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Abstract—We present a purely rotational visual servoing
algorithm which aligns the orientation between two cameras
at different locations in space. Specifically, our kinematic
controller steers a set of so-calledi-tangent linesto intersect
at the epipole using a purely image-based bi-tangent line Jaco- . .

bian. Bi-tangent lines, i.e. lines joining corresponding features
on the superposition of two views of a scene, can be defined
for both points and contours, so we apply our controller to
both feature types. Simulated experiments demonstrate the

parametric robustness of the proposed method. . e ]
epipole

. INTRODUCTION

Achieving rotational alignment between two cameras
simplifies certain problems in vision, such as scene recon-

struction [1] and camera calibration [2]. In this paper WeFig. 1. Bi-tangents to contours in a superimposed image. When the

present a visual servoing (VS) algorithm th.at roration_a"ycameras undergo pure translation, the bi-tangents intersect at the epipole,
aligns two cameras by steering a set of bi-tangent liness shown.

i.e. the lines joining the corresponding features on two

superimposed views, to intersect at a common point — the ) )
epipole. The co-intersection of at least eight bi-tangentd'€ feature depths. Our method drives a set of bi-tangents

ensures that the essential matrix between the two cameri@sCO-intersect via an image-based objective function, the
is skew-symmetric, thus ensuring alignment of the camerd¥adient of which is projected through the transposed or
(modulo a180° ambiguity in rotation about the epipole). pseudo-inverse of aurely |mag_e-basedacob|an matrix.
The rotational error between the current and desired camelQUs: the features and resulting controller are easy to
convergesndependent of the translational displacement COmPute from image measurements. Since bi-tangents are

this sense, the controller presented decouples the rotatioff4!! defined for points or contours, our approach enables
and translational degrees of freedom. the control of a camera’s motion when the scene presents

Zisserman and Mundy [3] introduced the idea of pi-€ither feature _type. Contour features render_ point tracking
tangents which Cipolla and Sato [4] exploited to recovefMuch less point correspondence between views) challeng-
epipoles and the fundamental matrix under pure camefgd Or impossible which may explain why epipolar geom-
translation; the rotational control algorithm in this paper®lry estimation from contours has been limited to special
builds directly on these ideas. Prior works on VS alsg€ttings [9]-[11]. To apply our controller in the context of
employ epipolar geometry: Rives describes an aIgorithrﬁO_ntour features, we first present a method to estimate the
that drives robot to a desired pose by steering the imag@PiPolar geometry from corresponding contours, and use
features along epipolar lines [5]; Basri and Shimshonihe result to align two cameras to the same orientation.
recover the rotation matrix from the decomposition of the
essential matrix, and they retrieve the translation direction
from the epipoles [6]. Similarly Maliset al. [7] and Consider a fully calibrated perspective projection camera
Taylor et al. [8], decompose the homography or essentiagnd a pointp € R?, expressed in a camera-fixed frame,
matrices, respectively, to recover the rotation between twgiewed by the camera. Without loss of generality, attach
views. These methods decouple rotational and translation#le camera frame to the optical center and align Zhe
control by explicitly estimating the rotation matrix from the axis along the optical axis. Remap the image-plane to a
essential or homography matrices. In our method we dgphere to recover the symmetry that is “broken” by a flat
not require the decomposition of any matrix related to thémage plane [12], thus each image measurement defines a
camera geometry. To the best of our knowledge, no othémit vector
purely image-based VS strategies to date can rotationally y =7(p) := P
align two cameras. 1Pl

Our controller aligns the orientation between two cam- During a training phase, we command the camera to
eras independent of the translational error without recounove a desired location and acquire an image, and store
ering either the rotation matrix between the cameras dhe projectionsy,,, i = 1,..., N, of several points in the

[1. BI-TANGENTS FORPOINTS AND CONTOURS



scene. At each time instant during VS, we measure thehereT is the skew-symmetric matrix obtained from the
location of these points in the current (or “actual”) view,relative translation vectol” and R is the rotation matrix
Yo, 0=1,...,N. between the actual and desired cameras.

Consider the image obtained by superimposing two Given two camera views of the same smooth object,
views of the same scene. For each pair of correspondirtbeir contour generators intersect at the common visible a
features define the line tangent to both as biangent  point, called afrontier point[16], [17]. An epipolar plane
Compute the bi-tangent from a pair of corresponding points tangent to a surface at the frontier point, and the epipolar
Ya, Yd @S line in each views is tangent to the apparent contour at the

b~ Jaya (1) projection of the frontier point.

where~ denotes equality up to a scale andienotes the B. The auto-epipolar property
usual skew symmetric matrix obtained from the veatcs
R3.

Given an object in space, thepparent contouris the
projection of thecontour generatar i.e. the locus of X
points on the object generated by tangent planes throuqe\fﬂv
the optical center [13]. Consider the image obtained by
superimposing two views of the same contour (they will, E=TI=T.
in general, be images of different contour generators). A
line tangent to both curves such that both curves lie in th@lso note that the corresponding epipolar lines and
same half plane defined by the line is@ntour bi-tangent ~ epipoles, referred to asuto-epipolesare equal [3], [4].
Each pair of corresponding contours may generate two bi- Proposition 1 (Auto-epipolar property)When the es-

In general, an essential matrix takes the form of (3), but
certain configurations, callesuto-epipolar configurations
cause the essential matrix to be skew symmetric. For
ample, under pure translational displacement between
0 cameras (i.eR = I), we have that

tangents as shown in Fig. 1. sential matrix is skew symmetric the two epipoles and the
epipolar lines in both views are equal.
lIl. AUTO-EPIPOLAR GEOMETRY Proof: The correspondence of epipoles results from

We now review facts from the epipolar geometry [14],the fact thatker(E) = ker(E”) = span{e}, wheree =
[15] and the mathematical formulation of the auto-epipolar. = eq4- Note that thel’ ~ ¢ and the essential matrix can
property [3], [4], which states that under pure translationpe expressed as
bi-tangents intersect at the epipoles. We then present new E=c¢. 4)

results relating bi-tangents to the relative orientation be- . . . )
tween two views. To see the equality of epipolar lines for a corresponding

pair of points, note that the epipolar line in the actual view
A. Review of Epipolar Geometry is given by/, ~ Eyy. Moreover the epipolar line in the

Consider theactual and desired cameras with optical desired image can be defined as the line passing thought
centers:, andc, and optical axes, and Zy, respectively, ¥ @nd the epipole;, namely
The segment,c,, called thebaseline intersects with the
image planes at the twepipolese, and e;. A plane
containing the baseline, called apipolar plane intersects [ ]
the image at agpipolar line All the epipolar lines intersect  Although a pure translational displacement ensures a
at the epipole. skew symmetric essential matrix, there are other auto-

Given a pair of cameras and their views of a scene therpipolar configurations as well.
exists a matrix € R3*3 called theessential matri14], Lemma 1 (Ma et al. [18]):Let T € R3 and R €
such that SO(3). If TR is skew symmetric matrix, the® = I or

Yo, TEyg, =0 (2)  R=e" whereu = i Further,Te®™ = —T".
Thee™ denotes the exponential representation of a rotation
matrix. Lemma 1 describes the two cases for which the
essential matrix is skew symmetric: pure translation and
relative rotation around the baseline of 180 degrees.

While the epipolar lines have a physical interpretation,
Likewise, given any poiny,, the corresponding epipolar i.e: they can be Considered as the intersectioq betyveen the
line in the other view is given by, = ETy,. Since ep!polar plane gnd the 'mage plane, t.he physical mterpre-
all epipolar lines co-intersect, the (one dimensional) righfatlon of the bi-tangents is less obvious. The following

null space of E contains the epipoley, i.e. ker(E) — proposition captures the relationship between bi-tangents
span {eq}. Similarly ker(ET) — span { } e and epipolar lines when the essential matrix is skew-

The essential matrix depends on the relative position an%ymmetrl_c._ . o .
Proposition 2: If the essential matrix is skew-symmetric

orientation of cameras, namely ; ) X
X then a bi-tangent line between corresponding featbires
E=TR, (3)  9a,y4, coincides with the epipolar ling;, ~ £,, ~ £g4,.

EdwexdeédeEydwéa.

for all corresponding image points;,, and yg4,, i =
1,...,N. In general the essential matrix has rahland
is defined up to an arbitrary scale. For any paiptn one
view, ¢, = Eyy defines the epipolar line in the other view
such that the corresponding point belongs to this line.



pose in the 3D space.

Theorem 1 (Piazzi and Prattichizzo [19]Consider 8
corresponding points matchgg;, andy, ;) in two respec-
tive views, and let the matri¥d = [ay, as, ..., ag]? with!
ai = (Y2(5) @ y1(s)) "~ If matrix A € R9*® has ranks then
when all the bi-tangents intersect at the same ppirthe
essential matrix is skew, and the pojmtis the epipole.

Note that when 3D points are in general configuration,
i.e. they do not belong to any critical surfaces (like a plane)
[20], the rank ofA is always eight

C. Epipolar Geometry from contours

Theorem 1 allows one to determine if the essential
matrix is skew symmetric without estimating the epipolar
geometry, given a set of corresponding points. We suspect
the same result applies to contours.

Conjecture 1:Given 2n > 8 bi-tangents (2 for each
contour) obtained by a set of corresponding contours
Ca(objyi @nd Cyap5y; induced by spherical objects on the
scene. If the2n bi-tangents intersect at the same point then
Fio 2. Three feat s and thei i otar i " ththe cameras are in auto-epipolar configuration.
cameras are mitially separaied by a only a traniation and then one cameral\OtE that contour bi-tangents intersect the corresponding
rotates around the baseline by ®8@hen the features move as shown. contours at points thado not correspondTherefore we
Note that at the end of the rotation the features lie on the original epipolatannot apply Theorem 1. Thus far, the controller simula-
lines. tions presented in the next section have not converged to a
configuration that disproves our conjecture, but the proof
represents work in progress.

One way to determine if a set of bi-tangents intersect at
the same point is to observe the smallest singular value of
the matrix containing all the lines [19]. If this value is equal
to zero then the bi-tangents have a single intersection point.
The following corollary, based on Conjecture 1, formalizes
this fact.

Corollary 1: Consider two cameras in a generic rigid
body motion with relative orientatiorR and 2n > 8

?ig- 3. ) Bri'tf'ﬂ”gem "”esd_Le"t-l A set of P?]imj in tge_ aCtua(' _imlag)e bi-tangents (2 for each contour) obtained by a setof
crosses), their corresponding locations in the desired image (circles) a . .
the associated epipolar lines in auto-epipolar configuration. In this ca&%rrespondmg Contourga(obj)i and Cd(obj)i induced by

the epipolar lines coincide with the bi-tangent lines in the super-impose@pherical objects on the scene. Given the matrix
image.Right. In general configuration, the bi-tangents do not intersect at

the epipole nor at any other special point, nor are they directly related to bRI1

the epipolar lines. br 2
Mp,=| . |, )

Proof: By Proposition 1,E = —ET. This implies br.n

that the epipolar lines are equal ﬁn bth'the images and thyghere anr, ; is a bi-tangent obtained by two corresponding
they can b_e comput_ed_ as the Ilne_s_J_ommg the qctual a%ntours(}d(obj)i and R, C,(os5): (by which we mean that
desired points; this is just the definition of the bi-tangenkyery point of the contour is multiplied by the rotation

line. _ o B matrix R,). The smallest singular value dfz, is equal
Cipolla and Sato exploited this idea to retrieve theg sero if and only ifR, = RT or R, = ¢*"RT where

epipolar geometry under the pure translation between twg _ epd”_
cameras [4]. Under pure translation, the essential matrix H)er%dof: Suppose we are given the contowurs ;)

is skew symmetric, and thus epipolar lines coincide withyng Caonjy1 induced by the same sphere, multiplying the
their corresponding bi-tangents. The intersection of at 'eaﬁoints of theC, (o)1 by the matrix R” or ¢ R, they

two bi-tangents enables the construction of the epipole angle oriented in points of a contour that is in auto-epipolar
subsequently the essential matrix from (4).

If system is in the auto-epipolar configuration, then all nglhe symbol® is the Kronecker product and the resulting veetpre
X

bi-tangents intersect at the same point, the epipole, 3%2 _ _ _
The theorem hypothesis are the same of the famous 8-points algorithm.

shown in Fig. 3. The_ conversg strongly depend; on t_h9nerefore if the epipolar geometry can be estimated from the points then
number of feature points considered and on their relativiae theorem holds true



configuration with the corresponding contodf;;;);.  when the point, belongs to the liné;. Since the epipole,
Since every contout’, (., is “moved” by the matrixiz in ¢4, remains constant, we have that

auto-epipolar configuration with the corresponding contour .
Ca(ovjyi the bi-tangents intersect at the same peintThe d=Jw (11)
matrix Mg, is thus singular, because the intersection poinfyhered = [d;, ds, . . . , dn]?,

eq represents the right null vector 8fz, and the smallest

singular value is zero. On the other hand if the smallest By

singular value of\/, is zero, the bi-tangents have a single J = (Inyn ®eD) By

intersection point. But from Conjecture 1 the cameras are T Anxn e :

in auto-epipolar configuration, and the only two possible B,

rotation matrices to obtain such a configuration &e= _ . . . .
RT or R, = ¢*"RT, i.e. the relative orientation matrix and B; is the BLJ associated with theth bi-tangent line.

between the camera premultiplied Hyor the rotation A rotational control strategy that (locally) minimizes the
around the base line®". m errord is given by

— gt
IV. 3D ROTATIONAL CONTROLLER w=—-AJ"d (12)

A. Bi-tangent Line Jacobian (BLJ) where \ is a positive scalar gain and’ = (J7.J)~1J"

We propose a rotational controller that steers all the® the pseudo inverse of. The simple gradient based

bi-tangents to intersect at the desired epipele Our approach for the input angular velocity (12), guarantees

controller requires a bi-tangent line Jacobian matrix th tthe convergence of the VS task in a neighborhood of the

relates the bi-tangent line velocities to the camera angulaar‘rget not unlike most the classical VS methods.

velocity, computed as follows. V. SIMULATION EXPERIMENTS
Assume pure rotational motion of the actual camera.

. i ) : R The control law (12) steers all the bi-tangents to intersect
Given an image pointy,, its velocity is given by

at the desired epipole in order to align the orientation
§ = Jaw, (6) between the two views. Since both points and contours
induce bi-tangents, we report simulation results for both
wherew is the body-frame representation of the camergeature types. Our approach assumes no prior knowledge
angular velocity. From (1), the cross product of two viewsabout the 3D scene, and assume that the internal camera
of the point parameters are known. We make no effort in the present
m =Yg X Ya = Ydla, (7)  work to maintain features within the FOV, which is left for

_ ) future work [21].
define a bi-tangent up to a scale, nam&kt km, k # 0.

Without loss of generality, we normalize the bi-tangent: A. Point feature experiments

__m ®) Given a set of points in space in a general configuration
[|m] we first estimate the desired epipole by computing the

Since the angular velocity is applied only to the actuasisentlal matrix through the linear 8-point algorithm [22].

camera, the point on the desired vieyysremains constant. e assume the ideal case of noiseless image points, from
Thus di;‘ferentiating (8) yields: which the bi-tangent lines and the BLJ are computed at

each sampling step. Fig. 9.€ff) shows an experiment
1 (I mTm ) ©) with an initial orientation of[—40°, —10°, —50°] (roll,
: pitch, yaw) and translation 470, —20, —10] (cm), relative
to the desired camera. The control law in (12) leads to
exponential decay in the error.
b =1 jajow = Bw, (10) Although the control law presented in (12) guarantees
local exponential convergence, it requires an estimate of
where the matrixB = Iljsy, € R**? is the rotational, the epipole, which may be corrupted by noisy image data,
image-based bi-tangent line Jacobian (BLJ). consequently degrading the performance of the controller.
A planar auto-epipolar VS controller, presented in [19],
does not require the estimation of the epipolar geometry;
Our controller attempts to steer all bi-tangents to in-however extension of that simple “epipole-free” control law
tersect at the desired epipole, which remains stationaty the more general 3D case represents work in progress.
during the process. Recall that the epipole is defined as the Another issue involves the two possible orientations
intersection between the baseline and the image plane, aassumed by the actual camera in the auto-epipolar con-
since the actual camera rotates, but does not translate, tiguration. According to Lemma 1, there are two global
baseline does not change throughout the control procedurainima for the error||d||: equal orientation, and a relative
Define the image error as the distance between the hietation around the baseline of 180The problem is
tangents and the epipolé; = b7 e,, which vanishes only similar to the reconstruction of the camera pose from the

b=19qy., where II

~ Iml] [ [

From (6), we have

B. Controller design



decomposition of the essential matrix, which in generaintersection point of the bi-tangents and the rotation matrix
yields four possible solutions. Consider however that wheis given by the optimization process. Therefore we build
the cameras are aligned to the same orientation, arlie essential matrix according to (3). Note that whatever
translation maintains the auto-epipolar configuration, i.eR is obtained from the optimization proces’, (= R” or
the bi-tangents continue to intersect at the same point. Thig, = %" R”), the resulting essential matrix is the same
does not hold for the other auto-epipolar configuration. Iffup to a scale).
this case, any translation (except along the baseline) caused\ote that we need only estimatg at the very beginning
the bi-tangents to diverge from co-intersection. In this casef the processes — not at each time step. Naive optimization
we execute a rotation around the baseline of 180 degreas Matlab (using fminsearch) requires approximately 10
in order to align the cameras. seconds on a Pentium Il, 650MHz. (This need only be ex-
B. Contour feature experiments ecuted once at the k_)egir_ming of th_e VS process.) Note _that
) . our approach to estimating the epipolar geometry requires
We propose a method to estimate the epipolar geometgyy three parameters (compared, for example, to the eight
and align the orientation of two cameras when the scengired for estimating the minimal parameterization of the
exhibits only smooth objects. In general, corresponding,nqamental matrix presented in [23]), and thus we believe
points cannot be determined from corresponding contours. ,ore efficient method can be found.
This complicates the estimation of the epipolar geometry Once the epipolar geometry has been recovered we
because we can not apply the same procedures as for poipf,|y the same procedure as used previously for the points
features (e.g. the 8-point algorithm). However the Curvegyarres. At every step of the process we compute the bi-
obtained from apparent contours permit us to define b'fangents from the edges of the spheres and we employ the

tangent lines from which we estimate the relative rotatiorgangent points to build up th8L.J according to (10§.
matrix and the desired epipole as follows.
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Fig. 5. Rotational error (using Euler angles) between camera frames
during bi-tangent servoingLeft. Feature point based visual servoing.
Right. Contour based visual servoing.

We ran many simulations starting from several initial
misalignments. Fig. 5Righ) shows the profiles of the
angular errors between the two views with an initial
orientation of abouf60°,—12°, —34°] (roll, pitch, yaw).

In this case, despite large initial misalignment, the error
converges to zero.

Fig. 4. Two spherical features and their contour generators. VI. CONCLUSION AND FUTURE WORK
We presented a method to retrieve the epipolar geometry

Fig. 4 shows a scene with 2 spheres in general displacgnd to align the orientation of two views by exploiting
ment with the contour generators induced by the camerabi-tangent line features. The procedure applies to both

We need only estimate the epipolar geometry in th€ontours and feature points. In addition, we propose a pro-
preliminary step, cedure to estimate of the epipolar geometry for contours.

According to Conjecture 1M p_ loses rank only when One of the key steps involves computing the bi-tangent line
R, = RT or R, = ¢*"R”. Thus we can estimate one of Jacobian purely from image measurements.
them by calculating the smallest singular value \df;, . This work takes a preliminary look at “auto-epipolar”
We perform an optimization process in three variables tgeometry, but there remain several open questions. We
retrieve the unit vector axis and the angle of rotation, i.e. , : _ . N .

. , . Note that the BLJ in (10) is only approximate, since it is based on lines

thrOUgh the Rodrigues formula, employing the Sma”eanduced from corresponding points. In the presence of contours the bi-
singular value of the matriX/r as a scalar valued cost tangent line velocities depend in a complex way on the change of contours

function. in the image. However, as confirmed by the experiment presented in Fig. 5

R . lati . bl h g?ight), the BLJ provides good convergence. We suspect that the variation
ecovering relative rotation, enables the recovery Ol ihe ine tangent point on a smooth contour can be approximated locally

the entire epipolar geometry. The desired epipole is thes the variation of single point.



wish to relax the requirement of computing the epipolegi4]
to enable a VS implementation completely free of epipolal
geometry estimation as done in [19] for the planar cas
The field of view is another open issue: note that transientse]
may cause the loss of features from the image. Finally,
using contours instead of points may generate occlusiorﬂﬁ]
between the features that may imperil the computation of
the bi-tangents. [
This paper provides insight into the use of epipolar
geometry to visually control a robot’s motion. We believe[19]
that a fast and robust way to control the orientation could
leave many open doors for solving VS problems. The ai
of this work is to show that it is possible to design a metho

for aligning the camera that is, in principle, independen
from the other degrees of freedom. In [24] we presented

15]

18]

0

completely decoupled translational and rotational controller
with a large domain of attraction that respects the field of22]
view. Our research line is to split the entire VS process

in several sub-tasks and tackle each of them with robugts]
and reliable control laws, with well characterized domains

of attraction. It is our belief that such controllers can,,

be stitched together [25] to create a globally convergent

vision-based navigation system.
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