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Templates and Anchors for Antenna-Based
Wall Following in Cockroaches and Robots

Jusuk Lee, Simon Sponberg, Owen Loh, Andrew Lamperski, Robert Full, and Noah Cowan

Abstract— The interplay between robotics and neuromechanics
facilitates discoveries in both fields: nature provides roboticists
with design ideas, while robotics research elucidates critical fea-
tures that confer performance advantages to biological systems.
Here we explore a system particularly well suited to exploit
the synergies between biology and robotics: high-speed antenna-
based wall following of the American cockroach (Periplaneta
americana). Our approach integrates mathematical and hardware
modeling with behavioral and neurophysiological experiments.
Specifically, we corroborate a prediction from a previously re-
ported wall-following template—the simplest model that captures
a behavior—that a cockroach antenna-based controller requires
rate of approach to a wall in addition to distance, e.g. in the form
of a proportional-derivative (PD) controller. Neurophysiological
experiments reveal that important features of the wall-following
controller emerge at the earliest stages of sensory processing,
namely in the antennal nerve. Furthermore, we embed the
template in a robotic platform outfitted with a bio-inspired
antenna. Using this system, we successfully test specific PD gains
(up to a scale) fitted to the cockroach behavioral data in a
“real-world” setting, lending further credence to the surprisingly
simple notion that a cockroach might implement a PD controller
for wall following. Finally, we embed the template in a simulated
lateral-leg-spring (LLS) model using the center of pressure as the
control input. Importantly, the same PD gains fitted to cockroach
behavior also stabilize wall following for the LLS model.

Index Terms— Biological system modeling, templates and an-
chors, unicycle, lateral leg spring, legged locomotion, insect
antenna, bio-inspiration, biomimicry, wall following

I. INTRODUCTION

UNDERSTANDING the control of locomotion presents
challenges and opportunities to both biologists and en-

gineers. On the biological side, we seek to identify gen-
eral principles about how organisms extract salient sensory
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information, transduce this information into neural signals,
and integrate them with the tuned dynamics of a locomoting
musculoskeletal system to successfully navigate and maneuver
in a complex environment. On the engineering side, we seek
to design robust sensorimotor control strategies for robots
that provide an environmental responsiveness to conditions
outside of controlled laboratory settings. Here we demon-
strate how mutual, reciprocal inspiration can benefit both
the fields of neuromechanics and robotics. In the context of
a specific sensorimotor behavior—high-speed antenna-based
wall following—we take a multileveled modeling and robotic
development approach to elucidate the underlying biological
phenomena. This in turn gives us novel strategies for the
design and control of antenna-based mobile robots.

Cockroaches demonstrate remarkable locomotor and nav-
igational capabilities. An American cockroach (Periplaneta
americana), running at up to 80 cm/s, can use its antennae
as tactile probes to track a wall with no visual cues [1]–[3].
It can successfully navigate changes in wall orientation up
to 25 times per second and can begin to respond to a wall
angle change in as little as 30 ms [2]. Such extraordinary
natural performance suggests that tactile sensors might provide
valuable feedback for robots operating with limited visual
salience. More generally, reliable encoding of sensory stimuli
for steering maneuvers and integration of sensory signals with
locomotor dynamics are basic requirements for autonomous
robotic locomotion. As a biological investigation, antenna-
based wall following lends itself to mathematical modeling
at several levels as well as behavioral and neurophysiological
experimentation.

A schematic overview of our research program, which
includes modeling, robotic development, and experimental

Fig. 1. Our research program involves multiple levels of modeling, robotic
experimentation, ethology, and neurophysiology. Here, we present three
models: the antenna-based planar unicycle (APU, Section II), a model for
our Garcia robot (Section IV), and the antenna-based LLS (ALLS, Section
V). Importantly, each level of modeling admits the same control structure,
including parameters (up to scale), that was fitted to cockroach wall-following
data [1]. The two physical systems involved in this study are an American
cockroach (Section III) and a differential drive mobile robot (Section IV).
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biology, is depicted in Fig. 1. Central to this program is a
modeling hierarchy known as templates and anchors [4], [5]. A
template is the simplest model that captures a desired behavior,
while an anchor is a more complex, representative model of the
behavior. Templates and anchors are not just “simple models”
and “complex models”; there must be a natural embedding
of the template behavior within the anchor [4]. For example,
horizontal-plane locomotion in sprawled-posture animals such
as cockroaches is well characterized by the lateral leg-spring
(LLS) template [6]–[9]. Importantly, this template reveals that
“internal” states (angular velocity and relative heading) can be
passively stabilized by mechanics alone, but “task-level” states
(body position, angle, and forward speed) are neutrally stable
and thus require active control [8], [10]. This paper addresses
the antenna-based task-level control of body angle using three
models along the template-anchor axis and the results from
robotic and neurophysiological experiments.

We begin with a review of the simplest wall following
template (Section II), previously developed by three of the
authors [1], which we build on through neurophysiology,
robotics, and modeling (Sections III–V). A broader discussion
(Section VI) integrates our specific results before a brief
conclusion (Section VII).

II. REVIEW: ANTENNA-BASED PLANAR UNICYCLE (APU)

The results of this paper are predicated on the multi-stride
model by Cowan et al. [1] for high-speed wall following of
P. americana. In their template model, antenna-base planar
unicycle (APU), the antenna measures the lateral offset d
from a wall from some distance ` ahead of the running
cockroach (Fig. 2(A,B)); the lateral offset provides leeway for
the swinging legs adjacent to the wall. The look-ahead distance
` gives the cockroach a preview of what is “ahead,” affording
time for the cockroach to avoid collisions with obstacles and
protrusions from the wall. The offset d is given by

d = ` tan θ + y sec θ, (1)

where θ is the angle of the cockroach body relative to the
wall, and y is the unicycle’s center-of-mass (COM) distance
from the wall. Their closed-loop model shown in Fig. 2(C) is
given by

ẏ = v∗ sin θ,
θ̇ = ω,

ω̇ = −αω−KP (d− d∗)−KDḋ︸ ︷︷ ︸
u

, (2)

where v∗ is forward running speed (constant), α = B/J ,
J is the animal’s polar moment of inertia, B is a damping
coefficient, KP is a proportional gain, KD is a derivative gain,
d∗ is a nominal “desired” wall-following distance, and u is
the inertia-scaled polar moment input that the cockroach must
generate for turning [11]. The angular damping coefficient
B is a phenomenological parameter that captures the within-
stride mechanical losses. Cowan et al. showed stable wall
following of their model requires more than proportional
(P) control. To test this prediction, they obtained parameters
(`, α,KP ,KD) by fitting (2) to the behavioral data from

cockroaches performing high-speed wall following, and then
tested the statistical significance of KD. Their fitted param-
eter values for a specific speed group are given in Table I
(first row). As predicted, P control was insufficient, and the
next-simplest control law, proportional-derivative (PD) control,
most parsimoniously accounted for their data.

Fig. 2. (Adapted from [1]) (A) Depiction of a cockroach following a
straight wall. (B) Unicycle model of the running cockroach; note that θ < 0
in this figure. (C) Block diagram of simplified control model; s is the
complex frequency. The “mechanics” box represents the torsional dynamics.
The “sensing” box is a simplified model of the antenna sensing kinematics.
Cowan et al. [1] fit a simplified neural controller (in the dashed box) to their
experimental data.

III. COCKROACH ANTENNA NEURAL RECORDINGS

Analysis of the APU model with actual turning maneuvers
of P. americana (Section II and [1]) supports a PD-control
hypothesis, while rejecting P-only control. In this section, we
directly examine if the cockroach’s primary antennal receptors
could encode both position and velocity information with
appropriate temporal filtering for the wall-following behavior.

A. Neurophysiology of the Cockroach Antenna

Arthropod antennae are complex multimodal sensory struc-
tures containing mechanical, chemical (e.g., humidity and
pheromone), and sometimes thermal receptors along the an-
tennae [12], [13]. In cockroaches, antennal mechanosensory
reception mediates many locomotor behaviors including wall
following, escape, and slow-speed exploration [1], [2], [14]–
[20]. The two most proximal antenna segments, the scape
and pedicle, are actuated at their base joints and have a high
density of mechanoreceptors for detecting the antenna base
angle used mostly during exploration and escape [14], [20].
The remaining segments are called the flagellum—the long,
slender, unactuated, and compliant portion of the antenna—
which is the dominant source of tactile feedback information
used for controlling the cockroach’s body angle during wall
following [2].

While robotic systems can filter the measurement d (1) to
estimate ḋ, biological mechanoreceptors may directly encode
both position and derivative terms. This encoding is often
evidenced in a short-time constant, phasic response resolving
to a longer-time constant, relatively tonic response in neural
recordings (e.g. [15]). Camhi and Johnson [2] demonstrated
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empirically that receptors on the flagellum of the cockroach’s
antenna were both necessary and sufficient for successful wall
following. The antennal nerve running along the central core of
the antenna and into the brain carries all afferent (sensory) neu-
rons from flagellar sensors. In addition to chemosensors, these
sensors include three classes of mechanoreceptors distributed
along the flagellum’s length: campaniform sensilla, marginal
sensilla, and mechanoreceptive hairs [21]. The specific set of
mechanoreceptors that mediates wall following is unknown
but activity in the antennal nerve can capture the responses of
each of the possible candidates.

The rapid onset of the cockroach’s turning response fol-
lowing antennal stimulus, as little as 30 ms, suggests limited
processing time is available for computing controller inputs in
the central nervous system (CNS). This constraint is made
more severe since up to 20 ms of the processing time is
required simply to conduct the signals down the proximal
portion of the long flagellum, assuming typical conduction
velocities of ∼ 1− 4 m/s for non-giant neurons (suggested
by [22], [23], and unpublished data). These considerations
suggest that mechanoreceptor signals in the antennal nerve
may directly encode the information available to the biological
controller with appropriate temporal filtering, thus simplifying
downstream processing.

We hypothesize that a cockroach’s antennal nerve has a
response typical of PD control. Below, we explicitly test
if the neural response of antennal mechanoreceptors exhibit
slow and fast time constant responses consistent with position
and velocity encoding by recording the summed activity of
the antennal nerve during wall deflection. If transduction of
mechanical stimuli by the primary afferent neurons in the
antenna is sufficient for PD control then the temporal profile of
neural activity should relate directly to the kinematic responses
observed in wall-following cockroaches, so we compare the
neural recordings to wall-following behavior [1]. Alternatively,
both P and D control signals could be generated from pro-
cessing in the cockroach’s CNS downstream of the antennal
nerve. Secondly, even if PD-like signals are present in antennal
mechanoreceptors, filtering these signals to provide effective
motor commands for the observed ethological response could
require subsequent processing in the CNS.

B. Experimental Methods

We restrained live cockroaches ventral side up on an el-
evated transparent gel plate (Fig. 3). The proximal third of
the flagellum was lightly restrained against the plate using
insect pin staples. A silver chloride ground wire was affixed
with EEG paste to the antennal cuticle near the proximal
restraint. A 5 MΩ tungsten extracellular electrode (A-M Sys-
tems, Carlsborg, WA) was inserted through the soft joint
between two antennal segments so as to contact the antennal
nerve distal to the ground electrode. The distal two thirds of
the antenna was unconstrained and positioned in a bent “C”
shape against an actuated wall segment of balsa wood. Overall,
the orientation of the antenna mimicked positioning during
wall following. The wall segment was driven by an RC servo
motor (JR Servo, Champaign, IL) via a two-pin linkage to

Fig. 3. Electroantennogram Experimental Set-up: An RC servo motor drives
a wall segment against the free antenna of a restrained cockroach simulating a
30◦ turn during fast locomotion (∼ 45 cm/s). A tungsten electrode provides
extracellular recordings from the antennal nerve (darker trace in inset), which
are significantly above noise (lighter trace). The zoomed photo of the antenna
is an autofluorescent image of 3 flagellar segments taken under a Green
Fluorescent Protein (GFP) filter to highlight the mechanosensory hairs, the
largest on each segment. The dorsal (D) and proximal (P) labels indicate
orientation.

perform a 7.7 mm linear displacement in 40 ms. This resulted
in movement equivalent to the “fast” wall-following trials
reported in [1] (Fig. 4). In these trials, a cockroach executed a
30◦ turning response while wall following at 46 cm/s. After
the antenna had deflected for several seconds, we provided an
equal displacement in the reverse direction. Altogether, we
conducted 200 trials with 4 animals consisting of both an
inward and outward push-and-hold of the antenna.

We recorded a multi-unit response from the antennal nerve
since the specific mechanoreceptor(s) mediating wall follow-
ing was unknown; this recording method provided access to
all mechanoreceptive signals in the antennal nerve. Multi-unit,
extracellular recordings of neurons tend to underestimate the
power of the neural signal due to destructive interference of
out-of-phase spiking events. These recordings are therefore
likely to be conservative indicators of changes in neural
activity.

Although chemosensory responses may be present as back-
ground activities, the mechanoreceptive responses observed
here were not due to contact chemoreception as we observed
similar responses to wall deflection when we used an insect pin
to manually deflect the antenna. We also controlled for wind-
induced sensor activity as well as electrical and mechanical
coupling between the motor and the recording apparatus by
driving the wall under normal experimental conditions but
without direct contact with the antenna. In these cases we
observed no change in neural activity. No musculature exists
in the antenna flagellum and so efferent (motor) neurons are
absent in antennal nerve recordings taken from the flagellum.

We computed overall activity in the antennal nerve by
computing the root-mean-square (RMS) power of the signal
using small overlapping windows of 20 ms at 10 ms intervals.
Individual action potentials were not differentiated in the
bulk recording although future investigations of the specific
mechanoreceptors mediating this response will likely require
such recordings. All trials were normalized relative to activity
measured with the artificial wall stationary in its zero position.

In the behavioral experiments, as the cockroach returns to
its preferred distance from the wall, we would expect the P
signal (tonic firing rate) to return to its baseline value. In
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Fig. 4. Comparison of the antenna neural recording to the kinematic data
of a running cockroach. (A) The position (dashed) and orientation (solid) of
a cockroach running along a wall [1]; strides are marked by asterisks (*).
(B) Normalized neural RMS power (mean (black) with confidence interval
(gray)) of the antenna when the wall approached toward the cockroach and
stopped; it has been scaled to approximately match the kinematic traces above.
(C) Raw neural recording voltage (black) and background voltage (gray).
(D) Time trace of the actual wall displacement (black) and delay-accounted
wall displacement (gray). The vertical lines indicate (from left to right) the
stimulation onset, RMS peak time, and settling time.

the electrophysiological experiments, by contrast, the antenna
was intentionally held in a deflected position to observe any
changes in plateau neural activity that would be consistent
with position encoding. These data (Fig. 4(B)) therefore do
not directly mimic the activity seen during closed-loop wall
following (Fig. 4(A)).

C. Neural Recording Results

The RMS response had two phases: an initial short time-
constant phasic response and then resolving to a more tonic
response (Fig. 4). The initial phasic response showed a large
increase in neural activity (paired t-test, p-value < 0.001)
peaking at ∼180% of baseline power around 100 ms after
the onset of stimulation. Neural activity then decreased until
reaching a long time constant, effectively ”steady-state” re-
sponse 300− 500 ms after stimulation. The steady state was
dependent on the displacement direction, showing a significant
increase (1.033 ± 0.004) in firing compared to the original

baseline (1.000± 0.002) if the antenna was deflected towards
the cockroach and a significant decrease (0.977 ± 0.003)
compared to the baseline (1.001 ± 0.005) if the wall moved
away from the cockroach (both paired t-tests, p-values <
0.001). This combined phaso-tonic response to wall deflections
of the antenna is consistent with encoding of both velocity and
position information, respectively.

In all cases, the neural activity near the base of the flagellum
was significantly above baseline 20 ms after the onset of
deflection. This delay almost certainly results from the con-
duction velocity (about 1 m/s) from the region of deflection
to the recording site (about 2 cm).

The time course of the neural response closely matched the
turning kinematics observed in the wall-following cockroaches
(Fig. 4). In the kinematic trials, active turning began about
40 ms after initial deflection, consistent with a fast, but rea-
sonable, processing delay from sensory reception in the brain
to changes in leg ground reaction forces. The phasic neural
response, putative derivate control signal, peaked at the time
when the cockroach would be producing significant moments
around the center of mass to generate a turn (≈ 90 ms). The
new steady-state firing rate, putative positional control signal,
culminated approximately at the same time that the cockroach
completed its correction in the kinematic trials (≈ 300 ms).

Our results support the hypothesis that the sensory systems
in the flagellum encode both positional and velocity informa-
tion, and the time course of the neural response at this early
stage is consistent with the kinematics of wall following.

IV. ROBOTIC INTEGRATION OF BIO-INSPIRED ANTENNA

We found evidence for a PD-like control signal directly in
the antennal nerve, but it is unclear whether the PD-controller
gains fitted for the idealized APU model [1] accurately reflect
those of the actual cockroaches.

We integrate a custom artificial antenna with a mobile
robot platform to test the efficacy of using the APU as a
template model for our biological system. Since the previous
section suggests that sensory signals d and ḋ may indeed
be available for cockroaches, we test whether the same PD-
controller gains (up to a scale) that were fitted in [1] are
sufficient for stable wall following in our robotic platform
despite effects such as antenna-to-wall friction and non-trivial
forward speed dynamics. A positive result would indicate the
sufficiency of the PD controller—including the specific gains
fitted to the cockroach—despite the APU model neglecting
many complexities inherent to real-world antenna-based wall
following.

A. Antenna Design

To provide tactile feedback to our mobile robot, we designed
and built an artificial antenna (Fig. 5). The design is based
on observations of cockroaches and their antennae while wall
following [2], [12], [13], [24]. These observations and their
implications toward our design are briefly summarized as
follows.

1) P. americana may use bend (campaniform and marginal
sensilla) and/or touch sensors (mechanoreceptive hairs) along
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Fig. 5. An overview of the cast urethane antenna construction process. (A)
Conductive epoxy attaches wire leads to both ends of each flex 2.5cm sensor.
(B) Two wires from each gauge run down the center to the base as close as
possible to the neutral bending axis. (C) Heat-shrink tubing holds the gauges
and wires in place leaving room for the wires to move freely. The wires at
the base terminate at a single header which plugs into custom amplifiers on
the robot. (D) The assembly slides into a pre-shaped (by heating until soft,
forming, then cooling) Tygon rubber tube. A vacuum pump draws two-part
urethane casting compound into the Tygon tube. The compound cures for
48 hours prior to calibration. Teflon tape wrapped along the antenna reduces
friction between the antenna and the wall.

the flagellum [12] to measure its pose relative to a wall. We
integrated a series of flex sensors (cut from Abrams Gentile
4” FlexSensors) along the length of the antenna to obtain local
curvatures of the antenna (Fig. 5).

2) Arthropod flagella decrease in stiffness along their length
[13] allowing them to conform to surface irregularities. We
tapered our antenna to achieve a similar stiffness profile. A
rigid support in the middle of the antenna (see Fig. 6) restricted
the second flex sensor from the base from bending.

3) We curved the tip of the antenna (Fig. 5(D)) to prevent
the unidirectional flex sensors near the tip from bending
forward . This would help the antenna to conform smoothly
to irregularities and protrusions of varying size.

4) We rigidly clamped the base of our antenna to the robot
at about 35◦ from heading, similar to cockroaches during rapid
wall-following (see Fig. 12(D)).

The raw data provided by the antenna consists of an ampli-
fied voltage output, Vi, from each flex sensor. To extract the
distance to the wall d from the voltage outputs, we performed
a least-squares fit.1 Here we do not consider the two proximal
flex sensor measurements; the high stiffness near the base of
the antenna and the addition of the support structure in the
middle of the antenna have limited their motions and did not
contribute significantly to the calculation of d. The omission
of the most proximal sensory data is consistent with Camhi
and Johnson’s [2] result that wall following requires distal
receptors in the flagellum without the sensory data from the
base.

B. Integrating the Antenna with the Garcia robot

Our physical instantiation of the unicycle-like robot is called
Garcia (Acroname, Inc., Boulder, CO, USA) shown in Fig. 6.
It is a three-wheeled robot, with two drive wheels sharing
the same axis of rotation and a third passive omni-directional

1While maintaining antenna-wall contact, we recorded voltages from each
flex sensor as we varied the distance d and angle of the robot relative to the
wall. We obtained a least-squares fit for the affine relationship d = aTV + b.
Subsequent work will include an elastica model of bending to calibrate contact
distance as used for whiskers [25], [26].

Fig. 6. The cast urethane antenna with embedded flex sensors mounted on
the Garcia robot.

wheel, with zero caster sweep space, for balance. This machine
was used previously by Lamperski et al. [27] to demonstrate
the feasibility of wall following using a multi-rigid-linked
antenna as its distance sensor. An on-board XScale ARM
processor updates our control law at 50 Hz using sensory
information from the antenna. During each trial, we log
internal states such as the voltages from the four flex sensors
(and hence the perceived distance to the wall) and the encoder-
measured velocities of the two wheels. In addition, we use an
overhead camera to obtain the ground-truth position of the
robot for post analysis.

The primary difference between the theoretical unicycle
model and the Garcia robot is the need for forward velocity
control. One can show [27] that the dynamical equations for
the robot are of the form

[
v̇
ω̇

]
= A

[
v
ω

]
+

u︷ ︸︸ ︷
B

[
V1

V2

]
, (3)

where

A =
[
−γ 0
0 −α

]
, B =

[
b1 b1
−b2 b2

]
.

Here, V1 and V2 are the input voltages for the left and right
wheels, respectively, v is the forward speed, and ω is the
angular velocity of the robot. The parameters α, γ, b1, b2 > 0
are expressed in terms of the armature resistance, the torque
constant, the back electromotive force constant, a frictional
damping constant for each wheel, the wheel radius, the lateral
offset of each wheel from the center, the robot’s moment of
inertia in the yaw direction, the moment of inertia of each
wheel, and the mass of the robot. We used the values A and
B that Lamperski et al. [27] fitted for the robot.

For wall following, we combined the antenna-based PD
controller suggested by the APU model (Section II), together
with a proportional-integral forward speed controller[
u1

u2

]
=

[
−KV (v − v∗)−KIΣ
−KP (d− d∗)−KDḋ

]
, Σ =

∫ t

0

(v − v∗)dt, (4)

where v∗ is the desired forward speed and d∗ is the desired
distance to the wall. To map the torques into motor voltages,
the control law (4) is written V = B−1u, since B is invertible.



IEEE TRANSACTIONS ON ROBOTICS, PREPRINT 6

TABLE I
PARAMETER VALUES FOR P. americana AND THE GARCIA ROBOT.

Inserting (4) into (3), we have
ẏ

θ̇

Σ̇
v̇
ω̇

 =


v sin θ
ω

v − v∗

−γv −KV (v − v∗)−KIΣ
−αω −KP (d− d∗)−KDḋ

 , (5)

where d is the same as (1). Linearizing the system at its
equilibrium point (y, θ,Σ, v, ω) = (d∗, 0,−αv∗/KI , v

∗, 0)T ,
we obtain the characteristic polynomial

p(s) = (s2 + (γ +KV )s+KI)

(s3 + (α+KD`)s2 + (KP `+KDv
∗)s+KP v

∗). (6)

The second-order polynomial factor has negative roots if

KV > −γ and KI > 0, (7)

and, by Routh’s stability criterion, the latter third-order poly-
nomial factor has negative roots if

KP > 0, KD > −α
`
, and

KD

KP
v∗ >

v∗

α+KD`
− `, (8)

where γ, α, v∗, ` > 0. Notice that the conditions for forward
stability—which are constraints on KV and KI—are decou-
pled from the conditions on rotational stability—which are
constraints on KP and KD.

C. Dynamically-Scaled Parameters of P. americana

We found the necessary parameters for the Garcia robot
using the principle of similitude; the APU’s torsional dynamics
equation (2) and the last row of (5) are identical, namely they
are of the form

ω̇ = −αω −KP (d− d∗)−KDḋ, (9)

where α, KP , and KD are known quantities for the cockroach
[1]. Selecting two fundamental quantities, v and `, leads to the
following dimensionless ratios:

α̃ =
α`

v∗
, K̃P =

KP `
3

v∗ 2
, K̃D =

KD`
2

v∗
. (10)

Setting the desired velocity for the Garcia robot to be
0.5 m/s and assuming α to be constant, we calculated the
dimensionally-scaled look-ahead distance for the Garcia robot.
We found values for KP and KD in a similar way. The
calculated values are shown in bold in Table I (second row).

Fig. 7. The Garcia robot’s internal states during a trial with parameters from
Table I. The onset of the angled wall contact occurs at t = 1 s. (A) Measured
forward speed (solid) with v∗ = 0.5 m/s (dashed). (B) Measured raw (solid
black) and filtered (solid gray) d values with d∗ = 0.17 m (dashed); to reduce
noise, we low-pass filtered raw distance measurements: dk = λdk-1 + (1 −
λ)draw,k where λ = 0.7 (trial and error); ḋ was estimated via finite difference.
(C,D) Body angle and position obtained from overhead camera images.

D. Experimental Results of Robotic Wall Following

The experimental setup for the Garcia robot was similar
to that of the cockroach behavioral experiment by Cowan et
al. [1]. The robot followed a wall that consisted of a straight
control wall to allow the robot to reach its steady state and
an angled wall to act as a “step” perturbation to the internal
state, θ. We used the parameter values for the Garcia robot
shown in Table I with KV = 1 s−1 and KI = 1 s−2. This set
of parameters satisfied stability conditions (7) and (8).

We ran 30 trials at v∗ = 50 cm/s with the 30◦ angled wall
demonstrated successful turning. Figures 7 and 8 show a subset
of states that were collected during a typical trial; the rest of
the trials were very similar. Our somewhat arbitrary choice
of speed gains (KV ,KI ) produced substantial oscillations
in the forward speed, but nevertheless reached steady state
speed within about two seconds and did not imperil wall-
following performance. The body-angle transient responses
for the APU model and the Garcia robot were comparable
(Fig. 12): the rise time, peak time, and overshoot for the
Garcia was 0.60 s, 1.23 s, and 2.5%, respectively. For the APU
from [1], dimensionally mapped into Garcia’s scale, these were
0.50 s, 1.20 s, and 17.3%.

The Garcia robot failed to negotiate turns of angles greater
than about 40◦ because the distal end of the rigid antenna
support catches the angled wall, forcing the robot to turn
inward toward the wall. We believe this problem will be
addressed through the design of more flexible antennae with
more appropriately tapered mechanical stiffness.

Typically, the robot followed the wall with a constant error
in d: in Fig. 7(B) the robot maintains the measured distance
of 0.18–0.19 (solid) despite the commanded value (d∗) of
0.17 (dashed). This was likely caused by non-negligible forces
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Fig. 8. The raw amplified voltage values from the four flex sensors embedded
in our antenna; they are shown for their qualitative form. The flex sensor at
the base of the antenna (A), which is not used to calculate the value draw
in Fig. 7(B), shows the onset of the angled wall contact with a sharp peak.
The second flex sensor from the base (B) registers zero motion because it
is anchored to the rigid support base discussed in the main text. The two
distal flex sensors (C,D) are used to calculate the measurement draw shown in
Fig. 7(B). The third flex sensor (C) flexes more (indicated by the decrease in
voltage values) as it encounters the initial part of the angled wall. Meanwhile,
the remaining distal part of the antenna (D) conforms to the wall by decreasing
its flexion (indicated by the increase in voltage values).

produced by the artificial antenna against the wall2: adding
a torsional spring term, c(d − dmax), to the last line of (5)
shifts the equilibrium distance from the wall to (KP d

∗ +
cdmax)/(KP + c). For negligible stiffness c, the equilibrium
distance is d∗ as expected.

Figure 8 shows that flex sensors 3 and 4 (C, D) do not
necessarily return to their original configuration after encoun-
tering the angled wall. One possible explanation could be that
there is a range of “stable” configurations of the antenna for
a given d due to friction, memory effects, or other factors.
Reasonable calibration can cope with this as suggested by the
fact that despite the drift the Garcia successfully followed the
wall after making the turn.

V. THE ANTENNA-BASED LATERAL LEG SPRING

In the previous models, the control input is literally the
torque applied to the body through a continuous actuation.
A fundamental question that remains is how such a control
input might be applied to control stride-to-stride dynamics in
a legged organism. To guide further development in maneu-
verable legged robots and generate hypotheses for how the
biological system modifies its motor output, we require an
more representative, anchored mathematical model than our
APU model. As a first step toward answering these questions,
we add antenna-based control to a horizontal-plane legged
model of cockroach running.

2To quantify cockroach antenna reaction forces, we used the force levers
that Dudek and Full [28] used to measure passive leg forces in cockroaches;
the antennal forces fell below the noise floor of the sensors. This (and our
casual observation) suggests that cockroach antennal forces are negligible
compared to leg forces.

Fig. 9. (A) A schematic model of the LLS model; θ is the body angle
w.r.t. the x-axis in inertial frame {U}, v is the speed of the COM, δ is the
velocity angle w.r.t. the x-axis of the body frame {B}, ζ is the distance from
the foot placement to the COM, ψ is the angle from the x-axis of the foot
frame {F} to the COM, η is the leg length, [a1, a2]T is the location of the
COP written in {B}. (B) Illustration of multi-step dynamics and its equivalent
representations.

A. The LLS Model

Schmitt and Holmes [29], [30] introduced the horizontal
plane, Lateral Leg Spring (LLS) model to study running
sprawl-postured animals that exhibit lateral oscillations during
each stride. The model is a rigid body on a frictionless
surface that has two massless, spring-loaded, telescoping legs
as shown in Fig. 9(A). The legs attach to the body at a point
called the center of pressure (COP) and can rotate freely about
that point. Cockroaches run in a tripod gait; hence each virtual
leg represents the combined effect of three stance legs.

At the start of a left step, the left virtual leg affixes its
foot to the ground with leg base angle β0 and with relaxed
leg length l0. Due to the body’s initial velocity, the leg gets
compressed while rotating about its foot and the COP. The
compressed leg generates a counter force to the body along
the leg and through the COP. As the body moves ahead of the
foot contact point, the spring starts to decompress and pushes
the body forward. When the left leg returns back to its relaxed
length l0, the left leg lifts off while simultaneously the right
leg touches down (at an angle −β0), and the right step ensues.

Since the LLS model is energy conserving and SE(2)
(special Euclidean group) invariant, the model can at most
exhibit partial asymptotic stability only in the COM direction
with respect to the relative heading δ and angular velocity
ω = θ̇. The COM speed v and body pose in SE(2) are
neutrally stable.

The position of COP is critical to the LLS’s stability.
Suppose the COP position for a left-step is parameterized by[

a1

a2

]
=

[
b1 + c1(ψ − θ)
b2 + c2(ψ − θ)

]
, (11)

where a1 and a2 are along x and y-axis of the LLS body frame,
{B} and bi’s and ci’s are constants. A special case of this
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Fig. 10. Maximum non-unity eigenvalue for the linearized return map at var-
ious fixed-COP positions around the COM. Parameters used for P. americana
are shown in the caption of Fig. 11.

parameterization is when a2 = 0 and c1 = 0 [29], [30]: if a1 <
0, δ and ω are asymptotically stable; if a1 = 0, ω becomes
neutrally stable; if a1 > 0, the system becomes unstable.
When a1 < 0, the body mechanics alone can stabilize the
LLS system [29]. However a fixed COP on the fore-aft axis
yields yaw dynamics that do not match biological data. Placing
the COP laterally offset to the side (a2 = const < 0) better
matches the yaw dynamics, and that the system can achieve
stability even if the COP lies in front of the COM as long as
it is appropriately offset to the side [31], as shown in Fig. 10.
Henceforth we restrict ourselves to c1 = c2 = 0, in which
case the Hamiltonian for a left step can be written

H =
p2
ζ

2m
+

p2
ψ

2mζ2
+
p2
θ

2I
+
k(η − l0)2

2
(12)

from which the equations of motion are

ζ̇ =
pζ
m
, ṗζ =

p2
ψ

mζ3
− k(η − l0)

η

(
ζ − a2 cosφ+ a1 sinφ

)
,

ψ̇ =
pψ
mζ2

, ṗψ = −k(η − l0)
η

(
ζa1 cosφ+ ζa2 sinφ

)
,

θ̇ =
pθ
I
, ṗθ = −ṗψ, (13)

where φ = ψ − θ and p’s are the conjugate momenta. The
leg length η = η(ζ, ψ, θ, a1, a2) can be determined from
Fig. 9(A).

B. Hybrid Step-to-Step Dynamics

For task-level control of the multi-stride dynamics we seek a
compact representation of the step-to-step dynamics. Let {Ak}
denote the location of the body frame at the beginning of the
kth step. In other words, gk is the transformation from {Ak}
to the world frame {U}. For k odd, we take a mirror image
around the x-axis of frame {Ak} at the beginning of the kth

step (k odd), simulate the dynamics using the equations of
motion for a left step, and then take another mirror image
around the x-axis. In this way, the right step map is computed
in terms of the left one. This can be expressed in terms

of local coordinates q = (v, δ, θ, ω, x, y)T as first “flipping”
(δ, θ, ω, y), integrating the left step map, and then flipping
back, namely

fR(q) = MfL
(
Mq), (14)

where M = diag {1,−1,−1,−1, 1,−1}. Note that MM = I .
We chose to flip about the x-axis for notational simplicity, but
in principle any left-handed frame would work. This mapping
leaves the right step map left-invariant under SE(2).

For finding symmetric steady-state gaits, it will be conve-
nient to define a special step-to-step return map that amounts
to an “integrate and flip” (see Fig. 9(B)). For a complete stride
that includes a left step and then a right step, the stride-to-
stride mapping is given by fL−R = fR ◦ fL, namely

fL−R : q 7→MfL(MfL(q)) = (f ◦ f)(q), (15)

where f(q) := MfL(q).
This approach eliminates the need to distinguish between

left and right steps for control purposes. Note, however, that
f is not left-invariant, even though both fL and fR are left-
invariant. The resulting state evolution is given simply by

qk+1 = f(qk), (16)

keeping in mind that for odd steps, the value for qk in this
step-to-step formulation has already been “flipped.”

C. Reduced Return Map

To simplify controller analysis and design, we use trans-
lational symmetry and energy conservation, as first reported
in [31]. Recall that the left- and right-step mappings, fL and
fR are invariant to SE(2), but the step-to-step return map,
f = MfL is not. However, that mapping is invariant to
pure x motions (had we chosen a different left-handed frame,
translational invariance would have been in the direction of
the axis of symmetry of the reflection to that frame). This
was by design: our goal for control is wall following, and for
simplicity, we have chosen to follow the x-axis. Thus x is
removed by setting x = 0 at the beginning of each step. To
remove v note that the Hamiltonian equation

H =
1
2
mv2 +

1
2
Iω2 +

1
2
k(η − l0)2 = H0 (17)

is constant because the system energy is globally conserved.
So, at each step

v =
[

2
m

(
H0 −

1
2
Iω2 − 1

2
k(η − l0)2

)]1/2

. (18)

Thus we have the following transformation

TH : (δ, θ, ω, y) 7→ (v, δ, θ, ω, 0, y) (19)

that assigns x = 0 and computes v from (18). Note that TH is
invertible and T−1

H is the transformation that simply removes
the v and x coordinates. Then, we define the reduced variables
and mapping

qr = (δ, θ, ω, y), fr(qrk, uk) = T−1
H

(
f(TH(qrk), uk)

)
. (20)
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Fig. 11. A full stride of LLS at its equilibrium point with the follow-
ing parameters: m = 0.77× 10−3 kg, J = 1.0× 10−7 kgm2, l0 =
0.0165 m, k = 0.766 N/m, β = 1.051 rad, a1 = 0 m, a2 = −0.003 m,
v(0) = 0.359 m/s. In the last subplot, dashed and solid lines are a1 and a2,
respectively.

D. Antenna-Based LLS (ALLS) under PD Control

In the Appendix, we find the LLS parameters for P. amer-
icana and show how we simulate the equations of motion
for the LLS model; a simulation of LLS using those param-
eters is shown in Fig. 11. Based on the the same antenna
model (1) used previously, we (numerically) “embed” the
PD-controlled APU template in the LLS model providing a
candidate mechanism for legged-locomotion heading control
via antennal feedback.

As a preliminary control task, we chose to have the antenna-
based LLS (ALLS) follow on top of a line or a virtual
“wall” that is coincident with the x-axis. The result was an
equilibrium point qr = (δ, θ, ω, y)T such that qr = fr(qr, 0).
To address controllability, we numerically linearized the return
map around a nominal equilibrium trajectory, to obtain

ek+1 = Aek +Buk, zk = Cek (21)

where A = (∂fr/∂qr)(qr, 0), B = (∂fr/∂u)(qr, 0), C =
(∂h/∂qr)(qr, 0), ek = qrk − qr, zk = [dk − d, ḋk − ḋ]T , uk :=
a1,k, and h = [d, ḋ]T . We used a1 rather than a2 as our control
input because in Fig. 10 the gradient of the eigenvalues is
greater in the direction of x−axis than y−axis of {B}. That is,
a small displacement in a1 gives us a greater control than that
of a2; this is consistent with Full and Koditschek’s hypothesis,
“maneuvers require minor neuromechanical alterations” [4].
In addition, updating the control input once per step (rather
than continuously) resonates with the notion that inherent
mechanical stability of puts less demands on neural feedback
[4]. In (21), the condition number for the controllability and

observability matrices are 7445 and 390, respectively, so the
system is controllable and observable.

Here we make several approximations to the ALLS model to
simplify control and connect the ALLS to a simpler model in
our research program (Fig. 1). The third row of the linearized
discrete dynamics (21) for parameters for P. americana can be
written as

ωk+1−ωk = −(1.96)ωk−(1.08)(δk−δ)+(611.86)uk. (22)

Since our simulations suggest that δk − δ remains at least
an order of magnitude smaller than the other terms during
transients, we neglect δk−δ and consider ω̇ ≈ (ωk+1−ωk)fs,
where fs = 10.8 Hz (see Appendix) is the stride frequency.
Thus we approximate (22) with a continuous-time system,

ω̇ ≈ −αω + u′, (23)

where α ≈ 21.2 and u′ ≈ (6608)uk. This equation mirrors
the unicycle model (2), and despite the fairly crude approxi-
mations, the coefficient α ≈ 21.2 in the LLS approximation
(23) is within the confidence intervals of the fitted parameters
for α in cockroaches (Table I). Also note that the u in (2) is
a moment (scaled by inertia), whereas in the ALLS model,
the control input is the COP position. Hence the coefficient
multiplying the control uk in (23) is absorbed into u′ for
comparison purposes.

The similarity between the APU (2), and the approximate
LLS (23), reveals a possible embedding of the PD-controlled
APU into the ALLS. In fact, by setting u′k = −KP dk−KDḋk
with the same control parameters fitted to the cockroach yields
a closed-loop system of ek+1 = (A + BKC)ek with all of
its eigenvalues (−0.64± j0.16 and −0.13± j0.49) inside the
unit circle, i.e., the closed-loop system is stable around the
equilibrium trajectory.

E. Simulation Result

A simulation for this controller using the parameters for
P. americana is shown in Fig. 12(E). In this control law, the
COP lies nominally along the body y-axis, namely a1 = 0
and a2 = −3 mm (for the left step); the feedback controller
varies the COP in the a1 direction.

The most parsimonious controller sufficient to stabilize
high-speed wall following in the APU model is a continuous
PD controller mapping antenna measurements to a continuous
moment about the COM. As shown, this control law applies
with essentially no modification to the control of a legged
running model, ALLS, by mapping sensor values to the COP
position during each step. This result further supports the
hypothesis that such a simple PD controller may underly task-
level locomotion control of the American cockroaches.

VI. DISCUSSION

This paper takes a multifaceted view (Fig. 12) of an extraor-
dinary sensory-feedback-driven locomotor behavior [2]: high-
speed antenna-based wall following in the American cock-
roach. Cowan et al. [1] model this behavior (Fig. 12(A)) as a
simple PD controller acting on the APU template (Fig. 12(B)).
Here, our neural recordings of the antenna (Fig. 12(C)) support
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Fig. 12. Subplots (A,B,D,E) show the task-space trajectories of several
models and physical systems from our research program (Fig. 1); *’s and ◦’s
indicate COM position and body angle, respectively, at the start of every stride
(or dimensionally equivalent stride); (B,D,E) have dimensionally equivalent
parameters and the same PD-control law as discussed in the text. (A) A typical
trial of P. americana (the cockroach is shown every other stride) [1]; the
cockroach is following the wall at ∼ 45 cm/s. (B) APU model simulation
using the parameters given in Table I, first row. (C) Neural recording near the
base of flagellum. (D) The Garcia robot experiment, where the robot is shown
every other “stride”; the robot uses parameters given in Table I, second row.
(E) The ALLS model simulation, shown at the start of every step with *’s
indicating COM, x’s indicating COP, and straight lines emanating from COP
indicating the effective leg.

the hypothesis that antennal mechanoreceptors can serve as
effective inputs to the proposed PD controller because cor-
relates of distance and rate of approach to a wall appear
directly in the antennal nerve and the time course of the
neural response closely matches the kinematics of turning.
Next, we confirm that the PD controller (including the gains)
fitted to cockroach behavior is sufficient in a real-world setting:
our robot tuned with dimensionally scaled parameters and
controller gains stably follows walls using our bio-inspired
artificial antenna (Fig. 12(D)), and exhibits transient behavior
comparable to both the simulated APU and the cockroach
itself. To test the feasibility of the same PD controller in a
legged system, we use a modified version of the LLS model
[29], [30]—namely, antenna-based LLS (ALLS)—in which
the controller has authority over the position of the center

of pressure (COP) at the start of each step as a function
of antennal feedback. Importantly, we fit the parameters for
the “open-loop” LLS model (leg stiffness, leg touchdown
angle, etc.) during steady-state running, independent to how
we fit the APU which involved fitting the closed-loop system
including the controller gains to the angled-wall perturbation.
Nevertheless, we find that the torsional dynamics of the LLS
model can be numerically “reduced” to those of the APU
model, with very close agreement in parameters. Using the
same PD gains as the APU model, the ALLS model exhibits
stability and a similar transient response (Fig. 12(E)) as the
cockroach.

A. Multilevel Modeling

To elucidate the behavior of antenna-based wall following of
the American cockroaches, we formulate our research program
using templates and anchors [4] (Fig. 1), enabling us to
address specific questions at each level in the hierarchy, as
well as make quantitative connections between levels. For
example, the simplest template, the APU model, neglects
within-stride dynamics but nevertheless reveals a candidate
task-level control law. We then anchor the controlled APU in
the Garcia and ALLS models. At the same time, the successive
elaboration of features in more complex models (e.g. forward
speed control in the Garcia and within-stride dynamics of the
LLS) allows us to address increasingly refined questions about
the underlying biological system.

B. Implications From Neural Recordings

Our neurophysiological recordings of cockroach antennae
indicate that the primary biological sensors the cockroach uses
to maintain wall following could provide sufficient inputs for
an effective PD controller. While P (tonic) and D (phasic)
information is known in other biological mechanoreceptors,
the population of antennal mechanoreceptors here also ap-
pear to filter the mechanical stimulus so that there is close
agreement between the time course of the neural activity and
the kinematic response of the cockroach, the time evolution
of the mathematical models, and the behavior of the robot.
For example, despite the deflection of the antenna lasting for
only ∼ 40 ms the phasic response of the receptors peaks at
approximately 90 ms, surprisingly close to a typical stride
period (Fig. 13). This filtering of the sensory signal in the
primary afferents was not expected and differs from many
arthropod receptors that are direct velocity or position sensors.
Determining whether this property matches individual receptor
responses or only emerges from the population of receptors
requires extensive individual mechanoreceptor recordings and
is beyond the scope of this paper. However, regardless of the
mechanism, this slower time response of the neural signal
is not likely due to constraints on the encoding process, as
many biological mechanoreceptors can transduce very high
frequency signals (e.g., [15], [32]). Rather, we suggest this
temporal filtering may have a constructive effect, precondi-
tioning the signal to act as an effective PD input tuned to
the mechanics of the legged organism. This is consistent with
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the efficacy of this control model in the ALLS model with
cockroach-like dynamics.

The neurophysiology here constitutes only an initial inves-
tigation into the neural basis of wall-following maneuvers.
The phasic and more sustained response within the antennal
nerve and the general similarity to the time course of the
kinematics of wall following are certainly consistent with the
PD-control model generated from the ethological experiments.
However, we cannot rule out more complex control models
incorporating higher order, non-linear, or integral terms. Ad-
ditional neurophysiology and information theoretic analyses
could reveal the actual encoding strategies employed by indi-
vidual mechanosensory neurons. Furthermore, improvements
in recording techniques where the activity in individual affer-
ents can be resolved will be useful in determining whether
individual afferents encode both P and D information, or if
this information is segregated between different classes of
afferents. These potential organizational features may have
important implications for the transformation of the sensory
signals into motor commands in downstream circuits.

C. Biologically-Inspired Tactile Sensors

Toward our goal of a robotic model of wall following,
our antenna design captures several key features cockroach
antennae. However, due to the constraints of our prototyp-
ing process, the antenna stiffness was not well matched to
its biological counterpart: unlike that of the cockroach, this
stiffness produced a non-negligible force between the robot
and the wall causing an offset in the robot’s distance to the
wall. To remedy this issue we need to better characterize
the cockroach antenna mechanics, similar to a prior study of
crayfish antennae [33]. Then, we need to design our antenna
to match important parameters such as the stiffness profile.
We believe that Shape Deposition Manufacturing, also used
for manufacturing the robot legs [34], [35], offers a viable
solution.

In addition to enhancing our inquiry into a biological
system, bio-inspired antennae offer substantial benefits to
robotics. Ours consists of a ten dollar 50KΩ flex sensor cut
into four pieces enclosed in urethane, rendering it inexpensive,
low power, and mechanically robust. In addition, our antenna
is insensitive to low or extremely bright ambient light (unlike
vision and IR), does not emit energy (unlike sonar and IR),
and does not require a specific wall type (unlike sonar, IR,
and vision, which may fail for common urban surfaces such
as fences, highly specular walls, or glass).

Other researchers have built tactile sensors inspired by
arthropod antennae. Our work builds directly on [36] who
use a single unmodified flex sensor to control a hexapod on
a treadmill. Our design is similar to Barnes et al. [37] who
embed three bend sensors in a passive, large-deflection antenna
inspired by lobsters that distinguishes between contact with
solid objects versus water currents [38]. Whereas our design
focuses on control in the horizontal plane, Lewinger et al. [39]
use two cockroach-inspired stiff antennae to traverse sagittal-
plane obstacles. Our antenna uses no basal information, but
whisker-inspired devices [25], [40]–[44], by contrast, use only

basal information, since whiskers themselves are insensitive
hairs [45].

D. Robotics for Biology

Physical models can provide an important link between
biological experimentation and mathematical modeling. In
biology, complexity can obscure generalizing principles, and
varying parameters to test a system’s responses is often
difficult and time consuming. In addition, it is difficult to
capture an animal’s internal states (e.g., neural recordings)
while minimizing interference with the animal’s natural be-
havior. Mathematical models can reveal idealized responses,
but inevitably neglect the complexity of interaction with the
surrounding environment. Experimental robotics allows the
embodiment of control hypotheses in the context of difficult-
to-model real-world phenomena where, in comparison to biol-
ogy, it is much easier to vary system parameters and monitor
system state variables. These can help in generating, refuting,
and supporting biological hypotheses [5].

In this paper, we use our robot to support the hypothesis
of the efficacy of the PD controller—which is stable in our
mathematical model—in a real-world setting. Two further
observations can be made. (1) Our result supports Camhi
and Johnson’s [2] claim that cockroach wall following is
mediated by the flagellum (not the base) of the antenna: our
robot successfully follows a wall using feedback from the two
distal flagellar antenna segments. (2) Figure 8 reveals that
the base flex sensor can potentially provide a sensory cue
faster than that from the rest of flex sensors, particularly if
we account for the typical conduction velocity (1− 4 m/s) for
non-giant invertebrate neurons. This observation is consistent
with the experiment by Comer et al. [20] where they show
the important role that the mechanoreceptors at the base of
the antenna play in triggering an escape response.

Other researchers have considered robotics to address bio-
logical behaviors [46]. For example, Chapman and Webb [3]
implement a neural circuit on a mobile robot where IR sensors
act as the robot’s “antennae”; their robot exhibits an escape
response followed by a wall-following response, much like
that of a cockroach.

E. ALLS for Biology and Robotics

In this paper, we show that the ALLS model exhibits stable
wall following using exactly the same PD gains as the APU
[1]. We propose two hypotheses from our result. (1) The
afferents or the CNS suppresses (via a low-pass or notch filter)
the sensory input frequency near their stride frequency; this
hypothesis is motivated by the fact that the sensory signals
seem to show a low-pass filtered response consistent with
the time course of the stride-to-stride kinematics (Sec. III).
Alternative hypotheses are that (A) an efferent copy might be
used to cancel out the frequencies observed by the antenna
[13], or (B) the mechanics of the the antenna alone can filter
the oscillation. To test the effect of the lateral oscillations
on the antenna filtering, legged robots such as RHex [47]
or even wheeled robots such as Garcia could be used; the
Garcia robot would have to emulate, up to some limit, the
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within-stride dynamics of the ALLS. (2) Increasingly anchored
models which represent cockroach kinematics with increasing
biofidelity can be used to tease apart the contributions of
individual legs during turning [11]. We hypothesize that the
motion of the COP from step to step is governed by our PD
controller. To test this, an experimental paradigm may consist
of cockroaches following along a wall with perturbations [1],
[2] while individual leg forces and kinematics are measured to
recover COP motions [48]. Together, these data could be used
to approximate the mapping from antennal measurements to
COP motions.

In this paper, we numerically reduce the ALLS model to
represent the APU’s PD controller for the ALLS. A more
formal reduction is warranted. For example, Poulakakis and
Grizzle [49] provide a formal approach to apply a controller
defined for a Spring-Loaded Inverted Pendulum (SLIP) model
of sagittal-plane running to a more anchored model. Similarly,
it may be interesting to address how the PD controller for the
APU model would be applied to its higher anchors such as
ALLS, ALLS with three legs [50], or 3D SLIP/ALLS model
[51]–[53]. This may help in generating hypotheses such as
the placement of the COP in 3D which can generate not only
motions in yaw but also motions in pitch and roll.

With this biological understanding, we will be poised to
create bio-inspired control strategies for hexapedal robots [47]
by shifting their COP based on sensory stimuli. The shifting
of the COP can be achieved by touching down three legs that
collectively generate a force vector pointed at the desired COP
position, similar to that of cockroaches [11], [48]. The sagittal-
plane motions that result from 3D models or legged robots may
lead to important design requirements for artificial sensors;
for example, the antenna may be need to be stiffer along the
sagittal plane than along the lateral plane [13], [54], [55].

VII. CONCLUSION

In this paper, we show that the synergy between robotics and
biology enables mutual discoveries for both fields. Specifically,
we take a multidisciplinary approach that incorporates math-
ematical modeling, robotic experiments, ethology, and neu-
rophysiology to provide a glimpse into the neuromechanical
control of one of the fastest terrestrial insects, the American
cockroach [56]. Along the way, we develop a novel bio-
inspired tactile sensor that can be used for high-speed wall
following in robotics. Furthermore, our biological modeling
reveals a new idea for the control of legged robots under
sensory feedback: stride-to-stride center-of-pressure placement
may provide a simple mechanism for task-level control based
on sensory feedback. Implementation of legged robot control
based on this idea may in turn help biology by providing a
new vehicle to test specific inter-leg coordination strategies for
modulating the COP.

APPENDIX
ALLS SIMULATION METHODS

We simulate the LLS model using Matlab (The MathWorks
Inc., Natick, MA, USA) using the convention in Section V-B:
for every right-leg step, convert it to a left-leg step, simulate

Fig. 13. (A) Stride length versus speed and (B) stride frequency versus speed
of the first 4 strides (prior to angled-wall contact) of 43 trials from the data
that Cowan et al. [1] have collected. The solid line is the linear fit of the
data. The dashed line is the linear fit of the data collected by Full and Tu
[57]. Unlike Full and Tu, Cowan et al. use cockroaches that are blinded and
elicited an escape response and following a wall. We assume that the data
is adequate for our preliminary fitting of the LLS model, and we reduce the
bias incurred from wall following by matching the waveform characteristics
(e.g. stride length and stride frequency) rather than the waveform itself.

the within step dynamics, and then convert it back to a right-
leg step. This enables us to specify the COP position using
(11) and integrate the equations of motion derived from (13)
without the explicit representations of a left or right step in
the equations. We use Matlab’s ode45 with time varying step
size to integrate the equations of motion. The integration for
a step terminates as soon as the compressed leg returned back
to its relaxed length l0.

We find the equilibrium point q = (v, δ, θ, ω, y)T using the
Levenberg–Marquardt method in Matlab’s fsolve function.
While fixing the state v to a desired value, the function mini-
mizes the error difference of a step, f(q)−q. We find the step-
to-step return map Jacobian, A, about the equilibrium point
using a central difference approximation. The ith columns
are given by [A]i = (fr(q + eiε) − fr(q − eiε))/2ε, where
ε = 1×10−6 and ei is the i-th column of 4×4 identity matrix.
Similarly, we find the stride-to-stride return map Jacobian to
determine the stride-to-stride eigenvalues for Fig. 10.

We use the following parameters and measurements of P.
americana: m = 0.77× 10−3 kg, J = 1.0× 10−7 kgm2,
v̄(avg velocity) = 0.352 m/s, Ls(stride length) = 0.033 m,
fs(stride frequency) = 10.8 Hz, vlateral,max = 0.04 m/s, and
θmax = 0.03 rad. We use the rectangular prism approximation
[48] to find the moment of inertia in the yaw direction. The
stride length and the stride frequency has been found from
Fig. 13.

The values for leg rest length l0, leg spring constant k,
initial leg touch down angle β0, and fixed COP position a2

are chosen to satisfy constraints on the stride length, stride
frequency, and maximum lateral velocity. Because the system
is underdetermined, we make sure that these parameters are
within an order of magnitude from the dimensionally scaled
values of Blaberus discoidalis used in [8]. A simulation of
LLS model using these set of values are shown in Fig. 11.
The magnitude of the body oscillation is about an order of
magnitude smaller than that of the actual cockroach because
of LLS’s simplification of the tripod legs into a single virtual
leg; a single leg cannot generate enough torque to match that
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of the original three legs while having the parameter values
that are physically realizable [8], [31].
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