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Abstract— We present a purely rotational visual servoing
algorithm which aligns the orientation between two cameras
at different locations in space. Specifically, our kinematic
controller steers a set of so-calledbi-tangent linesto intersect
at the epipole using a purely image-based bi-tangent line Jaco-
bian. Bi-tangent lines, i.e. lines joining corresponding features
on the superposition of two views of a scene, can be defined
for both points and contours, so we apply our controller to
both feature types. Simulated experiments demonstrate the
parametric robustness of the proposed method.

I. I NTRODUCTION

Achieving rotational alignment between two cameras
simplifies certain problems in vision, such as scene recon-
struction [1] and camera calibration [2]. In this paper we
present a visual servoing (VS) algorithm that rotationally
aligns two cameras by steering a set of bi-tangent lines,
i.e. the lines joining the corresponding features on two
superimposed views, to intersect at a common point – the
epipole. The co-intersection of at least eight bi-tangents
ensures that the essential matrix between the two cameras
is skew-symmetric, thus ensuring alignment of the cameras
(modulo a180o ambiguity in rotation about the epipole).
The rotational error between the current and desired camera
convergesindependent of the translational displacement; in
this sense, the controller presented decouples the rotational
and translational degrees of freedom.

Zisserman and Mundy [3] introduced the idea of bi-
tangents which Cipolla and Sato [4] exploited to recover
epipoles and the fundamental matrix under pure camera
translation; the rotational control algorithm in this paper
builds directly on these ideas. Prior works on VS also
employ epipolar geometry: Rives describes an algorithm
that drives robot to a desired pose by steering the image
features along epipolar lines [5]; Basri and Shimshoni
recover the rotation matrix from the decomposition of the
essential matrix, and they retrieve the translation direction
from the epipoles [6]. Similarly Maliset al. [7] and
Taylor et al. [8], decompose the homography or essential
matrices, respectively, to recover the rotation between two
views. These methods decouple rotational and translational
control by explicitly estimating the rotation matrix from the
essential or homography matrices. In our method we do
not require the decomposition of any matrix related to the
camera geometry. To the best of our knowledge, no other
purely image-based VS strategies to date can rotationally
align two cameras.

Our controller aligns the orientation between two cam-
eras independent of the translational error without recov-
ering either the rotation matrix between the cameras or

epipole

Fig. 1. Bi-tangents to contours in a superimposed image. When the
cameras undergo pure translation, the bi-tangents intersect at the epipole,
as shown.

the feature depths. Our method drives a set of bi-tangents
to co-intersect via an image-based objective function, the
gradient of which is projected through the transposed or
pseudo-inverse of apurely image-basedJacobian matrix.
Thus, the features and resulting controller are easy to
compute from image measurements. Since bi-tangents are
well defined for points or contours, our approach enables
the control of a camera’s motion when the scene presents
either feature type. Contour features render point tracking
(much less point correspondence between views) challeng-
ing or impossible which may explain why epipolar geom-
etry estimation from contours has been limited to special
settings [9]–[11]. To apply our controller in the context of
contour features, we first present a method to estimate the
epipolar geometry from corresponding contours, and use
the result to align two cameras to the same orientation.

II. B I-TANGENTS FORPOINTS AND CONTOURS

Consider a fully calibrated perspective projection camera
and a pointp ∈ R3, expressed in a camera-fixed frame,
viewed by the camera. Without loss of generality, attach
the camera frame to the optical center and align theZ-
axis along the optical axis. Remap the image-plane to a
sphere to recover the symmetry that is “broken” by a flat
image plane [12], thus each image measurement defines a
unit vector

y = π(p) :=
p

‖p‖
.

During a training phase, we command the camera to
move a desired location and acquire an image, and store
the projectionsydi

, i = 1, . . . , N , of several points in the



scene. At each time instant during VS, we measure the
location of these points in the current (or “actual”) view,
yai

, i = 1, . . . , N .
Consider the image obtained by superimposing two

views of the same scene. For each pair of corresponding
features define the line tangent to both as thebi-tangent.
Compute the bi-tangent from a pair of corresponding points
ya, yd as

b ∼ ŷayd (1)

where∼ denotes equality up to a scale andx̂ denotes the
usual skew symmetric matrix obtained from the vectorx ∈
R3.

Given an object in space, theapparent contouris the
projection of the contour generator, i.e. the locus of
points on the object generated by tangent planes through
the optical center [13]. Consider the image obtained by
superimposing two views of the same contour (they will,
in general, be images of different contour generators). A
line tangent to both curves such that both curves lie in the
same half plane defined by the line is acontour bi-tangent.
Each pair of corresponding contours may generate two bi-
tangents as shown in Fig. 1.

III. A UTO-EPIPOLAR GEOMETRY

We now review facts from the epipolar geometry [14],
[15] and the mathematical formulation of the auto-epipolar
property [3], [4], which states that under pure translation,
bi-tangents intersect at the epipoles. We then present new
results relating bi-tangents to the relative orientation be-
tween two views.

A. Review of Epipolar Geometry

Consider theactual and desired cameras with optical
centersca andcd and optical axesZa andZd, respectively.
The segmentcacd, called thebaseline, intersects with the
image planes at the twoepipoles ea and ed. A plane
containing the baseline, called anepipolar plane, intersects
the image at anepipolar line. All the epipolar lines intersect
at the epipole.

Given a pair of cameras and their views of a scene there
exists a matrixE ∈ R3×3 called theessential matrix[14],
such that

yai

T Eydi
= 0 (2)

for all corresponding image points,yai
and ydi

, i =
1, . . . , N . In general the essential matrix has rank2 and
is defined up to an arbitrary scale. For any pointyd in one
view, `a = Eyd defines the epipolar line in the other view
such that the corresponding pointya belongs to this line.
Likewise, given any pointya, the corresponding epipolar
line in the other view is given bỳ d = ET ya. Since
all epipolar lines co-intersect, the (one dimensional) right
null space ofE contains the epipoleed, i.e. ker(E) =
span {ed}. Similarly ker(ET ) = span {ea}.

The essential matrix depends on the relative position and
orientation of cameras, namely

E = T̂R, (3)

where T̂ is the skew-symmetric matrix obtained from the
relative translation vectorT and R is the rotation matrix
between the actual and desired cameras.

Given two camera views of the same smooth object,
their contour generators intersect at the common visible a
point, called afrontier point [16], [17]. An epipolar plane
is tangent to a surface at the frontier point, and the epipolar
line in each views is tangent to the apparent contour at the
projection of the frontier point.

B. The auto-epipolar property

In general, an essential matrix takes the form of (3), but
certain configurations, calledauto-epipolar configurations,
cause the essential matrix to be skew symmetric. For
example, under pure translational displacement between
two cameras (i.e.R = I), we have that

E = T̂ I = T̂ .

Also note that the corresponding epipolar lines and
epipoles, referred to asauto-epipoles, are equal [3], [4].

Proposition 1 (Auto-epipolar property):When the es-
sential matrix is skew symmetric the two epipoles and the
epipolar lines in both views are equal.

Proof: The correspondence of epipoles results from
the fact thatker(E) = ker(ET ) = span {e}, wheree =
ea = ed. Note that theT ∼ e and the essential matrix can
be expressed as

E = ê. (4)

To see the equality of epipolar lines for a corresponding
pair of points, note that the epipolar line in the actual view
is given by`a ∼ Eyd. Moreover the epipolar line in the
desired image can be defined as the line passing thought
yd and the epipolee, namely

`d ∼ e× yd = êyd = Eyd ∼ `a.

Although a pure translational displacement ensures a
skew symmetric essential matrix, there are other auto-
epipolar configurations as well.

Lemma 1 (Ma et al. [18]):Let T ∈ R3 and R ∈
SO(3). If T̂R is skew symmetric matrix, thenR = I or
R = eûπ whereu = T

||T || . Further,T̂ eûπ = −T̂ .

Theeûθ denotes the exponential representation of a rotation
matrix. Lemma 1 describes the two cases for which the
essential matrix is skew symmetric: pure translation and
relative rotation around the baseline of 180 degrees.

While the epipolar lines have a physical interpretation,
i.e. they can be considered as the intersection between the
epipolar plane and the image plane, the physical interpre-
tation of the bi-tangents is less obvious. The following
proposition captures the relationship between bi-tangents
and epipolar lines when the essential matrix is skew-
symmetric.

Proposition 2: If the essential matrix is skew-symmetric
then a bi-tangent line between corresponding featuresbi ∼
ŷai

ydi
coincides with the epipolar linèi ∼ `ai

∼ `di
.



Fig. 2. Three features points and their respective epipolar lines. If the
cameras are initially separated by a only a translation and then one camera
rotates around the baseline by 180o, then the features move as shown.
Note that at the end of the rotation the features lie on the original epipolar
lines.

Fig. 3. Bi-tangent lines.Left. A set of points in the actual image
(crosses), their corresponding locations in the desired image (circles) and
the associated epipolar lines in auto-epipolar configuration. In this case
the epipolar lines coincide with the bi-tangent lines in the super-imposed
image.Right. In general configuration, the bi-tangents do not intersect at
the epipole nor at any other special point, nor are they directly related to
the epipolar lines.

Proof: By Proposition 1,E = −ET . This implies
that the epipolar lines are equal in both the images and thus
they can be computed as the lines joining the actual and
desired points; this is just the definition of the bi-tangent
line.

Cipolla and Sato exploited this idea to retrieve the
epipolar geometry under the pure translation between two
cameras [4]. Under pure translation, the essential matrix
is skew symmetric, and thus epipolar lines coincide with
their corresponding bi-tangents. The intersection of at least
two bi-tangents enables the construction of the epipole and
subsequently the essential matrix from (4).

If system is in the auto-epipolar configuration, then all
bi-tangents intersect at the same point, the epipole, as
shown in Fig. 3. The converse strongly depends on the
number of feature points considered and on their relative

pose in the 3D space.
Theorem 1 (Piazzi and Prattichizzo [19]):Consider 8

corresponding points matchesy1(i) andy2(i) in two respec-
tive views, and let the matrixA = [a1, a2, ..., a8]T with1

ai = (y2(i) ⊗ y1(i))T . If matrix A ∈ R9×8 has rank8 then
when all the bi-tangents intersect at the same pointp, the
essential matrix is skew, and the pointp is the epipole.

Note that when 3D points are in general configuration,
i.e. they do not belong to any critical surfaces (like a plane)
[20], the rank ofA is always eight2.

C. Epipolar Geometry from contours

Theorem 1 allows one to determine if the essential
matrix is skew symmetric without estimating the epipolar
geometry, given a set of corresponding points. We suspect
the same result applies to contours.

Conjecture 1:Given 2n ≥ 8 bi-tangents (2 for each
contour) obtained by a set ofn corresponding contours
Ca(obj)i and Cd(obj)i induced by spherical objects on the
scene. If the2n bi-tangents intersect at the same point then
the cameras are in auto-epipolar configuration.

Note that contour bi-tangents intersect the corresponding
contours at points thatdo not correspond. Therefore we
cannot apply Theorem 1. Thus far, the controller simula-
tions presented in the next section have not converged to a
configuration that disproves our conjecture, but the proof
represents work in progress.

One way to determine if a set of bi-tangents intersect at
the same point is to observe the smallest singular value of
the matrix containing all the lines [19]. If this value is equal
to zero then the bi-tangents have a single intersection point.
The following corollary, based on Conjecture 1, formalizes
this fact.

Corollary 1: Consider two cameras in a generic rigid
body motion with relative orientationR and 2n ≥ 8
bi-tangents (2 for each contour) obtained by a set ofn
corresponding contoursCa(obj)i and Cd(obj)i induced by
spherical objects on the scene. Given the matrix

MRx =


bRx1

bRx2

...
bRxn

 , (5)

where abRxi is a bi-tangent obtained by two corresponding
contoursCd(obj)i andRxCa(obj)i (by which we mean that
every point of the contour is multiplied by the rotation
matrix Rx). The smallest singular value ofMRx is equal
to zero if and only ifRx = RT or Rx = eûπRT where
u = epd

||epd|| .
Proof: Suppose we are given the contoursCa(obj)1

andCd(obj)1 induced by the same sphere, multiplying the
points of theCa(obj)1 by the matrixRT or eûπRT , they
are oriented in points of a contour that is in auto-epipolar

1The symbol⊗ is the Kronecker product and the resulting vectorai ∈
R9×1

2The theorem hypothesis are the same of the famous 8-points algorithm.
Therefore if the epipolar geometry can be estimated from the points then
the theorem holds true



configuration with the corresponding contourCd(obj)1.
Since every contourCa(obj)i is “moved” by the matrixR in
auto-epipolar configuration with the corresponding contour
Cd(obj)i the bi-tangents intersect at the same pointed. The
matrix MRx is thus singular, because the intersection point
ed represents the right null vector ofMRx and the smallest
singular value is zero. On the other hand if the smallest
singular value ofMRx

is zero, the bi-tangents have a single
intersection point. But from Conjecture 1 the cameras are
in auto-epipolar configuration, and the only two possible
rotation matrices to obtain such a configuration areRx =
RT or Rx = eûπRT , i.e. the relative orientation matrix
between the camera premultiplied byI or the rotation
around the base lineeûπ.

IV. 3D ROTATIONAL CONTROLLER

A. Bi-tangent Line Jacobian (BLJ)

We propose a rotational controller that steers all the
bi-tangents to intersect at the desired epipoleed. Our
controller requires a bi-tangent line Jacobian matrix that
relates the bi-tangent line velocities to the camera angular
velocity, computed as follows.

Assume pure rotational motion of the actual camera.
Given an image point,ya, its velocity is given by

ẏ = ŷaω, (6)

where ω is the body-frame representation of the camera
angular velocity. From (1), the cross product of two views
of the point

m = yd × ya = ŷdya, (7)

define a bi-tangent up to a scale, namelyb = km, k 6= 0.
Without loss of generality, we normalize the bi-tangent:

b =
m

‖m‖
. (8)

Since the angular velocity is applied only to the actual
camera, the point on the desired viewsyd remains constant.
Thus differentiating (8) yields:

ḃ = Π ŷdẏa, where Π =
1

‖m‖

(
I − mT m

‖m‖‖m‖

)
. (9)

From (6), we have

ḃ = Π ŷdŷaω = Bω, (10)

where the matrixB = Πŷdya ∈ R3×3 is the rotational,
image-based bi-tangent line Jacobian (BLJ).

B. Controller design

Our controller attempts to steer all bi-tangents to in-
tersect at the desired epipole, which remains stationary
during the process. Recall that the epipole is defined as the
intersection between the baseline and the image plane, and
since the actual camera rotates, but does not translate, the
baseline does not change throughout the control procedure.

Define the image error as the distance between the bi-
tangents and the epipole,di = bT

i ed, which vanishes only

when the pointed belongs to the linebi. Since the epipole,
ed, remains constant, we have that

ḋ = J ω (11)

whered = [d1, d2, . . . , dn]T ,

J = (In×n ⊗ eT
d )


B1

B2

...
Bn


andBi is the BLJ associated with thei-th bi-tangent line.
A rotational control strategy that (locally) minimizes the
error d is given by

ω = −λJ†d (12)

whereλ is a positive scalar gain andJ† = (JT J)−1JT

is the pseudo inverse ofJ . The simple gradient based
approach for the input angular velocity (12), guarantees
the convergence of the VS task in a neighborhood of the
target, not unlike most the classical VS methods.

V. SIMULATION EXPERIMENTS

The control law (12) steers all the bi-tangents to intersect
at the desired epipole in order to align the orientation
between the two views. Since both points and contours
induce bi-tangents, we report simulation results for both
feature types. Our approach assumes no prior knowledge
about the 3D scene, and assume that the internal camera
parameters are known. We make no effort in the present
work to maintain features within the FOV, which is left for
future work [21].

A. Point feature experiments

Given a set of points in space in a general configuration
we first estimate the desired epipole by computing the
essential matrix through the linear 8-point algorithm [22].
We assume the ideal case of noiseless image points, from
which the bi-tangent lines and the BLJ are computed at
each sampling step. Fig. 5 (Left) shows an experiment
with an initial orientation of [−40◦,−10◦,−50◦] (roll,
pitch, yaw) and translation of[70,−20,−10] (cm), relative
to the desired camera. The control law in (12) leads to
exponential decay in the error.

Although the control law presented in (12) guarantees
local exponential convergence, it requires an estimate of
the epipole, which may be corrupted by noisy image data,
consequently degrading the performance of the controller.
A planar auto-epipolar VS controller, presented in [19],
does not require the estimation of the epipolar geometry;
however extension of that simple “epipole-free” control law
to the more general 3D case represents work in progress.

Another issue involves the two possible orientations
assumed by the actual camera in the auto-epipolar con-
figuration. According to Lemma 1, there are two global
minima for the error,‖d‖: equal orientation, and a relative
rotation around the baseline of 180o. The problem is
similar to the reconstruction of the camera pose from the



decomposition of the essential matrix, which in general
yields four possible solutions. Consider however that when
the cameras are aligned to the same orientation, any
translation maintains the auto-epipolar configuration, i.e.
the bi-tangents continue to intersect at the same point. This
does not hold for the other auto-epipolar configuration. In
this case, any translation (except along the baseline) causes
the bi-tangents to diverge from co-intersection. In this case
we execute a rotation around the baseline of 180 degrees
in order to align the cameras.

B. Contour feature experiments

We propose a method to estimate the epipolar geometry
and align the orientation of two cameras when the scene
exhibits only smooth objects. In general, corresponding
points cannot be determined from corresponding contours.
This complicates the estimation of the epipolar geometry
because we can not apply the same procedures as for point
features (e.g. the 8-point algorithm). However the curves
obtained from apparent contours permit us to define bi-
tangent lines from which we estimate the relative rotation
matrix and the desired epipole as follows.
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Fig. 4. Two spherical features and their contour generators.

Fig. 4 shows a scene with 2 spheres in general displace-
ment with the contour generators induced by the cameras.

We need only estimate the epipolar geometry in the
preliminary step,

According to Conjecture 1,MRx loses rank only when
Rx = RT or Rx = eûπRT . Thus we can estimate one of
them by calculating the smallest singular value ofMRx

.
We perform an optimization process in three variables to
retrieve the unit vector axis and the angle of rotation, i.e.
through the Rodrigues’ formula, employing the smallest
singular value of the matrixMR as a scalar valued cost
function.

Recovering relative rotation, enables the recovery of
the entire epipolar geometry. The desired epipole is the

intersection point of the bi-tangents and the rotation matrix
is given by the optimization process. Therefore we build
the essential matrix according to (3). Note that whatever
R is obtained from the optimization process (Rx = RT or
Rx = eûπRT ), the resulting essential matrix is the same
(up to a scale).

Note that we need only estimateed at the very beginning
of the processes – not at each time step. Naive optimization
in Matlab (using fminsearch) requires approximately 10
seconds on a Pentium II, 650MHz. (This need only be ex-
ecuted once at the beginning of the VS process.) Note that
our approach to estimating the epipolar geometry requires
only three parameters (compared, for example, to the eight
required for estimating the minimal parameterization of the
fundamental matrix presented in [23]), and thus we believe
a more efficient method can be found.

Once the epipolar geometry has been recovered we
apply the same procedure as used previously for the points
features. At every step of the process we compute the bi-
tangents from the edges of the spheres and we employ the
tangent points to build up theBLJ according to (10).3
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Fig. 5. Rotational error (using Euler angles) between camera frames
during bi-tangent servoing.Left. Feature point based visual servoing.
Right. Contour based visual servoing.

We ran many simulations starting from several initial
misalignments. Fig. 5 (Right) shows the profiles of the
angular errors between the two views with an initial
orientation of about[60◦,−12◦,−34◦] (roll, pitch, yaw).
In this case, despite large initial misalignment, the error
converges to zero.

VI. CONCLUSION AND FUTURE WORK

We presented a method to retrieve the epipolar geometry
and to align the orientation of two views by exploiting
bi-tangent line features. The procedure applies to both
contours and feature points. In addition, we propose a pro-
cedure to estimate of the epipolar geometry for contours.
One of the key steps involves computing the bi-tangent line
Jacobian purely from image measurements.

This work takes a preliminary look at “auto-epipolar”
geometry, but there remain several open questions. We

3Note that the BLJ in (10) is only approximate, since it is based on lines
induced from corresponding points. In the presence of contours the bi-
tangent line velocities depend in a complex way on the change of contours
in the image. However, as confirmed by the experiment presented in Fig. 5
(Right), the BLJ provides good convergence. We suspect that the variation
of the line tangent point on a smooth contour can be approximated locally
as the variation of single point.



wish to relax the requirement of computing the epipoles
to enable a VS implementation completely free of epipolar
geometry estimation as done in [19] for the planar case.
The field of view is another open issue: note that transients
may cause the loss of features from the image. Finally,
using contours instead of points may generate occlusions
between the features that may imperil the computation of
the bi-tangents.

This paper provides insight into the use of epipolar
geometry to visually control a robot’s motion. We believe
that a fast and robust way to control the orientation could
leave many open doors for solving VS problems. The aim
of this work is to show that it is possible to design a method
for aligning the camera that is, in principle, independent
from the other degrees of freedom. In [24] we presented a
completely decoupled translational and rotational controller
with a large domain of attraction that respects the field of
view. Our research line is to split the entire VS process
in several sub-tasks and tackle each of them with robust
and reliable control laws, with well characterized domains
of attraction. It is our belief that such controllers can
be stitched together [25] to create a globally convergent
vision-based navigation system.

REFERENCES

[1] T. Moons, L. V. Gool, M. Proesman, and E. Pauwels, “Affine
reconstruction from perspective image pairs with a relative object-
camera translation in between,”Pattern Analysis and Machine
Intelligence, vol. 18, no. 1, 1996.

[2] J. Jang and K. Hong, “Self-calibration of a stereo-camera by pure
translational motion,”International conference on Image Process-
ing, vol. 1, pp. 297–300, 1996.

[3] A. Zisserman and J. L. Mundy, “Repeated structures: Image cor-
rispondence constraints and 3d structure recovery,”In J. L. Mundy,
A. Zisserman and D. A. Forsyth editors “Applications of Invariants
in Computer Vision”, vol. (LNCS 825) Springer-Verlag, pp. 89–106,
1994.

[4] J. Sato and R. Cipolla, “Affine reconstruction of curved surfaces
from uncalibrated views of apparent contours.”IEEE Trans. Pattern
Anal. Mach. Intell., vol. 21, no. 11, pp. 1186–1198, 1999.

[5] P. Rives, “Visual servoing based on epipolar geometry,” inInterna-
tional Conference on Intelligent Robots and Systems, vol. 1, 2000,
pp. 602–607.

[6] R. Basri, E. Rivlin, and I. Shimshoni, “Visual homing: Surfing on
the epipoles.” inICCV, 1998, pp. 863–869.

[7] E. Malis, F. Chaumette, and S. Boudet, “2d 1/2 visual servoing,”
IEEE Transaction on Robotics and Automation, vol. 15, pp. 328–
250, Apr. 1999.

[8] C. J. Taylor, J. P. Ostrowski, and S. H. Jung, “Robust visual servoing
based on relative orientation,” inIEEE Conf. on Comp. Vision and
Patt. Recog, June 1999, pp. 574–580.

[9] G. Chesi, J. Piazzi, D. Prattichizzo, and A. Vicino, “Epipole-based
visual servoing using profiles.” inProc. IFAC’02 World Congress,
Barcellona, Spain., July 2002.

[10] R. Cipolla and J. Sato, “Affine reconstruction of curved surfaces
from uncalibrated views of apparent contours.”ICCV, pp. 715–720,
1998.

[11] K.-Y. K. Wong, P. R. S. Mendonça, and R. Cipolla, “Reconstruction
and motion estimation from apparent contours under circular mo-
tion,” in Proc. British Machine Vision Conference 1999, T. Pridmore
and D. Elliman, Eds., vol. 1. Nottingham, UK: British Machine
Vision Association, September 1999, pp. 83–92.

[12] T. Hamel and R. Mahony, “Visual servong of an under-actuated
dynamic rigid-body system: An image-based approach.”IEEE
Transactions on Robotics and Automation, vol. 18(2), p. 187198,
April 2002.

[13] K. A. ström, R. Cipolla, and P. Giblin, “Motion from the frontier
of curved surfaces.” inFifth International Conference on Computer
Vision, Boston, USA, 1995.

[14] O. D. Faugeras,Three-Dimensional Computer Vision: A Geometric
Viewpoint. MIT Press, 1993.

[15] H. C. Longuet-Higgins, “A computer algorithm for recostructing a
scene from two projections,”Nature, vol. 293, pp. 133–135, 1981.

[16] P. J. Giblin and R. Weiss, “Epipolar fileds on surfaces,” inThird
European Conf. Computer Vision, vol. 1, Stockholm, May 1994,
pp. 14–23.

[17] J. H. Rieger, “Three dimensional motion from fixed points of a
deforming profile curve,”Optics Letters, vol. 11, pp. 123–125, 1896.

[18] Y. Ma, J. Kǒsecḱa, and S. S. Sastry, “Linear differential algorithm
for motion recovery: A geometric approach,”Internation Journal of
Computer Vision, vol. 36(1), pp. 71–89, Sep. 2000.

[19] J. Piazzi and D. Prattichizzo, “An auto-epipolar strategy for mobile
robot visual servoing,” inInternational Conference on Intelligent
Robots and Systems (IROS), Las Vegas (USA), Sep. 2003.

[20] S. J. Maybank, “The projective geometry of anbiguous surfaces,”
Philosofical Transaction of the Royal Society of London, vol. A
332:1 - 47, 1990.

[21] N. J. Cowan, J. D. Weingarten, and D. E. Koditschek, “Visual
servoing via navigation functions,”Transactions on Robotics and
Automation, vol. 18, no. 4, 2002.

[22] R. Hartley, “In defence of the 8-point algorithm.” inProc. of IEEE
Int. Conference on Computer Vision, Cambridge MA,USA, June
1995, pp. 1064–1070.

[23] P. R. S. Mendonça and R. Cipolla, “Estimation of epipolar geometry
from apparent contours: affine and circular motion cases.”Computer
Vision and Pattern Recognition, vol. 1, June 1999.

[24] J. Piazzi and N. J. Cowan, “Multi-view visual servoing using
epipoles,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Sendai. Japan, September 2004.

[25] R. R. Burridge, A. A. Rizzi, and D. E. Koditscheck, “Sequential
composition of dynamically dexterous robot behaviors.”Int. J. Rob.
Res., vol. 18(6), pp. 534–555, 1999.


