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Summary. Active cannulas, so named because of their potential medical appli-
cations, are a new class of continuum robots consisting of precurved, telescoping,
elastic tubes. As individual component tubes are actuated at the base relative to one
another, an active cannula changes shape to minimize stored elastic energy. For the
first time, we derive the differential kinematics of a general n tube active cannula
while accounting for torsional compliance, which can strongly affect the accuracy of
robot tip pose prediction. Our derivation makes several explicit assumptions that
have never been vetted for a robotic task, so we experimentally validate the Ja-
cobian using a three-link prototype in a simple stereo visual servoing scheme. Our
visual servoing experiments validate the Jacobian and also demonstrate the feasi-
bility of using active cannulas under image guidance—a key step toward realizing
their potential to reach dexterously through small, winding environments, which is
of particular importance in medical applications.

1 Introduction

Continuum robots promise better maneuverability than traditional rigid-link
robots in cluttered or unstructured environments, and their inherent compli-
ance renders them gentler to objects they encounter. These features are par-
ticularly well-suited for minimally invasive surgery (MIS), where tools must
traverse winding entry passages and maintain dexterity. However, applying
continuum robots in MIS requires designing them to have small diameters
without sacrificing dexterity. The active cannula [15] is a continuum robot de-
sign created with such criteria in mind. An active cannula is made from con-
centric, precurved, elastic component tubes (See Figure 1). It changes shape
as tubes are axially translated and rotated with respect to each other, and
consequently elastically interact. Since the curvature that enables bending is
built into the backbone of the device itself (rather than e.g. tendon wires
attached to support discs), active cannulas can be very thin and dexterous.
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The potential of active cannulas in a wide variety of medical applications has
been noted in [3,4,8,13–15] and a review of potential applications is provided
in [11]. The most compelling of these may be access deep within the lung via
the throat.

Initial active cannula research has focused on kinematic modeling, applying
beam mechanics to describe cannula shape [8, 9, 13–15]. Using this kinematic
information to control the tip of the active cannula, as would be needed for vir-
tually any of the previously suggested medical applications, would be greatly
facilitated by deriving a parsimonious expression for the active cannula Ja-
cobian matrix. Pure bending models that neglect torsional compliance [8, 9]
provide a good starting point, because in this setting active cannula forward
kinematics can be written in closed form and differentiated to produce a Jaco-
bian. However, three of the current authors recently reported that neglecting
torsional compliance can in some circumstances produce substantial errors be-
tween model predictions and actual cannula shape [14,15]. Including these ef-
fects significantly improves the predictive power of the model, but it also leads
to transcendental equations that must be numerically solved when computing
the forward kinematics—much less the inverse or differential kinematics! For-
tunately, however, all is not lost: we show that a closed-form Jacobian can be
formulated via the minimum potential energy hypothesis, given the forward
kinematic solution derived in [15] for a cannula with a torsionally compliant
transmission. We then demonstrate experimentally that this Jacobian can be
used to facilitate a simple visual servoing task.

2 Related Work

Continuum robots are characterized by a continuously flexible structure that
often includes a backbone. Many innovative designs for transmitting bending
moments to the structure have been proposed (see e.g. [7, 11] for overviews),
including tendons, pneumatic chambers, or flexible push rods. The active can-
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2.39 mm

Fig. 1. A prototype active cannula made of super-elastic Nitinol tubes. The inset
line drawing indicates degrees of freedom. This figure reprinted from [14].
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nula uses the backbone itself to transmit bending moments via component
tube elastic interaction. This allows active cannulas to be very thin, and dex-
terity improves with miniaturization [15]. Active cannulas were inspired by
research on needle steering [12].4

Early designs with some similarity to active cannulas used fully overlapping
precurved tubes which were rotated (but not translated) with respect to one
another [4, 10]. A similar device that deploys a curved “catheter” through
a rigid curved outer cannula has also been patented [2]. Beam-mechanics-
based models accounting for the effects of both translation and rotation of
component tubes were first presented by our group [13–15] and by Sears and
Dupont [8, 9]. A distinction between the two similar modeling frameworks is
the inclusion of transmissional torsion in [13–15]. Set-point regulation using a
single fixed camera has been accomplished for hyper-redundant manipulators
[1], but the authors are aware of no prior results on visual servoing for active
cannulas or similar devices.

3 Differential Kinematics for an Active Cannula

Active cannulas are modeled as having piecewise constant curvature in [15].
The kinematic framework of [15], briefly reviewed in Section 3.1, provides arc
parameters for curvature, plane, and arc length of each active cannula link,
as functions of the active cannula joint variables. This Jacobian derivation
(not previously reported) then proceeds in Section 3.2 in two steps. First, we
derive the Jacobian from arc parameters to end-effector velocities; this is a
general result applicable to any piecewise circular robot. Then we compute
the arc parameter derivatives of the active cannula, in particular.

3.1 Review of Forward Kinematics

For reader convenience, we review the computation of the forward kine-
matics of an active cannula, reported in [15]. Active cannula joint space is
parametrized by axial rotations, α, and translations, ρ, applied at tube bases,
namely q = (α1, ρ1, . . . , αn, ρn). In what follows, the subscript i ∈ {1, . . . , n}
refers to tube number, while j ∈ {1, . . . ,m} refers to link number. Cannula
links are circular segments described by the arc parameters curvature, plane,
and arc length (κj , φj , `j), as shown in Figure 2. The kinematics of continuum
robots can be decomposed into a mapping from joint space to arc parameters,
and a mapping from arc parameters to shape.

Mapping From Joint Space to Arc Parameters

Consider an active cannula where each component tube has an initial straight
section and a circularly precurved tip. The shape of the active cannula is then
4 http://lcsr.jhu.edu/Needlesteering
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Fig. 2. (Left) The “links,” or regions of overlap between component tube transition
points, of a three-tube cannula composed of tubes with an initial straight section
and a final curved section. Links start and end at transition points, and the jth

link is between Tj and Tj+1. In this configuration, the largest tube transitions from
straight to the left of T1 to curved to the right. The same is true of the middle
tube at T2 and the smallest tube at T4. (Right) The arc parameters of a curved
link consist of curvature (κj), equilibrium plane angle (φj), and arc length (`j), as
shown. Figures reprinted from [14].

defined by a sequence of unique overlap regions (“links”) between transition
points Tj , as shown in Figure 2. Each of these remains circular, although bend-
ing planes, φ(q), and curvatures, κ(q), change as tubes are axially rotated.
The link lengths, `(q), are readily determined from the transition point posi-
tions in terms of arc length. They are functions of tube base translations, ρ,
and the lengths of the straight and curved sections of each tube; an example
is given in [15].

The curvatures and planes can be computed as follows. Attach a coordinate
frame, Tj , at the base of the link by sliding a copy of the cannula base frame
along the backbone (without rotation about z) to the base of the link. The
model given in [15] then yields x and y curvature components for the link in
the link frame as

χj =
∑
iEiIiki,j cos θi,j∑

iEiIi
and γj =

∑
iEiIiki,j sin θi,j∑

iEiIi
,

respectively, where the sums over i ∈ Λj only include the tubes that overlap
the jth link. The preformed curvature is constant for each tube in each link,
and is denoted by ki,j for the ith tube in the jth link. Here, Ei is the elastic
modulus, Ii is the cross-sectional moment of inertia, and θi,j is the axial ith

tube angle about the jth link frame z axis. There is a direct relationship
between curvature components and arc parameters, namely

φj = tan−1

(
γj
χj

)
and κj =

√
χ2
j + γ2

j . (1)

Neglecting torsional compliance completely (that is, assuming infinite tor-
sional rigidity), θi,j = θi,0 ≡ αi for all j, which results in a direct symbolic
mapping (1) from actuator space to arc parameters for each link. However,
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when transmissional torsion is included, θi,1 no longer equals actuator input
αi, because the straight transmission will “wind up” as torque is applied at the
actuators. Since transmissions are generally long compared to curved sections,
we assume that tubes can be modeled as infinitely torsionally stiff beyond T1,
implying that θi,j = θi,1 ≡ ψi, for all j > 1. With these definitions, it is
possible to write the total elastic energy of the cannula as a sum of torsional
and bending terms,

U(ψ1, . . . , ψn) =
n∑
i=1

GiJi
2Li

(αi − ψi)2︸ ︷︷ ︸
transmission torsion

+
m∑
j=1

∑
i∈Λj

EiIi`j
2

(χj − ki,j cos(ψi))2︸ ︷︷ ︸
x direction bending

+
m∑
j=1

∑
i∈Λj

EiIi`j
2

(γj − ki,j sin(ψi))2︸ ︷︷ ︸
y direction bending

, (2)

where G is the shear modulus, J is the polar moment of inertia, L is the length
of straight transmission between actuator and curved section of the tube, and
as mentioned previously i ∈ Λj are the tubes present in the jth link.

We assume that actuator inputs influence the system quasistatically in the
sense that as we move the actuators, the system remains at a local minimum
energy. Thus the angles at the end of the straight transmission (ψ1, . . . , ψn)
are always assumed to be at a local minimum of (2). To obtain the minimum
of the energy function (2), one can solve for the critical points where the
gradient equals zero. This leads to a set of transcendental equations, which
can be solved numerically using a variety of techniques, including Newton’s
method. Further details, including a complete analysis of a three-link example,
can be found in [15].

Mapping From Arc Parameters to Shape

The shape of the cannula is defined by the arc parameters and the product
of exponentials formula. Let ei, i ∈ {1, . . . , n}, denote the standard basis for
Rn, where n = 3 or n = 6 will be clear from context. The full kinematics of
the mechanism is then given by a product of exponentials:

g = g0g1 · · · gm, where gj = eê6∆φje(ê3+ê4κj)`j , j = 1, 2, . . . ,m, (3)

∆φj = φj−φj−1, and g0 is the transformation from the spatial frame to frame
1, which is located at the first transition point. In the following sections we
assign the spatial frame to a location on the straight transmission, and the
first transition point will be located at a distance `0 from it. Note that since
the transimission is always straight, κ0 ≡ 0, φ0 := 0, and ∆φ0 := 0. Thus, in
what follows g0 = eê3`0 . The resulting g ∈ SE(3) given in Equation 3 is then
the transformation from the spatial frame to the cannula tip.
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3.2 Jacobian Computation

Because the transformation g is written directly in terms of the arc parame-
ters, which are, in turn, functions of the joint space, we can conceive of the
transformations as a composition of maps, namely g = g(κ(q),φ(q), `(q)).
So, we compute the differential kinematics using the chain rule.

From Arc Space Velocities to End-Effector Velocities

To compute differential kinematics, we begin by computing the spatial velocity
(following the notation of [5]) of a single link:

V̂j = ġjg
−1
j =

(
d

dt
eê6∆φj

)
e(ê3+ê4κj)`jg−1

j + eê6∆φj
(
d

dt
e(ê3+ê4κj)`j

)
g−1
j

= ê6∆φ̇j + eê6∆φj
(
d

dt
e(ê3+ê4κj)`j

)
g−1
j , (4)

where gj is given in (3).
For ease of exposition, we drop the j subscripts for the following interme-

diate computations. Let ξ̂ = ê3 + ê4κ. Since eξ̂` varies with both κ and `, the
time derivative of the second term in (4) is slightly complicated, but can be
written in terms of an infinite series of nested Lie brackets [6]:

d

dt
e(ξ̂`) = dexp(ξ̂`)

(
d

dt
(ξ̂`)

)
e(ξ̂`)

where

dexpA(C) := C +
1
2!

[A,C] +
1
3!

[A, [A,C]] + . . . ,

and

[A,C] := AC − CA.

The specific matrices we are interested in here are

ξ̂` =
[
ê1ζ e3`
0 0

]
and

d

dt
(ξ̂`) =

[
ê1ζ̇ e3

˙̀
0 0

]
,

where ζ = κ`. Note that (ξ̂`) and d
dt (ξ̂`) do not commute, so dexp cannot be

simplified in the same manner as was possible for the time derivative of the
first term in (4). However, it can be simplified by algebraic manipulation to
form sine and cosine series as follows. The first few terms are

dexp(ξ̂`)

(
d

dt
(ξ̂`)

)
=
[
ê1ζ̇ e3

˙̀
0 0

]
+

1
2!

[
0 ê1e3η
0 0

]
+

1
3!

[
0 ê2

1ζe3η
0 0

]
+

1
4!

[
0 ê3

1ζ
2e3η

0 0

]
+ . . . , (5)
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where η = ζ ˙̀− ζ̇` = κ` ˙̀− κ̇`` − κ ˙̀̀ = −κ̇`2. The upper right entry of this
matrix can now be manipulated to obtain trigonometric series:

e3
˙̀ +
(

1
2!
ê1 +

1
3!
ê2

1ζ +
1
4!
ê3

1ζ
2 + . . .

)
e3η

= e3
˙̀ +
[(

1
2!
− 1

4!
ζ2 +

1
6!
ζ4 ± . . .

)
ê1 +

(
1
3!
ζ − 1

5!
ζ3 +

1
7!
ζ5 ± . . .

)
ê2

1

]
e3η

= e3
˙̀ +

1
ζ2

[
(− cos(ζ) + 1) ê1 + (− sin(ζ) + ζ) ê2

1

]
e3η

= e3
˙̀ +

1
ζ2

[(cos(ζ)− 1) e2 + (sin(ζ)− ζ) e3] η.

Applying this in (5), and substituting η = −κ̇`2 from above, results in

dexp(ξ̂`)

(
d

dt
(ξ̂`)

)
=

[
ê1ζ̇

(
˙̀ + κ̇`2(ζ−sin(ζ))

ζ2

)
e3 + κ̇`2(1−cos(ζ))

ζ2 e2

0 0

]
︸ ︷︷ ︸

Â

,

which, when inserted back into (4) yields:

V̂ = ê6∆φ̇+ eê6∆φÂe−ê6∆φ. (6)

To convert this twist in se(3) to a vector in R6 we have V = e6∆φ̇+Adeê6∆φA.
Re-introducing the subscript for the jth link, this reduces to

Vj =


sin(∆φj)(cos(κj`j)− 1)/κ2

j 0 0
− cos(∆φj)(cos(κj`j)− 1)/κ2

j 0 0
−(sin(κj`j)− κj`j)/κ2

j 0 1
cos(∆φj)`j 0 cos(∆φj)κj
sin(∆φj)`j 0 sin(∆φj)κj

0 1 0


︸ ︷︷ ︸

Jsj

 κ̇j
∆φ̇j

˙̀
j

 . (7)

Note that Jsj is well defined for all (κj , ∆φj , `j), even in the the limit as κj
approaches 0.

Given this “single-link” Jacobian it is straightforward to compute the Ja-
cobian for a multi-link active cannula. All that is necessary is to express the
individual link Jacobians in the spatial frame by applying relevant adjoint
transformations,

Jscurve =
[
J0 | Adg0J1 | Adg01J2 | · · · | Adg0(m−1)Jm

]
(8)

where Jj is the jth link Jacobian (7), and g0j = g0 · · · gj . The computation of
V sst, the spatial velocity of the tool frame, is then a simple matter of stacking
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up all m triplets (along with the 0th triplet κ̇0 ≡ 0, ∆φ̇0 ≡ 0, and ˙̀
0 as

described in Section 3.1), of arc parameter velocities and multiplying them on
the right by the “curve Jacobian” Jscurve in (8).

Some continuum robots permit direct control of arc parameters. With such
robots, this result can be directly applied. However, in a robot such as the
active cannula where arc parameters are indirectly controlled by joint vari-
ables, calculating arc parameter derivatives is more challenging. In an active
cannula, a closed-form expression for κ(q) and φ(q) is generally impossible to
compute [15]. However, it is still possible to compute κ̇(q) and φ̇(q) in closed
form, as described below.

Arc Parameter Derivatives

If the system evolves quasistatically (as was assumed in forward kinematics)
such that ψ remains at local minimum of U(ψ), i.e.

ψ∗ := argmin
ψ

U(ψ),

then we can apply the chain rule as follows,

∂κj
∂q

=
∂κj
∂ψ∗

∂ψ∗

∂q
,

and similarly for φj . The derivatives of κj and φj with respect to ψ∗ are
straightforward computations given (1).

We take derivatives of ψ∗ with respect to q as follows. We have ∇U =
F (q,ψ∗) = 0, and hence

DqF = D1F + (D2F ) (Dqψ∗) = 0,

where D1F and D2F denote the Jacobian matrix of F with respect to the
first and second arguments, respectively. If the Hessian (Dqψ∗) is invertible,

Dqψ
∗ = −(D2F )−1(D1F ).

Finally, the computation of ˙̀
j is straightforward. Suppose that a transition

point on tube a ∈ {1, . . . , n} defines the start of link j and a transition on
tube b ∈ {1, . . . , n} defines the end of link j (see Figure 2). Then, the time
derivatives of the arc parameters are given by

κ̇j = −∂κj
∂ψ

(
∂F

∂ψ∗

)−1
∂F

∂q
q̇,

φ̇j = −∂φj
∂ψ

(
∂F

∂ψ∗

)−1
∂F

∂q
q̇,

˙̀
j = ρ̇b − ρ̇a.

(9)

Recalling that∆φj = φj−φj−1, the total Jacobian matrix Jsst in the expression

V sst = Jsstq̇ (10)

is found by combining (8) and (9).
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Fig. 3. Three-tube, six-DOF active cannula actuation unit used in experiments.

4 Empirical Validation via Vision-Based Control

4.1 Position-Based Control Law

Since our initial concern is with linear end effector velocities, we simplify
V sst =

(
ġg−1

)∨ = Jsstq̇ to obtain an expression for linear velocity, ṗ, of the
cannula tip in world coordinates, as follows. Note that

ġ =
[
Ṙ ṗ
0 0

]
= V̂ sstg =⇒ ṗ = ωsst × p+ vsst =

[
I3×3 −p̂

]
V sst.

Recall that n is the number of individual tubes (so there are 2n actuated
degrees of freedom) and let Jv, Jω ∈ R3×(2n) denote the upper and lower
three rows, respectively, of Jsst. Then, we have

ṗ =
[
I3×3 −p̂

] [Jv
Jω

]
q̇ = Jpq̇, (11)

where Jp = −p̂Jω +Jv, and p is the position of the cannula tip in the cannula
base frame.

We apply a simple position-based visual servo scheme. A stereo camera
pair triangulates the location of the tip of the cannula in the current image,
p, and we drive it to the desired position, p∗ via

q̇ = −J†pK(p− p∗), (12)

where K is a diagonal gain matrix, and p∗ is the desired position. Note that
we will typically have more than 3 actuated degrees of freedom, which implies
that the joint velocities are under determined. Thus, there is freedom in our
choice of pseudo-inverse J†p , which may be exploited to accomplish secondary
objectives.

Our experimental system shown in Figure 3 has three actuation stages
(n = 3,m = 5), but for the experimental results in the subsequent section,
we use only two tubes, and hold the first rotation angle constant, thereby
reducing Jp to a 3× 3 square matrix.
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Fig. 4. (Left) A simulated two-tube, three-link (with an initial straight section)
active cannula moves in a straight line between two configurations. Colors denote
circular arcs or “links”. (Right) Tip error as a function of time for the simulation.

4.2 Experimental Results

In the experiments described below we used a two tube, three-link active can-
nula. Our robotic actuation unit is pictured in Figure 3, and can accommodate
up to a three tube, five-link active cannula. Details of the actuation unit are
provided in [11]. Our experiments were conducted with the rotation of the
outer tube fixed at zero radians as discussed above. An example simulation
utilizing the visual servo controller developed in Section 4 is shown in Figure
4. In the simulated, calibrated system, devoid of sensor and motor noise and
unmodeled effects, the cannula is capable of servoing to the goal via a straight
line trajectory using tip position feedback.

In our experiments, the actuation unit in Figure 3 was commanded by
a Linux machine with the RTAI real-time extensions. Low level motor servo
loops were run with hard real-time constraints, while the higher level vision-
based servo loop was run at the camera frame rate (15 frames per second),
without hard real-time consideration. The MATLAB c© (The MathWorks Inc.,
Natick, MA) Engine was used to allow the vision processing software to call
the algorithms developed in MATLAB directly. This prototype system al-
lowed rapid development of algorithms. Future work will include porting the
validated Jacobian and kinematics algorithms to C++.

To perform the position-based visual servo controller, a calibrated stereo
camera system (XCD-X710, Sony, Inc.) was necessary to measure component
tube shapes and to triangulate cannula tip position during visual servoing.
Camera calibration was performed using the Berkeley Computer Vision Re-
search Group Camera Calibration Toolbox.5 The transformation from the
camera frame to the robot actuation unit base frame was then determined

5 http://www.vision.caltech.edu/bouguetj/calib doc/
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Fig. 5. (Left) Experimental component tubes shown disassembled. (Right) Fiducial
affixed near the inner tube tip.

using the calibrated cameras. This was accomplished by triangulating points
on a grid attached at the cannula base frame.

Component tube curvatures were determined using images of the tubes
taken against a physical grid. The grid was used to obtain the mm/pixel
ratio, and an automatic fitting procedure was used to find the circle that
best fit a large number of points manually tagged as being on the curved
tip of the tube. An image used for these measurements is shown in Figure
5-(Left). Lengths of tube straight transmissions were measured using calipers.
The physical characteristics of the component tubes are given in Table 1. The
inner diameter (ID) and outer diameter (OD) of the tubes were taken from the
manufacturer’s (Nitinol Devices and Components, Inc., Fremont, CA, USA)
specifications. As can be seen in Figure 5-(Left), the heat treatment process
used to form the curved shape on the smaller tube produced a near-circular
curve with a short straight section near its tip. Rather than cut the tube at
this point, we chose to simply attach the fiducial at the end of the circularly
curved section as shown in Figure 5-(Right).

A black background in conjunction with a large camera aperture was used
to enhance the visibility of the white fiducial. For each camera frame, a sub-
window was centered on the position of the cannula fiducial in the previ-
ous image. The sub window was thresholded and the center of mass location
was taken as the fiducial position measurement in image coordinates. Three-
dimensional fiducial coordinates were then triangulated from stereo image
coordinates.

Table 1. Component tube physical characteristics.

ID (mm) OD (mm) κ (1/m) lcurve (m) lstraight (m)

Inner Tube 0.62 0.80 54.19 0.0571 0.3775

Outer Tube 0.97 1.27 5.97 0.0903 0.0383
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Fig. 6. Cannula tip trajectories for a variety of experiments beginning at different
initial conditions with initial, final, and goal positions marked. Unfiltered raw data
is presented.

The initial conditions of each visual servoing experiment were set away
from the workspace boundary. Because of the large curvature of the inner
component tube, workspace boundaries in the x and y directions were on the
order of ±1.5 cm, so we explored initial conditions that were approximately
1.0 cm from the goal location. Figure 6 shows a 3D plot of trajectories of
the cannula tip for a variety of initial positions. While the active cannula
successfully servos to the goal location, note that the trajectories it takes are
only approximately rectilinear. There are a number of unmodeled effects and
sources of error that contribute to such behavior.

Table 2. Analysis of experimental motions and final displacement errors.

Initial Displacement (mm) 8.80–21.76

Final Error (mm) max 1.543
avg 0.674

Per axis final error (mm) x y z
max 0.822 0.898 1.232
avg 0.312 0.383 0.324
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Fig. 7. Convergence Results: The left images show the cannula tip coordinates
as they converge to the goal for a single trial. The right image shows the joint
coordinates as they converge to the goal positions over time.

The dominant source of error is likely that these experiments were per-
formed on an uncalibrated cannula. In calculating model parameters, we used
manufacturer supplied material properties, some of which have relatively large
variances. See [15] for tube property and measurement variances and a statis-
tical analysis of their effects on model parameters. In future work, we plan to
implement the calibration methods described in [15], but the fact that visual
servoing can be successfully accomplished with an uncalibrated active cannula
is noteworthy.

Other sources of error include unmodeled torsion in curved sections of the
active cannula (as described in Section 3.1), minor component tube preshaping
imperfections, and frictional effects. A small amount of stiction is discernible
in the experimental cannula described herein, in contrast to prior larger pro-
totypes where friction has been essentially negligible [15]. This agrees with
the intuition that frictional effects should increase as active cannula diameter
and intra-tube tolerances decrease. In our experiments, this stiction caused
small errors in initial zeroing of the smaller tube rotation angle.

Despite the above-listed sources of error, in our experiments the active
cannula always reached a final position less than 2 mm (and typically less than
1 mm) from the goal location. Table 2 provides measurements of maximum
and average errors between the goal location and final location of the cannula
tip. A typical experiment is shown in Figure 7.

5 Conclusion

The ability of a Jacobian-based visual servo controller to accurately position
the active cannula tip is an encouraging result for future active cannula ap-
plications. Active cannulas may extend the reach of doctors into new places
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in the body, and thereby enable new medical procedures. In minimally inva-
sive surgery, image feedback may be derived from optical stereo endoscopes
or other medical imaging modalities. Under all such imaging methods, our vi-
sual servoing work should be useful for directing the active cannula accurately
through challenging anatomy.
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