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Abstract—We explore the benefits of multiple views for
visual servoing (VS) by commanding a single camera to first
“peer” at a scene from two vantage points, thus acquiring a
set “reference” images, prior to executing a visual position
task. Our approach completely decouples the translational
and rotational components of our controller: epipoles from
the reference views drive the translational error to zero,
while the rotational degrees of freedom maintain all of the
features in the field of view (FOV). We furnish a simple
Lyapunov stability proof that demonstrates a large domain of
attraction while maintaining all features in the FOV. Finally,
we present simulated experiments that suggest robustness N
to measurement noise and large variations in the baseline cr e, Zew| C2

. . Reference 2
between the reference views. . eer
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. INTRODUCTION Fig. 1. During a “training” phase, a fully actuated camera acquires a

Insects often exploit parallax rather than stereo to perciesired image from an unknown position. Then, the camera acquires two
additional reference images from two distinct vantage points. The VS

ceive depth [1]. We explore the benefits of multiple ViewS;igorithm then attempts to move the camera’s actual position at each step

for visual servoing (VS) by commanding a single camerao as to drive the epipoles from the reference images into congruence

to first “peer” at a scene from two vantage points thu%ith the desired epipoles, while maintaining the features in the FOV with
- . L e rotational DOFs.

acquiring a set “reference” images at the beginning o

a visual position task. In many visual control strategies

only the desired and the current views are employed to

accomplish the visual servoing task. Once a new referen@d (at least empirically) robust to image noise and errors
image is acquired the old one is discarded. In this papd? the ba_selme between the two reference views. We note
we propose to employ two previous images in order tghat Malis et al. [5] and Taylor et al. [6] prove the
perform a more robust and stable visual control task. ThEPPustness of their algorithms with respect to intrinsic and
VS algorithm presented drives the epipoles between tHEXIINSIC parameters. _

reference views and the current and desired views into OUr @lgorithm requires modest computation, namely the
congruence. estimates of two essential matrices (via the linear 8 point

Our approach completely decouples the translational arff9°rithm), and does not require subsequent decomposition
rotational components of our controller: epipoles fromPf those matrices. Moreover, we need not compute the Ja-
the reference views drive the translational error to zerdobian “online”; following Kimet al.[7], we employ a pre-
while the rotational degrees of freedom maintain all offOmputed Jacobian at the goal location and nevertheless
the features in the field of view (FOV). Interestingly, theguara_ntee convergence. We present simulation experiments
translational control problem reduces to stereo control P validate the method.

a single point feature: the epipoles serve as a pseudo-
projection of the optical center of the camera to the
reference image planes treated as a stereo rig. Our stefdo Camera model

controller closely follows that of Hager et al. [2], and we Let ’p € R3 denote the location of a poing, written
furnish a simple Lyapunov stability proof that demonstratesvith respect to a rigid frameF;. Let ‘h; = (‘R;,"T}) €

a large domain of attraction. In addition our methodSE(3) denote the transformation between rigid franfés
guarantees the maintaining of all features within the FOVand 7, i.e.’p = 7h;(‘p) = 7 R;*p + IT; is the location of

Epipolar geometry has also been exploited in prior workshe pointp with respect taf;.
on VS: Rives describes an algorithm that drives robot to a Consider a perspective projection camera, and attach
desired pose by steering the image features along epipolarrigid frame, 7,, to the camera, with the frame origin
lines [3]. Previous VS algorithms based on epipolar geomesoincident with the optical centet,, and Z-axis aligned
try recover the rotational misalignment by decomposing thalong the optical axis. LetF,, be a stationary world
essential or the homography matrix [4]-[6]. Our methodreference frame, artp be a point expressed in that frame.
which does not rely on matrix decomposition is convergenthen the projection?z, of “p to the image plane is given

Il. THEORETICAL BACKGROUND



where the thin seB is the baseline joining; andc,. We
now have thay' o g is the identity mapping om.

C. Epipolar geometry

We briefly review epipolar geometry in order to fix the
notation used in subsequent sections; for a more through
treatment see [9], [10]. Given a pair of cameras, the
baseling or line joining the two cameras’ optical centers,
intersects each image plane at thgipoles Each of the
four camerag(c,, cq4, c1, c2} possesses three epipoles, one
for each of the other cameras (Fig. 1). We denoteédyy
the epipole between cameiaand j as seen by camera
Fig. 2. £ C R3 contains all points in front of both reference cameras.or, in other words, the projection to cameraf camera

Reference 1 Reference 2

centerj.
Consider a set of feature pointg, k = 1,..., N, and
by ) S . )
u s w denote their respective images in cametay
x =m0 %,("p) Q)
where %" denotes function composition and : R? x o =m0 hu(“p).
Rt — R? is given by For any pair of cameras,andj, theessential matrixg;; €
f R3*3 [9], satisfies
m(p) == P py >0 ) | |
p3 | P2 iy j
. . : o T =0 ©)
with f camera’s focal length (for clarity of presentation, 1 ol :

we disregard other intrinsic camera parameters). | I th tial matrix h adland is defined
Most eye-in-hand VS algorithms require a “training” " 9SNeral e essential matnix nas ramand 1s define

stage: a user commands a robot with attached camera {8 [©© @n arbitrary scale. The (one dimensional) right null
space ofE;; represents the epipole; on the image plane

move to a desired locatiotf,, capture an image, and store h di Th ial o d d
the image-plane location of a set of feature points in thd OMOgeNeous coor Inates. The essential matrix depends

scene. The VS algorithm presented in this paper requir&n the relative position of two views and can be expressed
two additional “reference” images taken from two distinct®®
locations in spacef; and F,, respectively. During the
course of servoing, the actual camera, locate@i.amoves, Lo e R3 _, s50(3), i.e. T is the usual skew symmetric
while the reference and goal frames remain fixed in SPaCfatrix associated WitH € R3. Assuming there are at
We treat the reference cameras as a stereo pair. The, eight corresponding points in general configuration

projection of_a point to a stereo pair of cameras is giverenot belonging to a critical surface), we can estimate
by the mapping the epipolar geometry from the images by exploiting for

L = ffj ‘R;, (8)

. 4
g:L—R (3) example the 8-point algorithm [11] and thus obtain the
with epipoles’e,, 'e; and 2e,, 2eq, Which are the reference
w oy _ 70 hy (YD) 4 camera projections of, and c,, respectively. In other
9("p) = 2w | (4) .
70 *hy ('p) words, we can write
wherer is given in (2) andC C R? is the set of all the ea = glca) and eq = g(ca) (9)

points in front of both cameras, as shown in Fig. 2.

wheree, = [ te,, 2e, |7 andey = [ ey, 2eq ]T. Thus,

using the two reference views, we can triangulate the 3D
Knowledge of the cameras’ relative position and ori{ocation of the camera centers, given the epipoles, namely

entation together with knowledge of the internal camera

B. Triangulation problem

parameters permits the selection of a “pseudo-inverse” or ca=9'(ea) and cq = g'(eq). (10)
“triangulation function” [8],
g R L (5) I1l. CONTROLLER DESIGN

Roughly speaking, the triangulation functiogl, triangu- We suggest two decoupled controllers, one for steering
) . . the actual camera on the target and the other one for
lates a 3D point from the intersection of the two corre-

sponding rays in space. Note that 3D points on the baselinnéamt"’llnlng the scene in the FOV and align the camera ori-

all project to the same image tuple, and thyisdoes not entation to the target. In particular we exploit the epipoles

. . . : . . from the reference views to drive the translational error to
provide a unique solution baseline points. Thus we define

the subsetV C R? whereg is invertible, namely zero_W|th global convergence. We _employ the remaining
rotational degrees of freedom to maintain all of the features

W=L-B (6) visible.



Cd

Every time one camera undergoes a change of position,
the points on the image plane, change their locations.
The relationship between point velocities and the camera
velocity is expressed by the image Jacobian.jLetpresent
a point in space ang its velocity. Letx represent the
projection of the point to the image plane aridthe
corresponding velocity. The Jacobian that maps Cartesian
velocities (written in the camera frame) to image-plane
velocities is given by

& = Dm(p)p, (11)
where Referenée 1
11 0 —p—} Fig. 3. Stereo system given by the reference camérand 2. There
DW(P) = 0 1 _ﬁ (12) is a simple mapping (14) between the Cartesian effor ¢, and the
D3 p3 image plane erroe; — eq.

In a stereo camera configuration a Cartesian velocity in
the world frame,”p induces image-plane velocities in both

cameras, namely Through the knowledge of the epipoles it is possible
L w s w at every instant to compute the spatial displacement of
2;0 © J(“p)“p (13) cq- One may employ this information to design a control

scheme according the Newton—Raphson approach like
where the Jacobian associated with the pdiptis given g P PP I

by o u=Jle (18)
J(w ): |:D7T( p) Rw:| €R4X3

Dr(%p) Ry, where Ji is the Moore-Penrose pseudo-inverse, namely

4 JI = (JTJ,)~1JL. The controller in (18) guarantees con-
with *R,, the rotational matrix between camérand world  vergence arising from traditional and well known analysis.
frame. However, as pointed in [7], this strategy seems to render
the algorithm very sensitive to calibration and sensor error
as well as to the epipole estimation.

To avoid these problems we adopt the same strategy as in
7], where the controller uses fixed gain laws based only on
fie desired set point. Therefore we denotelthaveighted
pseudo inverse as

A. Translational controller

The translational control objective is to steer the paojnt
to the desired point; using only the epipoles. We interpret
the epipoles as ordinary feature points on the referen%
images, namely, = g(c¢,) andey = g(cq). Of course the
epipoles are not directly “visible”; they are computed from
the essential matrix as described above. J= (I tuir? (19)

Our controller employs the following interesting prop-
erty of a stereo system [8], that we apply to the epipoles?

eqd — eq =I(ca)T 7 (cq)J(ca)(ca — ca) (14) u= Jll“glé- (20)

=I'(ca)T " (ca)J (cq)(ca — ca) (15) Note that the proposed control law is independent of the
current actual camera position sindg andI'; (and so
leg le, F;l) are constant matrices for a given target. We require
€d = [%J v €= {QQJ that the desired camera can be triangulated, namety )V
whereW is defined in (6). We triangulate the position of
e target positior, with respect to the reference cameras,
just one time at the beginning of the process, in order to
Tca) = {(H3 1Ta)[(2X2) , 0 } (16) obtain the constgnt matrik; and then the cqntrol input'
* 0 (U3 °T'a) I (2x2) (20). Note that since (20) uses only the desired Jacobian,
we need not compute, € W.

nd the Newton type controller such that

where

and J denotes the Jacobian of the stereo perspecti
transformation (13). The x 4 matrix I is given by

where T, and 2T, denote the vectors from cameras
and?2 to the pointc, andIl; = [0,0, 1]. See Fig. 3. B. “Global” convergence of the translational controller
For clarity of presentation we drop parenthesis for the Following [7], we demonstrate the stability using Lya-

ent|t|eSJn (14) and (152’ namely(c.) =I's and J(c.) = punov analysis, and we compute a conservative domain of
Jo. Leté = eg—e, andé = ¢4 — ¢q, SO that (15) becomes: attraction of our control law.
é=T40 Js¢ (17) Suppose that, € W and the actual camera translation

1 . . . can be fully actuated, namely
Note thatl’, andI'; " are matrices positive definite as long

as the points:, andc, belong toL. Ca =U. = C=i(g—Cq=—u. (22)



(@) (b) ()

Fig. 4. (a) The field of view defines the invisible skt Inside the invisible sef the camera cannot maintain the whole bounding splevéthin
the FOV. The visible sefy = R3 — Z, guarantees that the camera can keep all the features in the FOV. (b) Lyapunov surfaces and the “safe” domain
of attractionD. (c) Less conservative, but approximate domain of attractin,

A suitable Lyapunov function may be chosen as as well as the initial configuration actual camefa}.
1y oy Define the smallest bounding circle containing all the
V(ea) == 3¢ Jal"Jac. (22)  features in the actual image plane, and denote its center

by p = [ﬁ(l),ﬁ(z)]T. We control the camera orientation
about theX andY axes so as to maintain the bounding
circle in the FOV, by keeping it centered on the image
plane. In addition, we consider the anghe,generated by

V =TI é = - Irr2 ju. two points on the target. For numerical conditioning, it is
advantageous to select the longest line segment that can

!mposing EC.ZO) da_s c;gntrol input and recalling the pSGUd%e constructed from features points and allowing that this
inverse defined in (19) may change during the motion [12]. Thus, we propose a

Note that ifc; € W, thenV is positive definite orC, since
¢ is equal to zero only whea, = ¢4. SinceJ,; andI’, are
constant matrices, differentiating (22) yields

V= _5TJgFZJdJJ;F;1§ local image-based coordinate system [13] that relates the
~T( 7TT2 T2 7 \—1 7T21—15 three camera orientation DOFs and the three image DOFs
=—¢ (JyDody)(J;T5dy) J; 050 "¢ . : o o
fT(Tfi @ a)(JaTala) " JaTal's e given by centroid position and the feature angle. This is
=—c JgTqe. similar to the “hybrid” feature based control by Corke and
Since the diagonal matricdsandT', commute, substitute Hutchinson [12]. We conside¥ < 6;; < 27 as the angle
& from (17) to obtain between the: axis of the image plane and the line segment
. e joining features pointg and j. The angular velocity can
V=—eTye therefore be commanded by the heuristic controller
which is negative definite i, on the setl, so long as wz =A1(P2) — vo)
cq € L. Since the ellipsoidal level sets &f are positive wy = — Aa(B1) — uo) (23)

invariant with respect to time, a conservative estimate for .
the domain of attraction is given by the interior of the we =A3(05; — 0ij)-
largest level set completely withif. where A, A\, A3 are positive scalar gains, aridg, vo) is
the image center.

Once the camera arrives at the correct position (via the

During VS, some features may leave the FOV of tharanslational controller), we switch to another rotational
actual camera, thus crippling our ability to estimate the&ontroller in order to obtain the same alignment between
epipolar geometry. Since our translational controller relieghe two views. Lep,, = [P, Da(2)]” denote the centroid
on the visibility of the features in the scene to recoveof the desired features. For the first two component we
the epipoles, we control the camera orientation to maintaisimply adopt a variation of the controller presented in
the scene points within the FOVAfter the translational (23) where instead of, we considerp,. The rotational
movement is completed we then align the camera to theontroller becomes thus
same target orientation. (P — B

Assume that all scene points lie within the FOV of o )\l(p@l pd(i))
the desired view{d}, the two reference views{1,2}, wy == A2(Pay — Paey))

*
Wy :)\3(0”- — 91])
INote that while we do require that the camera centers remaintiney h 0 h | d he desired
may freely depart the FOV without consequence, since their projectio/N€red; represents the angle computed over the desire

as epipoles are “virtual” features computed from the epipolar geometryfeatures and\z a suitable scalar gain.

C. Rotational controller

(24)



The translational and rotational controllers are com- IV. EXPERIMENTS
pletely decoupled. However, the location of the features

on the image is affected by the translational controller, |N€ Multi-view system consists of four images: a pair of
an effect that our heuristic controller (23) treats as 4&ference images, a desired image and the actual camera

disturbance. In practice we “turn up” the rotational gains tdMage at each time step. The epipolar geometry estimated

ensure that the rotational controller successfully maintain&m the corresponding points in the images allow us to

the features within the FOV at all times. so that thecontrol the actual camera to the desired location with a

epipolar geometry can be estimated for the translationdt'9¢ domain of attraction. We executed a sequence of
controller. The controller in (24) does not suffer from theSimulations starting with perfect knowledge of the baseline
same problem since when it starts to work, the translatiofétween the reference views, and noiseless image data,

movement has already been performed and the acty@d subsequently adding error to our knowledge of the
camera is stationary on the target location. reference baseline and image measurement noise. We as-

Currently our rotational control strategy is ad hoc.SUmed no prior knowledge about the 3D scene, however

Formalizing the strategy, by more carefully analyzing thée assume.the internal camera parameters are .cali'brated.
basins of attraction of the constituent rotational controllers, 1he algorithm proceeds as follows. At the beginning of

and more carefully stiching them together [14], represent@e process, store the actual image as the first reference
work in progress. image. Then, let the camera undergo a random translation

such that the features remain in FOV. Then, store the sec-
D. “Safe” domain of attraction that respects the FOV  ond reference image. Generate a “good” initial condition

As described in Sec. 11I-B, the control input (20) guar_(within D’). To initialize the system, compute the _epipoles,
antees convergence for all initial conditions @f within ¢4, between the reference frames and the desired frame.

the largest level set df (22) that is completely in front of AlSO, using the reference baseline, triangulaie= 9" (ea),

both cameras, so long as the goal position is triangulablé/hich is required to compute the (constant) mafrix In

namelyc, € W. However all such initial conditions do not real-time, execute the translational (20) and rotational (23)
guarantee all features will lie within the FOV. control laws, using at each instant the latest estimate, .of

Consider a set of points in space and define the boundir%nce the target is gained switch on the controller (24) in
sphere S, with centerc,, as the smallest sphere that Order to obtain the same target orientation. Fig. 5.a and 5.b
contains ,aII the points. Lsef{ denote the minimum distance show the actual camera translational and orientation error.

from c. such that the camera is able to maintairin the camera and feature trajectories can also be observed in
S

field of view. We define the invisible s&f ¢ R? as an F19- 9:C and Fig. 5.d. o ]
open ball centered around of radiusr. For every location ~ We have found that the method exhibits very little
outsideZ, there exists a camera orientation that is able t§€nsitivity to errors in the baseline between the reference
see the whole bounding sphefe The visible sety  R? ~ images. We tested this for errors upi/t of the baseline

(see Fig. 4.a) is given by the complementZofnamely length, with only modest degradation of the Cartesian
trajectory (and no degredation of the asymptotic perfor-

V=R3-T. (25) mance), when compared to error-free experiments. As also
noted in [15], stereo systems are typically more sensi-
tive to orientation miscalibration. Since our translational
controller is based on that of Hager et al. [7], and they
?eport a comprehensive set of experiments with erroneous
orientations between the two views, we have concentrated
our attention on the sensitivity of the algorithm with respect
Dy ={ca € L:V(ca) <k} to image noise.
We added noise to the image feature points which
The “safe domain”,D, is the largest such set wholly deteriorates the epipole estimates; it is well known that
contained inC N V. Clearly, any initial condition insid®  essential matrix estimation is quite sensitive to noisy data
guarantees that the camera trajectory will converge to thag], [17].
desired location, while staying in the visible set. Fig. 4.b, \we modeled our camera with a resolution6ah x 480.
shows the set of level surfaces with the safe domain Qfye selected initial locations af, at random fronD’. We
attractionD. added an uniformly distributed error to each point as a
We have foundD to be quite conservative. Camerapercentage of the variance, of the cloud of features in
trajectories nearly follow straight lines (refer to Fig. 5.c),the image.
and thus we define Table | shows the percentage of convergent experiments
D' = {c, €R®: Cocg C L} versus the noise Iadded to the feature point; for 700
experiments. The first column represents the noise added,
wherec, ¢, represents the segment betwegmndc, (refer  expressed as percentage of variance of the features on
to Fig. 4.c). We suspect that the true domain of attractiothe image. The second column shows the typical range
is very similar toD’. of resulting absolute pixel error added to each point in

For a given starting poinp € £ NV, and goalcy €
LNW, the actual camera trajectory may interséctausing
the transient lost of features from the FOV. Fortunately, th
Lyapunov functionV (22) specifies a set of positive time
invariant sets
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Simulated experiments. (a) Camera translational error with free-noise data. (b) Actual camera orientation error. Note at the instant 100 the
rotational control switches to align the actual camera orientation to the target camera orientation. (c) Actual camera trajectory. (d) Feature trajectories:

actual features at the beginning of the procegs desired features); actual features at the switching instax)(

added noise| typical pixel noise rangel convergence 4
0% 0 100% (4]
5% + 1.2 100% [5]
10% + 2.4 95%

15% + 3.6 7%
20% + 438 53% 6]
25% + 6.1 22%
30% +7.2 12%
[7]
TABLE |
PERCENTAGE OF CONVERGENCE WITH NOISY DATA
[8]

our experiments. The last column shows the percentage dfl

trials that converged after a fixed simulation time. [10]

V. CONCLUSION [11]

Rather than relying on only two views of a scene,
the “actual” and “desired” views, this paper suggests ?12]
simple method to incorporate additional prior views to
generate a globally convergent VS system that maintains
feature visibility. In the absence of noise, any two referenct?l
configurations with a known, nonzero baseline disparity:4
guarantee the convergence of our algorithm. Our simu-
lations suggest that large uncertainty in the baseline aqg,s]
noisy image data can be tolerated.

Ultimately, a VS system could learn as it progresses,
taking into account information frorall prior views of a
scene. For example, geometric model reconstruction using
multi-view structure-from-motion (SFM) algorithms [18]
could provide a robust and statistically sound means b97]
which to recover specific information, such as feature
depth. Moreover, we suspect that judiciously controlled18]
motion, especially during the learning phase, could greatly
enhance a system'’s robustness with respect to measurement
noise and uncertainty in the camera or motion models.
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