and the leg rest length `0.

Each of these schemes is then qualitatively and quantitatively compared to the human
2These sensory afferents may be either directly or indirectly estimated using information from, among other sensors,

the neural pathways (spinocerebellar) that convey information about the whole limb orientation and limb length [80].
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Figure 10.3: (A) Illustration of the SLIP motion under the split-belt condition. qi’s are states at apex
(AP- or AP+) and ri’s are states at maximum compression (MC). (B)-(F) are different schemes for
control during a “step.” A deadbeat controller associated to the slow belt (B) or fast belt (C) is
used. The rest of the controller schemes (D)-(F) alternate between slow-belt and fast-belt deadbeat
controller in different phases.

trial data that were provided by Professor Amy Bastian of Department of Neuroscience at the Johns

Hopkins University. Julia Choi ran the experiment; the experiment is similar to the experiment that

we discuss in Chapter 11.2. Two major differences are (1) the participants for this study ran with

their hands holding onto the treadmill railing and (2) the belt speed ranges were different.
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10.3 Results and Discussion

10.3.1 Results: SLIP Predictions vs. Human Data

Our numerical simulations revealed that the first controller scheme [Figs. 10.3 (B), 10.5,

10.6] best represented the human trial data (Fig. 10.4). That is, the relative scale of the fast leg data

to the slow leg data (either greater or less than the other) were most consistent across a multitude

of observed measurements. Some of the other controller schemes produced values that were only

feasible on limited split-belt speeds.

Even for the best controller scheme, not all quantities could be perfectly matched to the

human trial data. For instance, there were no solutions to the 1.5m/s-3m/s split-belt velocities

(Fig. 10.4). We attribute the mismatches to the simplistic assumptions made using the SLIP model

and the deadbeat controller (linearization). However, the fact that one scheme in our simple frame-

work could parsimoniously represent the general trend of the data while the other schemes failed,

reveals a possible strategy that our bodies might employ.

10.3.2 Discussion

In this chapter we used a SLIP model with various compositions of deadbeat feedback

controllers to assess how humans might perform under a split-belt condition without adaptation.

Surprisingly one model stood out to match large portions of gait measurements from humans. We

introduced two reference frames {W} and {B} to transform from split-belt to overground represen-

tations.

Our results on human feedback control are based on strong assumptions. Hence future

research may focus on fine-tuning the detailed assumptions that we made: (1) humans may use
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two-step deadbeat controller rather than one-step deadbeat controller; (2) further justification is

needed to support deadbeat in the fore-aft direction xB,AP1
∗ ; (3) we need to identify a set of control

inputs (e.g., leg hip joint) that humans utilize during running; (4) we need to identify differences in

recovery strategies or rates between treadmill and overground running [26];
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Figure 10.4: Early adaptation stage of split-belt running trial. Filled circles are the fast leg, open
circles are the slow leg. The third row shows the leg spring stiffness (normalized by mass) during
compression and decompression phase of the stance. The height at apex for a slow leg (fast leg,
resp.) shows the apex height immediately after the slow-leg (fast-leg, resp.) liftoff.
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Figure 10.5: Simulation of the scheme Fig. 10.3 (B) for belt speeds 2 and 2.5 m/s. Notice that the
relative scale of the fast leg data to the slow leg data are consistent with the human trial experiment
shown in Fig. 10.4.

125



CHAPTER 10. SLIP MODEL WITH DEADBEAT FEEDBACK CONTROL

y 
[m

]
[m

]

[m
]

x [m]

stride stride

stride

Figure 10.6: (Continuation of Fig. 10.5) The % stance time is the stance time of each leg with
respect to its stride (two consecutive steps) time. The treadmill-position-error plot shows one of
the mismatches of the model to the human trial: the SLIP model drifts forward when running on a
split-belt treadmill.
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Chapter 11

Blackbox Closed-Loop System

Identification

In this chapter, we address the overall closed-loop system’s recovery rates at different

speeds of tied-belt running as well as during late adaptation. To the best of our knowledge, this rep-

resents the first systematic effort to identify the stride-to-stride dynamics of human running through

a set of systematic perturbation experiments.

11.1 Blackbox Model

Similar to Section 10.2, we use Poincaré return maps to assess the stability of the closed-

loop system. We make a basic assumption that human subjects, in general, actively control to

maintain their bodies’ COM forward position x, height y, and forward speed ẋ from apex to apex
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Table 11.1: Parameters for segmental analysis from [40]. Note, we omitted “Forearm, hand” and
“Upper arm” segments (not listed here) discussed in [40].

(following the notation introduced in Section 10.1.3):

qW,AP1
i+1 = ACLq

W,AP1
i +Bwwbelt,i (11.1)

yW,AP1
i = IqW,AP1

i (11.2)

where wbelt,i , [vTDbelt,i abelt,i]T and I is a 3 by 3 identity matrix. We perturb human running

subjects by abruptly changing treadmill belt speeds. To make the system identification simpler we

fit after the perturbation:[
qW,AP1
N qW,AP1

N−1 · · · qW,AP1
2

]
= ACL

[
qW,AP1
N−1 qW,AP1

N−1 · · · qW,AP1
1

]
(11.3)

We use least squares fit to find the matrixACL. Our goal here is to identify the closed-loop feedback

controller and compare the eigenvalues during slow-belt running, fast-belt running, and split-belt

running (late adaptation).

11.2 Experiments: Human Split-Belt Treadmill Running

11.2.1 Experiment Setup and Data Analysis

As a preliminary study, three healthy human subjects participated for this study. All

subjects gave informed written consent before participating. The data was collected with a help

from Julia Choi and a courtesy of Professor Amy Bastian at the Motion Analysis Laboratory at the

Kennedy Krieger Institute.

128



CHAPTER 11. BLACKBOX CLOSED-LOOP SYSTEM IDENTIFICATION

−0.6
−0.4

−0.2
0

0.2
−0.5

0

0.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

z [m]

x [m]

y 
[m

]

−0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

z [m]

frontal

y 
[m

]

−0.6−0.4−0.200.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x [m]

sagittal

y 
[m

]

−0.6−0.4−0.200.2

−0.5

0

0.5
x [m]

transverse

z 
[m

]

Figure 11.1: 3D kinematic data of marker positions. Note, for the actual data collection, we did
not collect wrist and elbow positions because those values did not have major contributions to the
overall COM dynamics. The filled green circle is the approximated COM using the segmental
analysis discussed in the text.

Data acquisition The experiment setup for this study was similar to that of Reisman et al. [83]:

We placed infrared (IR) markers on subjects’ left and right shoulder, pelvis, hip, knee, ankle, and

toe. Those markers were tracked in 3D using Optotrak (100 Hz). To detect stance phases, we used

contact switches attached on the bottom of subjects’ shoes (two near the front and two near the

back of each shoe). The speed of the treadmill belt (encoder readings from the belt motors) and the

foot contact switches were obtained at 1000 Hz. We interpolated (by a factor of 10) the kinematic

tracking data using piecewise cubic splines to match the sampling rate of the treadmill belts and

foot contact switches. Using the kinematic tracking data (Fig. 11.1), we approximated the COM of
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subjects using the segmental analysis [40]; the parameter values are shown in Table 11.1.

Lateral balance The human subjects ran without holding onto the treadmill railing. Because

running usually involves closer foot placements toward where the belts are split, it was important

for them to maintain lateral position to avoid stepping onto the other belt during the perturbation

experiment where the two belt speeds were different. To guide human subjects to run in the middle

of the treadmill, a visual object was placed 4 to 5 feet in front of human subjects centered in the

middle of the treadmill.

Metronome-based perturbation The experiment paradigm is illustrated in Fig. 11.2. To study

how humans recover from perturbations, belt speeds were changed during their normal tied-belt and

split-belt steady-state running to observe the recovery rate of human subjects. To produce consis-

tent perturbations, we began by measuring human subjects’ preferred stride frequencies (E0 phase,

Fig. 11.2). Subjects were asked to synchronize their stepping patterns to match the metronome

when heard; the metronome played at one of those measured frequencies. The metronome was

activated for 5 to 8 consecutive strides and turned off at the onset of a perturbation; the metronome

was turned off to allow subjects to recover at their own preferred cadence. The amount of time the

metronome was on was randomly chosen to avoid a direct anticipation of the belt perturbations.

After approximately 20 steps, the metronome started again to synchronize the stepping pattern for

the next perturbation. Subjects were free to choose which leg to synchronize with to the metronome.

Mostly they picked one leg and used that leg to match with the metronome for the most of their trial.
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Experiment paradigm The goal of our experiment (Fig. 11.2) was to obtain and compare the

eigenvalues (recovery rate) of ACL during E1 (slow belt speed), E3 (fast belt speed) and E5 phase

(split belt, late adaptation) of the trials. The subjects were trained during E4. Near the end of E4,

we measured the subjects stride frequency; we used those frequencies to set the metronome for E5.

11.3 Results and Discussion

11.3.1 Results

Figure 11.3 shows a typical data set from our experiment. As mentioned in Section 11.2.1,

we use the segmental analysis to obtain the COM position. The COM velocity is calculated using

the central difference method. Notice that due to the belt motor dynamics of the treadmill, the

perturbation (belt speed changes) lasts for about 5 steps.

For our fitting, we reduce the data set by taking Poincaré sections at AP1 (Section 10.1.1).

Figure 11.4 shows the superposition of the collected data corresponding to each type of perturba-

tions. For each type of perturbations patterns emerge in the recovery strategy. Due in large part to

unintentional offsets between the two belt speeds and the marker placements, we see step-to-step

oscillations in the data.

Figure 11.5 shows a qualitative overview of changes that occur during different phases.

The effects of different running speeds and adaptation can be seen.

We look at stride-based (instead of step-based) recovery strategy to avoid overfitting step-

to-step oscillations. As mentioned in Section 11.1 we fit the linear model to the transient responses

right after each perturbation. Figure 11.6 shows the transient responses after each perturbation for

different trials (E1, E3, and E5) and simulations using the fitted AstrideCL .
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To develop a statistical understanding of the possible distribution of the eigenvalues of

AstrideCL (E1), AstrideCL (E3), and AstrideCL (E5), we perform bootstrapping: we uniformly sample the

collected data set (with replacement) and fit for ACL. Iterating that for 500 times and binning the

eigenvalues of ACL from each fitting, we get Fig. 11.7. We see similar eigenvalues between E1

(slow belt) and E3 (fast belt). We see an eigenvalue very close to the origin indicating a deadbeat

(either 1 or 2 step deadbeat) like structure. Figure 11.4 shows a quick recovery from perturbations

in yAP1. Furthermore, we see changes in eigenvalues between E1 (or E3) and E5 (mid or late

adaptation). The near zero eigenvalue increased significantly in E5.
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Figure 11.4: Superposition of belt speed and acceleration perturbations of similar types during
E3 phase and their corresponding COM responses plotted against steps. The first row shows the
belt speed at at every touchdown. The second row shows the belt average acceleration during i-th
stance phase. The third row shows the fore-aft position of the COM at apex. The fourth row shows
the height of the COM at apex. The last row shows the COM forward speed at apex. Because
we do not distinguish left versus right legs, step-to-step oscillations are introduced when there are
unintentional offsets in belt speeds and marker positions.
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11.3.2 Discussion

In this chapter, we fitted a linear model to the human transient response to belt-speed

perturbations under different belt speeds and adaptation. We removed the effects of step-to-step

oscillations by examining stride-to-stride mapping instead.

Closed-loop versus open-loop We fitted a closed-loop model which is composed of dynam-

ics from musculoskeletal mechanics, muscle fatigue, neural delays, neural control, autoregressive

noise, and many other factors. Hence we do not attribute the improvement or degradation of loco-

motor stability to any one specific factor. To elucidate the roles that each factor play would require

further analyses, e.g., obtaining EMG signals to leg muscles.

Effects of running speed on stability In our result, we observed no significant difference in the

eigenvalues between slow and fast running. This result does not rule out the Seyfarth et al.’s [105]

prediction that increased running speed will improve (up to a limit) in the robustness for open-loop

SLIP models. In human walking, on the other hand, England and Granata [29] showed that an

increase in gait speed decreases gait stability. These results highlight the rolls that neural control

and body mechanics play under different locomotor tasks. So, it may be that in unconstrained

overground running that recovery rates in yAP1 and ẋB,AP1 may be deadbeat; our experimental

approach cannot support or refute that possibility.

Effects of adaptation Suppose tied-belt stride-to-stride running is the product of two identical

step-to-step mappings: AstrideCL = AstepCL A
step
CL . If the matrix AstrideCL has only one eigenvalue at zero,

then AstepCL must have one eigenvalue at zero as well. Then, since the fast and slow tied-belt running
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data each suggested one eigenvalue at zero for the stride-to-stride mapping (Fig. 11.7 first and

second columns), then the step-to-step mappings for both fast and slow tied-belt running must also

each have an eigenvalue at the origin. If split-belt running during late adaptation is the composition

of a fast step and a slow step, then the stride-to-stride split-belt mapping must also have at least one

eigenvalue at the origin. Since our result suggested an eigenvalue that is significantly away from

the origin during late adaptation (Fig. 11.7 third column), this suggests that the adapted split-belt

running is categorically different than simply the mathematical composition of a fast step with a

slow step. Future research would benefit from fitting the step-to-step mapping in order to identify

AstepCL directly.

Did we rule out deadbeat control? No and Yes. We do not refute that humans use deadbeat

control, say, in yAP1. In fact, we partially support the argument because the height yAP1 seems to

recover within one or two steps (Fig. 11.6). Our result do refute the claim that humans use deadbeat

control, say, in xW,AP1 and ẋW,AP1. It is not surprising however because such task of recovering in

one step in xW,AP1 (i.e., maintaining a fore-aft position while running on a treadmill) is not what

humans do usually when running over ground (Section 10.1.3).

Effect of short-timescale feedback control on long-timescale adaptation We address how the

short-time scale feedback control may place an upperbound on the rate of long-timescale adaptation.

We do so by designing a simple control law that will make the eigenvalues of the closed-loop system

to [−0.1 0.3 + 0.6i 0.3 − 0.6i] (similar to what we see in Fig. 11.7). Furthermore, we assume a

hypothetical adaptive mechanism,

αi+1 = αi−1 − η(yAP1
i − yAP1

i−1 ), (11.4)
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Figure 11.8: SLIP’s closed-loop eigenvalue magnitudes (y-axis) as a function of adaptation rate η
(x-axis). The system is stable when 0 ≤ η < 0.8.

which minimizes the difference in height between two consecutive steps by changing the offset α

for the corresponding leg’s touchdown angle; the rate that this adaptation takes place is denoted

η. The closed-loop eigenvalues for the overall system, which includes this adaptive mechanism, is

stable only for certain adaptation rates (see Fig. 11.8). If we plot the closed-loop eigenvalues of the

overall system, which includes this adaptive mechanism, as a function of the adaptation rate η, we

get Fig. 11.8. What we see here is that if the adaptation rate goes beyond 0.8, the overall system

becomes unstable. While we do not claim that humans do this exactly, it does suggest a limit to the

learning rate based on the overall stability argument, and such model-based predictions represent an

exciting topic for future research.

141



142



Chapter 12

Conclusion

In this dissertation, we examined biological sensorimotor behaviors of two species: cock-

roach antenna-based wall following and human running on a split-belt treadmill. In Part I, we

developed mathematical models and performed biological and robotic experiments and computer

simulations to predict or support the proportional-derivative-like neural controller that cockroaches

might employ during high-speed antenna-based wall following. In Part II, we modeled human

running as a spring-loaded inverted pendulum with compositions of one-step deadbeat feedback

controllers. Based on those assumptions, our result showed that the compositions of slow-belt

feedback controllers best represented steady-state human running during early adaptation. We com-

pared the eigenvalues of the linearized stride-to-stride closed-loop return map during late adaptation

with those during baseline tied-belt running. Although not conclusive, our results suggested larger

eigenvalues (i.e., slower recovery rate) during late adaptation, and, these two results taken together

strongly suggest that the split-belt running is categorically different than simply the mathematical

composition of a fast step with a slow step.
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Although American cockroaches and humans are quite different in both morphology and

physiology, similar methods and tools proved useful to identify animal feedback control strate-

gies. Specifically, the notion of templates and anchors [33] provided a general guide in terms of

our ability to generate mathematical models to elucidate specific biological behaviors. Sensorimo-

tor perturbation experiments elicited internal dynamics to allow identification of the mathematical

model parameters. Control theory analyses with separate body mechanical and neural controller

models allowed direct predictions of the structure of the neural controller.

As researchers seek and develop more comprehensive or detailed models that can capture

complex behaviors in biological systems, future studies in modeling biological systems may benefit

from a more formal treatment of how various models (e.g., operating at different time scales) relate

from one another. For instance, using the analogy of computer software and hardware abstraction

layers discussed in Section 1.2, developing interpreters (or “compilers”) from one level to another

may be one way to address the growing number of complexities in models. Developing models

and determining how they relate to one another, along with biological and robotic experiments

and computer simulations, may provide unique insights into how animals integrate dynamic and

complex sensory, neural, and musculoskeletal systems to achieve locomotion, i.e., move from one

place to another.
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