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Abstract— We explore the benefits of multiple views for
visual servoing (VS) by commanding a single camera to first
“peer” at a scene from two vantage points, thus acquiring a
set “reference” images, prior to executing a visual position
task. Our approach completely decouples the translational
and rotational components of our controller: epipoles from
the reference views drive the translational error to zero,
while the rotational degrees of freedom maintain all of the
features in the field of view (FOV). We furnish a simple
Lyapunov stability proof that demonstrates a large domain of
attraction while maintaining all features in the FOV. Finally,
we present simulated experiments that suggest robustness
to measurement noise and large variations in the baseline
between the reference views.

I. I NTRODUCTION

Insects often exploit parallax rather than stereo to per-
ceive depth [1]. We explore the benefits of multiple views
for visual servoing (VS) by commanding a single camera
to first “peer” at a scene from two vantage points, thus
acquiring a set “reference” images at the beginning of
a visual position task. In many visual control strategies
only the desired and the current views are employed to
accomplish the visual servoing task. Once a new reference
image is acquired the old one is discarded. In this paper
we propose to employ two previous images in order to
perform a more robust and stable visual control task. The
VS algorithm presented drives the epipoles between the
reference views and the current and desired views into
congruence.

Our approach completely decouples the translational and
rotational components of our controller: epipoles from
the reference views drive the translational error to zero,
while the rotational degrees of freedom maintain all of
the features in the field of view (FOV). Interestingly, the
translational control problem reduces to stereo control of
a single point feature: the epipoles serve as a pseudo-
projection of the optical center of the camera to the
reference image planes treated as a stereo rig. Our stereo
controller closely follows that of Hager et al. [2], and we
furnish a simple Lyapunov stability proof that demonstrates
a large domain of attraction. In addition our method
guarantees the maintaining of all features within the FOV.

Epipolar geometry has also been exploited in prior works
on VS: Rives describes an algorithm that drives robot to a
desired pose by steering the image features along epipolar
lines [3]. Previous VS algorithms based on epipolar geome-
try recover the rotational misalignment by decomposing the
essential or the homography matrix [4]–[6]. Our method,
which does not rely on matrix decomposition is convergent
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Fig. 1. During a “training” phase, a fully actuated camera acquires a
desired image from an unknown position. Then, the camera acquires two
additional reference images from two distinct vantage points. The VS
algorithm then attempts to move the camera’s actual position at each step
so as to drive the epipoles from the reference images into congruence
with the desired epipoles, while maintaining the features in the FOV with
the rotational DOFs.

and (at least empirically) robust to image noise and errors
in the baseline between the two reference views. We note
that Malis et al. [5] and Taylor et al. [6] prove the
robustness of their algorithms with respect to intrinsic and
extrinsic parameters.

Our algorithm requires modest computation, namely the
estimates of two essential matrices (via the linear 8 point
algorithm), and does not require subsequent decomposition
of those matrices. Moreover, we need not compute the Ja-
cobian “online”; following Kimet al. [7], we employ a pre-
computed Jacobian at the goal location and nevertheless
guarantee convergence. We present simulation experiments
to validate the method.

II. T HEORETICAL BACKGROUND

A. Camera model

Let ip ∈ R3 denote the location of a point,p, written
with respect to a rigid frameFi. Let ihj = (iRj ,

iTj) ∈
SE(3) denote the transformation between rigid framesFi

andFj , i.e. jp = jhi(ip) = jRi
ip + jTi is the location of

the pointp with respect toFj .
Consider a perspective projection camera, and attach

a rigid frame,Fa, to the camera, with the frame origin
coincident with the optical center,ca, andZ-axis aligned
along the optical axis. LetFw be a stationary world
reference frame, andwp be a point expressed in that frame.
Then the projection,ax, of wp to the image plane is given
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Fig. 2. L ⊂ R3 contains all points in front of both reference cameras.

by
ax = π ◦ ahw(wp) (1)

where “◦” denotes function composition andπ : R2 ×
R+ → R2 is given by

π(p) :=
f

p3

[
p1

p2

]
, p3 > 0 (2)

with f camera’s focal length (for clarity of presentation,
we disregard other intrinsic camera parameters).

Most eye-in-hand VS algorithms require a “training”
stage: a user commands a robot with attached camera to
move to a desired location,Fd, capture an image, and store
the image-plane location of a set of feature points in the
scene. The VS algorithm presented in this paper requires
two additional “reference” images taken from two distinct
locations in space,F1 and F2, respectively. During the
course of servoing, the actual camera, located atFa, moves,
while the reference and goal frames remain fixed in space.

We treat the reference cameras as a stereo pair. The
projection of a point to a stereo pair of cameras is given
by the mapping

g : L 7→ R4 (3)

with

g(wp) =
[
π ◦ 1hw(wp)
π ◦ 2hw(wp)

]
, (4)

whereπ is given in (2) andL ⊂ R3 is the set of all the
points in front of both cameras, as shown in Fig. 2.

B. Triangulation problem

Knowledge of the cameras’ relative position and ori-
entation together with knowledge of the internal camera
parameters permits the selection of a “pseudo-inverse” or
“triangulation function” [8],

g† : R4 7→ L. (5)

Roughly speaking, the triangulation function,g†, triangu-
lates a 3D point from the intersection of the two corre-
sponding rays in space. Note that 3D points on the baseline
all project to the same image tuple, and thusg† does not
provide a unique solution baseline points. Thus we define
the subsetW ⊂ R3 whereg is invertible, namely

W = L − B (6)

where the thin setB is the baseline joiningc1 andc2. We
now have thatg† ◦ g is the identity mapping onW.

C. Epipolar geometry

We briefly review epipolar geometry in order to fix the
notation used in subsequent sections; for a more through
treatment see [9], [10]. Given a pair of cameras, the
baseline, or line joining the two cameras’ optical centers,
intersects each image plane at theepipoles. Each of the
four cameras{ca, cd, c1, c2} possesses three epipoles, one
for each of the other cameras (Fig. 1). We denote byiej

the epipole between camerai and j as seen by camerai
or, in other words, the projection to camerai of camera
centerj.

Consider a set of feature pointspk, k = 1, . . . , N , and
denote their respective images in camerai by

ixk = π ◦ ihw(wp).

For any pair of cameras,i andj, theessential matrixEij ∈
R3×3 [9], satisfies[

ixk

1

]T

Eij

[
jxk

1

]
= 0. (7)

In general the essential matrix has rank2 and is defined
up to an arbitrary scale. The (one dimensional) right null
space ofEij represents the epipolejei on the image plane
in homogeneous coordinates. The essential matrix depends
on the relative position of two views and can be expressed
as

Eij = îTj
iRj , (8)

wherê : R3 → so(3), i.e. T̂ is the usual skew symmetric
matrix associated withT ∈ R3. Assuming there are at
least eight corresponding points in general configuration
(not belonging to a critical surface), we can estimate
the epipolar geometry from the images by exploiting for
example the 8-point algorithm [11] and thus obtain the
epipoles1ea, 1ed and 2ea, 2ed, which are the reference
camera projections ofca and cd, respectively. In other
words, we can write

ea = g(ca) and ed = g(cd) (9)

whereea = [ 1ea, 2ea ]T and ed = [ 1ed,
2ed ]T . Thus,

using the two reference views, we can triangulate the 3D
location of the camera centers, given the epipoles, namely

ca = g†(ea) and cd = g†(ed). (10)

III. C ONTROLLER DESIGN

We suggest two decoupled controllers, one for steering
the actual camera on the target and the other one for
maintaining the scene in the FOV and align the camera ori-
entation to the target. In particular we exploit the epipoles
from the reference views to drive the translational error to
zero with global convergence. We employ the remaining
rotational degrees of freedom to maintain all of the features
visible.



Every time one camera undergoes a change of position,
the points on the image plane, change their locations.
The relationship between point velocities and the camera
velocity is expressed by the image Jacobian. Letp represent
a point in space anḋp its velocity. Let x represent the
projection of the point to the image plane andẋ the
corresponding velocity. The Jacobian that maps Cartesian
velocities (written in the camera frame) to image-plane
velocities is given by

ẋ = Dπ(p)ṗ, (11)

where

Dπ(p) =
1
p3

[
1 0 −p1

p3

0 1 −p2
p3

]
. (12)

In a stereo camera configuration a Cartesian velocity in
the world frame,wṗ induces image-plane velocities in both
cameras, namely [

1ẋ
2ẋ

]
= J( wp) wṗ (13)

where the Jacobian associated with the pointwp is given
by

J( wp) =
[
Dπ( 1p) 1Rw

Dπ( 2p) 2Rw

]
∈ R4×3

with iRw the rotational matrix between camerai and world
frame.

A. Translational controller

The translational control objective is to steer the pointca

to the desired pointcd using only the epipoles. We interpret
the epipoles as ordinary feature points on the reference
images, namelyea = g(ca) anded = g(cd). Of course the
epipoles are not directly “visible”; they are computed from
the essential matrix as described above.

Our controller employs the following interesting prop-
erty of a stereo system [8], that we apply to the epipoles:

ed − ea =Γ(ca)Γ−1(cd)J(ca)(cd − ca) (14)

=Γ(cd)Γ−1(ca)J(cd)(cd − ca) (15)

where

ed =
[

1ed
2ed

]
, ea =

[
1ea
2ea

]
and J denotes the Jacobian of the stereo perspective
transformation (13). The4× 4 matrix Γ is given by

Γ(ca) =
[
(Π3

1T a)I(2×2) 0
0 (Π3

2T a)I(2×2)

]
(16)

where 1T a and 2T a denote the vectors from cameras1
and2 to the pointca andΠ3 = [0, 0, 1]. See Fig. 3.

For clarity of presentation we drop parenthesis for the
entities in (14) and (15), namelyΓ(ca) = Γa andJ(ca) =
Ja. Let ẽ = ed−ea and c̃ = cd−ca, so that (15) becomes:

ẽ = ΓdΓ−1
a Jdc̃ (17)

Note thatΓa andΓ−1
d are matrices positive definite as long

as the pointsca andcd belong toL.
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Fig. 3. Stereo system given by the reference cameras1 and 2. There
is a simple mapping (14) between the Cartesian errorcd − ca and the
image plane errored − ea.

Through the knowledge of the epipoles it is possible
at every instant to compute the spatial displacement of
ca. One may employ this information to design a control
scheme according the Newton–Raphson approach like

u = J†
a ẽ (18)

where J†
a is the Moore-Penrose pseudo-inverse, namely

J†
a = (JT

a Ja)−1JT
a . The controller in (18) guarantees con-

vergence arising from traditional and well known analysis.
However, as pointed in [7], this strategy seems to render
the algorithm very sensitive to calibration and sensor error
as well as to the epipole estimation.

To avoid these problems we adopt the same strategy as in
[7], where the controller uses fixed gain laws based only on
the desired set point. Therefore we denote theΓd-weighted
pseudo inverse as

J†
d := (JT

d Γ2
dJd)−1JT

d Γ2
d (19)

and the Newton type controller such that

u = J†
dΓ−1

d ẽ. (20)

Note that the proposed control law is independent of the
current actual camera position sinceJd and Γd (and so
Γ−1

d ) are constant matrices for a given target. We require
that the desired camera can be triangulated, namelycd ∈ W
whereW is defined in (6). We triangulate the position of
the target positioncd with respect to the reference cameras,
just one time at the beginning of the process, in order to
obtain the constant matrixΓd and then the control input
(20). Note that since (20) uses only the desired Jacobian,
we need not computeca ∈ W.

B. “Global” convergence of the translational controller

Following [7], we demonstrate the stability using Lya-
punov analysis, and we compute a conservative domain of
attraction of our control law.

Suppose thatcd ∈ W and the actual camera translation
can be fully actuated, namely

ċa = u. =⇒ ˙̃c = ċd − ċa = −u. (21)
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Fig. 4. (a) The field of view defines the invisible setI. Inside the invisible setI the camera cannot maintain the whole bounding sphereS within
the FOV. The visible set,V = R3 −I, guarantees that the camera can keep all the features in the FOV. (b) Lyapunov surfaces and the “safe” domain
of attractionD. (c) Less conservative, but approximate domain of attraction,D′.

A suitable Lyapunov function may be chosen as

V (ca) :=
1
2
c̃T JT

d Γ2Jdc̃. (22)

Note that ifcd ∈ W, thenV is positive definite onL, since
c̃ is equal to zero only whenca = cd. SinceJd andΓa are
constant matrices, differentiating (22) yields

V̇ = c̃T JT
d Γ2

aJd
˙̃c = −c̃T JT

d Γ2
aJdu.

Imposing (20) as control input and recalling the pseudo
inverse defined in (19)

V̇ = −c̃T JT
d Γ2

aJdJ
†
dΓ−1

d ẽ

= −c̃T (JT
d Γ2

aJd)(JT
d Γ2

dJd)−1JT
d Γ2

dΓ
−1
d ẽ

= −c̃T JT
d Γdẽ.

Since the diagonal matricesΓ andΓd commute, substitute
ẽ from (17) to obtain

V̇ = −ẽT Γaẽ

which is negative definite inca on the setL, so long as
cd ∈ L. Since the ellipsoidal level sets ofV are positive
invariant with respect to time, a conservative estimate for
the domain of attraction is given by the interior of the
largest level set completely withinL.

C. Rotational controller

During VS, some features may leave the FOV of the
actual camera, thus crippling our ability to estimate the
epipolar geometry. Since our translational controller relies
on the visibility of the features in the scene to recover
the epipoles, we control the camera orientation to maintain
the scene points within the FOV.1 After the translational
movement is completed we then align the camera to the
same target orientation.

Assume that all scene points lie within the FOV of
the desired view,{d}, the two reference views,{1, 2},

1Note that while we do require that the camera centers remain inL, they
may freely depart the FOV without consequence, since their projection
as epipoles are “virtual” features computed from the epipolar geometry.

as well as the initial configuration actual camera,{a}.
Define the smallest bounding circle containing all the
features in the actual image plane, and denote its center
by p = [p(1), p(2)]T . We control the camera orientation
about theX and Y axes so as to maintain the bounding
circle in the FOV, by keeping it centered on the image
plane. In addition, we consider the angle,θ, generated by
two points on the target. For numerical conditioning, it is
advantageous to select the longest line segment that can
be constructed from features points and allowing that this
may change during the motion [12]. Thus, we propose a
local image-based coordinate system [13] that relates the
three camera orientation DOFs and the three image DOFs
given by centroid position and the feature angle. This is
similar to the “hybrid” feature based control by Corke and
Hutchinson [12]. We consider0 ≤ θij < 2π as the angle
between theu axis of the image plane and the line segment
joining features pointsi and j. The angular velocity can
therefore be commanded by the heuristic controller

ωx =λ1(p(2) − v0)

ωy =− λ2(p(1) − u0)

ωz =λ3(θ∗ij − θij).

(23)

whereλ1, λ2, λ3 are positive scalar gains, and(u0, v0) is
the image center.

Once the camera arrives at the correct position (via the
translational controller), we switch to another rotational
controller in order to obtain the same alignment between
the two views. Letpd = [pd(1), pd(2)]T denote the centroid
of the desired features. For the first two component we
simply adopt a variation of the controller presented in
(23) where instead ofp0 we considerpd. The rotational
controller becomes thus

ωx =λ1(p(2) − pd(2))

ωy =− λ2(p(1) − pd(1))

ωz =λ3(θ∗ij − θij).

(24)

whereθij represents the angle computed over the desired
features andλ3 a suitable scalar gain.



The translational and rotational controllers are com-
pletely decoupled. However, the location of the features
on the image is affected by the translational controller,
an effect that our heuristic controller (23) treats as a
disturbance. In practice we “turn up” the rotational gains to
ensure that the rotational controller successfully maintains
the features within the FOV at all times, so that the
epipolar geometry can be estimated for the translational
controller. The controller in (24) does not suffer from the
same problem since when it starts to work, the translation
movement has already been performed and the actual
camera is stationary on the target location.

Currently our rotational control strategy is ad hoc.
Formalizing the strategy, by more carefully analyzing the
basins of attraction of the constituent rotational controllers,
and more carefully stiching them together [14], represents
work in progress.

D. “Safe” domain of attraction that respects the FOV

As described in Sec. III-B, the control input (20) guar-
antees convergence for all initial conditions ofca within
the largest level set ofV (22) that is completely in front of
both cameras, so long as the goal position is triangulable,
namelycd ∈ W. However all such initial conditions do not
guarantee all features will lie within the FOV.

Consider a set of points in space and define the bounding
sphere S, with center cs, as the smallest sphere that
contains all the points. Letr denote the minimum distance
from cs such that the camera is able to maintainS in the
field of view. We define the invisible setI ⊂ R3 as an
open ball centered aroundcs of radiusr. For every location
outsideI, there exists a camera orientation that is able to
see the whole bounding sphereS. The visible setV ⊂ R3

(see Fig. 4.a) is given by the complement ofI, namely

V = R3 − I. (25)

For a given starting pointp ∈ L ∩ V, and goalcd ∈
L∩W, the actual camera trajectory may intersectI causing
the transient lost of features from the FOV. Fortunately, the
Lyapunov functionV (22) specifies a set of positive time
invariant sets

Dk = {ca ∈ L : V (ca) ≤ k}.

The “safe domain”,D, is the largest such set wholly
contained inL∩V. Clearly, any initial condition insideD
guarantees that the camera trajectory will converge to the
desired location, while staying in the visible set. Fig. 4.b,
shows the set of level surfaces with the safe domain of
attractionD.

We have foundD to be quite conservative. Camera
trajectories nearly follow straight lines (refer to Fig. 5.c),
and thus we define

D′ = {ca ∈ R3 : cacd ⊂ L}

wherecacd represents the segment betweenca andcd (refer
to Fig. 4.c). We suspect that the true domain of attraction
is very similar toD′.

IV. EXPERIMENTS

The multi-view system consists of four images: a pair of
reference images, a desired image and the actual camera
image at each time step. The epipolar geometry estimated
from the corresponding points in the images allow us to
control the actual camera to the desired location with a
large domain of attraction. We executed a sequence of
simulations starting with perfect knowledge of the baseline
between the reference views, and noiseless image data,
and subsequently adding error to our knowledge of the
reference baseline and image measurement noise. We as-
sumed no prior knowledge about the 3D scene, however
we assume the internal camera parameters are calibrated.

The algorithm proceeds as follows. At the beginning of
the process, store the actual image as the first reference
image. Then, let the camera undergo a random translation
such that the features remain in FOV. Then, store the sec-
ond reference image. Generate a “good” initial condition
(within D′). To initialize the system, compute the epipoles,
ed, between the reference frames and the desired frame.
Also, using the reference baseline, triangulatecd = g†(ed),
which is required to compute the (constant) matrixΓd. In
real-time, execute the translational (20) and rotational (23)
control laws, using at each instant the latest estimate ofea.
Once the target is gained switch on the controller (24) in
order to obtain the same target orientation. Fig. 5.a and 5.b
show the actual camera translational and orientation error.
Camera and feature trajectories can also be observed in
Fig. 5.c and Fig. 5.d.

We have found that the method exhibits very little
sensitivity to errors in the baseline between the reference
images. We tested this for errors up to50% of the baseline
length, with only modest degradation of the Cartesian
trajectory (and no degredation of the asymptotic perfor-
mance), when compared to error-free experiments. As also
noted in [15], stereo systems are typically more sensi-
tive to orientation miscalibration. Since our translational
controller is based on that of Hager et al. [7], and they
report a comprehensive set of experiments with erroneous
orientations between the two views, we have concentrated
our attention on the sensitivity of the algorithm with respect
to image noise.

We added noise to the image feature points which
deteriorates the epipole estimates; it is well known that
essential matrix estimation is quite sensitive to noisy data
[16], [17].

We modeled our camera with a resolution of640×480.
We selected initial locations ofca at random fromD′. We
added an uniformly distributed error to each point as a
percentage of the variance,σ, of the cloud of features in
the image.

Table I shows the percentage of convergent experiments
versus the noise added to the feature points for 700
experiments. The first column represents the noise added,
expressed as percentage of variance of the features on
the image. The second column shows the typical range
of resulting absolute pixel error added to each point in
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Fig. 5. Simulated experiments. (a) Camera translational error with free-noise data. (b) Actual camera orientation error. Note at the instant 100 the
rotational control switches to align the actual camera orientation to the target camera orientation. (c) Actual camera trajectory. (d) Feature trajectories:
actual features at the beginning of the process (◦); desired features (�); actual features at the switching instant (♦).

added noise typical pixel noise range convergence
0% 0 100%
5% ± 1.2 100%
10% ± 2.4 95%
15% ± 3.6 77%
20% ± 4.8 53%
25% ± 6.1 22%
30% ± 7.2 12%

TABLE I

PERCENTAGE OF CONVERGENCE WITH NOISY DATA

our experiments. The last column shows the percentage of
trials that converged after a fixed simulation time.

V. CONCLUSION

Rather than relying on only two views of a scene,
the “actual” and “desired” views, this paper suggests a
simple method to incorporate additional prior views to
generate a globally convergent VS system that maintains
feature visibility. In the absence of noise, any two reference
configurations with a known, nonzero baseline disparity
guarantee the convergence of our algorithm. Our simu-
lations suggest that large uncertainty in the baseline and
noisy image data can be tolerated.

Ultimately, a VS system could learn as it progresses,
taking into account information fromall prior views of a
scene. For example, geometric model reconstruction using
multi-view structure-from-motion (SFM) algorithms [18]
could provide a robust and statistically sound means by
which to recover specific information, such as feature
depth. Moreover, we suspect that judiciously controlled
motion, especially during the learning phase, could greatly
enhance a system’s robustness with respect to measurement
noise and uncertainty in the camera or motion models.
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