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Abstract

This research addresses a fundamental question in biology and neuroscience: how do

animals process sensory information for the control of locomotor behaviors? Behaviors

can be described as a sensorimotor loop: sensing (sensori-) governs action (-motor),

action changes the environment, and these changes are perceived via sensing. Animal

behavior arises from a concert of sensory, computational, and mechanical systems.

Often, these mechanisms are studied independently (and often isolated from the con-

text of the behavior) and the behavioral model is constructed from knowledge of the

constituents, a bottom-up synthesis. Complementary to this approach, we model

behavior at the level of the sensorimotor loop (the task-level) and subsequently gen-

erate hypotheses as to the mechanistic constituents. These top-down models serve to

constrain permissible mechanisms and identify necessary neural computations.

We design an assay of experiments and frequency-domain analyses to identify

task-level behavioral models, specifically for image-stabilization behaviors. Image-

stabilization describes a broad class of behaviors in which animals modulate movement

to fixate a sensory signal. In this dissertation, we study analogous behaviors in two
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ABSTRACT

species: refuge-tracking in weakly electric knifefish and stripe-fixation in fruit flies.

Glass knifefish swim forward and backward to maintain their position relative to a

moving refuge. Fish were recorded performing refuge-tracking behavior for sinusoidal

(predictable) and sum-of-sines (pseudo-random) refuge trajectories. System identifi-

cation reveals a notable nonlinearity in the behavior; the frequency response functions

(FRFs) generated from predictable and pseudo-random experiments are categorically

different. The data support the hypothesis that fish generate an internal dynami-

cal model of the stimulus motion, hence enabling improved tracking of predictable

trajectories (relative to unpredictable ones) despite similar or reduced motor cost.

Fruit flies adeptly coordinate flight maneuvers to seek, avoid, or otherwise interact

with salient objects in their environment. In the laboratory, tethered flies modulate

yaw torque to steer towards a dark vertical visual stimulus. This stripe-fixation

behavior is robust and repeatable; in series of experiments, flies stabilize moving

stripes oscillating over a range of frequencies. We parameterize this FRF description

to hypothesize a Proportional-Integral-Derivative (PID) control model for the fixation

behavior. We demonstrate that our hypothesized PID model provides a parsimonious

explanation for several previously reported phenomena.

Primary Reader: Noah J. Cowan

Secondary Readers: Thomas L. Daniel, Eric S. Fortune, and Sridevi V. Sarma
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Chapter 1

Introduction

Si Dieu nous a faits à son image,
nous le lui avons bien rendu.
If God has made us in His image,
we have returned Him the favor.

Voltaire
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CHAPTER 1. INTRODUCTION

1.1 The Allure of Animal Behavior

Animal behavior has long inspired scientists and engineers to discover and recreate

Nature’s implementation of sensory processing, motor control, learning and navi-

gation. Animals interact with the environment through a diverse set of behaviors,

requiring them to draw relevant information from their surroundings from numerous

sensors (eyes, antennae, ears, etc.) to produce motion via similarly diverse effectors

(legs, wings, fins, etc.). And though these behaviors manifest from evolved mecha-

nisms and an economy of neural architecture (merely 100,000 neurons comprise the

fruit fly nervous system), the performance achieved by animals far exceeds that of

even the most impressive robots they’ve inspired (e.g. terrestrial walkers [Saranli

et al.(2001), Buehler et al.(2005), Clark et al.(2001)], wing-flapping fliers [Fearing

et al.(2000), Wood(2007)], undulating swimmers [Mason and Burdick(2000), Ijspeert

et al.(2007)] and jumping robots [Bergbreiter and Pister(2007)]). Much of the perfor-

mance disparity between these state-of-the-art robots and their natural counterparts

can be attributed to shortcomings in technology (e.g. a lack of amenable materials

and fabrication processes, insufficient batteries or actuators, etc.). But in terms of the

hardware required for computation, we have sufficient technology; modern micropro-

cessors and GPUs boast several billion transistors, dwarfing the number of neurons

in the fruit fly or the knifefish or even mice, dogs and cats (yet still an order of

magnitude shy of the number of neurons comprising the human nervous system). So
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CHAPTER 1. INTRODUCTION

what are we missing? As a mechanical engineer and roboticist, I marvel at the diver-

sity and robustness of behaviors exhibited by even some of the “simplest” animals.

This research addresses a fundamental question in biology and neuroscience: how do

animals process sensory information for the control of locomotor behaviors?

In this work, we investigate fixation behaviors in two different species: refuge

tracking in the weakly electric knifefish Eigenmannia virescens [Rose and Canfield(1993a),

Cowan and Fortune(2007)] and optomotor yaw regulation in the fruit fly Drosophila

melanogaster [Götz(1968),Götz et al.(1979),Reichardt and Poggio(1976),Poggio and

Reichardt(1976), Poggio and Reichardt(1981), Heisenberg and Wolf(1988), Wolf and

Heisenberg(1990), Tammero and Dickinson(2002), Reiser and Dickinson(2008), Duis-

termars et al.(2007)]. In the refuge-tracking behavior, knifefish swim forwards and

backwards to maintain a constant relative position with moving objects in their en-

vironment, relying on the integration of visual, electrosensory and mechanosensory

information; for our experiments, fish track an actuated refuge. Drosophila exhibit an

analogous behavior, flying towards salient vertical features; in the laboratory, tethered

flies modulate yaw turning to frontally fixate a moving stripe displayed on an LED

array. Both behaviors occur naturally (without training) and robustly. But most

importantly, these behaviors are representative of a class of animal reference-tracking

behaviors regulated about an equilibrium (zero sensory slip).

In laboratory preparations, we can constrain reference trajectories and locomotor

output each to a single degree of freedom, resulting in a single-input-single-output

3



CHAPTER 1. INTRODUCTION

(SISO) system. Both the sensory input (refuge velocity or stripe position) and loco-

motor output (fish velocity or fly yaw torque) for these behaviors are described by

purely kinematic measures, unobtrusive to the behaving animal. Through an assay of

carefully constructed sensory perturbations and a frequency-domain system identifi-

cation analysis, we generate task-level dynamical models describing the behavior for a

neighborhood about the fixation equilibrium. These descriptive and predictive task-

level models are subsequently used to generate hypotheses about the neuromechanical

systems (mechanistic models) underlying the behaviors.

1.2 Image-Stabilization Behaviors

The analyses presented in this dissertation can be extended to a broad category of

behaviors we will refer to as image-stabilization behaviors, those in which animals

perform motor actions to stabilize some sensory image about an equilibrium. The

usage of “image” in this moniker is not limited to visual images but rather suggests

the output of the sensory transform. So in this sense, the image can refer to the output

from a single sensory modality (e.g. an optical flow estimate extracted from the image

projected onto the retina) or a signal resulting from the convergence of several sensory

modalities (e.g. for human posture control, a representation of “uprightness” may rely

on visual, vestibular and proprioceptive cues [Oie et al.(2002),Jeka et al.(2004)]).

But by no coincidence, image-stabilization makes allusion to the human oculomo-

tor system. We observe a lot of kinematic similarity between the locomotor behavior
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CHAPTER 1. INTRODUCTION

of knifefish and flies and human eye movements in target pursuit and fixation. In

the later chapters, we borrow vocabulary from the study of the oculomotor system

to describe observed locomotor phenomena.

The term “smooth pursuit” typically refers to visual target tracking behaviors in

the oculomotor system of foveate animals, primates in particular [Fuchs(1967), Lis-

berger et al.(1987)]. In tracking visual targets, eye motions serve to stabilize the target

on the fovea, the area of the retina most densely populated with photoreceptor cells.

Visual tracking involves the cooperation of two distinct categories of eye movements,

smooth pursuit eye movements and catch-up saccades, the distinction between which

is typically made in kinematic terms: smooth pursuit eye movements are composed of

continuous eye trajectories with low limits on velocity and acceleration, while saccades

are ballistic, short-duration motions thought to correct for discontinuous positional

errors which might accumulate during smooth pursuit [Rashbass(1961), Becker and

Fuchs(1969), de Brouwer et al.(2001)]. Both fruit flies and fish exhibit smooth and

ballistic locomotor outputs, though for the purpose of reference tracking, we focus on

smooth pursuit.

1.3 Contrasting Approaches to Ethology

Ethology, the study of behavior, has been propelled by contributions from the fields of

biology, neuroscience, psychology, applied mathematics, and engineering (to name a

few). Yet, the analyses used in this research are not typical to the fields of biology or
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CHAPTER 1. INTRODUCTION

neuroscience and for the most part, the proposed models avoid explanation in terms

of biological mechanisms. The contribution of this research is best explained in the

context of two opposing scientific philosophies, reductionism versus complex system

science, and corresponding methodologies, bottom-up and top-down respectively.

Reductionism comes in many flavors, some more established and others still philo-

sophically controversial. But a commonly accepted notion from reductionist theory

is that for a given system, any process arises as a consequence of processes occurring

in the constituent components of the system; this notion is a weak interpretation

of ontological reductionism [Brigandt and Love(2008)] and is rather widely accepted.

New properties at one hierarchical level are epiphenomena of the constituent systems;

the whole can be described as the sum of the parts. Methodological reductionism ex-

tends this notion, prescribing that systems should be studied as the composition of

subsystems at “the lowest possible level” [Brigandt and Love(2008)]. In some cases

which I will illustrate, methodological reduction yields misleading or erroneous ob-

servations. Additionally, from a pragmatic standpoint, as systems increase in the

number of components and the complexity of interaction, reductionism becomes less

constrained (due to combinatorics) and less informative. We cannot measure every

component and connection within a complex system and the problem of extrapolating

our understanding of a few parts into a full system description is underconstrained.

In contrast to reductionism, the complex system view posits that at each level

of added complexity, emergent phenomena require a new set of general laws. For

6



CHAPTER 1. INTRODUCTION

designing a research plan, the complex systems approach suggests that experiments

should aim to study mechanisms in the context of behavior, leaving the animal and

the behavior as intact as is feasible being that emergent properties which exist at a

high level may not be deduced from knowledge of the parts. Free behavior, however,

is rarely feasible for neurophysiological experiments. So methodological reduction,

despite the noted drawbacks, is necessary in constructing mechanistic models for

behavior.

The approach in this research primarily adopts the complex system approach,

utilizing a top-down analysis of data collected from (mostly) freely behaving animals

to generate holistic models of behavior. These empirically derived task-level models

provide constraints for proposed mechanistic models (hypotheses). In the following

sections, we further explain the application of reductionist methodolgy and subse-

quently motivate the complementary role of top-down methods.

1.3.1 Bottom-up: a place for reductionism

Towards understanding animal behavior, we ultimately desire mechanistic models.

These models depict behaviors as built out of subsystems (just as we think of a

machine as an assemblage of parts). In the identification of biological behaviors,

the decomposition into parts is of particular interest because many neuromuscular

mechanisms contribute to multiple behaviors. Moreover, many of these mechanisms

are preserved in part across different taxa. So identification of a subsystem may

7
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inform our understanding of many behaviors in different animals. The reductionist

philosophy implies a constructionist approach towards generating mechanistic models:

a system is studied at the lowest feasible level, acquiring a vocabulary of elementary

parts and connections, and subsequently, a mechanistic model is composed bottom-

up from the vocabulary to give rise to a behavior. The goal towards mechanistic

models is driven by a reductionist ideology, but there are many challenges and pitfalls

(which will be discussed shortly) involved in empirically identifying the subsystems

and constraining the designed models.

Reductionist methodologies arise partially out of necessity. The complex systems

approach prescribes that mechanisms be studied in the context of behavior, but there

are limited preparations which allow for recording neural signals from awake and

behaving animals; several of the successes in this area will be acknowledged in the

following subsection. For the most part, neural mechanisms are identified in highly

constrained or ex vivo preparations due to physical limitations imposed by the com-

patibility of the instrumentation and the behavior.

The bottom-up approach is a useful starting point for generating mechanistic

models. Particularly for behaviors for which no models exist (or for which models

exist for analogous behaviors), the bottom-up approach can rapidly furnish competing

hypothetical models which can be supported or refuted empirically.

Bottom-up connotes design, the synthesis of a new system from components. The

reductionist approach is the cornerstone of bio-inspired robotics. In his book Vehicles:
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Experiments in Synthetic Psychology, Valentino Braitenberg neatly demonstrates a

reductionist approach to bio-inspired robotics [Braitenberg(1986)]. Using a limited

library of sensors mounted on small wheeled vehicles, Braitenberg illustrates how dif-

ferent wiring schematics can generate behaviors which convey animal-like intention

and emotions: aversion, pursuit, aggression, cooperation, and love. These behaviors

are designed to capture some qualities of animal behaviors. Many areas of robotic

study have been spawned by biological principles: neural networks, genetic algo-

rithms, haptics, etc. But in implementation, these bio-inspired mechanisms diverge

from their biological inspirations. And rightfully so. In the analysis of animal behav-

ior, we are constrained by what is actually implemented in animals. In the synthesis

counterpart, we are free to optimize the assembly of parts to produce a system which

best fits our needs. The bottom-up synthesis is not constrained to corroborate any

top-down empirical analysis.

While useful in design where the goal is to maximize performance with respect to

some task, the over-extension of optimization in the analysis of animal behavior can

be dangerous. The epilogue to this chapter quotes Voltaire:

If God has made us in His image, we have returned Him the favor.

There is a tendency, in the attempt to understand the machinery behind Nature,

to approach the mystery as a synthesis problem. How would I go about designing a

system to perform this behavior? This notion, that scientists should impose “good

design” in studying animal behavior is flawed. An animal produces myriad behaviors

9
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using a limited set of mechanisms; so any particular mechanism may contribute to

numerous behaviors and physiological functions. It is rash to assume optimality of a

mechanism with respect to a singular task in spite of the diversity of robust behaviors

to which the mechanism contributes; suboptimality might be a safer presumption

[Fortune and Cowan(2010)]. Moreover, the optimization in animals is constrained

by the process of evolution via natural selection. That means that some traits may

improve fitness (either for survival or attraction of a mate, but always with the end

goal of reproduction) and others may merely be features genetically linked to these

preferable traits. For these reasons, it is important to observe and quantify behaviors

and not to presuppose optimality in design. However, when similar mechanisms are

observed to have evolved independently in dissimilar taxa (convergent evolution), we

may search for the overarching factors and constraints which yielded such narrowly

similar solutions [Fortune and Cowan(2010)].

1.3.2 Top-down: why complex systems should be studied

intact

The notion that new properties emerge as the consequence of the interactions be-

tween subsystems is central to control theory. In control design, systems are designed

as blocks (subsystems) connected through a variety of topologies (feedback loops,

serial cascades or parallel summations) to achieve specified behaviors (e.g. reference

tracking, noise rejection, model identification, etc.) or novel properties (e.g. stability,

10
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robustness, sensitivity, etc.). When a system is designed according to rules, the blocks

and interconnections have been selected to achieve specific behavioral characteristics,

there is hardly the sense of “emergence” when these characteristics surface. There is

little mystery in design.

So from a design perspective, it is no surprise that the whole may exhibit prop-

erties not found in its parts. But in the identification problem, the converse also

becomes problematic; a constituent subsystem may behave differently removed from

the context of the rest of the system or behavior. As a simple illustration, consider

the simple op-amp circuit in Figure 1.1.

+

_

Vin
Vout

S+

S-R2 R1

A

B

S+

0

S-

Vin

Vout

t

Vo
lta

ge
 (V

)

Figure 1.1: A non-inverting op-amp circuit with a closed-loop gain of 1 + R1

R2
.

Observations of input–output data readily reveals a task-level model; this simple

circuit scales the input signal (by a gain of 1 + R1

R2
). Now, feigning ignorance of the

circuit design, we attempt to identify the contribution of the subsystems using a re-

ductionist approach, decomposing the circuit into subsystems A from B. If we replace

B with a short circuit, A does nothing at all, passing the input to the output unal-

tered (provided the input doesn’t exceed the supply voltages); if instead we substitute
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an open circuit, A acts as a comparator, saturating to S+ when Vin is positive and to

S− when Vin is negative; B relays the input to the output unaffected (Figure 1.2).

+

_

Vin
Vout

S+

S-R2

A
S+

0

S-

Vo
lta

ge
 (V

)

Vin Vout

R1

B

S+

0

S- t
Vo

lta
ge

 (V
)

Figure 1.2: The responses of the constituent subsystems from Figure 1.1.

We may interpret this “preparation” in the context of two common neurophysi-

ological methodologies. In the first interpretation, we consider observations of A in

open loop as analogous to ex vivo preparations. In these preparations, a subsystem

(a physical neuroanatomical structure) of interest is observed excised from the animal

and typically stimulated electrically or pharmacologically. For the op-amp example in

open loop Figure 1.2, we may interpret the binary output of the op-amp as a polarity

indicator. If the combined circuit were believed to participate in motion processing,

we might suspect that A is a direction selective circuit. Under the second interpreta-

tion, we posit that B is a physical structure ablated from the system and we infer its

contribution based on any observed deficits in the resultant behavior. Depending on
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how B is ablated (replaced with an open circuit) we observe the described binary out-

put; from these observations we might conclude that B contributes the proportional

response.

In this analysis, the contribution of the op-amp is severely misrepresented. With

a small enough input, it is possible to observe a proportional response, but due to

the high gain and the saturation non-linearity imposed by the finite supply voltages,

an open-loop analysis mischaracterizes the behavior of this component. And why

would we ever suspect that it behave so differently in the context of the full circuit?

Compared to the intricacy of animal behavioral systems this circuit is remarkably

simple, yet it illustrates one peril of decontextualization as part of the reductionist

approach. For image-stabilization behaviors, closed-loop stability will play an integral

role in motivating our use of linear system identification analyses.

In studying mechanistic components in the context of behavior, we must be aware

that the system is not merely the animal, but an interaction between the animal

and the environment. Many behavioral paradigms maintain the animal system as a

whole but limit interaction with the environment, performing experiments on awake

but highly constrained animals (e.g. the direction selectivity studies on Eigenmannia

discussed in Chapter 3). And there are neurobiological phenomena which simply can

not be observed without this interaction (i.e. the behavior cannot be elicited with

fictive stimulation).

For example, the discoveries of place cells [O’Keefe and Dostrovsky(1971)] and
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more recently grid cells and border cells [Hafting et al.(2005), Solstad et al.(2008)]

exemplify the importance of the animal-environment interaction in the role of behav-

ior. As their names suggest, place cells (hippocampus), grid cells (entorhinal cortex),

and border cells (entorhinal cortex) are neurons which encode an animal’s spatial ori-

entation within an environment. In the experiments which lead to these discoveries,

rats were surgically fitted with cortical implants comprising an array of electrodes.

This device allowed the rat to freely explore an environment while neural signals are

measured and transmitted over a flexible tether. The roles of these specialized cells

could not have been observed in any constrained or ex vivo preparation.

In the past several decades, numerous technologies have been developed to mea-

sure neural activities in behaving animals: electromyography (EMG, both surface

and implanted), electrocorticography (ECoG), electroencephalography (EEG), and

functional magnetic resonance imaging (fMRI). In the scope of insect electrophys-

iology, tethered electrodes have been used to study locomotion in freely behaving

cockroaches [Ye et al.(1995)]. More recent developments facilitate neurophysiological

recordings in flying insects. Maimon et al. developed a method for whole-cell patch-

clamp recording for in tethered Drosophila [Maimon et al.(2010)]. Wireless neural

recording (and stimulation) has been demonstrated in hawkmoths [Tsang et al.(2011)]

and locusts [Harrison et al.(2010)].

These technologies provide increasingly unobtrusive means for recording neural

signals in behaving animals, measuring the outputs of neuromuscular mechanisms in
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the context of behavior. For the scope of this research, however, we develop input–

output task-level models based strictly on kinematic data.

1.3.3 Reconciling the top-down and bottom-up approaches

Neither reductionist nor systems-theoretic approaches alone can generate a holistic

and mechanistic understanding of a behavior. Bottom-up and top-down approaches

must complement each other in order to achieve an understanding of behavior at

different scales of organization. In this dissertation, we focus primarily on descrip-

tive and predictive (phenomenological) models in contrast to mechanistic models. A

descriptive model generalizes what is happening; a mechanistic model explains—at a

lower-level—how the observed phenomenon arises.

Often a single model may be both descriptive (of a lower-level phenomena) and

mechanistic (for a higher-level phenomena) (Figure 1.3). This is analogous to the

templates and anchor spectrum [Full and Koditschek(1999)] for describing animal lo-

comotion. At the high level, templates are low-dimensional descriptive models which

capture salient features of the locomotor dynamics. At the low level, anchors are

high-dimensional models which represent the physical system with greater fidelity. In

this work, our descriptive models typically take the form of an empirical frequency

response function or transfer function. In the template and anchors paradigm, tem-

plates are often described as a simple mechanical system. For example, the spring-

loaded inverted pendulum (SLIP) model [Blickhan(1989),Holmes et al.(2006)] is used
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Figure 1.3: A cartoon decomposition of the sensorimotor transform for refuge-tracking
in weakly electric knifefish. The task-level model (A) is decomposed into candidate
mechanistic decompositions with increasing refinement, (B) and (C).

to describe the sagittal plane dynamics of walking, primarily the trade-off of kinetic

and potential energy. The SLIP model comprises a point mass (a surrogate for the

body, co-located with the center of mass) and a spring loaded leg (which can change

length during swing phase to inject energy into the system). Though this description

sounds mechanistic, the template is an analogy: the SLIP model does not imply that

a walking body manifests single-mass and a spring (in a lumped-parameter sense),
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but only that some aspects of the center-of-mass dynamics behave as if the system

were an spring-loaded inverted pendulum. Similarly, any second-order differential

equation which serves as a descriptive model could be framed in physical terms as a

spring-mass-damper system or an resistive-inductive-capacitive (RLC) circuit, yet it

would not imply that the physical instantiation was such.

Towards developing mechanistic (reductionist) models, Koditschek and Full em-

phasize the need for high-level descriptive models [Full and Koditschek(1999)]:

In the absence of a principled understanding of a simple model, no firm
grasp of any more detailed model is likely. We will do well to view with due
curiosity, but deep suspicion, the sort of complex and high-dimensional
computational models that computing power allows. . . . We argue that
higher-dimensional anchors are indeed required to reveal how mechanisms
work, but can best advance our understanding of neuromechanical inte-
gration when informed by an underlying template.

To reconcile the systems-theoretic and reductionist approaches, both top-down

and bottom-up approaches are necessary: refined descriptive models constrain the

formulation of mechanistic models, while mechanistic models furnish predictions that

require increasingly refined descriptive models, in a converging dialogue. This work

presents a data-driven control theoretic approach towards identifying task-level de-

scriptive models for animal behaviors. For both the refuge-tracking behavior in knife-

fish and the stripe-fixation behavior in fruit flies, we empirically characterize the fre-

quency response over a range of frequencies salient to the behaviors. The models

generated from this study are then used to posit mechanistic decompositions at a

lower level.
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1.4 Dissertation Organization

This dissertation focuses primarily on task-level system identification of image-stabilization

behaviors in animals. Chapter 2 provides the mathematical background for system

identification, motivating the choice of a frequency domain approach and defining

the tools used to assess behavioral performance and generate model descriptions.

Chapter 3 and Chapter 4 describe the research contributions towards identifying the

stabilization behaviors in knifefish and fruit flies, respectively.

The organization of these chapters reflects the organization of this introduction.

Each chapter is introduced with a description of the animal system and the model

behavior followed by a literature review of relevant research, roughly categorized as

either research at the mechanism or behavior level. For Eigenmannia, we present a

frequency-domain analysis (top-down) of the refuge-tracking behavior. In the follow-

ing chapter, we first present the system identification of the stripe-fixation behavior

in Drosophila. Subsequently, we extend the derived model to explain previous ob-

servations in other groups, consolidating disparate phenomena as the consequence of

the task-level model. In Chapter 5, we discuss extensions of the task-level identifi-

cation to include neurophysiological recordings, outlining a multi-input multi-output

approach towards model decomposition.
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1.5 Contribution and Dissemination

In this dissertation, we present a frequency-domain system identification framework

for a broad category of animal behaviors, image-stabilization tasks. The framework

details the experiments used to elicit smooth pursuit stabilization and the analytical

tools developed for recognizing behavior, differentiating stimulus-mediated responses

from other behaviors, and fitting parametrized models to frequency data.

We demonstrate this approach for two animal behaviors, refuge-tracking in the

weakly electric knifefish Eigenmannia and optomotor stripe-fixation in the fruit fly

Drosophila. It has been observed repeatedly and reaffirmed in this work that these

behaviors are low-pass; performance in reference-tracking tasks is strong for slow

oscillations and diminishes rapidly for higher frequencies. For this reason, the over-

whelming majority of the literature focuses on the low-frequency response, where

behavior is robust and easily discernible during experiments. In respect to the fre-

quency band for which these models describe the behaviors, the experiments and

resultant models represent the most comprehensive descriptions of these behaviors.

In both animal models, we reveal features of the behavior that were previously

unknown or unreported. In knifefish refuge-tracking, the system identification anal-

ysis reveals a nonlinearity the nature of which suggests that the behavior utilizes

mechanisms for prediction and optimal control. The modeling approach described in

this dissertation has since been extended at decoding the sensory fusion problem in

19



CHAPTER 1. INTRODUCTION

the same animal. In fruit flies, the empirically derived model (formulated as a PID

controller) indicates that position-dependent cues in the visual scene contribute to

the motor control policy; prevailing models rely primarily (or exclusively) on optic

flow to determine torque. The proposed PID model generalizes, consolidating several

previously observed phenomena as consequences of the same underlying model.

The material in Chapters 3 and 4 has in large part been published in the following:

- E. Roth, K. Zhuang, S. A. Stamper, E. S. Fortune, and N. J. Cowan.
Stimulus predictability mediates a switch in locomotor smooth pur-
suit performance for Eigenmannia virescens. J. Exp. Biol., 214(7):1170–
1180, Apr 2011.

- E. Roth, M. B. Reiser, M. H. Dickinson, and N. J. Cowan. A task-
level model for optomotor yaw regulation in Drosophila melanogaster :
a frequency-domain approach. In Proc. Conf. on Decision and Con-
trol, Maui, HI, December 2012. (submitted)

The following publications by the author are relevant to but do not prominently

appear in this dissertation:

- S. G. Carver, E. Roth, N. J. Cowan, and E. S. Fortune. Synaptic
plasticity can produce and enhance direction selectivity. PLoS Comp.
Biol., 4(2), 2008.

- E. Roth, S. Carver, E. S. Fortune, and N. J. Cowan. Mechanisms
for encoding velocity in the electrosensory system of weakly electric
fish. In Proc. Int. Symp. Adaptive Motion of Animals and Machines,
Cleveland, OH, June 2008.

- S. Stamper, E. Roth, N. Cowan, and E. Fortune. Active sensing via
movement shapes spatiotemporal patterns of sensory feedback. J.
Exp. Biol., 215(9):1567–1574, 2012.
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Chapter 2

Frequency-domain System

Identification

Look and you will find it—what is
unsought will go undetected.

Sophocles
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Within the broad scope of control theory research, system identification focuses on

extracting descriptive and predictive dynamical models from empirical data. Though

the goal of system identification is narrow, the field encompasses a variety of applica-

tions and approaches. For the purpose of controller design, system identification can

be used to generate a plant model when one is (partially) unknown. In fact, many de-

velopments in system identification have come from the adaptive control community

(e.g. model identification adaptive control in which a plant model is generated online).

And though system identification techniques have been extended to nonlinear and hy-

brid dynamical systems, the canon of literature in linear modeling is by far the most

developed [Ljung(1999),Söderström and Stoica(1988),Pintelon and Schoukens(2001)].

In this chapter, we explore applications of linear system identification to the study of

image-stabilization behaviors in animals.

2.1 Motivating the Frequency-domain Approach

System identification methods can be broadly separated into two categories: para-

metric, which includes prediction error methods (PEM), and non-parametric, which

includes time-domain correlation methods and frequency analyses. Parametric meth-

ods assume a model structure a priori and optimize the model representation with

respect to the parameters, abstracting the data into a model of substantially lower di-

mension. Typically, parametric models represent the system as a closed-form mathe-

matical expression (e.g. difference or differential equations). These models can furnish
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hypotheses about the underlying system and generate predictions for novel stimuli

(even extrapolating predictions to stimuli outside the support of the initial experi-

mental data). However, if the assumed model structure does not accurately reflect

the underlying system, informative features may be lost in the representation. Non-

parametric models (e.g. lookup tables, graphs, etc) do not presuppose a structure and

hence more faithfully retain nuances in the data. However, these representations do

not afford the same generalizability or reduction of dimensionality as do parametric

models.

The inherent diversity in animals (in many senses) poses a unique challenge for

system identification techniques. The goal is to estimate a mean behavioral model

from a population. In system identification, we commonly assume that each data

set used to infer the underlying model is actually generated by the same underly-

ing system. This assumption is not necessarily valid across a sample set of animals

(or across trials for a single individual). So for animal systems, the goal is to iden-

tify the behavior within the data and estimate a mean behavioral model from the

population. We approach the system identification problem with a non-parametric

frequency analysis, generating empirical frequency response functions (or Bode plots)

as an input–output description of the behavior.
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2.1.1 Why a non-parametric approach?

Typically, a parametric system identification method consists of three stages: hy-

pothesizing model structure, optimizing model parameters, and selecting from com-

peting hypotheses. In the first stage, we enumerate a number of candidate model

structures. Often it’s the case that some prior knowledge of the system informs the

candidate structures; the hypothetical model structures may be known from first prin-

ciples (white-box models) or informed by some known physical properties (grey-box).

Without such knowledge, we must cast a wide net, canvassing a large assortment

of (black-box) candidate structures in order to safely assume that some member of

the candidate set closely emulates the true system. Subsequently, we optimize the

parameters for each model structure according to some error metric (e.g. prediction

error). Finally, we select a model according to an information criteria (e.g. Akaike or

Bayesian information criteria), balancing the prediction error and model order.

Often in collecting behavioral data from animals, it is not clear whether a single

model represents each and every data set. Individuals behave differently. Animals

fatigue or lose motivation over the course of an experiment regiment. These differences

may not only yield a greater variance (uncertainty) in model parameters, but different

individuals (or trials) may indicate different model structures. Suppose for example,

that the underlying system for a behavior is best fit by a transfer function of relative

degree two. At high frequencies, the behavior is analogous to that of a spring-mass-
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damper system. Now suppose across the sample population, variability between the

animals furnishes variability in the natural frequency and damping coefficient in the

underlying system. Those individuals in the population who are highly damped may

exhibit behavior more suitably modeled by a first-order system (inertial terms are

negligible); underdamped individuals may require second-order models to capture

the dynamics of behavior. In a non-parametric representation, such as the frequency

response functions used in this work, the scope of behaviors is more evident as a

continuum of responses. In the parametric approach, this variance could result in

a poor model fit or bimodality at the model selection stage (two competing models

with similar information criteria).

To complicate matters further, animals may exhibit multiple behaviors over the

course of an experiment, and at times, they may exhibit multiple behaviors concur-

rently. For example, when performing refuge tracking in the dark, Eigenmannia per-

form rapid saccades superimposed over the smooth pursuit tracking behavior [Stam-

per et al.(2012)]. These high velocity saccades introduce significant tracking error

to the behavior. Though the smooth pursuit behavior persists, a parametric model

may favor fitting these saccades in lieu of the low-frequency, low-velocity, smooth

pursuit dynamics. In this instance, the oscillations which emerge in the dark can be

easily observed and filtered prior to a parametric analysis. When these superimposed

dynamics are not obvious, the parametric approach may result in a model of the

ancillary behaviors.
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In short, beyond the initial stage in which we select candidate structures and error

metrics, parametric approaches leave little room to inject intuition or decision-making

into the identification process. In our non-parametric frequency-domain approach,

each trial is represented as an empirical frequency response function. This allows us

to see the diversity of the responses, cull outliers, and focus on fitting parametrizations

that capture the most salient features of the behavior while ignoring any secondary

phenomena.

2.1.2 Why the frequency domain?

Many image-stabilization behaviors, including the two studied in this dissertation,

exhibit low-pass dynamics. These behaviors are typically studied for the regime of

stimuli for which the behavior is observed to be robust. In the time domain, atten-

uated gain in response to a motion stimulus can be masked by distracting volitional

movement, causing the persistence of behavior at high frequencies to be overlooked.

And even when these reduced responses are observed, they are often dismissed as

anemic or unmotivated. For the purpose of system identification, the more vigorous

low-frequency responses are less revealing of the underlying dynamics. Excepting dif-

ferences in gain, for low frequencies (relative to the cut-off frequency), the majority

of linear low-pass systems exhibit qualitatively similar responses. To differentiate

between competing models—to determine attributes such as model order, cut-off

frequency, damping, and delay—requires observation beyond the cut-off frequency,
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where performance wanes. The frequency domain representation exposes these mea-

ger yet informative high-frequency responses.

To further advocate this point, consider the sensitivity of the open-loop fly opto-

motor response F (ω) (the transfer function from perceived sensory error to fly motion)

with respect to tracking performance. The tracking behavior can be described by the

closed-loop transfer function from reference to output, G(ω), where error is filtered

by F (ω) and stabilizes the stimulus trajectory through negative feedback:

G =
F (ω)

1 + F (ω)
, F (ω) =

G(ω)

1−G(ω)
,

with sensitivity of the optomotor plant with respect to performance calculated as

∂F

∂G
=

1

(1−G(ω))2
. (2.1)

We see in (2.1), that the open-loop optomotor response is most sensitive to perfor-

mance near G(ω) = 1 (perfect tracking performance) which occurs when F (ω) � 1.

The heightened sensitivity in this regime has two important implications: small mea-

surement errors will yield highly variable open-loop model predictions, and, con-

versely, a diversity of open-loop models could have generated the observed closed-

loop performance. For this common feedback topology, sensitivity improves to unity

as performance degrades. This trade-off must be a critical consideration for sys-

tem identification, to find the regime of stimuli which elicit observable behavior and
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informative model constraints, performance and sensitivity near unity.

For both stripe fixation in Drosophila and refuge-tracking in Eigenmannia, we

identify dynamical models for the behaviors through an assay of perturbation ex-

periments. The reference trajectories used are all variations on sinusoidal functions

representing a broad range (with respect to the bandwidth of the behavior) of fre-

quencies: individual sinusoids, sums of sinusoids at different frequencies, and chirps

(sinusoids with time-varying frequency). The choice of this class of stimuli is moti-

vated by behavioral, analytical and historical factors, as described below.

Smooth trajectories elicit smooth pursuit

Animals interact with their environments through a repertoire of locomotor behaviors

and it is important to design stimuli which evoke the desired behavior. It is common

practice in system identification experiments to use white noise or pseudo-random

noise sequences to generate spectrally inclusive stimuli. In our experience, such signals

do not elicit smooth pursuit; in Eigenmannia, any abrupt refuge motion induces an

escape response. Smooth pursuit requires smooth trajectories. This class of sinusoidal

stimuli provides a flexible basis for generating stimuli with desired spectral content

and reliably elicits the smooth pursuit response.
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Spectral composition differentiates behaviors

Behaviors derived from different dynamical systems have distinct spectral signatures.

For the case of image-stabilization behavior, we are most interested in isolating

the smooth pursuit response from ancillary behaviors (e.g. saccadic corrections, ex-

ploratory behaviors, etc.). The stimuli trajectories used in this research share a

common and important attribute: the domain is comprised of discrete frequencies

(as in the case of sinusoids and sums-of-sines) or of compact intervals of frequency

(the case for any time window of a chirp stimulus). The pursuit response will be

strongly coherent with the stimulus (as we see in both fish and flies). Hence, output-

input coherence serves as an indicator for whether the behavior is present and as a

tool for disambiguating pursuit from auxiliary motion.

Sinusoidal stimuli are prevalent in the literature

Though there is remarkably little prior art in this broad-spectrum frequency-domain

approach towards behavioral identification [Kiemel et al.(2006)], sinusoids have long

been employed as stimuli for reference tracking behaviors. A significant body of

literature explores optomotor regulation in fruit flies using similar visual perturba-

tion experiments [Heisenberg and Wolf(1988),Duistermars et al.(2007)]; the knifefish

tracking behavior, on the other hand, was discovered much more recently and has

not yet been widely studied [Rose and Canfield(1993a), Cowan and Fortune(2007)].

So while there are few dynamical models against which to compare, past literature
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provides results (discrete data points on the frequency response function) against

which to compare such models. One critical aim of this research is to consolidate

past observations as the consequences of a parsimonious model.

2.1.3 A role for linear models in describing

image-stabilization behaviors

The frequency response analyses used in previous studies on image stabilization

behaviors [Cowan and Fortune(2007), Reiser and Dickinson(2008), Heisenberg and

Wolf(1988), Götz(1968), Kiemel et al.(2006), Carver et al.(2005), Jeka et al.(2004),

Sprayberry and Daniel(2007),Gilbert(1997)]) are predicated on an assumption of lin-

earity. Without this linearity assumption, a frequency response function (FRF) gen-

erated from one set of stimuli would not predict the system’s response to spectrally

distinct stimuli. And, it would be impractical to test the entire range of possible

stimuli for any system.

The linearity assumption underlies the predictive and generative power of fre-

quency analyses. But why should we expect any animal behavior be described by such

a seemingly restrictive set of models? Admittedly, nonlinearities manifest in many

of the biological subsystems which give rise to behaviors, from low-level mechanisms

(e.g. sensory tuning curves, saturation and hysteresis in muscle force production)

to high-level neural processes (e.g. long time-scale adaptation, volitional changes be-

tween different behaviors). But, linearity at the task-level does not preclude nonlinear
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constituent subsystems. In this class of closed-loop behaviors, the system is stabilized

at a task level to an equilibrium state corresponding to the sensory goal. Local to an

equilibrium, many nonlinear systems (and, in fact, almost all in a certain mathemati-

cal sense [Sastry(1999)]) can be closely approximated by (oftentimes low-order) linear

models. Hence, cockroach wall-following, for example, could be faithfully captured

by a linear model [Cowan et al.(2006),Lee et al.(2008)].

However, when linear models fail to adequately represent a behavior i.e. the behav-

ior does not appear linear for any neighborhood of the equilibrium, the discrepancies

in frequency responses to different stimuli can illuminate the underlying nonlinearities.

In our analysis of the refuge tracking behavior of Eigenmannia virescens, we ascribe

the differences in frequency response functions between stimuls types to a model-based

prediction mechanism and optimal control. For the proposed model (Figure 3.12) and

a fixed stimulus, the Kalman filter and optimal controller are linear; the nonlinearity

observed in our experiments is introduced as the Kalman filter adapts to new stimuli,

updating an internalized model of the system and external dynamics. The linear

analyses we present provide snapshots of an adapting behavior—waypoints which

constrain future nonlinear models for the full behavior. Future work can address the

mechanisms responsible for these adaptations.
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2.1.4 Extending frequency analyses to other

image-stabilization tasks

Similar assays to those described in this thesis could be used towards identifying

control strategies for other animal image-stabilization tasks. The approach outlined

in this work is applied to task-level dynamics. For many biological systems, identifying

the task-level goal and subsequently measuring a suitable task-level state is not trivial.

Locomotor dynamics often mask the task-level states of interest. For most animal

behaviors of interest, the motor dynamics are cyclic (e.g. walking strides, flapping

wings). The periodicity of locomotor dynamics may or may not manifest in the task-

level states. For example, in the case of Eigenmannia, the individual undulations of

the ribbon fin (which occur at a frequency of about 10 Hz) do not introduce significant

variance into the task-level states (longitudinal position and velocity of the body).

In contrast, for the control of walking or running in humans, the within stride phase

significantly affects the task-level state (often the vertical position and velocity of the

center of mass). Walking dynamics are often modeled as an inverted pendulum or

some variant on the theme [Alexander(1995)] while running is often represented as a

spring-mass hopping system [Blickhan(1989)]; both models clearly illustrate how the

task-level state changes periodically, in synchrony with the gait. Similarly, cyclical

motor dynamics can manifest in task-level states for flying—particularly in slow-

flapping (wingbeat frequencies within the band salient to task-level behavior) animals
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such as moths and butterflies, bats, and birds—and swimming modalities such as

carangiform swimming in which thrust is generated by the caudal fin through body

bending.

Many locomotor behaviors are described in terms of stable limit cycles, attract-

ing periodic trajectories in the state space; at a task-level, the goal of an image-

stabilization behavior is described as an equilibrium point. We have presented a

small sampling of behaviors in which cyclic motor plants are controlled to achieve

stationary sensory goals. But in the interest of identifying neural control policies,

it is useful for some questions to divest the task-level states from the “artifacts”

introduced by the motor plant or external dynamics.

For the cases above, systems theory of cyclic dynamics provides tools for stripping

task-level states from the kinematics. Floquet analysis allows the task-level states to

be recoordinatized according to the phase of the cyclic dynamics, in essence trans-

forming an equilibrium cycle (or limit cycle) into an equilibrium point. Once the

kinematic data is transformed to align these Floquet coordinates, data captured from

different phases of a “stride” can be compared using the techniques such as those

described above [Revzen and Guckenheimer(2008), Revzen(2009)]. In a similar ap-

proach, cyclical systems can be discretized through Poincaré analysis. Rather than

aligning a cyclically changing coordinate system as in Floquet analysis, Poincaré anal-

ysis considers the state of a system at only one phase of a cycle, generating a discrete

data point for each cycle. In this way, the task-level states are captured at the same
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phase of every stride, fixing the equilibrium point to the state of the limit cycle at

that phase [Lee et al.(2008)].

2.2 Mathematical Tools

2.2.1 Coherence

Coherence, the ratio of the squared cross-spectral density of two signals v(t) and z(t)

and the product of the respective power spectral densities,

Cvz(ω) =
|Rvz(ω)|2

Rvv(ω)Rzz(ω)
, (2.2)

describes the degree to which two signals are linearly related (correlated) at different

frequencies. Unity coherence implies that two signals can be perfectly represented

as the input and output of a linear dynamical system; lower coherence may result

from the presence of nonlinearities, noisy measurements, or additional unaccounted

inputs which contribute to the measured output. In this paper, we perform coherence

analysis for sum-of-sines trials to establish that, for a given trial, the input–output

relationship is linear.

Consider paired input–output measurements of a linear system. We assume pro-

cess noise (e.g. due to variability of the motor output [Harris and Wolpert(1998)])

corrupts the motor behavior itself. Specifically, letting ∗ denote the convolution op-
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erator, suppose the input–output pair (u(t), y(t)) is related by

y(t) = f(t) ∗ u(t) + h(t) ∗m(t)
F−→ Y (ω) = F (ω)U(ω) +H(ω)M(ω), (2.3)

where the system f(t) filters the input u(t) and h(t) filters a process noise m ∼

N(0, ν2). Here, F denotes the Fourier transform. Observations of this pair (v(t), z(t))

are corrupted by measurement noise (which can be minimized to some extent through

careful experimentation) nv,z ∼ N(0, σ2
v,z):

v(t) = u(t) + nv(t)
F−→ V (ω) = U(ω) +Nv(ω) ,

z(t) = y(t) + nz(t)
F−→ Z(ω) = Y (ω) +Nz(ω) .

(2.4)

In the absence of noise (σv, σz, ν = 0), a linear dynamical system yields input–

output pairs with unity coherence. Since noise variances appear only as additive

terms in the denominator of the coherence function (2.2) any noise introduced to the

system or measurements diminish coherence, as shown:

Cvz(ω) =
|F (ω)|2|U(ω)|4

|F (ω)|2|U(ω)|4 + |H(ω)|2ν2σ2
v + |H(ω)|2|U(ω)|2ν2 + |U(ω)|2σ2

z + σ2
vσ

2
z

.

(2.5)

Even a linear system, which in a noiseless case should produce unity coherence,

would fail to do so in the presence of noise. Deficiencies in coherence may indicate
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either systematic nonlinearities or corruption by noise or both. Moreover, the output

of a system may be coherent with the input for a particular choice of stimuli despite

nonlinearities in system. Despite being neither a necessary nor sufficient condition,

coherence is a useful indicator of linearity, given the above caveats.

2.2.2 Frequency response functions (FRFs)

The frequency response function (FRF) of a linear dynamical system is the Fourier

transform of the impulse response represented as a complex function of frequency.

Given an input–output time series, the FRF can be calculated as the output:input

ratio of the Fourier transform of the respective signals. Alternatively, the FRF can be

calculated as the ratio of the cross spectral density of the output to the input, Ryu(ω),

and the power spectral density of the input, Ru(ω). A Bode plot is a graphical repre-

sentation of the FRF in cylindrical coordinates. In a Bode plot, the FRF is described

using both the gain (scaling describing the level of amplification or attenuation of the

output with respect to the input) and relative phase imparted by a system (the lead

or lag of the output with respect to the input).

For our purposes, we consider linear systems which generate similar Bode plots

to be similar linear systems. Admittedly, this measure is subjective. What features

of the frequency response are of interest? What are acceptable deviations from the

data? Under this interpretation, different parameterizations of a single model struc-

ture and even models of different structures may be deemed similar. It is important
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to note that the FRF is a representation of the input–output behavior, and thus, only

portrays the behavior of the observable and controllable (specifically excited) modes.

The limitations of observability and controllability are inescapable; this drawback is

common to all system identification methods1. Additionally, FRFs and Bode plots

are predicated on the assumptions of linearity; for linear systems, FRFs are generative

descriptions in that we can predict the output of the system subject to an arbitrary

input. Though we can generate empirical FRFs from input–output data generated

by a nonlinear system, the resultant models are not generative. Hence, our notion of

similarity does not extend to nonlinear (rather nonlinearizable) systems. The FRF

and Bode plot are the primary tools we use to describe image-stabilization behaviors.

At times, we may use the terms “frequency response function” (a mathematical

function) and “Bode plot” (a graphical representation of the FRF) interchangeably;

a simple (nonlinear) transformation converts one to the other, so in most respects,

the two are equivalent representations of a dynamical system. However, the differ-

ence between these representations has implications for calculating statistics of the

response or goodness-of-fit for a proposed model. Recall that the logarithm of a com-

plex number yields another complex number for which the real and imaginary parts

1In parametric methods, nonminimal realizations (or realizations with near pole-zero cancella-
tions) are typically rejected by the model selection criteria, since they incur a cost for additional
parameters and afford little or no improvement in terms of prediction. In fitting parametrized models
to FRFs, we similarly decline nonminimal transfer functions.
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represent the log magnitude and phase respectively:

ln (a+ i · b)︸ ︷︷ ︸
cartesian

= ln (m exp(i ·φ))︸ ︷︷ ︸
polar

= lnm+ i ·φ︸ ︷︷ ︸
cylindrical

, (2.6)

where m =
√
a2 + b2 and φ = arctan2(b, a). The the dual plots in the Bode repre-

sentation (gain and phase) are proportional to the real and imaginary parts of the

logarithm of the frequency response; magnitude can be scaled by 20
ln 10

to convert ab-

solute gain to decibels. A point in the FRF lives in a cartesian space of complex

numbers (C ∼ R2), in the polar representation lives in the space R+ × S1 (which has

a singularity at m = 0), while in the Bode representation (log-space) lives on the

cylinder (R×S1 with no representation for m = 0). We’ll consider only the cartesian

(as used in Nyquist and pole-zero plots) and log-space representations (as used in

Bode plots) since they are ubiquitous in systems and control theory. Throughout

this work, we use both representations for our calculations and both have their mer-

its and shortcomings. The selection of representation may be motivated by ease of

calculation, properties of the data, convenience or convention.

Error metrics

In the Cartesian FRF representation, the Euclidean norm is a convenient distance

metric. Under this interpretation, the distance between two responses with gains of

1.1 and 1 (assuming equal phase) are equally far as two responses with gain 0.1 and 0,
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though the difference between the first pair seems minimal while in the second pair,

the distance between a little and no response is categorical; an error of fixed magnitude

has greater behavioral consequence for responses with low gain. For fitting models,

the uniform distance metric seems to preferentially weight closeness for responses with

large gain. This shortcoming in the Cartesian representation suggests an inclination

for logarithmic (normalized) error.

But the log-space representation does not furnish an immediate or agreeable dis-

tance metric. Supposing a similar distance metric, the `2 − norm with a weighting

function such that ‖c‖W =
√
cTWc where c = [ m, φ ]T and W is a diagonal matrix

of positive weights. Again consider a response pair, {lnm+ i · − π/2, lnm+ i · π/2};

the ‖ · ‖w error is the same regardless of the magnitude m. But the error signal

in the time domain depends significantly on the magnitude; when the magnitude

is near zero (lnm � 0 in the log-space), the error signal in the time domain ap-

proaches zero despite the phase difference. At low gain, even small tracking errors

(in the time-domain) can result in large response errors in the log-space. So while

the log-space provides a scale for gain which more intuitively captures our qualitative

sense of behavioral similarity, converse to the Cartesian representation, the log-space

representation exaggerates errors at low gain.
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Probability distributions

The Cartesian space accommodates Gaussian distributions and, for refuge-tracking

behavior in Eigenmannia, Gaussian distributions seem to qualitatively capture the

frequency response data (grouped by frequency) on the complex plane. The distribu-

tion is calculated in this space and then propagated forward to generate confidence

intervals in the Bode plots (described in Section 3.2.4.1). In the log-space domain,

there is no common distribution native to the cylinder; if we assume the two dimen-

sions to be separable, we may fit Gaussian and von Mises (the circular analogue to

the normal distribution) distributions for the gain and phase respectively.

Alternatively, we could unravel the quotient space S1 into the interval [−π, π)

and stitch together these intervals to form a representation of phase on the real line.

In essence, this removes the 2π periodicity of phase, allowing the log-space to be

represented in R2. From observations of the frequency response at a single frequency,

the phase can only be identified within the [−π, π). However, when we construct the

FRF densely over an interval of frequencies, we can infer phase lags (or leads) greater

than π rad by the continuity of the response. For example, a delay of 1 sec imparts a

phase lag of 4π rad for a signal at 2 Hz, though by inspection of that frequency alone,

we perceive no phase lag at all. Or similarly, at high frequencies, a low-pass system

with relative order of three is described as having a phase lag of 3π
2

rad rather than

a phase advance of π
2

rad by maintaining the continuity of the phase roll-off. For the
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Bode plot of the stripe-fixation behavior (generated using chirp stimuli), we use this

method for calculating statistics, unwrapping phase for each trial.
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Chapter 3

Refuge-Tracking in

Eigenmannia virescens

Wouldn’t the sentence ‘I want to
put a hyphen between the words
Fish and And and And and Chips in
my Fish-And-Chips sign’ have been
clearer if quotation marks had been
placed before Fish, and between
Fish and and, and and and And,
and And and and, and and and
And, and And and and, and and
and Chips, as well as after Chips?

Martin Gardner
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3.1 Why Weakly Electric Knifefish?

The refuge-tracking behavior in glass knifefish Eigenmannia virescens is an untrained

and robust behavior in which the fish modulate swimming to maintain a relative posi-

tion with objects moving in their environment. Native to Central and South America,

these fresh-water fish reside in Amazonian tributaries where they may employ this

behavior to hide among objects moving in the current, a means of eluding predators

during the day. In the laboratory, fish track an artificial refuge (machined from a

segment of PVC pipe) moved along prescribed trajectories.

Both the sensory and locomotor mechanisms involved in this behavior are atypical

and noteworthy. In addition to vision and mechanoreception, these fish use active

electrosensation to detect objects near the body. An electric organ (EO) in the tail

emits a weak oscillating electric charge, the electric organ discharge (EOD). Voltage

sensitive receptors in the skin, measuring small fluctuations caused by objects in the

near electric field. Distributed over the entire body, the population of electroreceptors

form a two-dimensional electrosensory image, not unlike photoreceptors in the retina.

Knifefish locomotion utilizes a long actuated ribbon fin along the bottom of the

body which undulates to generate thrust. Unlike most other fish which rely on body

bending and a sizable caudal fin to propel themselves forward, the knifefish ribbon fin

mechanism does not require body bending. More importantly, ribbon fin locomotion

allows fish to swim capably both forwards and backwards [Rose and Canfield(1993a)]
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Figure 3.1: The weakly electric glass knifefish, Eigenmannia virescens, relies on vision
and electroreception to track objects in its environment. An anal ribbon fin, extending
most of the length of the body, allows the fish to swim forwards and backwards.

without changing the orientation of their body. By constraining the motion of the

refuge to back-and-forth trajectories along a single axis, we leverage the motor capa-

bilities of these fish to reduce the tracking behavior to a single spatial dimension, and

in turn, simplifying the system identification problem to that of fitting a single-input

single-output (SISO) system.

Though the tracking behavior has only recently been studied [Rose and Can-

field(1993b),Rose and Canfield(1993a),Cowan and Fortune(2007),Roth et al.(2011),

Stamper et al.(2012)], the sensory and locomotor mechanisms involved have been

studied either in simulation, constrained experiments, or in the context of other be-

haviors.
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3.1.1 Mechanisms

The electrosensory system in knifefish contributes to many behaviors, both sensori-

motor and social. The electrosensory image and its role in object detection has been

explored extensively through simulation [Rasnow et al.(1989), Rasnow(1996), Nelson

et al.(2002),von der Emde(2006),Babineau et al.(2007),Sim and Kim(2012)]. Signals

from the primary afferents (tuberous electroreceptors) converge at the electrosensory

lateral line lobe (ELL) in the medulla. Cells in the ELL lobe receive information

from numerous receptors to form spatially localized receptive fields (RFs) of differ-

ent sizes distributed over the body; the ELL is divided into three parallel segments

each a topographic map of the receptors on the body (centromedial, centrolateral, and

lateral) and roughly corresponding to RFs of different sizes (smallest to largest respec-

tively) and temporal responses (slowest to fastest respectively) [Shumway(1989)]. The

spatio-temporal dynamics of these receptive fields have been have been investigated in

constrained and curarized animals [Shumway(1989),Berman and Maler(1999),Bastian

et al.(2002), Chacron et al.(2003)]. Towards understanding how motion in the envi-

ronment is encoded, direction selective cells in the torus semicircularis (downstream

of the ELL, in the midbrain) have been identified, also in curarized animals [Chacron

et al.(2009), Chacron and Fortune(2010)]. Integrating empirical descriptions of the

spatio-dynamic receptive fields, we have proposed mechanistic models (not discussed

in this dissertation) describing how direction selectivity and velocity encoding may
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be realized in the nervous system [Carver et al.(2008),Roth et al.(2008)].

Only recently have the mechanics of ribbon fin swimming have become the focus

of research. Force production by the ribbon fin locomotor modality has been studied

in physical simulation using bio-inspired robotic ribbon fins [Epstein et al.(2006),

Curet et al.(2011)], relating the production of thrust and heave to the kinematic

parameters of a single undulating ribbon-fin wave passing through water. However,

in the tracking behavior, we notice that fish exhibit a different kinematic pattern;

knifefish generate inwardly counter-propagating waves, that is, the rostral and caudal

sections of the fin generate antagonistic forward and backwards thrust, respectively.

Knifefish modulate net thrust by adjusting the proportion of the ribbon fin recruited

for forward and backwards swimming. This locomotor strategy puts forwards and

backwards swimming on a continuum, reducing the control strategy largely to a single

parameter (the ratio of fin recruited in each direction) and increases maneuverability

and stability about the hovering equilibrium (when the counter-propagating waves

cancel to zero net thrust) [Sefati et al.(2012)].

3.1.2 Behaviors

The neural mechanisms of electroreception are best understood in the context of

a social behavior, the jamming avoidance response (JAR). In the JAR, fish mod-

ulate their EOD frequencies to avoid low frequency amplitude modulations (AM)

caused by the interaction of their EOD with those of a conspecific [Watanabe and
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Takeda(1963),Bullock et al.(1972)]. For a grouping of two animals, the AM fluctuates

at a frequency equal to the difference of the two individual EOD frequencies, the beat

frequency. Low frequency beats are thought to be detrimental to motion detection.

This behavior represents an unstable equilibrium; when two fish have similar EOD

frequencies, each will adjust their frequency to increase the gap, hence raising the AM

beat frequency. Through electrophysiological experiments using fictive stimuli to em-

ulate the EOD of a conspecific, Heiligenberg and Bastian have mapped the complete

neural pathway for the JAR behavior, identified the neurons responsible for ampli-

tude and phase encoding in the torus semicircularis, and proposed and validated an

algorithm describing how a fish might estimate differential frequency (positive or neg-

ative) with respect to the nearby conspecific [Heiligenberg and Bastian(1980),Bastian

and Heiligenberg(1980),Heiligenberg(1991)].

The refuge-tracking behavior examined in this research is one of several such

behaviors observed in knifefish. In an earlier observed behavior, the electromotor

response, fish swim side to side to adjust their lateral distance to a rod moved

perpendicularly to the side of the body [Heiligenberg(1973), Bastian(1987)]. Simi-

lar kinematic behaviors have been studied in freely swimming fish performing prey

capture [Maciver et al.(2001)]. The longitudinal refuge-tracking behavior was first de-

scribed by Rose and Canfield [Rose and Canfield(1993a)] and later modeled by Cowan

and Fortune [Cowan and Fortune(2007)]. The model, derived from observations of

the tracking behavior in response to sinusoids of various frequencies, described the
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task-level dynamics as a second order model. Cowan and Fortune demonstrate how

this task-level model imposes mutual constraints between the mechanical plant and

the neuromechanical controller; if the mechanics of swimming are assumed to be in-

ertial (second order) the task-level model prescribes a high-pass neural policy, while

an assumption of over-damped swimming dynamics requires a low-pass control policy

in order to satisfy the task-level dynamics. In this work, we extend these prelimi-

nary experiments, observing tracking responses to a broader range of frequencies and

stimulus categories.

3.1.3 Our approach

Initially, this work was intended as a validation of the linearity assumption for refuge-

tracking (Cowan and Fortune constructed their model based on the response to single

sinusoids only). However, in comparing the responses between different categories of

stimuli (single and sum-of-sines) we observed a categorical nonlinearity, improved per-

formance in tracking sinusoids [Roth et al.(2011)]. In the following sections, we inves-

tigate the nature of this nonlinearity and postulate the underlying mechanisms which

might generate the discrepancy between the single-sine and sum-of-sine responses.

The methodology developed for these studies has been extended to research aimed

at disentangling the contributions of the visual and electrosensory modalities and the

behavioral consequences when one of these senses is inhibited or degraded [Stamper

et al.(2012)].
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3.2 Materials and Methods

3.2.1 Animal husbandry and preparation

Adult knifefish of the species Eigenmannia virescens were obtained through commer-

cial vendors and housed in community tanks. Animal husbandry followed published

guidelines for the care and use of Gymnotiform fishes [Hitschfeld et al.(2009)]. For

both community and experiment tanks, water was maintained at a temperature of

approximately 27 ◦C and a conductivity in the range of 150–250 µS. An individual

fish would be placed in the experiment tank and given adequate time (2 h–1 d) to

acclimate to the environment and enter the refuge. All experimental procedures with

animals were approved by the animal care and use committee at the Johns Hop-

kins University, and are in compliance with guidelines established by the National

Research Council and the Society for Neuroscience.

3.2.2 Experimental apparatus

The refuge was machined from a 15 cm segment of 2 inch stock PVC pipe; the bottom

of the pipe was milled away to allow the fish to be video recorded from below and

a series of windows 0.625 cm in width and equally spaced at 2.5 cm intervals were

machined into the side of the pipe to provide visual and electrosensory cues. The

refuge was positioned to be less than 0.5 cm from the bottom of the tank. A linear
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stepper motor with 0.94 µm resolution (IntelLiDrives, Inc, Philadelphia, PA) driven

by a Stepnet motor controller (Copley Controls, Canton, MA) actuated the refuge,

moving it forward and backward along specified velocity trajectories. A pco.1200s

high-speed camera (Cooke Corp, Romulus, MI) with a Micro-Nikkor 60 mm f/2.8D

lens (Nikon Inc., Melville, NY) captured 14-bit video with 1280x1024 resolution from

below. For single-sine and sum-of-sine trials, video was captured at 50 frames · s−1;

for stimulus-switching adaptation trials, video was captured at 80 frames · s−1. The

camera was controlled using the Camware software package (Cooke Corp, Romulus,

MI) from a standard PC. Custom Matlab (The Mathworks Inc.,Natick, MA) scripts

were used to generate and log trials as well as to synchronize actuator trajectories and

camera shutter triggering via a USB-6221 Multifunction DAQ (National Instruments,

Austin, TX) (Figure 3.2).

y(t), y(t).

r(t), r(t).

PC

DAQ

1

2

3

4

A B

Figure 3.2: (A) Experiment apparatus. The data acquisition board sends synchronized
commands to (1) the linear actuator (prescribing the trajectory) and (4) the high-
speed camera (triggering exposures). Riding smoothly along a set of guide rails and
rigidly linked to the actuator, (2) a rigid mast suspends a PVC refuge near the
bottom of the aquarium. Video is captured from below via (3) an angled mirror and
images are subsequently ported back to the PC via CamLink. (B) Coordinate system.
Distinct patches are tracked using an SSD algorithm (custom Matlab code). Postions
and velocities of these patches are measured from a fixed reference.
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3.2.3 Experiment Design

Näıve individual fish (n=4) were presented with a variety of refuge trajectories com-

posed of sinusoids, including single-sine and sum-of-sines stimuli. An additional set

of näıve fish (n=3) were presented trajectories that switch between sum-of-sines to

single-sines. One additional fish was presented with a set of sum-of-sine trajecto-

ries the responses to which were used for cross validation of the frequency response

function models described below. To reduce the occurrence of startle responses, be-

fore each individual trial, animals were presented with 10 s of band limited noise

refuge motion, and further, each stimulus amplitude was gradually ramped up at

the beginning of the trial and down at the end of the trial (10 s ramp duration) to

prevent abrupt onset and offset refuge movements. Together, these eliminated startle

responses to the stimuli.

The stimuli are described in relation to velocity rather than position. Thus,

throughout this paper, the word amplitude of a given trajectory refers not to the

distance but rather to the maximum velocity associated with that stimulus. This

is for three reasons. First, each animal may maintain an arbitrary absolute position

within the refuge, creating an artificial DC offset in position but not velocity. Second,

the sensory receptors are high pass, so that they encode velocity of movement rather

than position [Cowan and Fortune(2007)]. Finally, previous experiments [Cowan and

Fortune(2007)] as well as preliminary experiments for the present study suggest that
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the animals can exhibit saturation-like nonlinearities in tracking performance at high

velocity amplitudes rather than positional amplitudes; as described in Results, the

velocity amplitudes selected for our experiments avoid these saturation nonlinearities

which simply define the performance boundaries of the animal and are not the focus

of this work.

The sinusoidal stimuli were presented at a variety of velocity amplitudes {0.6, 0.8

and 1.2 cm · s−1} and frequencies, and sums of these sinusoids. Refuge excursion fre-

quencies were drawn from the set of the first thirteen prime multiples of 0.05 Hz, that

is f = k × 0.05 Hz with k ∈ {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41}. For single-sine

trials, every other frequency was selected, f ∈ {0.1, 0.25, 0.55, 0.85, 1.15, 1.55, 2.05 Hz}.

Sum-of-sines trials were comprised of all frequency components with equal velocity

amplitude (0.6, 0.8 or 1.2 cm · s−1) and randomized phase. Consequently, when wave-

forms summed constructively, significantly higher velocities would be achieved. These

periodic signals appear pseudo-random within a single period (T = 20 s) of the stim-

ulus.

We also explored the time scales of adaptation between single-sine and sum-of-

sines trajectories. Fish (n=3) were presented with eight trials of longer stimuli (120 s

duration) that switched between sum-of-sines and single-sine trajectories. In the first

minute, fish were subjected to a sum-of-sines stimulus; at 60 s all but the 0.55 Hz

frequency component were discontinued. The transition between stimulus types was

instantaneous, but sum-of-sine frequency components were phase shifted to ensure
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continuous velocity at the switch. In addition, between trials, the gain of the sum-

of-sine frequency components (excluding the single component which persists) was

inverted. As a result, averaging any two consecutive trials yielded an average input

which was purely sinusoidal. Analysis was performed on these time-averaged trial

pairs. This proved helpful in estimating phase transitions, because the averaged re-

sponse to such pairs of stimuli was dominated by the frequency component of interest.

Positions of both the fish and the refuge were extracted from video using cus-

tom code implemented in Matlab. Volitional or exploratory behaviors within the

refuge were included in the data set. Though infrequent, trials with excess volitional

movement (e.g. the fish left the refuge or reversed rostrocaudal orientation within the

refuge) were omitted from further analysis.

3.2.4 Analysis

3.2.4.1 Frequency response functions

Empirical Bode plots were generated for all trials. A fast Fourier transform (FFT)

was applied to both input and output velocity signals to compute the discrete-time

Fourier transform (DTFT). For single-sine trajectories, we located the frequency at

which the energy of the input signal peaks, ωo. We evaluated the output : input ratio

of the DTFT values at this point, F (ω0), and calculated gain (magnitude) and phase

from the resultant complex number, |F (ωo)| and ∠F (ω0), respectively. For sum-of-

sines trials, we calculated the output : input ratio at the frequencies corresponding to
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the thirteen greatest local maxima (excluding endpoints of the DTFT) of the energy of

the input signal. We verified in all cases that the thirteen peaks indeed corresponded

to the first thirteen prime multiples of the base frequency.

Confidence intervals in Bode plots were calculated from the distributions of out-

put : input ratios (phasors) on the complex plane (Figure 3.3). Each distribution

represented the system response to a class of inputs (either single-sine or sum-of-sine)

at a set frequency. Single-sine trials yielded one point in the distribution correspond-

ing to the stimulus frequency; sum-of-sine trials yielded a point for every constituent

frequency. Fitting a Gaussian probability density function (PDF) to each cluster, we

calculated the standard error and the associated PDF of the estimated mean (Fig-

ure 3.3(a)). The 95% confidence interval of the magnitude of the estimated mean was

calculated as the minimum-area annulus over which the PDF integrates to 0.95 (Fig-

ure 3.3(b)); the confidence interval for phase of the estimated mean was the minimal

conic region over which the PDF integrates to 0.95 (Figure 3.3(c)).

3.2.4.2 Continuous phase estimation

For stimulus-switching trials, frequency response analysis was performed on the trial-

averaged input–output pair. The mean phase for the sum-of-sines and single-sine

intervals was calculated as described above. Assuming that the beginning of the

single-sine interval represents a period of transition, the mean phase for this regime is

calculated over the final 30 s to give a better approximation of the asymptotic phase

54



CHAPTER 3. REFUGE-TRACKING IN EIGENMANNIA VIRESCENS

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Re

A         Phasor distribution
Im

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Re

B       Phase 95% confidence

Im

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Re

C   Magnitude 95% confidence

Im

Figure 3.3: For a given frequency, the system response can be characterized by a point
on the complex plane, αeiφ, where the magnitude of α is the gain of the system and φ
the phase shift with positive phase measured counter clockwise from the positive real
axis. The circle of unit magnitude (representing unity gain) and the positive real axis
(representing zero phase shift) are denoted in blue. Each trial yields one estimate
for the system response at each frequency. (A) We fit a Gaussian probability density
function in the complex plane at each frequency; to illustrate, the 95% covariance
ellipse for single (red) and sum-of-sines (black) is shown for 2.05 Hz. (B) The phase
confidence interval is the conic region over which the PDF integrates to 0.95. (C)
Similarly, the magnitude confidence interval (95%) of the estimate of the mean is the
annulus over which the PDF integrates to 0.95.

value.

A coarse estimation of the phase was calculated as it changed with time. For a

5.0 s moving window in time, the best fit sum-of-sines trajectory was fit using (3.1):

(α, β) = arg min
α,β

∑
t

{( k∑
i=1

αi sin(ωit) + βi cos(ωit)

)
− y(t)

}2

 AT

BT

 = [sin(ωit) cos(ωit)]
†[y(t)] .

(3.1)

The frequencies {ω1, . . . , ωn} are known and A = [α1, . . . , αn] and B = [β1, . . . , βn]
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are solved for in a least squares sense. Though the trial-averaged response is ide-

ally sinusoidal, we use the best fit sum-of-sines trajectory to account for any residual

frequency components not entirely eliminated through averaging. Using the trigono-

metric identity in (3.2), we solved for the magnitude and phase of the refuge and fish

as in (3.3):

Mi sin(ωit+ φi) = Mi cos(φi)︸ ︷︷ ︸
α

sin(ωit) +Mi sin(φi)︸ ︷︷ ︸
β

cos(ωit) , (3.2)

Mi =
√
α2
i + β2

i ,

φi = arctan2(βi, αi) ,

(3.3)

where arctan2 is the four quadrant version of the arctangent function. Gain and

relative phase were then calculated as the ratio Mfish

Mrefuge
and the difference φfish−φrefuge,

respectively.

The finer estimate of the instantaneous phase was computed as the argument of

the analytic signal, f(t) + iH
(
f(t)

)
, where f(t) represents either the input or output

time signal and H( · ) denotes the Hilbert transform. This method, however, is highly

sensitive to noise in the time-domain signal.
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3.3 Results

3.3.1 Responses to motion stimuli are coherent

As previously reported [Cowan and Fortune(2007)], fish robustly followed the exper-

imentally controlled movements of the refuge by swimming backwards and forwards.

The swimming of the fish was strongly correlated with movements of the refuge, and

as a result the movement of the fish exhibited strong coherence to the stimulus tra-

jectory. This result held for each category of stimulus that was tested, including

predictable sine wave stimuli, sum-of-sines stimuli, and more complex stimuli. An

example response to a sum-of-sines stimulus is shown in Figure 3.4.
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Figure 3.4: A velocity-scaled repetition of a sum-of-sines trial with fish and refuge
trajectories depicted in blue and red respectively: (A) the individual sinusoidal com-
ponents have an amplitude of 0.8 cm · s−1 and in (B) 1.2 cm · s−1.

For each trial, we computed the magnitude of the Fourier components for input

(refuge velocities) and output (fish velocities) as shown in Figure 3.5(A). In all in-
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stances, peaks in output power correspond to peaks in input power. These strong

relationships confirm that the fish is tracking the stimulus, and that the fish’s move-

ments are not the result of other potential behaviors such as exploratory movements.

And this behavior is remarkably clean of ancillary frequency content. In a subsequent

set of experiments (not in the scope of this thesis), fish were observed performing

the refuge-tracking task with diminished sensory information [Stamper et al.(2012)];

visual cues were limited by illumination (two conditions, light and dark) and elec-

trosensation was attenuated through changes in water conductivity (high conductiv-

ities collapse the extent of the EOD). In dark conditions, fish perform a noticeable

auxillary behavior in which a broad-frequency oscillatory motion is superimposed on

the smooth pursuit response (Figure 3.6A). On a trial-by-trial basis, we exclude the

data at the stimulus frequency and average the remaining data to reconstruct the

spectrum of the emergent oscillations. In fact, this volitional movement is present in

both light and dark conditions (and for all conductivity levels), though the magni-

tude of oscillations is heavily attenuated in the presence of visual sensory information

(Figure 3.6B).

Sum-of-sines trials consistently had coherences near unity at the stimulus frequen-

cies (Figure 3.5(B)). Note that for frequencies not present in the stimulus (i.e. between

peaks) the coherence value is not informative (the input–output relationship is dom-

inated by noise). It is also important to note that coherence remains near unity even

at high frequencies where tracking performance diminishes, because coherence is a
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Figure 3.5: (A) The magnitudes of the input (refuge) and output (fish) DTFTs.
(B) The coherence between refuge and fish trajectories (black) and the magnitude
of the refuge trajectory DTFT. The near unity coherence suggests fish and refuge
trajectories are related by a linear dynamical system.

measure of signal-to-noise ratio and not a measure of absolute gain (Figure 3.5(B)).

Strong coherence for each stimulus–response pair suggests that the tracking behavior

may be described by linear dynamics. We examined whether one linear dynamical

system can indeed adequately describe all input–output pairs across stimulus cate-

gories. If so, a small subset of input–output pairs could furnish a predictive linear

model for refuge tracking behavior.

3.3.2 Linear models do not generalize across stimulus

classes

Linearity of a system is defined by two properties: scaling and superposition. To test

scaling, we presented three velocity amplitudes, {0.6, 0.8, 1.2 cm · s−1}, for each stim-

ulus type, {single-sinusoid, sum-of-sines}. The Bode plots for each velocity amplitude
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Figure 3.6: (A) A comparison of the output (fish) DTFTs for a single-sine trial
performed in light and dark. (B) The trial-averaged DFT of volitional motion reveals
the effect of lighting and conductivity conditions on the ancillary emergent oscillations
(figure adapted from [Stamper et al.(2012)]).

are shown in Figure 3.7(A) for single-sines and Figure 3.7(B) for sum-of-sines.

In general, the scaling property cannot hold for an arbitrarily large regime of stim-

uli. Thus, based on previous work [Cowan and Fortune(2007)] we examined a biolog-

ically relevant range of velocity amplitudes. Over this range of velocity amplitudes,

the phase response curves within each of the two stimulus classes were remarkably in-

variant, as shown in Figure 3.7(A,B). Amplitudes were also generally consistent with

the scaling property, although some differences can be seen for single-sine stimuli in

the range of 0.25 – 0.55 Hz. Despite the noted discrepancies in gain, within a fixed

stimulus type, changes in trajectory amplitude do not suggest categorical changes in

the response. Taken together, the amplitude and phase responses strongly suggest

that tracking behavior scales linearly with input over the range of velocity amplitudes

tested.

Having demonstrated the scaling property in these data, we next examined the
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compared for (A) single-sine trials and (B) sum-of-sines trials. (C) Average responses
(collapsed across scaling) comparing sum-of-sines (black) and single-sine (red) trials
are depicted with confidence intervals calculated as described in Figure 3.3. For a
linear system, these estimates would agree.

superposition property. This was done by comparing single-sine to sum-of-sines data.

If superposition holds, the responses to single-sine inputs should predict sum-of-sines

responses. In other words, if superposition holds for these data, the Bode plots from

the two stimulus categories should be identical. Interestingly, the Bode plots (Fig-

ure 3.7) for the two stimulus categories exhibit unmistakable differences: responses

to single-sine stimuli exhibited lower phase lag at mid-range frequencies and greater

attenuation at high frequencies than responses to sum-of-sine stimuli (Figure 3.7). Be-

cause the Bode plots are different across stimulus categories, superposition therefore

fails. A single linear model cannot account for the responses to both categories of in-
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put. However, when analysis is limited to either single-sine or sum-of-sines trials, the

high coherence and low variance of frequency response estimates suggest that a linear

system might be useful in describing this behavior within each stimulus category.

What is the consequence of the mismatch in FRFs/Bode plots in terms of their

predictive power? For a linear system, the linear model furnished by one FRF can

be used to predict the temporal response of the system to the same or a different

stimulus category (Figure 3.8). We used this technique as a mechanism to understand

the differences between the linear models for each stimulus category. To do this, we

used the single-sine FRF to make predictions of the responses of the fish to sum-of-

sines stimuli. Next we compared these predictions to the actual responses of the fish.

Specifically, the average single-sine and sum-of-sines FRFs shown in Figure 3.7(C)

were used to predict the response of a different fish (not included in the FRF data)

to individual sum-of-sines stimuli. For each of the 15 trials, the sum-of-sines FRF

model from Figure 3.7(C) predicted the response with less root-mean-squared error

than the single-sine FRF model; the mean improvement was 36.7%, the minimum

improvement was 12.0%, and the maximum improvement was 64.3%. As expected,

the FRF from singe sine data does not generalize to spectrally different stimuli, likely

due to the nonlinearity revealed by the FRF data (Figure 3.7). The consequence of

the nonlinearity between stimulus categories is that fish perform better to predictable

stimuli than to unpredictable stimuli.
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3.3.3 Fish adapt to changes in stimulus

We next investigated the time course of the transition between the two responses, fo-

cusing specifically on the response to stimuli at 0.55 Hz where phase shows maximal

change. However, current methods for estimating the time-varying phase of a signal

often yield noisy or unreliable results for short time intervals, and in fact instanta-

neous estimation of phase for dynamical systems remains an area of active research

(e.g. [Revzen and Guckenheimer(2008)]). Towards wholly describing the transition

between sum-of-sines to single sines, we present phase analyses at three time-scales:

one 30 s window, six 5 sec windows, and an instantaneous/continuous phase esti-

mate (see Figure 3.9). At the coarsest level, the asymptotic phase—calculated as

the DTFT estimate of phase from the second half (30 s) of each stimulus regime—

reveal phase lag reductions of 10.8, 13.9, and 18.7◦, which is less than the mean

33.9◦ reduction observed in the first population of fish. A more refined view of the

adaptation is captured by dividing the 30 s following transition into six consecutive

non-overlapping 5 s windows. For the first two fish, a trend seems to emerge, possi-

bly suggesting an exponential decay to the asymptotic phase. However, due to the

variance of the phase estimate (standard deviation shown as black error bars), any

estimate of a time constant for such decay would be tenuous. For the third fish,

volitional movement and/or other sources of motion noise yield phase estimation at

this time scale that is unreliable. At the most refined time scale, we use the ar-
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Figure 3.8: An example demonstrates that frequency response functions generalize
better within stimulus class than across classes. Assuming superposition holds, the
FRFs in Figure 3.7(C), generated from four fish, can be used to predict the response
to an arbitrary input for a fifth fish. (A) Ten seconds of a sum-of-sine stimulus
(blue) and the fish’s response (green). (B) A comparison of predictions made by
different FRF models. The sum-of-sines prediction (black) closely matches the fish’s
performance (green). The single-sine prediction (red) is worse than for the sum-
of-sines FRF. (C) The difference between the single-sine and sum-of-sine prediction
errors. Negative values (in red) indicate time intervals for which the single-sine FRF
model has greater error than the sum-of-sines model. Predominantly, the sum-of-
sines model better predicts the fish’s actual response. Were the system linear, an
assay of single-sine experiments would be sufficient for predicting the response to the
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and categorical change in behavior. Broad spectrum oscillations emerge superimposed
on the smooth pursuit trajectory (figure adapted from [Stamper et al.(2012)]).
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gument of the analytic signal to generate a continuous estimate of phase (shown in

green) [Revzen and Guckenheimer(2008)].

Though this approach yields a noisy estimate it highlights two important traits of

the transition: the time constant of decay is on the order of several seconds to tens

of seconds and the variance of the phase estimate is lower in the single-sine regime.

Though we cannot make an accurate estimate of the transition in dynamics, we

interpret the long gradual change as the consequence of a slow learning or adaptation

process. To emphasize this point, we can compare the transition of tracking behavior

at an abrupt change in lighting condition (Figure 3.10 from [Stamper et al.(2012)]); in

response to this change, the fish exhibits a complete behavioral switch within the first

1 or 2 s. Back to our sum-to-single-sine switching experiments, the reduced variance

may partially be attributed to the method used for phase estimation, but we suspect

that this reduction in variance results at least in part due to changes to the behavior

that occur during adaption to the switch in the stimulus.

3.3.4 Adaptation to single-sine stimuli reduces tracking

error

Having observed categorically different FRFs elicited by single-sine and sum-of-sine

stimuli, we hypothesized that this nonlinearity was indicative of a stimulus-mediated

adaptation. In this section we explore the benefits of such an adaptation: whether

tracking performance for single-sine stimuli improves compared to the response to
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Table 3.1: Phase, gain and error differences between sum-of-sine and single-sine trials
as depicted in (Figure 3.11(A)).

Frequency (Hz) 0.10 0.25 0.55 0.85 1.15 1.55 2.05
Error reduction (%) 31.7 25.3 33.8 28.8 17.9 8.2 5.3
Gain difference (%) 8.0 -0.9 -1.2 3.9 -7.9 -33.4 -48.7

Phase difference (degrees) -7.7 -15.4 -33.9 -31.9 -30.2 -18.1 -2.9

sum-of-sines stimuli and the energetic trade-offs of improved performance. In order

to address these questions, we consider yet another representation of the frequency

response, as complex phasors.

When considering the tracking behavior in terms of phasors on the complex plane,

gain is measured as the distance from the origin and phase measured as the angle

(counter clockwise) from the positive real axis. Hence, unity gain is represented by a

unit circle and zero phase corresponds to the positive real axis (Figure 3.11(A)). The

intersection of the unit circle with the positive real axis, the point 1 + i · 0, indicates

perfect tracking. The magnitude of the error signal (the sensory slip) is measured

as the distance between the empirical phasor (represented as a point on the complex

plane) and the perfect tracking point.

In Figure 3.11(A), the mean phasor for each frequency is plotted for both single-

sine and sum-of-sines stimuli. At every frequency compared, the responses to the

single-sine stimuli exhibited less error. Excluding the frequencies 0.1 and 0.8 Hz,

these improvements in tracking were achieved despite a reduction of gain (Table 3.1).

The gain (the distance between the empirical phasor and the origin 0 + i · 0) provides

an indication of effort or energy expended during tracking. For the two frequencies
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Figure 3.11: (A) Frequency response phasors shift to decrease tracking error in the
transition from sum-of-sine to single-sine stimuli. (B) For a frequency response char-
acterized by gain a and phase lag φ, denoted by the red dot above, the magnitude
of the sensory slip e is the distance from the frequency response point to the per-
fect tracking point 1 + i · 0. For a fixed phase φ, the minimal error e∗ = sin(φ) for
φ ∈ (−π

2
, π

2
) (e∗ = 1 otherwise) is achieved by a gain of a∗ = min(cos(φ), 0) (depicted

as the green dot). The locus of minimum-error responses given fixed phase lag/lead
is denoted by a circle unity diameter centered at the point (0.5, 0i); within this circle
(shaded green), there is a trade-off between increased error and savings in expended
energy.

where gain increased, it increased only 8.0% and 3.9%, and these increases were not

statistically significant (two-sample, one-sided t-test, P = 0.1206 and P = 0.3343,

respectively). This was consistent with performance in the frequency range from 0.1

to 1.15 Hz (see Table 3.1), where gain remained relatively constant (within ±10%)

while error was reduced dramatically (18-32%). In contrast, at the highest frequencies

tested, 1.55 Hz and 2.05 Hz, fish dramatically reduced their effort maintaining a small

but statistically significant improvement in tracking error (P = 0.0218 and P =

0.0151, respectively). These results show that there was a frequency-dependent shift
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in the trade-off between effort and tracking error.

3.4 Discussion

Eigenmannia virescens exhibit a switch in tracking performance depending on the

category of the refuge trajectory—a simple sinusoid versus a more complex sum-of-

sines. This nonlinear switch results in reduced tracking error to simpler sinusoidal

stimuli despite an often dramatic reduction in motor effort. This concomitant decrease

in tracking error and motor effort suggests adaptive and predictive neural mechanisms

for locomotor control in Eigenmannia.

3.4.1 Responses to single-sine and sum-of-sine stimuli

Both categories of stimuli—single-sines and sum-of-sines—are fundamentally deter-

ministic. So, why then are fish able to track single-sine stimuli so much better and

with less motor effort at each frequency? Intuitively, single-sine stimuli are more

predictable than sum-of-sine stimuli. More formally, as the number of parameters

of a signal increases, noisy measurements—which are inescapable—lead to greater

variance in parameter estimates. Thus, given the same amount of measurement data,

computational algorithms that extrapolate sensory measurements of stimuli will pe-

form worse for sum-of-sine stimuli than for single-sine stimuli. In this sense, single-sine

stimuli are fundamentally more predictable than sum-of-sine stimuli, which we treat
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as pseudo-random.

Further, the pseudo-random sum-of-sine stimuli are complex periodic waveforms

with a long (20 second) period. To avoid the potential for long-term learning of

these stimuli, the relative phases of each component sinusoid were randomized from

trial to trial, thus creating distinct temporal trajectories that nevertheless had iden-

tical spectral content. Importantly, the response to these distinct sum-of-sine stimuli

generalized (Figure 3.8).

For mid-ranged frequencies, the gain of single-sine and sum-of-sine responses are

about the same, but the single-sine phase lags are substantially reduced compared

to the corresponding components of the sum-of-sine response (Figure 3.7C). This

corresponds to a substantial decrease in tracking error with little-to-no change in the

motor effort. Moreover, complex-plane analysis (Figure 3.11) reveals that at high

frequencies, single-sine responses exhibit a dramatic reduction in motor effort (the

high-frequency responses are much closer to the origin of the complex plane) and a

simultaneous decrease in tracking error (the responses are closer to the point 1+ i · 0).

Thus, at all frequencies fish exhibit the same or less tracking error with about the

same or less motor effort when presented with single-sine stimuli (Figure 3.11). The

decreases in tracking error are generally associated with reduced phase lag for single

sines, and the decrease in motor effort (which occurs at high frequencies, where there

is substantial phase lag for both single and sum-of-sines) is generally associated with

lower gain.
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3.4.2 An internal model predicting refuge movement

explains phase discrepancies

Phase profiles are consistent between trials when the stimulus regime is fixed but

shift categorically between the two different stimulus types. Specifically, for single-

sine stimuli, fish exhibit reduced phase lag, but surprisingly this decrease in phase

occurs with little-to-no change in gain for frequencies up to 1 Hz. Thus, we sus-

pect a predictive mechanism—in which stimulus dynamics are included in the state

estimate—to be responsible for this disparity between single-sine and sum-of-sines

phase responses.

Neural delays introduce inherent phase lags between the sensory stimulus (input)

and locomotor action (output). But if a stimulus were sufficiently predictable, the

nervous system could, in principle, compensate for these delay-induced phase lags

by extrapolating the stimulus trajectory forward in time. This would enable the

neural control system to act upon an estimate of the current-time stimulus signal

despite the sensorimotor delay. However, for trajectories which evolve randomly, this

prediction is inaccurate, requiring the system to rely heavily on the delayed sensory

measurements to calculate the appropriate motor response. Hence the internal delays

manifest as phase lag. The Kalman filter, a state-estimation algorithm common to

many engineering applications, provides a flexible framework for discussing prediction

in the context of sensory and motor uncertainty (e.g. the postural control problem
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Figure 3.12: A proposed model of tracking behavior accounts for the categorical
differences in phase and gain between predictable and pseudo-random stimuli. The
reference signal r(t) is an arbitrary refuge trajectory; the fish internally estimates
this refuge trajectory as the output of a noise-driven dynamical model. A noisy
measurement of the sensory slip, e(t), represents the relative velocity of the refuge with
respect to the fish. However, due to sensory and transmission delays amounting to ∆t,
control actions at time t must be determined using outdated sensory slip information.
The Kalman Filter uses this outdated sensory measurement in conjunction with the
internal reference model to estimate the current state of the system, x̂(t) and ê(t),
which includes the position and velocity for the fish and the relative position and
velocity of the refuge. This time-corrected estimate is used to determine the control
signal u(t) sent to muscles along the ribbon fin which, in turn, result in changes to
the fish position and velocity y(t).

in [Kuo(2005)]). The Kalman filter generates the optimal state estimate by reconcil-

ing two streams of information: a belief about what the state of the system should

be (as predicted by an internalized model of the system dynamics) and sensory mea-

surements. Each of these streams of information, the model-based prediction and the

measurement, bear their own sources of uncertainty: process noise determines the ex-

tent to which the evolution of the system states is affected by randomness—in effect,

the unpredictibility of the system—and measurement noise degrades the reliability

of observed quantities. In our proposed model of refuge tracking (Figure 3.12), the
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internalized model includes a stochastic dynamical model of refuge motion in addition

to the locomotor dynamics of the animal. The Kalman filter reweights the contribu-

tions of these two streams based on the relative sizes of the measurement and process

noise variances. Thus, the internalized model makes a less effective prediction about

the state evolution for these pseudo-random stimuli, requiring the nervous system to

rely on the delayed sensory measurement as described above.

Prediction in motor control often refers to an adaptive model of internal system

states (e.g. estimating the postion or orientation of your hand during a reaching task

without visual feedback [Wolpert et al.(1995), Shadmehr and Mussa-Ivaldi(1994)]).

Though this kind of prediction would be pertinent to refuge tracking, this is not the

kind of predictive mechanism we suspect here. Rather, we contend that the nervous

system predicts—using an internalized dynamical model—the movement of the exoge-

nous signal. Similar stimulus prediction has been described in terms of probabilistic

representations of target locations in a pointing task [Körding and Wolpert(2006)]

and in terms of the anticipatation of the time of direction reversal in an visual target

tracking behavior [Collins and Barnes(2009)].

Similar to our proposed model, Carver et al. investigated whether the dynamics of

a moving visual scene are estimated for human posture control [Carver et al.(2005)].

They compared three different dynamical models for the external scene and assess

how well prediction schemes incorporating these models might reproduce empirical

data. Through a broad parameter search they found that, even for an optimized set of
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parameters, the models they considered in which external dynamics were estimated

did not satisfactorily capture qualitative features of the empirical data. The data

presented in this work suggest that similar prediction-of-dynamics models should be

revisited in the context of the refuge tracking behavior in Eigenmannia. Using input–

output FRF models to reverse engineer the sensorimotor transform requires a suffi-

ciently representative model of the locomotor dynamics [Cowan and Fortune(2007)],

so as the dynamics of ribbon-fin propulsion become better understood [Shirgaonkar

et al.(2008), Sefati et al.(2010)] our model (Figure 3.12) can be used to generate

quantitative predictions for refuge tracking behavior.

3.4.3 Gain discrepancies indicate improved tracking for

predictable stimuli

At the higher frequencies, we observed a significant reduction in gain for single-sine

presentations. Typically, this attenuation would be interpreted as a worsening of

tracking performance which would deceptively suggest that at high frequencies fish

do poorly at tracking predictable stimuli compared to unpredictable stimuli. However,

consider the tracking behavior transfer function on the complex plane (Figure 3.3). In

this representation, unity gain is represented as the dashed unit circle; zero phase is

designated by the dashed line along the positive real axis. The intersection of the unit

circle with the positive real axis, the point 1 + i · 0, indicates perfect tracking. The

magnitude of the error signal (the perceived sensory slip) is measured as the distance
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between the empirical transfer function (represented as a point on the complex plane)

and the perfect tracking point.

For 2.05 Hz, we see that the distribution of single-sine trials is on average closer to

1 + i · 0 than the sum-of-sines trials. At any given phase lag (or lead) φ, error is mini-

mized by a gain of max(0, cos(φ)) (Figure 3.11(B)). In these analyses, gain represents

a normalized velocity (the ratio of fish and refuge velocities) and therefore might serve

as an indicator of expended energy. Subscribing to this interpretation, gains lower

than the minimal-error gain compromise error for energetic savings; higher gains are

suboptimal in both error and energetic cost. For phase lags greater than 90◦, error

is minimized at zero gain. Despite the immediate interpretation that reduced gain

indicates reduced tracking performance, in the high-frequency regime reduced gain

improves tracking performance with respect to sensory slip. Hence, for predictable

stimuli (single sines), the controller adapts to reduce both error and energetic cost.
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Chapter 4

Optomotor Yaw Regulation in

Drosophila melanogaster

Time flies like an arrow.
Fruit flies like a banana.

Groucho Marx
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Figure 4.1: A tethered fruit fly. Merely one hundred thousand neurons packaged into
a 3 mm body (the specimen shown is compared to a dime), the fruit fly is a remarkably
adept agent within its environment. In the laboratory, fruit fly optomotor response
persists even when the animal is tethered to a tungsten wire.

4.1 Why the Fruit Fly?

Fruit flies serve as model systems in many branches of biological research: genetics,

biomechanics, neuroscience, developmental biology and behavioral biology to name a

few. There is a significant body of literature describing the vast repertoire of behaviors

and the neurophysiological mechanisms involved. In large part, the ubiquity of fruit

flies as model systems (particularly for the study of genetics) is due to the ubiquity

of fruit flies; fruit flies can be found almost anywhere, have short life-cycles, and

reproduce rapidly. But for the study of behavior, the draw of Drosophila is more

than just availability and convenience.

Of the myriad behaviors, optomotor stabilization behaviors—those in which in-
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sects modulate flight in response to visual stimuli, including stripe/object fixation

and large-field stabilization—have been studied extensively in flies. From a neu-

rophysiological perspective, fruit flies represent a desirable balance of system com-

plexity (Drosophila melanogaster comprises merely 100,000 neurons) and behavioral

richness and robustnuss even under aggressive experimental manipulation (such as

the tethered preparation in Figure 4.1). This is not to suggest that fruit flies are

simple, only that the neural circuitry which governs these behaviors must be in

some ways parsimonious. Despite the frugality of neural hardware, many behav-

iors and underlying mechanisms generalize to other not-so-simple animals; in fact,

the prevaling neural model for the elementary motion detection unit (the Reichardt-

Hassenstein model [Reichardt(1961)]) was inspired by experiments on beetles and

later validated for flies, but analogues of this correlation-based detector have been

extended to motion processing across many taxa (Chacron et al. have discovered neu-

ral mechanisms analogous to the Reichardt-Hassenstein detector in weakly electric

fish [Chacron et al.(2009)]).

4.1.1 Mechanisms

The sensorimotor control of flight represents the convergence of sensory cues (visual,

vestibular, haltere, olfactory) to modulate wing stroke kinematics to generate turn

in roll, pitch, and yaw or translate in thrust or lift. In our experiments, tethered

flies (Figure 4.1) modulate yaw torque (via changes in muscle activation) to stabilize
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a visual scene moving about the azimuth, a closed-loop single-input–single-output

control topology. For the purpose of this brief review, we limit discussion to the

mechanisms of visual motion processing and yaw torque modulation, to reflect the

constraints imposed by our experiment paradigm.

In Section 3.1.1, we described the processing of the electrosensory image: elec-

troreceptors project onto the electrosensory lateral line lobe (ELL) —where parallel

topographic maps segregate receptive fields by spatial content—which subsequently

projects onto the torus semicircularis where direction selectivity (and velocity) are en-

coded. In many ways, the fly visual system is analogous to the electrosensory system

of fish. Photoreceptors in the retina project onto the lamina which in turn projects

onto the medulla which in turn projects onto the lobula complex (composed of the

lobula and lobula plate). The lamina, medulla and lobula are columnar structures

which preserve a retinatopic map [Resh and Cardé(2009),Krotki(2011),Weber(2011)].

These columnar structures are themselves stratified and the functional sensitivities

of different layers have been identified. In the medulla, strata respond preferen-

tially either to wide-field (striped drum) or localized motion (single bar) [Bausen-

wein and Fischbach(1992)]. Downstream of the medulla, scene motion is encoded

in the lobula complex, specifically in the sixty lobula plate tangential cells (LPTCs)

[Krotki(2011), Weber(2011)]. LPTCs are motion-selective interneurons, categorized

by their prefered direction as either horizontal system (HS) cells (responsive to regres-

sive or progressive motion horizontally along the azimuth) and VS cells (responsive
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to vertical motion, either up or down from the equator) [Buchner et al.(1984)]. More

recently, vertical system (VS) cells have been found to respond to complex patterns of

optic flow, vector fields congruent with rotational egomotion [Krapp et al.(1996),Franz

and Krapp(2000), Borst and Haag(2007), Weber et al.(2008)]. The physiological evi-

dence for the representation of optic flow in the lobula plate has steered models of mo-

tion control to rely solely on motion (velocity) cues; these bio-inspired optomotor con-

trol paradigms have been demonstrated on robot platforms [Zbikowski(2005), Hum-

bert et al.(2005),Conroy et al.(2009)].

In the stripe-fixation behavior, flies modulate yaw torque in response to moving

visual stimuli. In our experiments, we measure a kinematic parameter (the difference

between left and right wingbeat amplitudes, ∆WBA) to infer yaw torque and sub-

sequently turning velocity. However, there is no definitive agreement as to the wing

kinematics responsible for yaw torque generation and the dynamics of the turning re-

sponse. Yaw torque is regulated by a number of kinematic factors, primarily left-right

asymmetries in wingbeat amplitude and angle of attack [Zanker(1990)]. Dickinson et

al. advocate that the relative timing of the wing reversal from downstroke to upstroke

is the dominant factor in modulating torque— this “ventral flip” is strongly correlated

to WBA [Dickinson et al.(1993)]. Bergou et al. contend that asymmetric adjustment

to wing pitch more significantly contributes to yaw torque [Bergou et al.(2010)]. His-

torically, wingbeat amplitude asymmetry is the standard kinematic indicator of yaw

torque [Götz et al.(1979)]. This kinematic parameter provides an observable measure
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from which we can infer torque, but to close the loop from motor output (torque) to

visual scene (angle), we must integrate the forced dynamics of yaw rotation.

A simple one degree-of-freedom model for the yaw dynamics is Jθ̈+Bθ̇ = τ , where

θ is the yaw angle, J is the moment of inertia, B is the linear rotational damping,and

τ is the wing-generated torque assumed to be proportional to ∆WBA. The damping

time constant J/B, compared to the duration of a maneuver, determines whether the

damping forces dominate [Fry et al.(2003)]: if J/B is small then the second-order

model can be further reduced to first order. During a turning maneuver, the rota-

tion of the body with respect to the inertial frame imparts an asymmetric velocity

component to each wing. This asymmetry generates a flapping counter torque (FCT)

opposed to the direction of rotation [Hedrick et al.(2009)]. Indeed, recent model-

ing suggests damping dominates (the FCT-induced half life of rotational velocity is

approximately two wing strokes) [Hedrick et al.(2009), Cheng et al.(2010)], thus we

assume that the yaw dynamics further reduce to θ̇ ∝ τ . This justifies, to some degree,

the long-standing tradition (and our choice of feedback control policy) to simply scale

∆WBA and treating it as the angular velocity of the fly.

4.1.2 Behaviors

Optomotor yaw regulation has been studied extensively towards understanding many

aspects of sensorimotor processing: comparing responses to small- and wide-field vi-

sual stimuli [Duistermars et al.(2007),Geiger and Nässel(1982)], parsing cross-modality
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sensory integration [Frye and Dickinson(2004),Sherman and Dickinson(2004),Budick

et al.(2007)], etc. However, empirically derived predictive models for optomotor be-

haviors are rare in the literature. Theobald et al. [Theobald et al.(2010)] modeled

the optomotor response to wide-field point-cloud stimuli both rotating (roll, pitch,

yaw) and translating (thrust, slip, lift) in each of the primary axes using binary noise

sequences (impulses in optic flow velocities) and a time-domain correlation analysis

to recover the impulse response function.

Poggio and Reichardt proposed a framework for modeling the optomotor response

in flies (Musca domestica) [Reichardt and Poggio(1976)]. The framework assumed a

model structure composed of two parts: a second-order model of turning dynamics

(governing the transformation of torque to angular position, velocity and accelera-

tion) and a control policy prescribing torque as a function of the time-varying visual

scene. The control policy was further parsed into a position-dependent function of

the scene, a velocity-dependent function of scene motion, and noise. In control the-

oretic parlance, Poggio and Reichardt proposed a second-order plant stabilized by a

PD controller. The analysis, however, focused on the stochastic nature of the dif-

ferential equation, inferring the model through the propagation of motor noise given

different stimulus conditions (e.g. salience or noise) absent any reference trajectory.

The framework was comprehensive in the sense that it permitted visual scenes with

different spatio-temporal properties. However, in focusing on the stochastic over the

deterministic contributions of the behavior, the analysis becomes complex, unintu-
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itive and uninviting. Most importantly, assuming an a priori model structure, it

is not apparent how Poggio and Reichardt’s model could be used to generate new

hypotheses and inform new biological experiments.

4.1.3 Our approach

We address the system identification of stripe-fixation through a series of perturbation

experiments and frequency-domain analyses. In the frequency domain, the determin-

istic responses to sinusoidal perturbations are easily parsed from the spectrum of the

motor output. No model structure is assumed a priori, but we fit a proportional-

integral-derivative (PID) control model to our empirical frequency response data.

Notions of PD and PID control have been referenced in past work [Heisenberg and

Wolf(1988),Ristroph et al.(2010)]. Though recent optic flow models disregard the con-

tribution of positional cues (let alone the integral of positional cues); the PD and PID

structures furnish biological hypotheses as to the contributions of different sensory

information and we use our derived model to consolidate observations from previous

studies [Duistermars et al.(2007), Geiger and Nässel(1982), Maimon et al.(2008)]. In

terms of the measured frequency bandwidth and the generalizability of the resultant

linear model to prior published observations, this is perhaps the most comprehensive

task-level model of the stripe-fixation behavior to date. Lastly, we revisit work by

Heisenberg and Wolf in which a comparison between closed- and open-loop responses

revealed surprising qualitative differences in performance between the two conditions.
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They attribute the observed discrepancies to the reafference principle (summarized in

Section 4.4.3) [von Holst and Mittelstaedt(1950)]. We recreate the replay experiments

and proffer a parsimonious alternative to the reafference principle.

4.2 Materials and Methods

In order to constrain the dimensionality of the identification problem, we use a teth-

ered preparation in which flies are rigidly attached to a fixture and presented with a

fictive visual stimuli. This preparation has become a popular experimental paradigm

for studying this class of behaviors. In free flight, naturalistic visual stimuli are

extremely rich (e.g. luminance, contrast, spatial content, object motion, motion co-

herence, etc. can all be salient factors which contribute to the response) and the motor

output is described kinematically with (at least) six degrees of freedom (three for ro-

tation and three for translation, not to mention head, body, and limb movements).

In the tethered preparation, the visual stimulus and the kinematic output can each

be constrained to a single degree of freedom, hence reducing the task-level locomo-

tor behavior to a single-input–single-output system [Cowan et al.(2006), Cowan and

Fortune(2007),Roth et al.(2011)].
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4.2.1 Animal husbandry and preparation

Large adult fruit flies, female Drosophila melanogaster at 2-3 days post-eclosion,

were selected for all experiments. Flies were anesthetized at temperatures of 3-4◦C

and tethered to tungsten wire at the anterior end of the thorax using UV-cured

cement. Additionally, the head was glued to the thorax to eliminate movement during

experiments, fixing the head to the stationary frame of the arena.

Experimental apparatus

The flight arena (Figure 4.2) was composed of 44 modular LED panels (each panel

consisting of an 8 × 8 grid of LEDs) [Reiser and Dickinson(2008)], arranged in a

cylinder (4 panels high and 11 around the circumference) subtending 330 deg with

a 30 deg gap at the rear. In this configuration, the circumferential pixel-to-pixel

distance was 3.75 deg. Four levels of gray-scale dithering allowed for apparent motion

with a minimum increment of 0.9375 deg. The visual scene consisted of two dark

stripes, positioned antipodally on the cylinder, each subtending 30 deg. Positional

error was measured as the angle from the fly’s sagittal plane to the front-most stripe

considered the fixation target. The fly was positioned in the center of the arena.

Illuminated from above with infrared light, the fly cast a shadow on a sensor below;

the wingbeat analyzer inferred wingbeat frequency (WBF) and left and right wingbeat

amplitude (LWBA and RWBA) from the spatiotemporal pattern of the shadow. The
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Figure 4.2: (A) (1) The LED arena displays an oscillating vertical bar, eliciting a
tracking response from the fly. (2) Illuminated from above, the fly casts a shadow on
a sensor below and the wingbeat analyzer extracts the salient kinematic descriptors
from this wingstroke silhouette. (3) The differential amplifier subtracts the fly motor
output (∆WBA) from the reference trajectory (prescribed in software) to generate
the error velocity (sensory slip). (4) The Flight Arena controller integrates velocity
error and displays an updated stripe position. (B) A photograph of the arena shows
the fly suspended above the WBA sensor which measures changes in wing stroke
kinematics illustrated in (C).
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wingbeat amplitude asymmetry (RWBA−LWBA = ∆WBA, measured in volts) was

assumed to be proportional to the fly’s intended yaw torque [Tammero et al.(2004)]

which in turn is proportional to the yaw angular velocity as per Section 4.1.1. We

implemented this as

θ̇ = K · ∆WBA, (4.1)

where K = 239.1 deg · s−1 · V−1 was tuned by hand to achieve a robust, closed-loop

stripe fixation behavior.

The velocity error signal was calculated as the difference between the reference

trajectory velocity and the wingbeat asymmetry; the flight arena controller inte-

grated the velocity error signal (calculating the positional error) and updated the

corresponding stripe image.

4.2.2 Experiment design

System identification assay

Flies (N = 10) were observed stabilizing an array of moving-stripe stimuli comprising

pure sinusoidal, sum-of-sines and chirp trajectories. Between presentations, flies were

given a simple “reward” fixation task intended to maintain motivation and provide

consistent initial conditions. This set of trajectories was repeated three times with

trial order randomized within an iteration; for the large majority of trajectories, flies

maintained the tracking behavior through all three presentations.
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Sinusoidal trajectories were presented at frequencies of 1, 3.5, and 11.5 Hz for

durations of 6 s; sum-of-sines trajectories encompassed every pair-wise sum of sinu-

soids from this same set of frequencies and the same duration. The frequencies were

selected to be mutually prime, so that for sum-of-sines trials, the harmonics of the

response to any frequency component would not coincide with any other stimulus

(fundamental) frequency. The logarithmic chirp stimulus spanned frequencies from

0.05-11.5 Hz with frequency increasing continuously over a 120 s duration. The an-

gular amplitude A(ω) (and consequently the maximum angular velocities 1) for all

trajectories was selected as a function of frequency (in rad · s−1):

A(ω) = (0.0153 deg−1 +0.0044 s · deg−1(ω))−1 deg . (4.2)

This relation prescribed an angular amplitude that decreases with increased frequency

but an angular velocity that increases with frequency, addressing physical limitations

of the animal behavior and constraints imposed by the LED display. At high fre-

quencies, the velocity was constrained from above by the motor output of the fly

(free-flight saccadic rotations are estimated at 1800 deg · s−1 [Fry et al.(2003)] and

the limitations on smooth tracking are significantly lower) and the angular amplitude

was constrained from below by the resolution of the LED arena (peak-to-peak travel

must be greater than a single pixel). At 11.5 Hz, this relation yielded a peak-to-peak

amplitude of 6 deg (approximately 1.5 pixels translation) and a maximum velocity of

1Angular amplitude and angular velocity refer to the spatial coordinates on the cylindrical arena,
described in units of degrees or deg · s−1respectively. The frequency of oscillation of the moving
image will be denoted (unconventionally) by ω and measured in units of Hz or rad · s−1.
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216.8 deg · s−1. At low frequencies, we bounded the amplitude of the exogenous ref-

erence to 60 deg, though the displayed error signal was allowed to exceed this bound

as a result of feedback.

Replay paradigm

In 1988, Heisenberg and Wolf explored the role of feedback in processing exogenous

(reference) and reafferent (self-generated) motion stimuli using an error replay exper-

iment. This experiment paradigm compares the responses to two sequential pertur-

bations, first in closed-loop and then in open-loop. In the first presentation, the fly’s

generated torque (or for our set-up, the ∆WBA) stabilizes the stripe position through

negative feedback and the error signal, the displayed motion stimulus, is recorded. In

the second presentation, this recorded error is replayed as the motion stimulus in the

absence of any stabilizing feedback (i.e. the stimulus is unaffected by the fly motor

output). The replay experiments were recreated for oscillations of 0.1 Hz (as used

in [Heisenberg and Wolf(1988)]) with the same visual stimulus and position-frequency

relation (4.2) used in the system identification assay. Flies (N = 10, distinct from

the sample used for identification) were presented three periods (30 s) of oscillation

in closed-loop, followed by 3 s of reward fixation and then the open-loop replay. Flies

completed six repetitions of closed- and open-loop pairings.
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Figure 4.3: The replay experiment. In this sequence of experiments, the fly is first
presented with a stripe fixation task in closed-loop. The error signal (the displayed
visual scene for a tethered preparation) is recorded in the closed-loop presentation
and subsequently replayed to the fly without feedback stabilization. For a stable
linear system, the motor outputs in closed-loop and replay, yCL and yOL respectively,
should be qualitatively similar excepting yOL will be noisier.

4.2.3 Analysis

The frequency analysis and subsequent linear transfer function model faithfully de-

scribe the stripe-fixation behavior for some neighborhood about the fixation equilib-

rium (stripe position and velocity are both zero). Acknowledging this caveat, we

discard data points for which the stripe is not reasonably frontal, those for which

the magnitude of the error signal exceeds 60 deg (Figure 4.2 upper left). Addition-

ally, we ignore data for which the instantaneous wingbeat frequency falls below the

mean WBF (as calculated per individual across all presentations), eliminating data

for which the fly was fatigued or otherwise unmotivated.
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The discrete-time Fourier transform (DTFT) of the complete data reveals the

coincidence of peaks in the input and output power spectra (i.e. the fly motor out-

put has significant power at the stimulus frequencies). The DTFT, however, is not

amenable to incomplete or irregularly sampled data sets. In lieu of the DTFT, we

apply a least squares spectral analysis (LSSA) to both the input and output signals.

For pure sinusoids and sum-of-sines trajectories, we fit the coefficients to cosine–sine

pairs only at the frequencies of interest (just as in (3.1)) but only for the admissible

data samples (at times t ∈ T ):

(α, β) = arg min
α,β

∑
t∈T

{( k∑
i=1

αi sin(ωit) + βi cos(ωit)

)
− y(t)

}2

. (4.3)

The magnitude and phase are calculated as in (3.3). For chirp signals, we perform

a short-time LSSA, with non-overlapping windows of 10 s for t ∈ (0 40] and 4 s for

t ∈ (40 120]. The least-squares minimization in (4.3) is modified to accommodate

time-varying frequency and signal amplitude where θ(t) and ω(t) = dθ
dt

are prescribed

and A(ω) is determined by (4.2). The short-time LSSA assumes that for sufficiently

small deviations in frequency (corresponding directly to window size for the chirp

stimulus) the frequency response F (ω) is nearly constant. This assumption fails if

the system response changes drastically within a small frequency band (e.g. near the
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natural frequency of an underdamped system):

(α, β) = arg min
α,β

∑
t∈T

{
αA(ω) sin(θ(t)) + βA(ω) cos(θ(t))− y(t)

}2

. (4.4)

A parameterized transfer function model F (ω, α), a function of frequency ω and

parameters α, is fit in the least-squares sense to the empirical frequency response

F ∗(ω) (at the discrete frequencies in the set Ω) represented in the log space (as

discussed in Section 2.2.2):

α = arg min
α

∑
ω∈Ω

ωW1

{
W2

(
log |F∆(ω, α)|

)2
+ (1−W2)

(
∠F∆(ω, α)

)2
}
,

where

F∆(ω, α) =
F (ω, α)

F ∗(ω)
. (4.5)

The weight W1 ∈ R is a free parameter chosen to favor data according to frequency;

negative values of W1 more heavily penalize low frequency errors and positive values

penalize errors at high frequencies. A non-negative weighting function W1(ω) could

be substituted for the term ωW1 to more selectively weight frequency bands (e.g. to

favor capturing a particular feature in the data or to down weight noisy or unreliable

measurements). W2 ∈ [0 1]. scales the relative costs contributed by gain and phase.
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4.3 Results

4.3.1 Empirical frequency responses

We describe the system as an input–output relation from the stripe position (mea-

sured as the azimuthal angle from the sagittal plane of the fly) to the fly motor

output (measured as a voltage proportional to the difference in wingbeat amplitudes,

∆WBA). An example of the motor response (green) to a sum-of-sines trajectory (blue)

is shown in Figure 4.5A, both in the time domain (top) and the frequency domain

(bottom). Though the fly motor output has significant stochastic components (noise

and drift), comparing the magnitude of the frequency spectra of the input-output

pair as calculated by a fast Fourier transform, allows us to disambiguate the response

to the moving stimuli from motor noise. For this trial, the stimulus trajectory is a

sum of sinusoids at frequencies of 1 and 3.5 Hz. In the frequency domain, the fly’s

motor output comprises two distinct peaks coinciding with the stimulus frequencies;

we consider these peaks to be the response to the stimulus and disregarded other

spectral content as extraneous motion. Though in many trials, these response peaks

are easily discernable, this is not always the case. We proceed under the assump-

tion that for each trial, the response to the stimulus is the response measured at the

stimulus frequencies. In the remaining analyses, we use LSSA (see Section 4.2.3) to

extract only the frequency components of interest (those present in the stimulus), un-
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Figure 4.4: In the frequency domain (bottom), the motor response (green) to stimulus
motion (blue) is discernable from extraneous motor noise.

derstanding that, at times, the response data may be highly corrupted by extraneous

motor output, or worse, that a responsive behavior is not present at all and we are

sampling only stochastically driven motor output.

In the first suite of experiments, flies were recorded fixating a dark vertical stripe

oscillating with sinusoidal, sum-of-sines, and logarithmic chirp trajectories. The em-

pirical FRF (shown in black in Figure 4.5B) is calculated from the chirp stimulus

using a moving window LSSA over the frequency range 0.1–11 Hz. The response to

pure sinusoids (blue) and sums-of-sines (green) are superimposed on the FRF. The

response to sinusoids coincides well with the chirp response; this is expected since

for any small window of time (small with respect to the rate of change of frequency),

the chirp stimulus resembles a pure sine and for any small band of frequencies (with

caveats discussed in Section 4.2.3) the system response should be similar. More
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results in a PD model with phase and gain differences in accordance with Heisen-
berg and Wolf’s replay experiments [Heisenberg and Wolf(1988)]. A derivative model
relying only on optic flow generalizes the model for wide-field stimuli.

importantly, the sums-of-sines responses provide frequency response estimates con-

sistent with the empirical FRF, substantiating the superposition property and further

justifying linear modeling.

4.3.2 A linear transfer function model

The FRF reveals low-pass dynamics, as has been repeatedly observed and reported in

the literature [Duistermars et al.(2007)]. The high-frequency decay (estimated as 18.7

dB · decade−1 from measurements at 3.65 and 9.33 Hz) suggests a transfer function

with relative degree of one. Phase rolls off faster than expected for the assumed
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relative degree, which likely results from a delay in sensorimotor processing. Also

notably, the gain plot exhibits a distinctive notch at 1 Hz. In order to capture these

salient features, a linear model would require at minimum three poles, two zeros and

a delay. The following transfer function from positional error E(s) to motor output

Y (s) was fit to the empirical FRF as described in Section 4.2.3:

Y (s)

E(s)
= exp{−0.032s} 0.181s2 + 1.23s+ 8.68

s3 + 20.6s2 + 277s+ 1098
. (4.6)

The transfer function has a real pole at -5.72 and complex poles at −7.43 ± 11.70 i.

Dividing numerator and denominator polynomials by the real pole, we reformulate

(4.6) into a proposed PID control model:

(s2 + 14.85s+ 192.1)︸ ︷︷ ︸
motor dynamics

Y (s) (4.7)

= exp(−0.032s)

(
0.181s+ 0.196 +

7.55

s+ 5.72

)
︸ ︷︷ ︸

sensory weighting - PID (leaky integrator)

E(s) .

While the FRF is unique for any given data set, many such parameterized mod-

els may be hypothesized, each furnishing a different mechanistic interpretation. In

fact, there are fundamental limits in our ability to tease apart sensory dynamics

from downstream processing due to the likelihood of pole-zero cancellations [Carver

et al.(2009)]. Notwithstanding this limitation, we parse the transfer function so that

the left-hand and right-hand side equations describe the motor dynamics and sensory
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processing, respectively. Under this interpretation, the motor plant is described as a

forced second-order system (analogous to a spring-mass-damper) driven by a neural

control signal (Figure 4.6). In the right-hand side equation, the control signal is cal-

culated as a weighted sum of sensory measurements of sensory slip, positional error,

and accumulated error. The best fit visual–motor delay is 32.1 ms; this delay has been

previously estimated at 40 ms for Drosophila [Hardie and Raghu(2001), Heisenberg

and Wolf(1988)].

4.4 Discussion

The empirically derived model deviates from the prevailing optic flow models in the

contribution of positional error in the control policy. While the positional (and in-

tegral) terms of the PID controller may be instantiated as integrals of a measured

velocity (or optic flow), we believe that position is a distinct measured quantity (ref-

ered to as the flicker hypothesis in [Poggio and Reichardt(1981)]). Consider two

stripe-fixation tasks administered with the same velocity trajectory but different ini-

tial positions; we’ve observed that flies compensate for the positional bias and both

stripes are fixated. Optic flow models have been formulated to reflect physiological

representations of optic flow in the lobula plate. However, this physiological evidence

for optic flow does not preclude the contribution of positional cues to optomotor con-

trol (and should not preclude position from our models). Our PID model consolidates

several previously published observations.
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Figure 4.7: The PID control hypothesis explains the disparity in torque output in
response to progressive and regressive stripe motion. For progressive motion, the
proportional and derivative channels contribute opposing terms; in response to re-
gressive motion, these terms add constructively. At low velocities, the integral term
mitigates the difference between the progressive and regressive torque responses.

4.4.1 Progressive-regressive response concurs with PID

control

Flies exhibit increased motor output for regressive (front-to-back) stripe motion com-

pared to progressive (back-to-front) motion (this difference motivated the progressive-

regressive control hypothesis described in [Poggio and Reichardt(1981)]). The dispar-

ity in torque production in response to progressive and regressive motion stimuli

becomes more pronounced with increased velocity. This difference has been observed

in behavioral experiments [Geiger and Nässel(1982),Maimon et al.(2008)] and in phys-

iological measurements from the lobula complex [Buchner et al.(1984)].

This phenomenon is consistent with PID control policies. For the a leftward mov-

ing stimulus (as in Figure 4.7), we can decompose the total torque response as the

sum of the individual contributions of the proportional, integral and derivative chan-
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nels of the PID controller. The proportional channel contributes a torque command

proportional to the position of the moving stripe and independent of stripe velocity;

in the illustration below, the torque would be rightward during the progressive por-

tion and leftward for regressive motion. The derivative response would be constant

(and commensurate to the velocity) throughout, contributing a leftward torque in for

both the progressive and regressive portions. Conversely, the integral channel only

contributes a rightward torque; the positional error accumulates during the progres-

sive motion portion, reaches a maximum when the stripe crosses the zero degree axis,

and then subsequently wanes with regressive motion.

The difference in responses is largely explained by the relative torque contribu-

tions of the derivative (velocity) and proportional (position) channels of the PID

controller. In response to regressive motion (e.g. a stripe to the left moving leftward),

the proportional and derivative responses contribute constructively to the motor out-

put (Figure 4.7); conversely, for progressive motion (e.g. a stripe to the left mov-

ing rightward), the proportional and derivative responses contribute opposing torque

commands yielding a reduced net torque. As velocity increases, the derivative chan-

nel contributes a more significant torque command, increasing the magnitude of the

response to regressive motion and diminishing the response to progressive motion,

widening the gap between the two responses. At low velocities, the integral term

contributes a significant rightward torque which increases the response to progressive

motion and reduces the response to regressive motion, narrowing the bias between
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the two responses. As velocity increases, positional error is integrated over shorter

durations, attenuating (or eliminating) the contribution of the integral channel (Fig-

ure 4.7 right). The velocity dependence of both the derivative and integral terms

explains the experimentally observed trends in the responses to these two categories

of stimuli.

4.4.2 Positional cues explain differences between wide-field

and small-field responses

Physiologically, wide-field and small-field scenes elicit responses in different strata

of the medulla [Bausenwein and Fischbach(1992)]. Behaviorally, Duistermars et al.

observed that for wide-field (repeating stripe with period of 30 deg) visual scenes

at 0.1 Hz, motor output was phase advanced to the stimulus motion by a quarter

period while for small-field (single stripe) the input and output phases were practically

locked. Assuming that this spatial periodicity supresses the majority of positional and

integral error (modulo 30 deg), we propose a derivative-only (optic flow) model for

yaw regulation of this scene (Figure 4.5C in green); as observed by Duistermars et

al., at low frequencies this response to the wide-field scene phase leads the single-

stripe (PID model) response by approximately 90 deg. We note that our model is

inconsistent with their observations of response gain. However, the spatial extent

of the motion stimulus could be a factor in modulating the gain of the response.

This factor is not captured in the proposed model (generated using small-field stimuli
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exclusively) and may account for the difference between the model prediction and the

experimental observations.

4.4.3 Replay experiments yield predicted results

For linear stable optomotor dynamics, the response to the replay experiment (as

described in Section 4.2.2) is expected to be qualitatively similar to the original closed-

loop response excepting that in open-loop, there is no mechanism for the attenuation

of measurement noise:

YCL =
G

1 +G
(R +NCL) +

1

1 +G
MCL

E =
1

1 +G
(R +NCL)− 1

1 +G
MCL

YOL =
G

1 +G
(R +NCL)− G

1 +G
MCL +G NOL +MOL

(4.8)

At frequencies for which tracking performance is good, G
1+G
≈ 1 implies |G| � 1.

As a result, the open-loop replay is extremely sensitive to the process noise, NOL,

and measurement noise attenuated in the closed-loop presentation, MCL, reappears

undiminished in the replay response. But Heisenberg and Wolf [Heisenberg and

Wolf(1988)] observed qualitative differences between the closed-loop and replay re-

sponses, not merely noise: replay responses were phase leading by 50.9 deg (SEM =

48.6 deg, N = 10) and attenuated by approximately 50-65%. This discrepancy be-

tween the closed-loop and replay responses was presented as evidence corroborating

the reafference principle.
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The reafference principle was proposed by von Holst and Mittelstaedt [von Holst

and Mittelstaedt(1950)] to address a specific problem: if reflexive behaviors yield sta-

bilization to some equilibrium, how do animals make voluntary motions away from

equilibrium? The prevailing theory was that, during voluntary motion, stabilizing

reflexes were inhibited. But this is not the case, since animals exhibit stabilizing

reflexes concurrent with voluntary motion. To resolve this problem, von Holst and

Mittlestaedt proposed that efferent signals cause an imbalance in state which is sta-

bilized by the reflex (that is voluntary efferents introduce a new set point which is

stabilized to by the same mechanism as reflexive behavior). An efference copy is com-

pared to the afferent stream; the residual (error) distinguishes exafference (perception

of external motion) from reafference (perception of egomotion). Nowadays, efference

typically refers to a feedforward computation of the state estimate (like the use of

the Kalman filter for prediction discussed in Section 3.4.2). However, the reafference

framework proposed by von Holst and Mittelstaedt can be posited as a feedback sys-

tem (without feedforward) [Powers(1989)], so it is often difficult to confirm efference

copy through external observation, without direct measurement of the efferent signal.

Heisenberg and Wolf proposed that, in replay, the mismatch between perceived

motion and efferent commands for volitional movement triggered a switch in be-

havior mediated by a higher center. This switch results in gated intervals of reflex

suppression (a hybrid of the reafference principle and the reflex theory it supplanted).

Further, they concluded that such differences could not be the consequence of a linear
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system and could not be identified by a frequency domain analysis [Heisenberg and

Wolf(1988)]:

...the modulation of yaw torque in response to the sinusoidal oscillation
of visual patterns is influenced by the frequency and polarity of body
saccades and by the presence or absence of reafferent visual stimuli. A
schematic input–output analysis using a continuum of oscillation frequen-
cies and amplitudes would thus not lead to satisfactory characterization
of the optomotor controller.

Contrary to this hypothesis, in recreating the replay experiments, we achieved

the results predicted by a linearity assumption. Specifically, open-loop responses

were qualitatively similar to closed-loop observations but with greater noise, hence

variability (Figure 4.8). Though increased variance in open-loop observations makes it

difficult to argue whether Heisenberg and Wolf’s observed differences were significant,

we proffer an explanation derived from our proposed PID model. If we allow the

integrator to saturate (a nonlinearity inherent in any physical instantiations of an

integrator), then the system would respond quite differently about equilibrium when

compared to the saturated regime.

The predictions in (4.8) are predicated on the assumption that the system is both

linear and stable. Though our hypothesized model uses a leaky integrator (low-pass

filter), a pure integrator would violate this assumption: integrators are not stable

(only marginally stable in the asymptotic sense and unstable in the bounded-input–

bounded-output sense). Moreover, any physical realization of an integrator must have

a saturation limit, since real signals must be bounded. In closed-loop, every internal

state is maintained at equilibrium and as a result, the integrator contributes to the
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Figure 4.8: Empirical histograms of gain and phase for (A) closed-loop and (B)
open-loop replay trials illustrate the sensitivity relation between the two feedback
conditions. Colors correspond to trials from different individuals with the warmer
colors assigned to flies with higher mean gain. (C) We present the ratios of the
two responses and compare the results to Heisenberg and Wolf’s reported statistics
[Heisenberg and Wolf(1988)].
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output proportional to the accumulated error (which varies with time). In open-

loop, small biases in noise or initial condition (e.g. measurement bias, asymmetry

in baseline wingbeat amplitudes, fly misalignment, etc), which would be mitigated

in closed-loop, can cause the integrator to drift to saturation. Once saturated, the

integrator no longer conveys changes in the accumulated error, contributing a constant

offset to the motor output, effectively silencing the integral path in sensory processing.

Figure 4.5B compares our proposed PID model (with leaky integrator) (red) to

a model prediction for a saturating integrator in the saturated state (cyan); over a

broad range of low frequencies, the saturated model exhibits attenuation and phase-

lead, the same differences observed by Heisenberg and Wolf in comparing replay and

closed-loop responses. This is a weak illustration using our hypothetical model, but

many control topologies could yield this effect. For example, suppose that the PID

control was implemented as parallel PI controllers on sensed position and velocity

signals. The position-dependent term would then be a weighted sum of the measured

position signal and the integrated velocity signal (Heisenberg and Wolf assert such an

integrator in [Wolf and Heisenberg(1990)]. In open-loop, the integrated velocity signal

would saturate, effectively reweighting the gain on position. In summary, instability

and nonlinearity can yield qualitatively different results in closed- and open-loop,

reiterating the importance of closed-loop observation of behavior.
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Conclusion

In this dissertation, we have proposed a general framework for system identification

of image-stabilization tasks in animals. We prescribe the assay of closed-loop experi-

ments and analyses required to elicit these behaviors, differentiate between stimulus-

mediated behaviors and ancillary responses (and between behavior and non-behavior)

and generate predictive and generative models. The proposed methods were demon-

strated on two model image-stabilization behaviors, stripe fixation in Drosophila and

refuge-tracking in Eigenmannia. In both applications, we discovered aspects of the

behavior which were contrary to accepted notions.

For these closed-loop behaviors, we expect the dynamics to be (approximately)

linear local to an equilibrium, the consequence of Hartman-Grobman linearization

theory [Sastry(1999)]. This is not the case for the refuge-tracking behavior in glass
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knifefish. Comparing responses to single-sine and sum-of-sine trajectories, we observe

that superposition failed and demonstrate that the qualitative differences persisted for

stimuli at different scales of velocity. The behavior is fundamentally nonlinear for any

neighborhood about the equilibrium. The nature of the differences in performance

suggest a predictive mechanism and optimal control policy. No prior evidence for this

prediction mechanism has been reported in the literature.

Unlike for fish, in fruit flies, the stripe-fixation responses to sinusoids, chirps and

sums-of-sines trajectories corroborate the linearity assumption. Fitting a transfer

function model to the frequency response function, we see that positional cues (and

integral of position cues) from the visual scene play a significant role in determining

the fly’s motor output. This is not the first mention of the role of position-dependent

contributions in optomotor control, but the prevailing models rely primarily (if not

solely) on velocity information. The proposed PID model also generalizes to explain

several previously observed phenomena.

Task-level descriptive models can serve to constrain mechanistic models. In a

bottom-up approach, mechanistic models are constructed from known building blocks.

Top-down models not only serve to define permissible mechanisms, but identify nec-

essary computations. That is to say, task-level models can both falsify a proposed

mechanism and provide insight into what missing building blocks must do/be.
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5.1 Future work: A Systems Approach to

Modularity

The reductionist approach aims to describe a system mechanistically, as the joint

contribution of a set of more elementary components. In many ways, reductionism

reflects the goals of behavioral biology and neuroscience. But in Section 1.3.1, we

illustrate the drawbacks of a reductionist methodology. Towards the reductionist

aim, how might we identify behavioral building blocks in a top-down approach?

-
ΣR Y

S

A B

Figure 5.1: A sensorimotor transform from input R to output Y is split into arbitrary
blocks A and B by a measurement (or injected perturbation) at S.

Multi-input–multi-output experimentation is a natural extension of this research

and can be used to parse the sensorimotor transform into constituent components.

Consider the contrived sensorimotor block diagram in Figure 5.1 which maps input R

to output Y . In the diagram, the sensorimotor transform is divided into constituent

models A and B by some measurement (kinematic or electrophysiological as discussed

in Section 1.3.2) or perturbation (sensory or mechanical) S, suppose a perturbation.

We could fit models for the sensorimotor transform Y/R as well as the response to the

perturbation Y/S and derive the constituent models, as follows:
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Y/R =
AB

1 + AB
, given S = 0

Y/S =
B

1 + AB
, given R = 0

→
A =

Y/R
Y/S

B =
Y/S

1− Y/R

(5.1)

The derivation follows similarly for a measurement S. Extrapolate this exam-

ple by adding more measurements and perturbations (either simultaneously or in a

sequence of experiments), and the sensorimotor transform begins to reveal its ingre-

dients. Further, by measuring or perturbing within the loop, it is possible to observe

or excite dynamics which are not discernable elsewhere in the system (in control

theory, this results from a pole-zero cancellation between constituent models [Carver

et al.(2009)]). Additionally, biomechanical models derived from physical principles,

measured empirically, or computed through numerical simulation could be used to

naturally and intuitively parse the sensorimotor transform.

Applying this top-down methodology, the goal is to progress to increasingly low-

level descriptive models. But what are the natural boundaries between models? How

might we parse the sensorimotor transform into functional modules (individually

packaged descriptive models) in a meaningful way? In the reductionist approach,

atomic mechanistic models (often observed from some physical biological mechanism)

are networked to synthesize phenomena. In contrast, the top-down functional mod-

ules are simply those models which recur across a spectrum of similar behaviors; they

are not necessarily the building blocks of behavior or even representative of a partic-

ular physical structure. Common to the two approaches is the notion that individual
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Figure 5.2: Successive decompositions of the refuge-tracking behavior.

modules contribute to many behaviors. Using commonality as the defining notion

for a functional module, identifying a parsimonious set of functional modules and

the topological relations between them requires intra-behavioral comparisons. In any

animal, many categorically different behaviors recruit the same sensory and locomo-

tor modalities. A parallel analysis of these behaviors could reveal salient functional

modules.

Assuming we have parsed the sensorimotor transform into a set of smaller con-
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stituent models, how do we infer the set of functional modules and the network

topology of the system model? In a block diagram describing a system (consider

the cartoon in Figure 5.2(c)), constituent components may be connected in a lim-

ited number of ways: in series (sensory fusion to control policy), in parallel (vision,

electroreception, and mechanoreception), or feedback (muscle dynamics to proprio-

ception which eventually flows back to muscle dynamics). Each of these relationships

can be reduced to a single unique transformation (e.g. A and B in series yield the

single transform AB, A and B in parallel yield A+B, A with B in the feedback path

yields A
1+AB

). Conversely, a single transformation can be decomposed into any of the

above networks, but obviously not uniquely; each choice of local network topology

furnishes a subspace of feasible constituent systems. The set of functional modules

and the corresponding network topology might be approached as an optimization

problem across data sets and behaviors. The choice of functional modules and topol-

ogy could be selected from the space of feasible solutions in order to minimize the

set of functional modules (parsimony) or maximize the recurrence of particular mod-

ules or maximize the use of suspected topologies, etc. The choice of cost function

is not yet apparent, but the optimization problem can be constrained by any known

constituent models (e.g. models derived from biomechanical observations and first

principles). This inter-behavioral analysis may provide a framework for comparing

different behaviors in the same animal, thus reconciling many past phenomenological

results into a more general model for behavior.
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