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Abstract— Few tools exist for identifying the dynamics of
rhythmic systems from input–output data. This paper inves-
tigates the system identification of stable, rhythmic hybrid
dynamical systems, i.e. systems possessing a stable limit cycle
but that can be perturbed away from the limit cycle by a set
of external inputs, and measured at a set of system outputs. By
choosing a set of Poincaré sections, we show that such a system
can be (locally) approximated as a linear discrete-time periodic
system. To perform input–output system identification, we
transform the system into the frequency domain using discrete-
time harmonic transfer functions. Using this formulation, we
present a set of stimuli and analysis techniques to recover the
components of the HTFs nonparametrically. We demonstrate
the framework using a hybrid spring-mass hopper. Finally, we
fit a parametric approximation to the fundamental harmonic
transfer function and show that the poles coincide with the
eigenvalues of the Poincaré return map.

I. INTRODUCTION

In this paper, we propose a framework for system identi-
fication of rhythmic hybrid dynamical systems around their
limit cycles. Rhythmic dynamic behaviors can be observed
in a wide variety of biological and robotics systems, such
as terrestrial locomotion [3, 17] and juggling [2, 4]. Such
behaviors often include hybrid characteristics in that they
exhibit both smooth flows punctuated by discrete jumps and
are often modeled as hybrid dynamical systems [10].

Powerful analytical and numerical tools have been devel-
oped in order to control and analyze such hybrid dynamical
systems and behaviors [1, 7, 10]. However, these tools are
limited to the case when we have a full (and preferably
simple) mathematical model—typically derived from first
principles—that can accurately describe the system dynam-
ics, but such modeling requires many creative decisions about
what to neglect. More critically, it is impossible to derive
equations, from first principles, that capture the influence of
the nervous system on these hybrid dynamics [8, 19].

In the context of non-rhythmic dynamical systems near
equilibria, system identification is a mature field [18]. Sys-
tem ID provides a very powerful complement to modeling
systems using first principles.

By contrast, system ID for rhythmic and/or hybrid systems
remains radically limited. Several researchers have addressed
system ID and analysis of rhythmic systems by studying the
steady state behavior and synthesizing these results using
dynamical systems language [13]. However, this type of
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approach is extremely limited for answering the question of
such as how these systems recover from perturbations.

There are also recent studies that attempt to estimate
and quantify the dynamics around the limit cycles of such
systems from data [2, 15]. The most popular mathematical
framework used in such analysis is based on Poincaré return
maps which reduce the rhythmic dynamical system to a lower
dimensional discrete-time system that describes the behavior
in terms of its cycle-to-cycle transitions. Linearization of
this reduced system yields a discrete time LTI system.
The power of Poincaré theory is that it connects rhythmic
dynamical systems to LTI systems theory, affording rich
and powerful tools for both analysis and identification.
However, the obvious limitation of this approach is that only
one measurement per cycle is used. The approach lumps
all effects within a cycle together, making it difficult to
relate system-level dynamics with the roles of individual
component-level details. Relatedly, there is a severe loss
in temporal resolution. In addition, the approach presumes
access to all state variables, an assumption not realistic when
dealing with neural control systems.

In order to resolve some of these issues, Revzen et al. [15]
introduced an identification framework inspired by Floquet
theory and which utilizes multiple sections within a cycle and
identifies mappings between them. However, this approach is
“input free” and the identification is performed only based
on the output measurements (and thus doesn’t address the
problem of hidden states). Typically, for the identification of
dynamical systems input–output methods are more powerful
and accurate compared to output only methods.

Kiemel et al. [12] proposed a new formulation that ad-
dresses the input–output identification of rhythmic systems
around their limit cycles in the frequency domain. Specif-
ically they approximate the dynamics near the limit cycle
as a linear time-periodic (LTP) system. In this framework,
they non-parametrically estimate LTP dynamics in frequency
domain using harmonic transfer functions [14, 21]. However,
the assumption of smooth dynamics does not readily apply
to many rhythmic behaviors that involve hybrid dynamic
characteristics.

In order to fill these gaps, we propose a new formulation
for hybrid rhythmic dynamic systems using discrete time
harmonic transfer functions that enables us to perform input–
output system ID in frequency domain.



II. HYBRID DYNAMICAL SYSTEM FORMULATION WITH
EXOGENOUS INPUT

The section follows briefly summarizes the development
of [10] and modifies it to include exogenous inputs.

The state space of a hybrid system is a union

V =
⋃
α∈I

Vα

where I is a finite index set and each Vα is an open,
connected subset of Rnα . Each element of this union, i.e.
Vα, is called a chart The dimension of the charts can
typically depend on α [5, 6, 20]. A state of the overall
hybrid dynamical system consists of an index α together
with a point in the chart Vα. We assume that a (smooth)
continuous time dynamical system is defined on each chart.
Since Vα ⊂ Rnα we can represent the smooth dynamical
system on each chart using

q̇α = fα(qα, uα, t) (1)

where q̇α ∈ Vα is the state of the vector-field associated
with chart α and u ∈ Rlα represents the small external
perturbations used for system identification. One should also
note that, similar to the state vector qα, dimension of the
exogenous input may depend on α for hybrid dynamical
systems. Indeed, exogenous inputs may not available (lα =
0) for some charts. As a convenience of notation, and without
loss of generality we assume that there exists a û ∈ Rlmax

which can be freely controlled by the experimenter, and a
set of coordinate dependent mappings, gα : Rlmax → Rlα ,
such that lmax = maxα∈I lα and uα = gα(û), ∀α. These
maps should be locally onto (so as not to throw away
“useful” perturbation inputs), and without loss of generality,
gα(0) = 0. On charts for which lmax > lα, the extra inputs
are “thrown away” by the dynamics. Under these constraints
(1) takes the form

q̇α = fα(qα, û, t) (2)

We assume that for each α ∈ I , there exists a real-valued,
piecewise-smooth threshold function, hβα(qα, û). Zero cross-
ings of a threshold function is called an event which triggers
the transition to a new chart indexed by β. We further assume
that there are transition maps, qβ = Tα(qα, û) that apply
a transformation to the points at an event. The images of
the transition maps are taken as initial conditions for the
continuous-time trajectory inside the new chart. Conceptu-
ally, the evolution of the system is viewed as a sequence
of trajectory segments where the endpoint of one segment is
connected to the initial point of the next by a transition map.

Given an input û(t), an initial chart α0, and initial con-
dition on that chart qα0

(t0), we define a trajectory on the
interval [t0, tn] as follows. Denote events t1, . . . , tn−1, such
that t0 < t1 < · · · < tn. Each event time corresponds to a
hybrid transition, giving rise to a sequence of discrete states
α0, · · · , αn−1 and smooth trajectories qαi(t) ∈ Vαi , t ∈
[ti, ti+1], such that each qαi is a trajectory of the continuous-
time dynamical system on Vαi given in (2). Further, the
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Fig. 1. Illustration of a stable rhythmic hybrid dynamical system with two
charts, i.e. I = {0, 1}. For simplicity, each chart has the same dimension,
and is a subset of R3. The limit cycle of the system (black) is discontinuous.
The two-dimensional surface (green) illustrates a hybrid transition (patch)
boundary in which the transition is continuous (no jump in continuous
variables of the state space) but not necessarily differentiable. The pair
of surfaces (purple) connected by dashed lines illustrate a hybrid transition
boundary in which the transition is discontinuous. The two-dimensional
cross-sections (grey) illustrate the N Poincaré sections chosen by the
experimenter. (These can be the hybrid boundaries, but in this example
are chosen not to be.) The red curve represents a sample trajectory starting
from an initial condition located at Σ0. As illustrated in the figure, in the
absence of external inputs trajectory converges to the limit cycle..

initial condition for each trajectory is given by qαi , and for
i = 1, . . . , n− 1, these are calculated via the transition map:
qαi(ti) = Tαi−1

(qαi−1
(ti), û(ti)).

In the absence of external inputs i.e. û(t) = 0 ∀t, we
assume the existence of an isolated, hybrid period orbit, or
limit cycle, γ(t) ∈ V , that satisfies

lim
t̂→t−

[
γ(t̂)− γ(t̂+ T )

]
= 0,

lim
t̂→t+

[
γ(t̂)− γ(t̂+ T )

]
= 0.

Similar to the previous work on rhythmic hybrid dynamical
systems [6], we limit our attention to hybrid systems under-
going a finite number of isolated hybrid transitions near the
limit cycle. We also assume that in a local neighborhood of
the limit cycle that the number and order of hybrid transitions
is fixed (although the transition times can and typically will
vary) and both the threshold functions and transition maps
associated with these transitions are locally smooth.

III. MAPPING BETWEEN POINCARÉ SECTIONS

A Poincaré section, Σi ⊂ V , is an embedded submanifold
that intersects the periodic orbit at exactly one point [6]:

{(εi, αi)} = γ ∩ Σi, αi ∈ I, εi ∈ Vαi ,
dim (Σi) = dim (Vαi)− 1

where (εi, αi) is called the fixed point of Σi. The flow should
be transverse to Σi in a neighborhood of εi for all sufficiently
small inputs. Let Wi ⊂ Σi be an open subset containing εi.



Let Σj be another Poincaré section with associated fixed
point (εj , αj). We define a mapping, Pi→j : Wi ×Rlmax →
Σj by assuming û = ui is constant (i.e. a “zero-order hold”)
and tracing the hybrid trajectories from qi ∈ Wi forward in
time until it intersects Σj at qj :

qj = Pi→j(qi, ui). (3)

We assume that Pi→j is a well-defined and smooth map
around (εi, 0). If Σi = Σj and ui = 0 this maps becomes
the more familiar Poincaré return map. It is natural to assume
that our measurements of states qi are indirect and though a
smooth mapping:

zi = hi(qi, ui). (4)

Linearizing state and output mappings in (3) and (4)
around (qi, qj , ui) = (εi, εj , 0) yields

xj = Aixi +Biui,

yi = Cixi +Diui.
(5)

It is worth noting that Ai need not be square, depending
on the dimensions of Σi and Σj . Now assume that we
have N distinct isolated sequential (in the order they are
punctuated by the limit cycle) Poincaré sections indexed by
{0, 1, · · · , N − 1}; see Fig. 1. We formulate the linearized
mapping between consecutive sections using

x[n+ 1] = A[n]x[n] +B[n]u[n],

y[n] = C[n]x[n] +D[n]u[n],
(6)

where A[n] = A[n+N ] (and likewise for B,C,D).
The linearized mappings between successive Poincaré sec-

tions forms a linear discrete time periodic (LDTP) dynamical
system which facilitates input–output modeling. Using (6)
we can compute the linearized Poincaré return map at any
section. Let i ∈ {0, · · · , N − 1} be the section that we are
interested. Then,

DPi→i =

i∏
k=i+N−1

A[k] = A[i+N − 1] · · ·A[i] (7)

yields the linearized Poincaré return map at that section. It is
obvious that for hybrid systems in which the dimension of
charts (dim (Vα)) changes with α, the linearized Poincaré
return map in (7) is always rank-deficient for some i ∈
{0, · · · , N − 1} [20]. Even with rank deficiencies and the
dimension of x[n] is time varying, the liner time varying
dynamics in (6) is suitable for deriving harmonic transfer
functions using impulse response representation.

IV. HARMONIC TRANSFER FUNCTIONS (HTF) FOR
LINEAR DISCRETE TIME PERIODIC SYSTEMS (LDTP)

The computations above in Section III demonstrate that
hybrid dynamical systems, operating near a limit cycle,
can be approximated using a LDTP system. However, a
transfer function representation may be more amenable to
input–output system identification. In this section we will
reformulate the derivations in [14] to suit LDTP systems.

Any (causal) LDTP systems such as in (6) can be represented
using time-periodic impulse response

y[n] =

n∑
k=0

H[n, k]u[k], (8)

where H[n, k] = H[n−N, k−N ]. For the sake of clarity of
derivations, throughout the paper we assume that N is even
(easily relaxed). Let k = n− r then H[n, k] 7→ H[n, n− r]
which is periodic in n for any fixed r thus can be expressed
as a Fourier series:

H[n, n− r] =

N
2 −1∑

m=−N2

Hm[r]ei
2πm
N n, (9)

where

Hm[r] =
1

N

N
2 −1∑

n= −N
2

H[n, n− r]e−i 2πmN n. (10)

Plugging r = n− k gives

H[n, k] =

N
2 −1∑

m=−N2

Hm[n− k]ei
2πm
N n. (11)

Combining (8) and (11), y[n] can be written as

y[n] =

N
2 −1∑

m= −N
2

(
Hm[n]ei

2πm
N n ∗ u[n]ei

2πm
N n

)
.

Taking the Z-transform of y[n],

Y (z) =

N
2 −1∑

m=−N2

Hm

(
ze−i

2πm
N

)
U
(
ze−i

2πm
N

)
(12)

where

Hm (z) = Z {Hm[n]} . (13)

We can obtain the frequency response version of the HTF
equation in (12) using the mapping z 7→ eiw:

Y (ω) =

N
2 −1∑

m= −N
2

Hm

(
ω − 2πm

N

)
U

(
ω − 2πm

N

)
. (14)

Hm(z) (or Hm(w)) is the mth harmonic of the HTF struc-
ture that defines the coupling between the output at frequency
w (or w+ 2πm

N ) and the input at frequency w− 2πm
N (or w).

V. IDENTIFICATION OF HTF OF LDTP SYSTEMS

A. Identification via Single Cosine Inputs

In this section we show how harmonic transfer functions
can be estimated using single cosine inputs and the limita-
tions of this approach. Let the input be a (real) phase shifted
cosine signal u[n] = a

π cos(ω̄n+φ), w̄ ∈ [0, π). If we use the



HTF structure in (14), the response to u[n] can be computed
in frequency domain as

Y (ω) =

N
2 −1∑

m= −N
2

Hm

(
ω − 2πm

N

)
aeiφδ

(
ω − 2πm

N
− ω̄

)

+

N
2 −1∑

m= −N
2

Hm

(
ω − 2πm

N

)
ae−iφδ

(
ω − 2πm

N
+ ω̄

)
Let us analyze the steady-state frequency response for ω =
ω̄ + 2πl

N where l ∈ {−N/2, . . . , N/2}:

Y

(
ω̄ +

2πl

N

)
= Hl (ω̄) aeiφ

+ sgn(m∗)Hl−m∗

(
ω̄ +

2πm∗

N

)
ae−iφ

where

m∗ =

{
ω̄N
π , if ω̄N

π ∈ Z+

0, otherwise

If m∗ 6= 0 then, there exist two unknowns, thus it is not
possible to identify neither Hl (ω̄) nor Hl−m∗

(
ω̄ + 2πm∗

N

)
using a single cosine input. However if m∗ = 0 (or
equivalently ω̄N

π /∈ Z+), then we can identify Hl(ω̄) via

Hl(ω̄) =
Y
(
ω̄ + 2πl

N

)
aeiφ

.

In conclusion, in order to identify the elements of HTF
using single cosine inputs (for each frequency), the input
frequency must not be an integer multiple of half of the so-
called “pumping frequency” (ωp = 2π

N ), i.e., ω̄Nπ /∈ Z+.
Note that it is possible to identify the elements of the

HTF at these harmonics by simply exciting the system
using two cosine inputs (same frequency, different phase)
[11]. However, if we assume the HTFs are smooth and
the resolution of the DFT frequencies are high enough, the
HTFs at these frequencies can be interpolated in order not
to increase the number of experiments.

B. Identification via Sums of Cosine Inputs

In this section our goal is to determine the rules such that
elements of the HTF can be estimated uniquely (assuming
no noise) from the experiments where the input stimulus is
the sum of cosine inputs. Let {ω̄1, · · · , ω̄K}, {φ1, · · · , φK},
and {a1π , · · · ,

aK
π } be the set of input frequencies, phase

shifts, and magnitudes respectively. The input signal for the
experiment can be constructed as

u[n] =

K∑
k=1

ak
π

cos(ω̄kn+ φk). (15)

Since single sine experiment is a special case of a sum of
sine experiment, the obvious first rule for the identification
is

ω̄kN

π
/∈ Z+ ∀k (16)

For the sake of clarity let’s assume that K = 2. Then
frequency response of the system to the input (15) at the
frequency ω = ω̄1 takes the form

Y (ω̄1) = H0 (ω̄1) a1e
iφ
1

+ sgn(m∗1)Hm∗
1

(
ω̄1 −

2πm∗1
N

)
a2e

iφ2

+ sgn(m∗2)Hm∗
2

(
ω̄1 −

2πm∗2
N

)
a2e
−iφ2

where

m∗1 =

{
(ω̄1−ω̄2)N

2π , if |ω̄1−ω̄2|N
2π ∈ Z+

0, otherwise

m∗2 =

{
(ω̄1+ω̄2)N

2π , if (ω̄1+ω̄2)N
2π ∈ Z+

0, otherwise

Similar structure is obtained if we extend to arbitrary K and
observe the response at ω = ω̄k + 2πl

N . From this result, we
observe that in order to identify the elements of the HTF
uniquely, in addition to the constraint on each individual
frequency in (16), we also require that the difference and
the sum of any two frequencies in the input stimulus must
not be an integer multiple of the pumping frequency. Under
these rules elements of the HTF structure can be estimated
using

Hl(ω̄k) =
Y
(
ω̄k + 2πl

N

)
akeiφk

.

Under these rules our system identification procedure using
sum-of-sine inputs is as follows:
• Define the frequency band of interest, ω̄k ∈ (0, ωmax]

and compute the resolution, ωres, of the DFT frequen-
cies based on the length of the input–output data.

• Construct a global set of frequencies, Ω =
{ωres, 2ωres, 3ωres, · · ·ωmax}.

• Remove the frequencies that are the integer multiples
of half of the pumping frequency, i.e. Ω̄ = Ω −{
π
N ,

2π
N ,

3π
N , · · ·

}
.

• Partition Ω in to S sub sets, Ω̄ = Ω1 ∪ Ω2 · · · ∪ ΩS ,
such that for each Ωs following condition is satisfied:

|ω̄i − ω̄j |N
2π

6∈ Z+ &
(ω̄i + ω̄j)N

2π
6∈ Z+

∀ω̄i, ω̄j ∈ ΩS

• For each subset construct an input stimulus

us[n] =
∑
ω̄k∈Ωs

ak
π

cos(ω̄k + φk),

and perform the experiment to compute the elements of
HTF.

VI. RESULTS AND DISCUSSION

A. Example Model System

We apply our system identification framework to the
vertical hopper model illustrated in Fig. 2. We adopted the
model from [5] and added an exogenous input u acting on
the upper body mass M to be used for system identification.
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Fig. 2. Dynamics and schematic of the hopper model

The “clock-driven” hopper alternates between flight (α = 0)
and stance (α = 1) charts during hopping. Flight and stance
dynamics of the hopper are embedded in Fig. 2.

The touchdown event defines the transition from flight to
stance chart. The zero crossing of the threshold function,
ho(q0) = ym, triggers the transition and the states of the
new chart is defined by the transformation q0 7→ T0(q0)
where T0(q0) = [I3×3 03×2] q0. The liftoff event defines the
transition from stance to flight, which is triggered by the
zero crossing of the threshold function h1(q1) = k(l0 −
yM ) + f + mg. The initial state of the new flight chart
is determined by the transformation q1 7→ T1(q1) where
T1(q1) = [I3×3 03×2]

T
q1. We simulated the hybrid hopper

model in MATLAB (Mathworks, Inc.), using a custom hy-
brid dynamical simulation toolkit with the sampe parameters
used in [5]. We verified with our simulation toolkit that this
set of parameters (when external input u = 0) produces a
stable limit cycle. The non-zero eigenvalues of the Poincaré
maps of the system are λ1,2 = 0.25±0.7i, computed via the
numerical Jacobian of the return map.

B. Phase Coordinates and Set of Poincaré Sections

As detailed in Sec. III our system identification method re-
lies on mappings between selected discrete phase coordinates
(i.e. set of Poincaré Sections). We expect that the structure
of HTF depends on the selected phase coordinates.

In this paper, we utilized two “causal” phase definitions to
select Poincaré sections. Existence of exogenous input and
its dependence on phase coordinates makes the straight for-
ward implementation of non-causal methods [16] impossible.
The hybrid system we are analyzing is an asymptotically
stable clock–driven model, thus one natural way of selecting
Poincaré sections is using the isochrons [9] which are directly
given by the phase of the clock. We select N equally spaced
Poincaré sections within φ ∈ [0, 2π). The phase of the ith

Poincaré section corresponds to φi = 2π
N i.

However, the majority of rhythmic hybrid system models
are not driven by an open–loop clock thus there is no
straightforward way of accessing the isochrons, especially
using a causal method. The main advantage of our method
is that it works with any set of well defined Poincaré sections.
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Fig. 3. Non-parametric estimates of |H0(z)|, |H1(z)| and |H−1(z)|.
Magnitude plots in the top row (A and B) represens the HTFs between
the input and δyM , where as bottom row (C and D) belongs to the HTFS
between the input and δẏM . First (A and B) and second column (C and
D) represents the HTFs where the phase coordinates are selected using
isochrons, and kinematic phase respectively.

In addition to isochrons, we use a definition similar to the
kinematic phase used in [15]. Using the states yM , ẏM , we
define a phase variable:

rp =
yM − op

sp
, rv =

ẏM − ov
sv

φ̂ = rp + irv, φ̂ ∈ S1

where (op, ov) and (sp, sv) simply shifts the origin and scales
the coordinates, respectively. Based on this definition of
phase, we select equally spaced N Poincaré sections within
φ̂ ∈ [0, 2π). In our simulations, for both isochrons and
kinematic phase, we choose N = 32 and align the φ = 0
and φ̂ = 0 events on the limit cycle.

C. Simulation Results

1) Non-parametric Harmonic Transfer Functions: In this
section we present the estimated non-parametric harmonic
transfer functions based on two different phase coordi-
nates: isochrons and kinematic phase with (op, ov, sp, sv) =
(1.9, 0, 0.3, 1.9).

We identify the HTF blocks from u[n] to y[n], where y
is either taken as the deviation of the height from the fixed
point, namely δyM , or the deviation of the vertical velocity
from the fixed point, δẏM . In order to compute the limit–
cycles, we run the hybrid simulation script in the absence
of any external input for 60s and use the last cycle of this
simulation as the baseline for the limit cycle. We use the
method proposed in V-B and excite the system with inputs
that are sums of cosine signals. The length of the each
sums of cosines experiment is 84 cycles, however we only
use the last 64 cycles in order not to capture any transient
effects on the frequency response data. 64 cycles of data
with N = 32 provides a frequency resolution of fres = 1

32
(or ωres = π

16 rad/s). f is the normalized frequency with
units of cycles per fundamental period. We compute the
HTFs in the frequency band f ∈ (0, 10). As explained
in Sec.V-A we remove the frequencies that are the prime
multiple of the f = 0.5 (or ω = π

32 ) and we were left
with 620 frequencies for which we need to identify the HTF
components. We divide these 620 frequencies into 80 subsets
randomly following the rules derived in Sec. V-B. For each
subset we construct an input signal, perform the experiment,
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and compute the HTF components associated with those
frequencies.

Fig. 3 illustrates the magnitude plots of the empirical
HTFs. For all phase coordinates we found that the magnitude
of the components, Hi, for |i| ≥ 2 were negligible compared
to |H0(z)|, |H1(z)| & |H−1(z)| thus we only illustrate those
three responses. This is somewhat surprising, because even
for a hybrid system for which the dimension of charts are
not constant three harmonics can accurately describe the
dynamics around the limit cycle.

2) Phase Coordinates Affect Zeros, not Poles: If we
compare the HTFs from different phase coordinates, we can
see that the structure of the HTF is indeed affected by the
choice of Poincaré sections. In the context of H0(z) the
gain is doubled if we use isochrons instead of the kinematic
phase definition (note the vertical shift in Fig. 3 in the
blue curve). The phase coordinates affects the harmonics
H1(z) and H−1(z) structurally (red and dashed red curves).
However, it seems that the “resonant” frequencies (peaks
of the magnitude plots) are located at approximately same
locations for all phase coordinates. We suspect that this is
because choice of Poincaré sections do not move the pole
dynamics of the HTF but instead changes the zeros.

3) Estimation of Poincaré Return Map Eigenvalues
Through HTF: In this section, we present an approximate
parametric estimation approach for the non-zero eigenvalues
of the Poincaré return map through parametric identification
of the fundamental transfer function, i.e. H0(z). If we ob-
serve the bode plots of H0(z) illustrated in Fig. 4, we see that
all of them approximately look like transfer functions with
two poles, so we assumed a second-order transfer function
with one zero and two poles.

From the results we see that the parametric transfer
functions fit the frequency response data very well except
some higher order “bumps” around f = 2Hz, i.e. twice
the system pumping frequency. Since we have a parametric
estimation of H0(z) we can now recover the eigenvalues of
the Poincaré return map. Let p be a pole of the HTF, then
the eigenvalues of the Poincaré return map can be computed
simply λ = pN . All of the six parametric transfer functions

were correctly estimated the true eigenvalues of the system
λ1,2 = 0.25 ± 0.70i (with numerical errors at the third
significant digit).
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