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Abstract Autonomous use of legged robots in unstructured,
outdoor settings requires dynamically dexterous behaviors
to achieve sufficient speed and agility without overly com-
plex and fragile mechanics and actuation. Among such be-
haviors is the relatively under-studied pronking (aka. stot-
ting), a dynamic gait in which all legs are used in syn-
chrony, usually resulting in relatively slow speeds but long
flight phases and large jumping heights. Instantiations of
this gait for robotic systems have been mostly limited to
open-loop strategies, suffering from severe pitch instability
for underactuated designs due to the lack of active feed-
back. However, both the kinematic simplicity of this gait
and its dynamic nature suggest that the Spring-Loaded In-
verted Pendulum model (SLIP) would be a good basis for
the implementation of a more robust feedback controller for
pronking. In this paper, we describe how template-based
control, a controller structure based on the embedding of
a simple dynamical “template” within a more complex “an-
chor” system, can be used to achieve very stable pronking
for a planar, underactuated hexapod robot. In this context,
high-level control of the gait is regulated through speed and
height commands to the SLIP template, while the embed-
ding controller ensures the stability of the remaining degrees
of freedom. We use simulation studies to show that unlike
existing open-loop alternatives, the resulting control struc-
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ture provides explicit gait control authority and significant
robustness against sensor and actuator noise.
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1 Introduction

1.1 Motivation and background

Legged robot morphologies admit a wider range of behav-
ioral alternatives than more traditional tracked or wheeled
platforms with added mobility provided by otherwise infea-
sible behaviors such as running (Altendorfer 2000), leaping
and self-righting (Saranli et al. 2004). On the other hand,
legged systems often suffer both from additional hardware
complexity to support leg mechanisms, as well as increased
difficulty in designing controllers that can robustly realize
desired behaviors. One of the ways in which this mechanical
complexity can be decreased is the use of dynamic modes
of locomotion, wherein second order dynamics are properly
designed, tuned and exploited to achieve a wide variety of
behaviors even in the absence of full actuation (Allen et al.
2003; Sato and Buehler 2004; Saranli et al. 2004). Early in-
stantiations of this idea can be found in Raibert’s runners
(Raibert 1986), capable of fast and stable locomotion on
flat ground as well as dynamic maneuvers over obstacles.
In practice, this approach also has the advantage of signifi-
cantly improving robustness and decreasing power require-
ments as a result of using fewer actuators and the associated
reduction in weight and complexity (Saranli et al. 2001).
Unfortunately, the design, analysis and control of such dy-
namically dexterous legged platforms is more challenging
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Fig. 1 (Left) Snapshot of a
planar hexapedal pronking
stride, (right) the SLIP template

than simpler but slow, statically stable platforms due to dif-
ficulties in understanding and controlling second order dy-
namics. Despite substantial research in this domain, suffi-
ciently general solutions to this problem remain elusive.

In this paper, we present the mathematical basis and a
practical implementation of template based control of dy-
namic legged locomotion, a decompositional approach to
isolate and independently control robot degrees of freedom
that are relevant to the desired task (Full and Koditschek
1999). We concentrate on the pronking behavior for the
hexapedal RHex platform (Saranli et al. 2001), whose robust
and consistent realization in the absence of radial leg actu-
ation has previously not been possible (McMordie 2002).
Pronking is a gait adopted by legged animals wherein all
legs are used in synchrony and a substantial flight phase is
induced (see Fig. 1). This gait is often used by animals to
signal their strength to potential predators (FitzGibbon and
Fanshawe 1988; Caro 1994). Even though such a goal is un-
necessary for robotic platforms, large jumping heights as-
sociated with this gait are potentially useful for locomotion
on cluttered natural environments and may even increase ef-
ficiency by decreasing damping losses with shorter stance
and longer flight phases. Moreover, the lateral symmetry of
the gait admits the use of simpler, planar models and pro-
vides a rich domain for studying feedback control of dy-
namic legged locomotion, particularly in the presence of un-
deractuated leg structures. Such a planar simplification also
allows the analysis of similar gaits such as the trot and the
pace (Berkemeier and Sukthankar 2005).

Due to sensory limitations of our experimental platform,
we use a non-dimensional, previously validated planar sim-
ulation to provide a careful and thorough characterization
of the stability properties and noise performance of the pro-
posed pronking controller. The present paper extends on our
previous results for alternating tripod running (Saranli 2002;
Saranli and Koditschek 2003) to dynamic pronking, while
also providing a more careful characterization of its stability
properties and robustness against model and measurement
uncertainty.

1.2 Existing work

There has been very little explicit focus on robotic pronk-
ing in the literature (McMordie 2002; Berkemeier and Suk-
thankar 2005; Chatzkos and Papadopoulos 2009), as op-
posed to the much more widely studied bounding behavior

(Raibert 1990; Poulakakis et al. 2005; Zou and Schmiedeler
2006; Chatzakos and Papadopoulos 2009). Existing control
strategies for both types of behavior largely rely on simple
open-loop strategies (e.g. with constant hip torque inputs or
open-loop leg angle profiles) that offer little or no control au-
thority over high level gait parameters and require extensive
tuning to be successful. Even though the use of optimization
methods promises to yield some insight into useful design
criteria for robots capable of such highly dynamic behaviors
(Chatzakos and Papadopoulos 2007), the range of operation
and extensibility of resulting controllers remains limited.

In this context, there is significant biological (Duysens
and de Crommert 1998; Kopell 2000) and engineering (Kuo
2002; Klavins et al. 2002) evidence to support the adop-
tion of predominantly open-loop controllers with properly
tuned passive dynamics and minimal feedback for reliable
locomotion. Nevertheless, high-bandwidth feedback con-
trollers based on accurate dynamic models of such systems
are still necessary for the insight they provide into the de-
sign of both the mechanism and its control. Among success-
ful examples are use of zero dynamics for the stabilization
of walking and running behaviors (Westervelt et al. 2007;
Chevallereau et al. 2009) as well as self-righting behaviors
for the RHex hexapod (Saranli et al. 2004), both of which
use sufficiently accurate dynamical models and subsequent
high-bandwidth feedback to achieve stable and dynamic lo-
comotory behaviors. Our contributions in the present pa-
per not only provide a decompositional method that simpli-
fies the design of such controllers, but also illustrate perfor-
mance and gait-level controllability benefits associated with
model-based feedback control.

There is also a large body of literature studying sim-
pler, more fundamental models for basic locomotory be-
haviors, motivating our adoption of the Spring-Loaded In-
verted Pendulum (SLIP) model. This model has received
substantial attention in the literature, starting from its bi-
ological foundations (Blickhan and Full 1993), leading to
its instantiation within dynamically dexterous monopods
(Raibert 1986; Gregorio et al. 1997), followed by subse-
quent analysis (Schwind 1998; Altendorfer et al. 2004) and
the design of associated gait controllers. Our treatment of
the SLIP model also benefits from our recent work on its
control through analytical return maps (Arslan et al. 2009;
Ankarali et al. 2009).
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We continue the paper with a dimensionless model and
control of the SLIP template in Sect. 2. We then present
in Sect. 3, our embedding control framework in the context
of a one-legged system that captures most relevant actua-
tor limitations in the RHex platform except the pitch degree
of freedom. We then proceed with the pronking controller
for the full planar hexapod model in Sect. 4, followed by a
characterization of its stability properties and sensitivity to
different noise conditions in Sect. 5.

2 The spring-loaded inverted pendulum template

2.1 Dimensionless system model and dynamics

We model the SLIP dynamics as usual, consisting of a point
mass m and a freely rotating massless leg, endowed with
a linear spring-damper pair of compliance ks , rest length
l0 and, differently from similar models, viscous damp-
ing ds . Throughout locomotion, the model alternates be-
tween stance and flight phases, which are further divided
into the compression, decompression and ascent, descent
subphases, respectively. Four important events define dis-
crete transitions between these sub phases: touchdown, bot-
tom, liftoff, and apex. During flight, the body is assumed
to be a projectile acted upon by gravity, whereas in stance,
the toe is assumed to be fixed on the ground and the mass
feels radial forces generated by the leg. Table 1 details all
relevant variables and parameters for the SLIP model which
is illustrated in Fig. 1.

In order to eliminate redundant parameters and provide
an efficient way to interpret our simulation results, we will
use a dimensionless formulation of the dynamics both for
the SLIP model and subsequent, more complex models. Re-
defining time as t := t̄/λ with λ := √

l0/g, scaling all dis-
tances with the spring rest length l0 and using definitions
detailed in Table 1, SLIP dynamics in dimensionless coordi-
nates are given as

Flight:

[
ÿ

z̈

]
=

[
0

−1

]
, (1)

Stance:

[
ξ̈

ψ̈

]

=
[
ξψ̇2 − cosψ − rs(ξ − 1) − cs ξ̇

(−2ξ̇ ψ̇ + sinψ)/ξ

]
. (2)

Note that (d/dt)n = λn(d/dt̄)n and all time derivatives in
the above equations are with respect to the newly defined,
scaled time variable. Throughout the rest of the paper, we
will only work with dimensionless quantities and hence will
not explicitly mention their dimensionless nature unless nec-
essary.

2.2 Deadbeat stride control for the SLIP template

Gait-level control of SLIP hopping can be achieved with a
variety of different control inputs (Schwind 1998; Zeglin
1999). As we describe in later sections, our embedding con-
troller is based on the definition of a virtual SLIP, whose
toe placement allows us to arbitrarily control its leg length
at touchdown and liftoff instants. Consequently, in addition
to the touchdown leg angle ψt , our gait controller for the
template model uses leg lengths at touchdown and liftoff,
ξt and ξl respectively, for stride control. This choice also
makes stance dynamics fully passive, further simplify-
ing controller design and improving embedding perfor-
mance. A similar choice was made in our earlier work for
the template based control of tripod running (Saranli and
Koditschek 2003).

As usual, we summarize gait-level behavior of the SLIP
model through a Poincaré section of its trajectories at each
apex point with ż = 0. Our stride controller hence seeks
to regulate the discrete progression of the remaining states,
the apex height za and velocity ẏa . Specifically, we use a
deadbeat gait controller (Saranli et al. 1998) based on an
approximate but analytical stance map (Geyer et al. 2005;
Arslan et al. 2009; Ankarali et al. 2009). In this context,
given the current apex state [ẏa, za], the deadbeat controller
seeks to find control inputs u := [ψ,ξt , ξl] such that after a
single step, a desired apex state [ẏ∗

a , z∗
a] is achieved.

Table 1 State variables,
parameters and the definitions
of their dimensionless
counterparts for the SLIP
model. Variables with and
without bars correspond to
physical and dimensionless
quantities, respectively

Physical Dimensionless Definition Description

quantity group

t̄ t := t̄ /λ Time (where λ := √
l0/g)

[ȳ, z̄] [y, z] := [ȳ/ l0, z̄/ l0] SLIP body position

[ξ̄ , ψ̄] [ξ, ψ] := [ξ̄ / l0, ψ̄] SLIP leg length and leg angle

ks rs := ks (l0/(mg)) SLIP leg spring stiffness

ds cs := ds (l0/(λmg)) SLIP leg viscous damping

F̄ F := F̄ /(mg) Force variables

Ē E := Ē /(mgl0) Energy variables

p̄ψ̄ pψ := p̄ψ̄ (λ/(ml2
0)) Angular momentum
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Computation of leg lengths at touchdown and liftoff can
easily be accomplished by using the energy difference be-
tween two successive apex states, computed as

�E := (z∗
a − za) + 1

2
((ẏ∗

a )2 − (ẏa)
2). (3)

Depending on the sign of this desired energy change, we ei-
ther inject energy into the system by precompressing the leg
during flight (ξt = 1 − √

2�E/r for �E > 0), or take out
energy by prematurely lifting off with the spring still com-
pressed (ξl = 1−√

2�E/r for �E < 0). Unfortunately, the
computation of the remaining control input, the leg touch-
down angle ψt , is not as straightforward and requires ana-
lytical approximations to the apex return map for the spring-
mass hopper. This return map has three components: de-
scent, stance and ascent, among which the first and last are
trivially described by simple ballistic flight dynamics. How-
ever, the stance map is considerably more complicated, as
evidenced by substantial work in the literature for its deriva-
tion in a simple enough, analytical form (Schwind 1998;
Carver 2003; Geyer et al. 2005). In this paper, we use a mod-
ified version of the map described in Geyer et al. (2005),
which we briefly review in the sequel.

Assuming that the leg stays close enough to the vertical,
the effect of gravity during stance can be linearized, making
both the angular momentum pψ and the total mechanical
energy constants of motion. Based on these assumptions and
derivations similar to those described in Geyer et al. (2005),
radial and angular stance trajectories in dimensionless coor-
dinates take the form

ξ(t) = 1 + a + b sin(ω̂0t), (4)

ψ(t) = ψt + pψ(1 − 2a)(t − tt )

+ 2bpψ

ω̂0
[cos(ω̂0t) − cos(ω̂0tt )], (5)

where pψ := ξ2
t ψ̇t is the constant angular momentum and

we define ω̂0 :=
√

r + 3pψ
2, a := pψ

2−1

ω̂2
0

, b :=√
a2 + (2E − pψ

2 − 2)/ω̂2
0. Previously chosen leg lengths

at touchdown and liftoff used as boundary conditions on
(4) hence yield an approximate solution for the stance map.
At this point, the descent, stance and ascent maps can be
combined to provide an analytical return map [ẏa, za]k+1 =
f̂a(ψt , [ẏa, za]k). Even though this map is not invertible in

closed form, it is monotonic in ψt , admitting an easy numer-
ical solution to the minimization problem

ψt = argmin
−π
2 <ψ< −π

2

(ẏ∗
a − (πẏa ◦ f̂a(ψt , [ẏa, za]k)))2, (6)

yielding an effective, step-based deadbeat controller for the
SLIP model. We will use this controller to regulate the apex
speed and height for the pronking behavior once proper em-
bedding of SLIP dynamics within the hexapedal morphol-
ogy is achieved.

3 Dynamics and control of a torque actuated
spring-mass Hopper

Before we proceed with the planar pronking model, we in-
troduce in this section an extended SLIP model with Torque
actuation at the hip (SLIP-T) as a simpler intermediate
model which captures most relevant actuator limitations of
RHex, yet allows the main ideas for our embedding con-
troller to be much more clearly explained. Section 4 will
then extend these derivations to the planar hexapod mor-
phology.

3.1 System model and dynamics

As illustrated in Fig. 2, the SLIP-T system is structurally
similar to SLIP except that it incorporates a single motor
at the hip with a controllable torque τ̄ instead of radial leg
actuation. In order to make such a torque possible without
adding an extra degree of freedom, we assume the pres-
ence of a rigid body with mass m, whose orientation is con-
strained to be horizontal (i.e. having infinite inertia). Finally,
we also assume a very small mass mt attached to the toe to
capture flight dynamics of the leg. In addition to possible
physical instantiations of this model through explicit sup-
pression of body pitch freedom (Sato and Buehler 2004), its
main utility for us is the fact that it captures most of the at-
tributes in RHex relevant to the dynamic embedding of SLIP,
while being sufficiently simple to clarify the presentation of
our method.

We define three different reference frames: a fixed iner-
tial world frame W , a body frame B attached to the body
COM and finally a virtual toe frame, V , marking the fixed
location of the virtual SLIP toe on the ground during stance.

Fig. 2 SLIP-T: Spring-mass
hopper with a fully passive leg
and a rotary hip actuation
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Table 2 State variables, parameters and the definitions of their dimen-
sionless counterparts for the SLIP-T model. Variables with and with-
out bars correspond to physical and dimensionless quantities, respec-
tively

Dimensionless Definition Description

group

ρ := ρ̄/ l0 Physical leg length

φ := φ̄ Physical leg angle

f := f̄/l0 Physical toe position

r := k(l0/(mg)) Relative stiffness of the physical leg

c := dl0/(λmg) Viscous friction of the physical leg

τ := τ̄ /(mgl0) Hip torque

ηt := mt/m Toe mass

W and V are coincident with the ground plane and all frames
have identical orientations since the body angle is assumed
constant. The toe location, length and hip angle for the phys-
ical leg are denoted with f̄, ρ̄, and φ̄, respectively. The hy-
brid structure of the SLIP-T model is identical to the SLIP
model described in Sect. 2.1, with an additional flag, s, de-
fined to indicate whether the leg is in flight (s = 0) or in
stance (s = 1).

In our derivation of the dimensionless equations of mo-
tion for the SLIP-T model, the definitions of Table 1 will be
used for the virtual leg defined between the body and virtual
toe frames. Moreover, we will also use additional definitions
listed in Table 2 for the physical SLIP-T leg.

Within a Newton-Euler framework, the radial spring-
damper force Fr := −r(ρ − 1) − cρ̇, the effect of the hip
torque Fτ := −τ/ρ, acting orthogonally to Fr and the grav-
itational acceleration constitute the only external forces act-
ing on the body during stance. The total force vector exerted
on the body by the leg during stance can be formulated as

F = R(φ)

[
Fτ

Fr

]
, (7)

where R(φ) denotes the rotation matrix that determines the
orientation of the leg with respect to B. Combining (7) with
flight dynamics and by making use of the touchdown flag s,
we can obtain the overall SLIP-T equations of motion as

[
ÿ

z̈

]
= sR(φ)

[ −τ/ρ

−r(ρ − 1) − cρ̇

]
+

[
0

−1

]
, (8)

ηt f̈ = (s − 1)R(φ)

[ −τ/ρ

−r(ρ − 1) − cρ̇

]
. (9)

3.2 Virtual foot placement and virtual toe coordinates

Clearly, control inputs available to SLIP-T are not fully
compatible with those that we used to perform gait control
on the SLIP template. Even though the touchdown angle can

be realized within the SLIP-T model by controlling leg angle
during flight, it is unclear how the touchdown and liftoff leg
lengths can be commanded in the absence of any radial leg
actuation. Moreover, any attempt to use the hip torque will
substantially change the angular momentum around the toe
of the SLIP-T, pushing its dynamics farther from the SLIP
template.

Fortunately, both of these problems can be addressed
with the realization that the desired SLIP template does not
need to exactly coincide with the physical leg of the SLIP-T
model. As evident from the illustration in Fig. 2, when the
virtual toe position fv is different than the physical toe po-
sition f, the virtual leg length also ends up being different
than the physical leg length. Consequently, if we use the
hip motor during flight1 to bring the physical leg angle to
φt = arccos(ξt cos(ψt )), we can achieve both ξt and ψt by
choosing the virtual toe position as f̄v = [y + ξt cos(ψt ),0],
determining the position of the frame V for the following
step. Note, however, that the state of the physical leg at
touchdown is determined by the flight dynamics and may
not exactly match the commanded angle due to the small but
finite toe mass. In such cases, our choice of the virtual toe
position prioritizes the desired SLIP touchdown angle over
its leg length and uses adjusted versions of the touchdown
SLIP states with ψ̃t = ψt and ξ̃t = zt/ cosψt .

Following the placement of the virtual toe frame V , we
define a new set of dimensionless polar coordinates for the
stance dynamics in which the SLIP embedding will take
place, defined as

cv := [ξ,ψ]T . (10)

3.3 Control of stance dynamics trough active embedding
of the ideal SLIP

The stance dynamics of SLIP-T in virtual toe coordinates
are given by

ξ̈ = ξψ̇2 − cosψ + Kξ , (11)

ψ̈ = −2ξ̇ ψ̇ + sinψ

ξ
+ Kψ/(ξ2), (12)

where Kξ and Kψ capture the effect of both the physical leg
spring and the external hip torque on the virtual toe coordi-
nates and can be written as

K := [Kξ ,Kψ ]T = (Dcφ)τ + (Dcρ)Fr, (13)

where Dcφ := [∂φ/∂ξ, ∂φ/∂ψ]T and Dcρ := [∂ρ/∂ξ,

∂ρ/∂ψ]T denote Jacobian matrices of the hip angle and leg

1A simple PD law can be used to this end for controlling the hip motor
during flight.
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length with respect to virtual leg coordinates. For simplic-
ity, we define J := (Dcφ) and B := (Dcρ)Fr . The primary
goal of our embedding controller is to find appropriate hip
controls to force the dynamics of (11) and (12) to match the
simple SLIP dynamics in (2). Simple inspection reveals that
this can only be accomplished if we have

K = [U(ξ),0], (14)

where U(ξ) is the desired radial potential law for the SLIP
template and the second component enforces conservation
of angular momentum around the virtual toe.

Unfortunately, the SLIP-T model has only a single actua-
tor, meaning that both components of K cannot be indepen-
dently controlled. Moreover, particularly when the virtual
toe is close to the physical toe, radial control affordance on
K is very low. Consequently, we choose to focus explicit
control effort on the angular dynamics and attempt to pre-
serve angular momentum around the virtual toe with

τ = J−1
ψ (0 − Bψ) = −ρ tan(ψ − φ)Fr, (15)

where Jψ and Bψ denote rows of J and B associated with
the ψ coordinate, respectively. Our assumption is that if the
physical leg compliance (i.e. the passive dynamics of the
robot) are properly chosen, they will approximately yield
the desired result for the remaining coordinate in the virtual
leg coordinates.

3.4 Gait level control of SLIP-T: energy corrections

Not surprisingly, our choice of prioritizing angular dynam-
ics over radial dynamics in (15) causes the SLIP embedding
to perform poorly in regulating the total energy in the sys-
tem, which depends mostly on the radial spring dynamics.
This necessitates modifications in our embedding algorithm
to account for energetic errors introduced by both radial in-
accuracies as well as the presence of damping.

Our corrections primarily target the desired energy change
of (3). For the SLIP-T model, we need to also supply the en-
ergy lost through damping, �Eloss , with

�E = (z∗
a − za) + 1

2
((ẏ∗

a )2 − (ẏa)
2) + �Eloss . (16)

Unfortunately, accurate estimation of damping losses is a
hard problem and depends critically on physical implemen-
tation details. Even under simple viscous damping, it is not
possible to obtain a sufficiently accurate analytic solution.
Fortunately, radial stance trajectories of both the SLIP-T
model, as well as the pronking behavior of later sections
do not exhibit significant variability across strides in their
damping losses. Consequently, we use a sinusoidal fit, in-
spired by the form of (4), to measured radial trajectories
within each step to estimate the damping losses within the

next stance phase. As shown in Sect. 5, this yields excel-
lent results at steady state, as well as very good performance
even during transients.

A more important source of inaccuracy in the overall per-
formance of the embedding controller is how the touchdown
and liftoff leg lengths are chosen to realize the desired en-
ergy change. Since the radial dynamics of the embedding
deviate from the fully passive stance dynamics of the ideal
SLIP model, the computations of Sect. 2.2 are not good
enough and a better analysis is needed for the energy sup-
plied by the hip torque:

�E =
∫ tl

tt

τ φ̇(t) dt

=
∫ tl

tt

−ρ(t) tan(ψ(t) − φ(t))Fr(t)φ̇(t) dt. (17)

Having already compensated for damping, we can assume
that Fr(t) = −r(ρ(t) − 1) to yield

�E =
∫ tl

tt

ρ(t) tan(ψ(t) − φ(t))φ̇(t)r(ρ(t) − 1) dt, (18)

which, despite the availability of analytical approximations
to all of its components through (4) and (5), still does not
admit an exact analytic solution. Nevertheless, we propose
an approximation to this integral to further improve on the
poor energetic performance arising from deploying the ideal
SLIP energy control. We first assume that (1−ρ) ≈ (1− ξ),
which is reasonable if the desired changes in gait parame-
ters are not too dramatic. Moreover, the angle difference be-
tween the physical and virtual leg stays relatively constant
throughout stance and can be approximated on the average
with its value at bottom. This yields an approximation to the
integral in (18) as

�E ≈
∫ tl

tt

r(ξ(t) − 1) tan(ψb − φb)ρbφ̇b dt, (19)

which, once the radial solution of (4) is plugged in, reduces
to

�E ≈ r tan(ψb − φb)ρbφ̇b

× (a(tt − tl) − b(cos(ω̂0tt ) − cos(ω̂0tl))/ω̂0), (20)

where a, b, ω̂0 and event times are all as defined in Sect. 2.2
and are functions of the control inputs. In order to avoid nu-
merically solving this equation in multiple dimensions, we
recall our observation that the angular dynamics do not sub-
stantially effect the radial, energetic behavior of the system.
Consequently, we modify (20) to use the neutral touchdown
angle ψn := {ψt | [ẏa, za]T = f̂a(ψt , [ẏa, za]T )} as one of
the input commands, yielding a one dimensional analytic
equation, which we then solve for ξt to achieve the desired
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pumping energy. Once the appropriate leg length is deter-
mined, the deadbeat controller of Sect. 2.2 is used to find
the corresponding touchdown angle.

4 Dynamics and control of planar hexapedal pronking

As described earlier, our target experimental platform for
the pronking behavior in the long run is RHex, an au-
tonomous hexapod robot with only a single rotary actua-
tor on each hip. When contralateral legs on this platform
are used in synchrony for behaviors such as the pronk,
the sprawled posture of the morphology ensures that loco-
motion dynamics live on the saggital plane. Consequently,
a saggital planar model is often capable of capturing rel-
evant aspects of the dynamics for the purposes of mod-
eling and analyzing such behaviors (Saranli et al. 2004;
Greenfield et al. 2005). In this section, we describe and use
such a planar model, Slimpod (Saranli 2000, 2002), to de-
sign a feedback controller for pronking.

4.1 System model and dynamics

The Slimpod model, illustrated in Fig. 3, consists of a rigid
body with inertia I and mass m, to which three compliant
legs, each representing a saggitally symmetric pair of legs on
RHex, are attached. The position and orientation of the body
are represented by a body-fixed frame B with respect to an
inertial world frame W . As in Sect. 3.1, we also define a
“virtual leg” extending from the body center of mass (COM)
to a stationary point on the ground coincident with the vir-
tual toe frame V having the same orientation as the world
frame. Legs are considered massless during stance, with the
toe position fixed on the ground at f̄i , but very small toe
masses mt � m are used to represent protraction dynamics

during flight. Each leg is attached to the body through a pin
joint with independently controllable torque τ̄i , located at āi

in body coordinates. Each leg is compliant with stiffness ki

and incorporates viscous damping with coefficient di .
As in previous sections, we will work in dimensionless

coordinates for the Slimpod model. To this end, in addi-
tion to variables defined in Tables 1 and 2, we will also use
Slimpod-specific definitions detailed in Table 3. The deriva-
tion of the hybrid dynamics for the planar hexapod model
closely parallels the presentation in Saranli (2002), which
we omit in the present paper for space considerations.

4.2 Controlling Slimpod stance dynamics trough
an embedding of the ideal SLIP

In controlling the stance dynamics of the Slimpod model for
the pronking behavior, we use an embedding controller very
similar to the controller presented in Sect. 3.3. However, the
presence of three individual legs as well as the pitch degree
of freedom necessitates a number of important extensions.

Firstly, we consider the SLIP template to have transi-
tioned into stance as soon as at least one of the Slimpod legs
touches the ground. This event also triggers the placement
of the virtual toe and defines new virtual toe coordinates in
the frame V , now extended with the pitch degree of freedom
to yield

cv = [ξ,ψ,α]T . (21)

Normally, the flight controller is responsible for servoing
individual Slimpod legs to proper locations to achieve the
desired touchdown state for the SLIP template. However,
as a result of the nontrivial flight dynamics of Slimpod
legs and the body, actual touchdown states of the tem-
plate may not be exact. In such cases, as in Sect. 3.2,

Fig. 3 Slimpod: A planar
dynamic model for hexapedal
pronking

Table 3 Dimensionless
parameters and variables of
slimpod model

Dimensionless var. or par. Derivation Definition

α ᾱ Dimensionless body orientation

j I/(ml2
0) Dimensionless inertia

ai āi / l0 Dimensionless hip position (in B)
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we prioritize the touchdown angle over the touchdown
length.

Following the placement of the virtual toe, the stance
controller takes over and attempts to mimic ideal SLIP tem-
plate dynamics by properly choosing hip torque inputs of the
Slimpod model. As in Sect. 3.3, we start by writing down the
stance equations of motion in virtual toe coordinates to yield

ξ̈ = ξψ̇2 − cosψ + Kξ , (22)

ψ̈ = −2ξ̇ ψ̇ + sinψ

ξ
+ Kψ, (23)

α̈ = Kα

j
, (24)

which are identical with the SLIP-T dynamics of (11) and
(12) with the addition of pitch dynamics. The forcing vector
K := [Kξ ,Kψ,Kα]T = (Dcφ)τ s + (Dcρ)Fr,s captures the
effect of both the hip torques τ s and radial leg forces Fr,s

on each virtual toe coordinate with Dcφ and Dcρ denoting
Jacobian matrices of the leg angles and lengths with respect
to virtual toe coordinates. As in Sect. 3.3, we define J :=
Dcφ and B := (Dcρ)Fr,s .

We seek to find appropriate hip torques to force the Slim-
pod center of mass to obey the dynamics of the SLIP tem-
plate with

K∗ = [
U∗(ξ),0,M∗

α

]
, (25)

where U∗(ξ) is the desired radial spring potential law, the
second component forces angular SLIP dynamics and M∗

α =
−Kαα − Kα̇α̇ is chosen as a simple PD law for pitch stabi-
lization.

Unfortunately, as described in Saranli and Koditschek
(2003), J is rank deficient for configurations in which all
legs are parallel, making this simple inversion impossible.
The rank deficiency becomes even worse when the legs are
vertical, reducing control affordance to a single degree of
freedom. Since the pronking behavior inevitably must go
through such configurations, we will address this problem
in the next section by prioritizing appropriate coordinates of
the SLIP template while also respecting motor torque limits.

4.2.1 Handling singularities, torque limits and partial
stance

The rank deficiency of J for the planar hexapod model
is very similar to the lack of radial control affordance in
Sect. 3.3, where our solution was to rely on the passive dy-
namics of the morphology to realize the desired radial dy-
namics. Since all legs in the Slimpod model incorporate pas-
sive compliance, this will still be possible, allowing us to fo-
cus active control effort on angular SLIP dynamics for the
embedding. We will initially assume that all three legs are

in contact with the ground and introduce exceptions later to
deal with partial touchdown and liftoff. As such, when the
radial component is excluded from the inversion, the inverse
dynamics controller attempts to simultaneously satisfy both
angular template dynamics and pitch stabilization with

τψ,α(v) := JT
ψ,α

(
Jψ,αJT

ψ,α

)−1

× ([0 M∗
α]T − Bψ,α

) + J⊥
ψ,αv, (26)

where J⊥
ψ,α spans the nullspace of Jψ,α and v covers the

remaining freedom.
In order to ensure practical applicability of our controller,

we also impose an additional constraint on hip torques based
on RHex’s actuator torque-speed characteristics and a con-
sideration of premature leg liftoff which may cause undesir-
able loss of actuator affordance. Formally, we specify these
constraints individually for each leg, yielding the allowable
torque space

Tlim := {τ | τi,min ≤ τi ≤ τi,max,1 ≤ i ≤ 3} (27)

whose intersection with the solution space of (26) is used by
our controller to yield

τ s = arg min
τψ,α(v)∈Tlim

‖τψ,α(v)‖, (28)

which can easily be solved using linear programming. Un-
fortunately, there are situations where the desired solution
space and the feasible torque space do not intersect. In such
cases, we prioritize the preservation of angular momentum
around the virtual toe, using the alternative torque solution

τψ(w) := JT
ψ

(
JψJT

ψ

)−1([0 M∗
α]T − Bψ

) + J⊥
ψw, (29)

where J⊥
ψ spans the nullspace of Jψ and w covers the re-

maining freedom. This yields a new form for the overall so-
lution as

τ s = arg min
τψ(w)∈Tlim

‖τψ(w)‖, (30)

which is, once again, easily solvable using linear program-
ming (Saranli 2002).

The controller that results from using the solutions of
(28) and (30) is applicable when at least two legs are in
stance. However, close to the touchdown and liftoff events,
and particularly in the presence of noise, the robot may find
itself with only a single leg in contact with the ground. Ear-
lier work on pronking (McMordie and Buehler 2001) and
our simulations show that pitch instability induced by such
underactuated phases is a significant mode of failure. More-
over, when a single leg is in stance, control affordance is
primarily in the pitch degree of freedom. Consequently, for
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single-leg configurations, we only attempt to stabilize the
pitch with

τs = J−1
α (M∗

α − Bα) (31)

which yields a scalar torque for the single leg and prevents
problematic loss of pitch stability.

4.3 Gait level control of the Slimpod

As a result of the pitch stabilizing force imposed by M∗
α ,

pitch oscillations during steady-state pronking are expected
to be very small. Consequently, the stance dynamics for the
Slimpod are expected to closely mirror those of the SLIP-T
model. As a result, we will use the gait controller developed
in Sect. 3.4 with only a few minor extensions for step-wise
control of pronking.

Firstly, we choose the compliance and damping parame-
ters of the gait controller to reflect the presence of three legs
acting in parallel:

d =
3∑

i=1

di, k =
3∑

i=1

ki . (32)

We also coordinate flight control of all legs to ensure si-
multaneous touchdown of all three legs, making sure that
desired SLIP control inputs provided by the gait level con-
troller in Sect. 4.3 can be realized by explicit placement of
the virtual toe. To this end, the flight controller continuously
solves kinematic equations for all legs and servoes them to
their required positions with respect to the world frame as
illustrated in Fig. 4. Based on the SLIP control decisions ψt

and ξt , target leg angles are given by

p̄i = ξt

[
sinψt

cosψt

]
+ R(αt )ai , (33)

φ∗
it = arccos(pzi) − αt , (34)

where p̄i are the positions of the hips in V for each leg and
φ∗

it are the target leg angles.
All of our pronking simulations presented in Sect. 5 use

this flight controller, together with the embedding stance
controller described in Sect. 4.2.

Fig. 4 Leg kinematics at the time of touchdown

5 Simulation studies

In this section, we provide simulation evidence to illustrate
that the embedding controllers described in Sects. 3 and 4
for the SLIP-T and Slimpod models, respectively, are ca-
pable of producing stable and controllable pronking. For
hexapedal pronking, we also characterize the robustness of
the resulting behavior against modeling errors in the form
of parameter mismatch, sensor noise in the form of state
measurements polluted by white Gaussian noise and actu-
ation noise in the form of piecewise constant torque out-
puts updated at 1 KHz. To this end, we measure steady-state
tracking performance as a function of noise magnitude and
show that an experimental implementation of the proposed
pronking controller is feasible under realistic sensory per-
formance.

All simulations were run in Matlab, using a hybrid dy-
namical simulation toolkit based on SimSect (Saranli 2000),
whose qualitative correspondence to the physical perfor-
mance of RHex was previously verified (Saranli 2002;
Saranli et al. 2004). All kinematic and dynamic parame-
ters for both the SLIP-T and Slimpod models, detailed in
Table 4, were chosen to closely match the physical RHex
robot to ensure future applicability of our results to an ex-
perimental implementation.2

5.1 Existence and nature of stable limit cycles

We first investigate whether our embedding controller leads
to a stable limit cycle within the state space of the sys-
tem. Figures 5 and 6 illustrate example runs for the SLIP-T
and Slimpod models, respectively, starting from same ini-
tial condition and converging to the same selected goal state
of z = 1.15, ẏ = 1.1 (corresponding to a physical goal of
z̄ = 20.125 cm and ˙̄y = 1.44 m/s for the RHex platform,
with a leg length of l0 = 17.5 cm—Saranli et al. 2001).
In both figures, left two plots show forward velocity and
body height as a function of dimensionless time, while the
rightmost plots show the progression of apex states at each
step. These figures clearly show that models converge to a
limit cycle with very small steady-state errors indicating that
the combination of the embedding controller with the SLIP
deadbeat controller successfully stabilizes locomotion.

In all of our simulations, we observed that the models
either converge to a single, stable, period-one limit cycle,
or irrecoverably fail due to transitional faults such as toe
stubbing or pitch oscillations leading to the body colliding
with the ground. Convergence speed is primarily determined
by manually tuned limits we impose on the touchdown leg
length (ξt > 0.9), which also limits the energy that can be

2Note that the results are applicable to a wide range of parameter com-
binations due to our dimensionless formulation of the models.
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Table 4 Kinematic and dynamic parameters for the Slimpod and SLIP-T models. All quantities are in dimensionless units. The single SLIP-T leg
represents all six of RHex’s legs, while each Slimpod leg represents a pair of contralateral legs on RHex

ri ci τ̄max φ̇max a1 a2 a3 j

SLIP-T 1.11 25.9 5.91 6.88 – – – –

Slimpod 0.186 8.62 2.19 6.88 [−1.26,0] [0,0] [0,1.26] 0.62

Fig. 5 An example SLIP-T
simulation with tend = 30
(t̄end = 4 s for RHex), starting
from an initial condition of
z = 1.4, ẏ = 0.9, towards an
apex goal z∗ = 1.15, ẏ∗ = 1.1

Fig. 6 An example pronking
simulation with tend = 30
(t̄end = 4 s for RHex), starting
from an initial condition of
z = 1.4, ẏ = 0.9, α̇ = 0, towards
an apex goal z∗ = 1.15,
ẏ∗ = 1.1

injected into the system at every step. Smaller touchdown
lengths for the virtual leg were found to cause pitch insta-
bility due to excessive energy input leading to decreased
embedding performance. In order to prevent steps inputs
with large magnitude, we also use a reference governor on
the forward velocity command that also effects convergence
speed. Finally, it is worth noting that the state progressions
for both the SLIP-T and Slimpod models are very similar,
suggesting that the desired SLIP template was indeed cor-
rectly embedded.

5.2 Stability and basins of attraction

In order to generalize our observations in Sect. 5.1 and
more accurately characterize stability properties of both the
SLIP-T and Slimpod controllers, we systematically ran sim-
ulations from a variety of different initial conditions toward
a single common goal of z∗ = 1.16, ẏ∗ = 1.1 (correspond-
ing to z̄∗

a = 0.203 cm and ˙̄y∗
a = 1.44 m/s for RHex). Each

individual run with tend = 52 (t̄end = 7 s for RHex) was con-
sidered stable if the last five apex states were within 1% of
their average.

Figure 7 shows the resulting domain of attraction for
SLIP-T running under the action of our controller. Stable
locomotion cannot be achieved at very high speeds, which
is expected due to the torque limits we impose on the ac-
tuators. Similarly, low speeds are problematic since the ef-
fects of hip torques are primarily in the horizontal direction

Fig. 7 (Color online) Stable domain of attraction for the SLIP-T
model towards the goal ẏ∗

a = 1.1 and z∗
a = 1.16. The shaded (green)

region shows initial conditions from which locomotion converges to a
stable limit cycle. Dashed lines illustrate a few example runs to show
convergence behavior

for narrow leg angles associated with slow speeds, making
it impossible to inject vertical energy into the system. Our
controller successfully stabilizes running for the large range
of speeds in between, also covering a large range of initial
heights.

Similarly, Figs. 8 and 9 illustrate two cross sections of
the domain of attraction for the Slimpod model, whose
state space now has the additional pitch degree of freedom.
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Fig. 8 (Color online) Cross section (ẏa–za ) of the domain of attraction
towards the goal ẏ∗

a = 1.1 and z∗
a = 1.16. The shaded (green) region il-

lustrates initial conditions from which the hexapod converges to stable
pronking. Dashed lines illustrate a few example runs to show conver-
gence behavior

Fig. 9 (Color online) Cross section (α̇a–za ) of the stable domain of
attraction towards the goal ẏ∗

a = 1.1 and z∗
a = 1.16. The shaded (green)

region illustrates initial conditions from which the hexapod converges
to stable pronking. Dashed lines illustrate a few example runs to show
convergence behavior

Not surprisingly, it is slightly harder to stabilize hexapedal
pronking due to the additional pitch degree of freedom, lead-
ing to a smaller domain of attraction. Nevertheless, the sta-
ble domain for the pronking controller is still large enough
to admit practical deployment.

5.3 Gait-level controllability

As we noted before, an important novelty of template based
control is its provision of a simple, task specific interface
for high level control of locomotion. In contrast to existing
pronking controllers in the literature, this approach provides
a high degree of control authority for the pronking gait with
independently adjustable forward speed and hopping height.

Fig. 10 (Color online) Gait-level controllability of the pronking con-
troller. The shaded (blue) region illustrates the set of apex goal settings
for which stable pronking is possible and steady-state was within 5% of
the desired goal. All points in this goal region use the same kinematic
and dynamic parameters given in Table 4

In order to characterize the extent to which high-level gait
parameters can be controlled for the pronking gait, we ran a
series of simulations with different apex goal settings from
a rectangular region in the apex state space. Each run was
started from an initial condition close to the goal and the
stability criteria of the previous section were used to deter-
mine successful runs. Moreover, we also checked whether
the hexapod was able to reach steady-state at least within
5% of the desired goal state. Under these criteria, Fig. 10
shows all goal states that are successfully stabilized by the
embedding controller for pronking with the Slimpod model.

These results show that the embedding controller is not
only capable of stabilizing isolated goal settings, but that
there is a large, contiguous range of goal states that can ex-
plicitly be requested by a high-level controller. Such gait-
level control authority is essential if dynamic behaviors such
as pronking are to be deployed in complex terrain which
would require rapid and stable adjustment of gait parame-
ters to successfully overcome obstacles and choose proper
footholds.

5.4 Sensitivity analysis

Any physical implementation of our embedding controller
will inevitably have to deal with several sources of noise
and uncertainty. First and foremost, inaccuracies in measur-
ing the kinematic and dynamic parameters of the platform
may have considerable impact on controller performance.
Moreover, digital torque control is often limited to piece-
wise constant output as opposed to the continuous torque
profile required by (26). Finally, state feedback in a robotic
platform requires the processing of sensory information, in-
volving varying levels of noise both due to imperfect sensors
as well as the approximate nature of estimation filters. In this
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Fig. 11 Sensitivity of
steady-state tracking
performance of the pronking
controller with respect to a
miscalibrated relative spring
stiffness r̂i

section, we characterize the sensitivity of our pronking con-
troller against all these three sources of uncertainty.

5.4.1 Sensitivity to model uncertainty

Among most important and difficult to measure parameters
for the Slimpod model are the coordinates of the leg attach-
ment points ai with respect to the center of mass, and the
relative leg spring stiffness ri . Moreover, initial estimates
of these parameters may become more inaccurate as a re-
sult of material fatigue and structural changes in the robot
after continuous use on complex terrain. Consequently, we
first investigate the impact of an increasing discrepancy be-
tween the real and assumed values of these parameters on
the tracking accuracy of our pronking controller.

Figure 11 illustrates the impact of inaccurate leg stiff-
ness values on the steady-state tracking performance of the
pronking controller, where r̂i denotes the stiffness value as-
sumed by the controller whereas ri is the actual spring stiff-
ness. The tracking performance was characterized by com-
paring apex height and speed parameters associated with
stead-state limit cycle, z and ẏ, with their commanded val-
ues, z∗ and ẏ∗. These results show that pronking remains
stable even in the presence of up to 10% error in the spring
stiffness. Note that the approximate nature of our controller
causes some steady state bias even when r̂i/ri = 1 with no
modeling errors.

Similarly, Fig. 12 illustrates the impact of inaccuracies
in the calibration of the COM position on the steady-state
tracking performance. We focus our attention on the hori-
zontal position error for the COM, denoted by yB

COM , and
defined as the horizontal position of the actual body cen-
ter of mass in the body frame. We found this horizontal
COM error to have significantly more effect on the stabil-
ity and performance of pronking compared to vertical po-
sition errors. Beyond a certain discrepancy, particularly in
the backwards direction, the pronking controller becomes
increasingly unreliable and does not converge to a limit cy-
cle. Fortunately, the reliable range of −0.05 < yB

COM < 0.4
(−0.01 m < yB

COM < 0.07 m for RHex with l0 = 17.5 cm) is

Fig. 12 Sensitivity of steady-state tracking performance of the pronk-
ing controller with respect to a miscalibrated horizontal COM position.
yB
COM denotes the horizontal position of the actual COM in the body

frame, with positive values corresponding to a front-heavy robot

reasonably large and practically feasible. It is usually practi-
cal to obtain center of mass estimates within such centimeter
scale ranges with modern solid modeling tools even though
unpredictable payloads may be more problematic. Neverthe-
less, in this range, the pitch velocity at apex remains largely
unaffected by the errors, whereas the height parameter suf-
fers the most. Most interestingly, however, the results show
that when the actual body center of mass is ahead of the geo-
metric center of the robot, there is a notable increase in the
tracking performance. This effect is a natural result of the
fact that when the body COM is shifted forward, the posi-
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tive pitch torque provided by gravity helps balance the effect
of leg torques in the opposite direction.

Another possible source of model uncertainty arises if
there is toe slippage, violating of the fixed toe assumption
within the Slimpod model. However, the embedding con-
troller of Sect. 4.2 is based on instantaneous inversion of the
second order system dynamics and does not inherently rely
on past states. Consequently, if there is a sufficiently accu-
rate sensory suite on a physical robot implementation that
can track foot contact locations relative to the body posi-
tion, the embedding controller can be informed of associated
kinematic changes and minimize the impact of foot slippage
on controller performance. Since our focus in this paper is
on the ideal performance of the embedding controller and
insights that may be gained from its study, we leave issues
related to the realization of such a sensory suite, which nat-
urally entails numerous challenges, outside the scope of this
paper.

5.4.2 Sensitivity to discrete control and sensor noise

Our final set of simulations investigate the performance
of our pronking controller under substantial noise condi-
tions. In contrast to the simulations of preceding sections,
all of which were obtained using simultaneous integration
of model and controller dynamics, we will now discretize
our controller actions and apply piecewise constant torque
commands at a frequency of 1 KHz. This is a much more
realistic scenario since any physical robotic platform will
have similar constraints, having to perform closed loop con-
trol digitally at a limited frequency.

In addition to this “discretization noise”, we also sepa-
rately add zero-mean, white Gaussian noise with increasing
amounts of standard deviation to our force and state mea-
surement readings in an attempt to characterize the sensi-
tivity of our controller with respect to these sensory inputs.
Since our aim is controlling the apex variables, we investi-
gate the effect of the noise measurements on the apex height
and apex velocity.

We summarize the effects of sensory noise on pronking
performance through the relation of the standard deviation in
the steady-state tracking errors (taking into account the last
10 apex states for each run) to the standard deviation of the
sensory noise. More specifically, we ran simulations using
different noise conditions with standard deviation σnoise to
determine the following relations

σza = βzaσnoise + γza , (35)

σẏa = βẏaσnoise + γẏa , (36)

where the affine parameters βza , γza , βẏa , γẏa were deter-
mined using linear regression. Table 5 summarizes our re-
sults where each row includes the fitted parameters for noise

Table 5 Sensitivity of steady-state tracking errors to sensory noise on
different state variables. β and γ are slopes and offsets of a linear re-
lation between the standard deviation of the steady state error and the
standard deviation of the noise

State variable Apex height Apex speed

βza γza βẏa γẏa

Horizontal position 0.189 0.0038 0.954 0.0047

Vertical position 0.223 0.0063 2.067 −0.0016

Horizontal speed 0.424 0.0011 1.421 −0.0010

Vertical speed 0.288 0.0017 1.151 0.0005

Pitch angle 0.171 0.0063 0.940 0.0051

Pitch rate 0.700 0.0008 1.411 0.0001

Force 0.028 0.0008 0.078 −0.0011

injected into a single specific sensory variable. The analysis
in this section is intended to help identify the relative impor-
tance of sensing on different components of the robot state
with respect to their impact on controller performance.

Somewhat surprisingly, our results show that force vari-
ables do not have a critical impact on controller performance
which is encouraging since it is very hard to reliably imple-
ment accurate force measurements on dynamic, autonomous
hexapods such as RHex. However, vertical position, and
both velocity coordinates seem to have substantial impact on
particularly the apex speed tracking performance. This is not
entirely surprising since these state variables directly effect
the total energy in the system and hence influence the per-
formance of the embedding controller. These position and
velocity state variables are among the hardest quantities to
measure on autonomous legged robots, but if for a known
ground profile and well instrumented legs, accurate and high
bandwidth estimation of these state components may be pos-
sible (Lin 2005). Since the vertical position seems to be
the most critical state component, additional sensory read-
ings such as laser range sensors monitoring distance to the
ground may be used for better estimates.

The pitch angle and rate components are the least prob-
lematic from a practical point of view since even solid-state
inertial measurement units are capable of accurate estima-
tion of pitch and roll degrees of freedom particularly when
a good motion model is available for filtering. The relatively
high dependence of tracking performance on these variables
is not entirely surprising since they have significant impact
on the kinematics of front and back legs, introducing errors
in the embedding accuracy. Finally, the offset terms γza and
γẏa simply provide a sanity check and show that our simula-
tions have indeed converged to a limit cycle, with very small
variation in the last 10 apex states when no state measure-
ment noise is present. The variations that are observed are a
consequence of the 1 KHz frequency we impose on the con-
troller actions, which are not necessarily phase-aligned with
apex events.
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Overall, our results show that state elements that criti-
cally contribute to controller stability and performance are
also those that can practically be estimated in a physical
robot platform. There is of course still substantial work to
be done to achieve the required sensory accuracy on an au-
tonomous legged platform such as RHex, but our results in
this section can be used to identify the relative level of accu-
racy required for different components of the robot state.

6 Conclusion

In this paper, we presented a new method for controlling dy-
namic locomotory behaviors based on the identification of
a low dimensional template system that accurately captures
task dynamics, often motivated by observations of similar
behaviors in nature, and the embedding of this template into
a particular robotic morphology. This method not only sim-
plifies the control problem by dividing it into two separate,
smaller and easier to solve pieces, but also makes high level
control of the resulting behavior much simpler due to the
task-specific interface entailed by the template model. This
decomposition is similar in spirit to how the loose coupling
between forward speed and hopping height control for the
basic SLIP model was exploited by Raibert’s controllers.
However, the hexapedal morphology does not feature such
passively decoupled coordinates, which is why active feed-
back and our embedding methodology is needed to yield a
similar structure.

We illustrated the utility of this methodology on the prob-
lem of achieving stable and controllable hexapedal pronk-
ing, which has been very difficult to achieve in the absence
of radial leg actuation. To this end, we adopted the Spring-
Loaded Inverted Pendulum (SLIP) template, a simple, low-
dimensional model that has long been established as the best
descriptive dynamical model for running behaviors. Using
a deadbeat controller acting on the SLIP template together
with its embedding within a planar hexapod model as a vir-
tual leg, we have been able to achieve robust and stable
pronking, whose forward speed and hopping height can be
explicitly regulated. Finally, in order to establish practical
feasibility of our controller, we investigated in simulation,
the sensitivity of its steady-state performance to inaccura-
cies in the calibration of model parameters, a realistic ac-
tuation model with piecewise constant torque outputs and
varying levels of sensor noise. Despite our reliance on sim-
ulation studies due to present limitations of our experimen-
tal platform, RHex, with respect to sufficiently accurate and
high-bandwidth sensory information, our results show that
the pronking controller is sufficiently robust to support a
physical implementation.

Our intent in the near future is to implement this con-
troller in a planarized hexapod wherein accurate state feed-
back and hence a direct implementation of the controller

would be possible. However, our long term goal is the iden-
tification of critical aspects of the control actions taken by
this high-bandwidth controller and design a corresponding
open-loop controller (with possibly limited feedback at each
stride) that inherits the stability and gait-level controllability
properties of the feedback controller. We believe that such
a quasi-open-loop controller informed by observations on a
successful feedback controller will be much more practical
and robust for a legged robot in the field, where accurate,
high-bandwidth state estimation will be extremely difficult,
if not impossible to realize.
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