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Summary. The Lateral Leg Spring model (LLS) was developed by Schmitt and
Holmes to model the horizontal-plane dynamics of a running cockroach. The model
captures several salient features of real insect locomotion, and demonstrates that
horizontal plane locomotion can be passively stabilized by a well-tuned mechanical
system, thus requiring minimal neural reflexes. We propose two enhancements to the
LLS model. First, we derive the dynamical equations for a more flexible placement
of the center of pressure (COP), which enables the model to capture the phase
relationship between the body orientation and center-of-mass (COM) heading in a
simpler manner than previously possible. Second, we propose a reduced LLS “plant
model” and biologically inspired control law that enables the model to follow along
a virtual wall, much like antenna-based wall following in cockroaches.
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1 Introduction

For decades, researchers have posited low-dimensional spring-mass models to de-
scribe the COM dynamics and ground reaction forces in a broad variety of running
animals [2, 4, 9, 11, 12, 19]. In order to understand the complex body mechanics of
running animals, they have simplified the problem by decoupling the mechanics into
the sagittal and horizontal planes. For animals whose locomotion occurs primarily in
the sagittal plane, the locomotion dynamics have been modeled as a spring-loaded
inverted pendulum (SLIP) [2, 16, 26, 27]. Insects, whose motion occurs primarily in
the horizontal plane, have dynamics that have been approximated by a lateral leg
spring (LLS) model [23, 24]. Results of the LLS suggest that the mechanical struc-
ture of an insect may be used to produce stable periodic gaits when running at
high speeds, without relying solely on proprioceptive reflexes and detailed neural
feedback for stability.

The LLS models insect locomotion, specifically that of the cockroach Blaberus
discoidalis. Cockroaches run using an alternating tripod gait [4]. Experiments have
shown that the forces produced by this tripod of legs can be well represented by
a single effective leg [10, 15]. Since the total mass of the legs of the insect is less
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than 6% of the total mass, the LLS model approximates each alternating tripod as
a single massless, spring-loaded virtual leg that attaches to the midline of the body
at a point called the center of pressure (COP). As illustrated in Fig. 1, the COP
is offset from the center of mass (COM) by a displacement, d, where d may lie in
front of the COM (d > 0) or behind the COM (d < 0). The model assumes that the
foot pivots freely without slipping about its attachment to the ground, rfoot, and
that the leg can rotate freely about the COP. This implies that no moments about
the foot or COP can be generated, and forces will be applied to the body along the
length of the leg. A full stride for the model consists of a left and right step phase.
A step phase begins with the relaxed spring extended at an angle ±β0 with respect
to the body centerline. The body moves forward, compressing and extending the
elastic spring, until the spring returns to its original length, at which point the leg
is lifted, the next leg is placed down, and the cycle repeats.

Changes in the foot placements between left and right step phases result in a hy-
brid dynamical system. Systems with piecewise-holonomic constraints such as these
can display asymptotic stability [21]. For gaits encountered in the LLS model, peri-
odic motions exhibit neutral eigendirections due to energy conservation and SE(2)
invariance. Therefore, stability is partially asymptotic in the sense that perturba-
tions to periodic orbits in the direction of the eigenvectors of conserved quantities
and symmetries do not grow or decay, but simply result in movement to a differ-
ent, stable gait. Gaits in the LLS model display partial asymptotic stability in the
heading direction and angular velocity as a result of angular momentum trading
between left and right step phases. The mechanical structure of the model therefore
self-stabilizes the locomotion system [23]. If d < 0 then the gaits are asymptotically
stable in heading and angular velocity, i.e. the body approaches straight trajectories
if the trajectory begins in the basin of attraction for the stable periodic orbit. If
d = 0, the periodic orbits exhibit neutral stability in angular velocity and asymp-
totic stability in heading. If d > 0, periodic orbits are unstable. To show stability,
one takes Poincaré sections at the beginning of a full stride, and numerically ap-
proximates the fixed points and eigenvalues of the linearized return map.

While the energetically conservative fixed and moving center of pressure models
of [23, 24] reproduce many salient features of the kinematics and forces exhibited
experimentally by Blaberus discoidalis, detailed comparisons illuminate limitations
of the LLS. In particular, the fixed COP models previously investigated consider only
COPs on the fore-aft body axis, and consequently only produce sinusoidal variations
in θ; in contrast, the animal produces cosinusoidal variations [28]. This is due to the
fact that a fixed COP located behind the center of mass along the fore-aft body axis is
only capable of producing a positive or negative moment, rather than a moment that
changes sign during each step phase. Additionally, fore-aft and lateral force profile
magnitudes are typically reversed in comparison to those observed experimentally.
Allowing the leg attachment point to vary from fore to aft in the moving COP model
serves to address the qualitative discrepancies in the moment and yawing profiles.
However, while qualitatively correct yaw and moment profiles are produced by the
model, quantitative comparisons reveal that the variations in each remain an order of
magnitude smaller than those observed experimentally. An activated muscle model
introduced by Schmitt and Holmes [25] attempts to correct the moment and yawing
oscillations by introducing hip torques and muscle activation. While these authors
obtained correct moment profiles in this manner, they are obtained at the expense
of increased model complexity and inverted fore-aft force profiles.
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The goal of this paper is to modify the LLS model to better match the ac-
tual cockroach, with as few parameters as possible, and to extend it to serve as a
plant model for control. To compare our model to the previous LLS, we consider
features salient to cockroach locomotion, such as stability, body motion kinematics,
forces and moments, stride frequency, etc. For control, we use a biologically inspired
antenna-like measurement [6–8], and show numerically that the closed-loop system
dynamics asymptotically track a virtual wall in the environment. In addition, the
controller maintains the LLS model’s energy conserving nature.

2 Dynamics and Simulation of an Enhanced LLS Model

The goal of this research is to control the LLS model from step-to-step to achieve
a locomotion objective such as following along a wall and avoiding obstacles in a
planar environment. Using a controlled form of the LLS as a “plant model” may
provide insights into our longer term objective of controlling a legged robot such as
RHex [1], Sprawl [5], or Whegs [20]. It is known, for example, that RHex exhibits a
dynamically similar gait in both the sagittal and horizontal planes to a cockroach.
Toward that end, this section explores the effects of COP placement and movement
on the steady-state dynamics of the LLS model. The goal is to uncover the simplest
possible mechanism to match biological data, while still providing the possibility for
control.

2.1 LLS Dynamics with 2-D COP Placement for a Left Step

We propose an alternative (or a simpler) solution to the moving COP; laterally
offset the fixed COP (i.e. position the COP in the positive x-direction of the body
frame {B}). This has a similar effect as the moving COP scheme; the leg generates
a clockwise torque during the first half of a step, and an opposite torque during the
last half, assuming the body angle, θ, is greater than zero at the start of a left-leg
step.

In order to validate our alternative solution, we represent the position of the
COP during the left-leg step as:»

d1

d2

–
=

»
b1 + c1(ψ − θ)
b2 + c2(ψ − θ)

–
, (1)

where d1 and d2 are along the x and y-axis of the LLS body frame {B}, and ψ
and θ are shown in Fig. 1. In this representation, we allow the COP to be either
fixed (c1 = c2 = 0) or moving (c1 6= 0 or c2 6= 0) from any offset (b1 and b2) in the
body frame {B}. This freedom allows us to test different COP placement protocols,
including the case where the COP moves backwards while offset to the side [28].
This representation implicitly assumes that during the next right-leg step, the COP
position will be mirrored about the y-axis about the body frame {B}. If d1 = 0,
then we have the equation introduced in [23].

Consider the generalized coordinates r = (ζ, ψ, θ), as depicted in Fig. 1. For the
left step phase, the Hamiltonian of the LLS system implemented with a linear spring
is
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Fig. 1. Left: A schematic model of the LLS model, showing the coordinates used
for expressing Hamilton’s equations. Right: Illustration of multi-step dynamics. The
dynamics of each left step phase are given by (4). A right step can be achieved by
first flipping the states about the y-axis, integrating the left step map, and then
flipping back. Breaking this chain in the correct place leads to a single “integrate
and flip” return map, f(q) := MfL(q), that will simplify controller design.

H =
p2
ζ

2m
+

p2
ψ

2mζ2
+
p2
θ

2I
+
k(η − l0)

2

2
(2)

where ζ, ψ, k, l0, I, and m denote the distance from the foot placement to the
COM, the angle from the foot placement to the COM, the linear spring stiffness,
the relaxed leg length, the moment of inertia, and the mass, respectively. The length
of the leg is given in terms of the COP location by

η =
h
b21 + b22 + ζ2 + φ

`
2b1c1 + 2b2c2 + (c21 + c22)φ

´
+ 2ζ

`
(b1 + c1φ) cosφ+ (b2 + c2φ) sinφ

´i1/2

. (3)

Hamilton’s equations of motion with our new COP and the linear leg spring
model are given by

ζ̇ =
pζ
m
, ṗζ =

p2
ψ

mζ3
− k(η − l0)

η

`
ζ + (b1 + c1φ) cosφ+ (b2 + c2φ) sinφ

´
,

ψ̇ =
pψ
mζ2

, ṗψ = −k(η − l0)

η

`
b1c1 + b2c2 + (c21 + c22)φ

+ ζ(b2 + c1 + c2φ) cosφ− ζ(b1 − c2 + c1φ) sinφ
´
,

θ̇ =
pθ
I
, ṗθ = −ṗψ,

(4)

where φ , ψ − θ. We assume when a step commences, the spring is uncompressed,
η = l0. Because the spring starts at and returns to rest length at step transitions,
no step-to-step impacts dissipate energy, and thus energy is conserved in the LLS
model.
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2.2 Hybrid Step-to-Step Dynamics

The generalized coordinates r = (ζ, ψ, θ) and their conjugate momenta, pr, provide
a convenient set of local coordinates for expressing the within-step Hamiltonian
dynamics (4) of the LLS. However, they provide an inconvenient representation when
considering the step-to-step dynamics because they depend on the frame {F} that
moves every step. As a remedy, we follow [23], and use q = (s, g) ∈ S×SE(2), where
s = (v, δ, θ̇) ∈ S ⊂ R3 are the “internal” states, and g ∈ SE(2) is the pose. The speed,
v, is the magnitude of the COM velocity, and the relative heading, δ, is the angular
difference between the orientation, θ, and the angle of the COM velocity vector
(see Fig. 1). The local coordinates (θ, x, y) parameterize SE(2) without singularities
through the usual relationship,

g =

24cos θ − sin θ x
sin θ cos θ y

0 0 1

35 (5)

(written as a homogeneous transformation matrix) so we conflate the two when
convenient and often write g = (θ, x, y) in an abuse of notation. The dynamical
equations can be recast using the state variables q, which we omit for simplicity of
presentation. Instead, we consider the state qi, i = 0, 1, 2 . . . as the discrete state,
where qk = (sk, gk) corresponds to the state at the beginning of the kth step. If
h ∈ SE(2) and q = (s, g) ∈ S × SE(2) then we define the left action of SE(2) on
S × SE(2) by hq = (s, hg), where hg is the group product on SE(2).

At the beginning of the kth step (for k even), the leg is at rest length, η = l0,
and the leg touch-down angle starts at β0 relative to the y-axis of the body frame
{B}, β = β0. This information, together with the state qk = (sk, gk), uniquely
determines the initial conditions for integration of Hamilton’s equations. When η
again reaches the spring rest length l0, the hybrid system transitions to the right
step, as described below. The final values of (r, pr) at the end of the kth step uniquely
determine the states qk+1 = (sk+1, gk+1), used to start the subsequent step. Thus,
the left step dynamics map the state fL : qk 7→ qk+1 according to a simple change
of variables into coordinates (r, pr), followed by integration of Hamilton’s equations.
By inspection of Hamilton’s equations (4), note that the left-step mapping is left
invariant under rigid transformations of the initial condition, since the equations are
not functions of (x, y), and θ never shows up without −ψ, both of which are with
respect to the world frame. Hence, fL(s, hg) = hfL(s, g). Note that this implies that
qk+1 = (sk+1, gk+1) = fL(s, gk) = gkfL(s, e), where e ∈ SE(2) is the identity.

Let {Ak} denote the location of the body frame at the beginning of the kth

step. In other words, gk is the transformation from {Ak} to the world frame {U}.
For k odd, the right leg is down, and Hamilton’s equations (4) are identical, so
long as we express them in terms of a left-handed frame. We do this by taking a
mirror image around the y-axis of frame {Ak} at the beginning and end of the kth

step (k odd), to write down the right step map in terms of the left one. This can
be expressed in terms of local coordinates q = (v, δ, θ̇, θ, x, y)T as first “flipping”
(δ, θ̇, θ, x), integrating the left step map, and then flipping back, namely

fR(q) = MfL
`
Mq), where M = diag {1,−1,−1,−1,−1, 1} . (6)

Note that MM = I. We chose to flip about the y-axis for notational simplicity, but
in principle any left-handed frame would work. This mapping leaves the right step
map left-invariant under SE(2).
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For finding symmetric steady-state gaits, it will be convenient to define a special
step-to-step return map that amounts to an “integrate and flip” (see Fig. 1, Right).
For a complete stride that includes a left step and then a right step, the stride-to-
stride mapping is given by fL−R = fR ◦ fL, namely

fL−R : q 7→MfL(MfL(q)) = (f ◦ f)(q), where f(q) := MfL(q). (7)

This approach eliminates the need to distinguish between left and right steps for
control purposes. Note, however, that f is not left-invariant, even though both fL
and fR are left-invariant. The resulting state evolution is given simply by

qk+1 = f(qk), (8)

keeping in mind that for odd steps, the value for qk in this step-to-step formulation
has already been “flipped”.

2.3 Simulation Methods

We simulated the LLS model using Matlab and the convention discussed in Sect. 2.2;
for every right-step, convert it to a left-leg step, simulate the within step dynamics,
and then convert it back to a right-leg step. This enabled us to specify the COP
position using (1) and integrate the equation of motion (4) without the explicit
representations of a left or right step in the equations. We used Matlab’s ode45

with time varying step size to integrate the equations of motion. The integration
terminated as soon as the compressed leg returned back to its relaxed length l0. To
specify a moving COP, we selected bi and di(kT ), i = 1, 2 where di(kT ) denotes the
COP position at the start of k-th step. To meet this restriction, ci is allowed to vary
at each step, although it shouldn’t vary at an equilibrium point.4

We found the equilibrium point q0 = (v, δ, θ, θ̇, x)T using the Levenberg-
Marquardt method in Matlab’s fsolve function. While fixing the state v to a
desired value, the function minimized the error difference of a step, f(q) − q.
We also found the stride-to-stride Jacobian, Astride, and step-to-step Jacobian,
Astep, about the equilibrium point using a central difference approximation. The
ith columns are given by [Astride]i = (fL−R(q + eiε) − fL−R(q − eiε))/2ε and
[Astep]i = (f(q + eiε) − f(q − eiε))/2ε, where ε = 1 × 10−6 and ei is the i-th
column of 5× 5 identity matrix. In Sect. 3.2, we discuss the LLS stability from the
eigenvalues of Astride, while in Sect. 4, we use Astep to control the LLS model.

Unless otherwise noted, we used the following parameters and measurements of
death-head cockroaches, Blaberus discoidalis, used in [19,22,24]: m = 0.0025 kg, I =
2.04×10−7 kg m2. The choices for l0, k, v, and β0 were chosen to satisfy constraints
on the stride length (Ls = 0.02 − 0.025m) and stride frequency (fs = 10 Hz), and
generally fell in the ranges k = 2.25 − 3.5Nm−1, l0 = 0.008 − 0.015m, β0 =
0.8− 1.2 rad, di = 0.002m, and v = 0.2− 0.25m/s.

4 Instead, the values for bi and ci can be specified directly [24]. This causes di(kT )
to change depending on the quantity (ψ(kT )− θ(kT )).
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Fig. 2. Left: A stride of the original LLS model (d1 ≡ 0) with a fixed COP
(solid) and a moving COP (dashed). The used parameters for the fixed COP are:
v = 0.226 cm/s, k = 2.4 N/m, β0 = 1 rad, l0 = 0.0102 m, d2 = −0.0025 m;
for the moving COP are: v = 0.2235 m/s, k = 3.52 N/m, β0 = 1.125 rad, l0 =
0.0082 m, d2 = 0.0025 m → −0.0025 m. Right: Experimental measurements of
Blaberus discoidalis from several sources, [14,15,18]; figure from [22]. (Notice, since
the right figure doesn’t start from t = 0, the stride period is roughly the same
between the two figures.)

3 Analysis of COP Placements

3.1 Effects of various COP placements

In order to match the LLS system with an actual cockroach data (Fig. 2), we need
to understand the effects of bi and ci (or di(kT )) on the overall system. To do so,
our initial attempt is to consider various protocols for the COP placements:

(a) Increment d1 while d2 = 0;
(b) Increment d2 while d1 = 0;
(c) Increment the amplitude of a moving d2 while d1 = 0;
(d) Increment the offset of a moving d2 while d1 = 0;
(e) Increment d1 while d2 is moving;

Figure 3 illustrates these protocols schematically for a left step; for a right step, the
COP path is mirrored about the body y-axis. For each protocol and their parameter
increments, we found the corresponding equilibrium points and simulated a full
stride (starting with a left step) from the equilibrium points. The results from the
simulations are shown in Figs. 4, 5, and 6. For each incrementing parameter, we
plotted the result using different shades of gray. The first two columns of a subfigure
shows the COM velocity and leg-spring forces in lateral and forward directions (i.e.
x and y directions in the inertial frame {U}), the body angle, and the moment. The
last column shows d1 (solid line) and/or d2 (dashed line) as a function of time, COM
path, and the eigenvalues as a function of the incrementing parameter. The rest of
the parameters (i.e. k, v, β0, and l0) were chosen to closely match the stride length
and frequency of cockroach data [22].

Protocol (a): Fixed COP on lateral axis. Figure 4(a) shows results of a simu-
lated LLS model in which we fixed the COP at various positions along the x-axis of
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y

x

(a) (b) (e)(d)(c)

{B}

Fig. 3. COP placement protocols for a left step with respect to the body frame
{B}. The solid dots indicate fixed COP positions; the arrows indicate the direction,
magnitude, and offset of moving COPs.

the body frame {B}. As desired, when d1 > 0, the profiles of the body angle, θ, and
the moment waveforms resemble actual cockroach data (Fig. 2), as well as that of
the moving COP proposed by Schmitt and Holmes [24] (reproduced in Fig. 2, Left).
Note that the positive cosinusoidal waveforms of the body angle (which agrees with
the biological data) for a fixed COP only occur when d is on the positive x-axis of
{B}. Fig. 4(a) indicates that the increase in |d1| amplifies the body angle and the
moment waveforms while the other measurements, including the stride length and
frequency, remain relatively constant. This isolated effect of d1 will be useful later
on when we fit the data to another waveform. In addition, the eigenvalue plot shows
that the system becomes unstable when d1 < 0 and stable when d1 > 0.

Protocol (b): Fixed COP on fore-aft axis. As a comparison to the previous
result, Fig. 4(b) shows the effects of different locations d2 for a fixed COP. Although
the body angle is sinusoidal (not cosinusoidal, like the cockroach), the location of
d2 does have a larger impact on the magnitude of body angle and the stability
of the system (steeper slope for the moving eigenvalue) than d1 in the previous
protocol. We speculate that one cause of this differences in impact level is due to
the large value of β0; since β0 = 1.12 > π/4, the leg force is oriented primarily in
the lateral direction rather than the fore-aft direction. Thus, changes in d2 cause
greater moment arm changes than the equal changes in d1. We will utilize this effect
in Sect. 4 by using d2 as our control input. We also note that the body velocity
(and position) and foot forces of this figure matches the previous figure. Although
not shown, as the fixed COP position traverses in this neighborhood, without the
restriction of d1 = 0 or d2 = 0, the body velocity and foot force waveforms remain
relatively constant. On the other hand, the waveforms for the body angle and the
moment go through phase and amplitude changes.

Protocol (c): Incrementing magnitude of a moving COP on the fore-aft axis.
For fore-aft COP motion along the body frame y-axis, Fig. 5(c) shows the effects of
changing the magnitude of COP motion. Unlike the previous protocols, varying the
magnitude of a moving COP causes large changes to all the kinematics, step length,
and step frequency. Although it is not shown here, further increase in magnitude
(also observed in [22]) or reversing the direction (i.e. aft to fore) of the moving COP
drives the system unstable.

Protocol (d): Forward Shifting of a Moving COP. Figure 5(d) shows the effects
of shifting a moving COP in y direction in {B}. It shows that, as the offset b2 in-
creases (or decreases, although not shown), the body loses its cosinusoidal waveform
and eventually becomes unstable. We emphasize that the system does not go unsta-
ble as soon as the offset b2 > 0 nor b2 < 0. Also the instability does not necessarily
occur even though the moving COP remains in front of the COM most of the time.
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(a) Increment d1 = {−0.2, . . . , 0.2 cm} while d2 = 0.
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Fig. 4. See text for description of each COP protocol. The parameters used in
this figure are: m = 0.0025 kg, I = 2.04 × 10−7 kg m2, k = 3.52Nm−1, v =
0.2275m/s, l0 = 0.0127m, β0 = 1.12 rad (or 64.2 ◦). Note, unlike Fig. 2, these
figures have scaled units (e.g. cm and mN) for clarity.
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(c) Increment the amplitude of moving d2 from 0 to 0.2 cm while d1 = 0.
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Fig. 5. The parameters used here are: m = 0.0025 kg, I = 2.04× 10−7 kg m2, k =
3.52Nm−1, v = 0.2235m/s, l0 = 0.0082m, β0 = 1.125 rad.
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(e) Increment d1 = {−0.2, . . . , 0.2 cm} (solid) while d2 (dashed) is mov-
ing from 0.2 to −0.2 cm.

Fig. 6. Parameters used are:m = 0.0025 kg, I = 2.04× 10−7 kg m2, k = 3.52 N/m,
v = 0.2235 m/s, l0 = 0.0082 m, β0 = 1.125 rad.

Along with Protocol (c), we introduce one possible explanation of these results in
Sect. 3.3.

Protocol (e): Lateral Shifting of a Moving COP. Lastly, we look at the result
of incrementing the lateral offset to a moving COP, as shown in Fig. 6(e). The
result resembles that of Protocol (a) in Fig. 4(a); the changes in d1 mostly affect the
magnitude of body angle and moments, but the waveforms all remain qualitatively
the same shape. Also, the increase in d1 has amplified the waveforms, and the moving
COP has stabilized the system even with d1 < 0, in contrast to the results of
Fig. 4(a).

From the results from these protocols, we conclude that we can achieve the
desired cosinusoidal waveforms by laterally offsetting a fixed COP or moving COP.
However, both cases produce body angle and moment variations that remain an
order of magnitude smaller than those of a cockroach. This can be remedied with a
very large – possibly non-physical – COP offset of d1 = 0.025 m ≈ 2l0 and d2 = 0,
which means that the virtual foot touchdown position will be far off to the positive
x-axis in {B} along with the COP. The resulting magnitude of the body angle was
about 2 ◦ (or 0.035 rad) with the moment of 0.3× 10−4 N m. This is within an order
of magnitude of the cockroach variations 5.7◦ (or 0.1 rad) and 1× 10−4 N m in
Fig. 2.
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Fig. 7. Maximum eigenvalue (neglecting two invariant unity eigenvalues for energy
and direction) of the linearized return map as a function of our new, two dimensional
COP locations. The dark gray indicates the parameter regime of maximum stability
and the neutral stability occurs when the contour reads 1. Eigenvalues greater that 3
are empty. The parameter values used are: v = 0.25m/s, k = 2.4Nm−1, l0 = 0.01m,
β0 = 1 rad, and −0.02 m < d1, d2 < 0.02 m.

3.2 Stability as a Function of Fixed COP Position

Figures 4(a) and 4(b) showed the stability plot of the LLS with a fixed COP along
the x and y-axis of {B}, respectively. Figure 7 shows a contour plot of the maximum
non-unity eigenvalues as a function of more general 2D fixed COP positions. Note
that the neutrally stable (i.e. maxλ = 1) gait corresponding to (d1, d2) = (0, 0)
found by Schmitt and Holmes [23] lies along a neutral stability contour through the
origin of the d-plane. There is a large stable region (maxλ < 1) “inside” the neutral
stability contour and an abrupt area of instability in the lower-right corner of the
plot. Notice that the stable region (maxλ < 1) extends to a part of d2 > 0 region
for d1 > 0. This indicates that we can achieve stability for the fixed COP that is in
front of COM, as long as it is sufficiently offset to the right (d1 > 0). We also notice
that around the origin, the gradient of the eigenvalues is greater in the direction of
y-axis than x-axis of {B}. This hints that a small displacement of the fixed COP in
d2 should give us a greater control than that of d1. We utilize this notion in Sect. 4.

Our long-term goal is to match the LLS to biological or robotic locomotion
performance, possibly using the LLS as a plant model for control. Therefore, we
examined the equilibrium state values, δ∗, θ∗, and θ̇∗, in Fig. 8, as a recipe for future
comparisons to biological and robotic systems. As expected, the two contours θ∗ = 0
and θ̇∗ = 0 indicate purely oddly symmetric (sinusoidal) and evenly symmetric
(cosinusoidal) yaw motions, respectively, and these symmetries only occur on those
contours.
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(a) λ (b) δ∗

(c) θ∗ (d) θ̇∗

Fig. 8. Contour map of the maximum non-unity eigenvalue and the equilibrium
points δ∗, θ∗, and θ̇∗. The parameter values are the same as Fig. 7.
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2.04 × 10−7 kg m2, k = 3.52Nm−1, β0 = 1.125 rad. Moving COP (dashed)
v = 0.2235m/s, l0 = 0.0082m, d1 = 0m, d2 = 0.002 → −0.002m. Fixed COP
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(a) (b) (e)(d)(c)

Fig. 10. Comparison between a moving COP and an effective fixed COP during a
left step under different protocols. Fixed COP is denoted by a filled dot, and the
moving COP is denoted by a gray arrow.

3.3 Comparing Fixed vs. Moving COP Models

From the observations above, we consider the relationship between a fore-aft mov-
ing COP and a fixed, laterally offset COP. These two scenarios generate similar
waveforms; in fact, using very similar parameters, we can nearly match the body
motions and forces using these two strategies, as shown in Fig. 9. To find a good
match, we relied on trial and error, using Figs. 4(a) and 5(c) as a guide to adjust
d1 and d2 and we referred to [22] to adjust l0, β0, and k. As shown, the body angle
(yaw) motions match nearly exactly, while for the other measurements, the fixed
COP exceeded the moving COP somewhat in magnitude, although the results are
qualitatively similar.

We compare the moving COP model to a model with a fixed COP on the positive
x-axis of {B}, as follows. As the LLS moves through a left step, the leg intersects
the body centerline at a point that moves fore-aft, as depicted in Fig. 10(a). Suppose
there is another LLS system with a moving COP that traces out the same path,
and has the same foot touchdown position as the fixed COP case. With appropriate
parameters (and possibly a nonlinear leg spring), the fixed COP LLS model might
approximate the moving COP model. By approximating the moving COP with the
fixed COP in this way, we can predict which moving COP protocols might be stable
on the basis of the stability contour map (Fig. 7, Sect. 3.2). Using this approach, we
address below (without formal proofs) unanswered questions from Sect. 3.1.

In Protocol (c), we considered increasing the magnitude of a moving COP. We ap-
proximate this case using the effective fixed COP and effective β0 shown in Fig. 10(b)
and (c); a larger magnitude can be created by moving the effective fixed COP in the
x direction and/or decreasing the value of leg touchdown angle β0. From Fig. 4(a),
we saw that the increase in d1 for a fixed COP improved stability and amplified
the body angle and moment, which agrees with increasing the magnitude of fore-aft
motion in the moving COP, as shown in Fig. 5(c). Similarly, a moving COP that
is shifted forward, as in Protocol (d), can be approximated by shifting the effective
fixed COP forward, as shown in Fig. 10(d). Figure 8(a) shows that the effective fixed
COP will first be stable, but eventually it will be unstable as the offset increases
further.

Earlier, we indicated that the system became unstable when the moving COP
moved from back to front (i.e. aft to fore) along the body centerline. As Fig. 10(e)
shows, the effective fixed COP would then be placed on the left side of the body
centerline which, according to Fig. 8(a), would probably make the system unstable.
This also suggests we can achieve stability for a forward moving COP if we choose
our offsets carefully.
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In Protocol (e), we increased the lateral offset of a moving COP. We can represent
this simply by laterally shifting the effective fixed COP which is similar to Protocol
(a), Fig. 4(a). Indeed that is what we observed in Fig. 6(e). This explains why the
system remained stable when d1 < 0; the effective fixed COP position was to the
right of the COM (d1 > 0). This implies that for cockroaches, if their mechanics
limit the magnitude of d2 , i.e. they cannot have a large c2, then an increase d1 will
achieve the desired stability, or vice versa; this would explain the shift in the moving
COP observed in cockroaches [28].

In summary, the moving COP model is more complex than the fixed COP, but
they have similar performance in matching biological data. Thus, in the next section,
we assume the COP is fixed to the right of the COM within each step, but let the
controller adjust the location of the COP between steps.

4 LLS Control: Wall Following

In addition to their remarkable stability, cockroaches also exhibit extraordinary ma-
neuverability. For example the American cockroach, Periplaneta americana, follows
walls using tactile feedback from their antenna, making up to 25 turns per second
in response to jagged walls in the environment [3, 6].

Despite its simplicity, the LLS model captures many salient features of the
dynamics and stability of steady-state cockroach locomotion. Building on these
strengths, we explored using the LLS as a “plant model” for control. Schmitt and
Holmes [24] tested the idea of moving the COP to steer locomotion. They noted that
briefly moving the COP in front of the COM generates large turns of 20-70◦. Other
possible control parameters, such as the spring stiffness, leg length, and step-length
can also be used for steering, but Full et al. [13] contend that moving the COP is
the most effective, and least fragile. Moreover, moving the COP for steering seems
to be consistent with animal turning behavior [17].

4.1 LLS Plant Model

In Sect. 3, we compared the effects of moving the COP within a step, versus keeping
the COP fixed. Both models can, with appropriate parameters, demonstrate asymp-
totic stability in the relative heading, δ, and angular velocity, θ̇, but neutral stability
in running speed, v ∈ R+, orientation θ, and x (if we’re running in the y direction of
{U}). As discussed above, the moving COP adds complexity but provides very little
advantage over the laterally offset but fixed COP model when it comes to matching
steady-state cockroach data. Therefore, we explored using step-to-step adjustments
of the COP as an input to control the overall body location in g ∈ SE(2). Because
there are no energy losses between steps due to impacts, the controlled LLS remains
piecewise Hamiltonian and energy conserving.

Initially, we explored control laws that varied d1, d2, β0, and combinations
thereof. We found that a highly effective control scheme was to fix β0 and place
the nominal COP to the right of the COM (for left steps), varying only the fore-aft
COP location (d2) from step-to-step. This is consistent with biological observations
that rapid maneuvering in cockroaches occurs with large changes in the fore-aft
COP [17]. Specifically, we used the step-to-step control input
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dk = αe1 + e2uk, where e1 = [ 1, 0 ]T , e2 = [ 0, 1 ]T , (9)

k is the stride number, uk ∈ R is the control input, and α is a scalar. As shown in
Sect. 2, selecting α > 0 ensures that for uk ≡ 0, the system is asymptotically stable
in δ and θ̇, and neutrally stable in v and g. The result is a step-to-step return map,

qk+1 = f(qk, uk), (10)

that is no different from the step-to-step uncontrolled LLS in (8), except that be-
tween steps the COP location can be adjusted according to (9).

4.2 Antenna-Based Output Function

We assume that the LLS controller will have at its disposal proprioceptive measure-
ments at each step, such as its angular velocity, θ̇k, and relative heading, δk, but
not necessarily its position and orientation relative to our arbitrarily assigned world
reference frame, {U}. Therefore, in order for the LLS to achieve some task level
goal in SE(2), it needs exteroceptive feedback. For this, we derive inspiration from
nature, and assume the LLS has a simplified antenna that measures its distance
from a surface in the environment as depicted in Fig. 11.

Our antenna model follows [6–8] and assumes the antenna estimates the distance,
γ, from the body centerline to a “wall” – in this case the y-axis – ahead of the COM
a known, fixed preview distance, `. Under these assumptions

γ = ` tan θ − x sec θ. (11)

The above equation (11) relates the LLS pose to the antenna measurement, γ.
We make no attempt to avoid collisions of the LLS with the virtual wall and for
simplicity, our controller will drive the LLS to align itself directly on top of the y-axis,
though this can easily be extended to drive the LLS to follow at an offset distance
from the wall. Together, the proprioceptive and exteroceptive measurements yields
the measurement function:

h(q) :=
ˆ
δ, θ̇, γ

˜T
. (12)

{U} x
y

Fig. 11. Left: Multiple exposures of the cockroach P. americana negotiating a set
of obstacles at high speed, using feedback from its antennae [6]. Right: A simplified
model of an antenna as a distance-to-wall sensor.
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4.3 Reduced Return Map

To simplify controller analysis and design, we reduced the model, by using trans-
lational symmetry and energy conservation, as follows. Recall that the left- and
right-step mappings, fL and fR are invariant to SE(3), but the step-to-step return
map, f = MfL is not. However, that mapping is invariant to pure y motions (had
we chosen a different left-handed frame, translational invariance would have been
in the direction of the axis of symmetry of the reflection to that frame). This was
by design: our goal for control is wall following, and for simplicity, we have chosen
to follow the y-axis. In addition, the output mapping, h, is y-translation invariant.
Thus we removed the y equation by setting y = 0 at the beginning of each step.
Naturally, we ignored the final value of y when finding an equilibrium as we did in
Sect. 2. To remove v note that

H =
1

2
mv2 +

1

2
Iθ̇2 +

1

2
k(η − l0)

2 = H0 ≡ constant. (13)

So, at each step

v =

»
2

m

„
H0 −

1

2
Iθ̇2 − 1

2
k(η − l0)

2

«–1/2

. (14)

Thus we defined a transformation

TH : (δ, θ̇, θ, x) 7→ (v, δ, θ̇, θ, x, 0) (15)

that assigns y = 0 and computes v from (14). Note that TH is invertible and T−1
H

is the transformation that simply removes the v and y coordinates. Then, we define
the reduced variables and mapping

qr = (δ, θ̇, θ, x) and fr(qrk, uk) = T−1
H

`
f(TH(qrk), uk)

´
. (16)

4.4 Linearized Return Map, Controllability and Observability

As a preliminary control task, we chose to have the LLS follow a virtual “wall”
coincident with the y-axis. To find an equilibrium, we used similar techniques to
those described in Sect. 2 to find equilibrium trajectories, ensuring that x = 0 at
the beginning and end of each step, corresponding to exact wall following. The
result was an equilibrium q∗, such that q∗ = fr(q∗, 0). To address controllability, we
numerically linearized the return map around a nominal equilibrium trajectory, to
obtain the local return map

ek+1 = Aek +Buk

zk = Cek
(17)

where

A =
∂fr

∂qr

˛̨̨
qr=q∗,u=0

B =
∂fr

∂u

˛̨̨
qr=q∗,u=0

, (18)

and ek = qrk − q∗. The linearized output matrix can be derived analytically,

C =

»
∂h

∂qr

–
qr=q∗

=

241 0 0 0
0 1 0 0
0 0 ` −1

35 (19)



18 J. Lee, A. Lamperski, J. Schmitt, and N. Cowan

but to date we only have numerical approximations to A and B. The reduced system
(A,B,C) is stabilizable and observable for the parameters m = 0.0025 kg, I =
2.04× 10−7 kg m2, l0 = 0.01 m, k = 2.25 N/m, β0 = 0.8 rad, and a nominal COP
offset of α = 0.0025 m.

4.5 Antenna-Based Control Strategy

Because the system is completely observable, state feedback is possible; however, we
found that the following simple output feedback to be quite effective:

uk = Kzk, (20)

where zk is the system output from (17). The closed loop system dynamics are
governed by the ek+1 = (A + BKC)ek, so to find a good choice for the gain, K,
we evaluated the eigenvalues of the system matrix (A+BKC). Amidst a variety of
possible feedback gains, we selected K = [ 0, 0.001, 0.1 ], which lead to complex
conjugate pairs of closed loop eigenvalues at −0.4643±j0.2607 and 0.3478±j0.4827.
A demonstration of this controller, executed on the full nonlinear LLS dynamics, is
shown in Fig. 12.
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Fig. 12. Simulation of the controlled LLS following the y-axis using the feedback
control law (20). In this control law, COP lies nominally along the body x, namely
d = [ 0.25cm, 0 ]T (for the left step). The output feedback controller (20) varies
the COP in the d2 direction. In the simulation, the LLS starts out rotated 30◦

counterclockwise from the y-axis, and 2 cm to the right. The figure on the right
shows COM (◦), COP (∗), and foot (×) positions at the start of each step.
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5 Conclusion

In this paper, we revised the LLS model to achieve the same phase relationship
between the θ and δ as a real cockroach, using a fixed and laterally offset COP. Also
we investigated how the COP location governed the overall system stability, and
related the fixed COP model to the moving COP model presented by Schmitt and
Holmes [23].

For control purposes, we reduced the system state to four dimensions, using
translation symmetry and energy conservation. We then applied a very simple
output-based feedback strategy to update the COP location between strides based
on an antenna-like measurement. Using this controller, the reduced system dynamics
were linearly stable. In the future, we will explore using the LLS model as a control
template [12] for horizontal-plane control of running robots.
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