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Abstract

How humans and other animals control rhythmic behaviors, and locomotion in

particular, is one of the grand challenges of neuroscience and biomechanics. And

yet remarkably few studies address the fundamental control-systems modeling of lo-

comotor control. This thesis attempts to address several pieces of this grand chal-

lenge through the development of experimental, theoretical, and computational tools.

Specifically, we focus our attention on three key features of human rhythmic motor

control, namely variability, symmetry, and dynamics.

Variability: Little is known about how haptic sensing of discrete events, such as

heel-strike in walking, in rhythmic dynamic tasks enhances behavior and performance.

In order to discover the role of discrete haptic cues on rhythmic motor control per-

formance, we study a virtual paddle juggling behavior. We show that haptic sensing

of a force impulse to the hand at the moment of ball-paddle collision categorically

improves performance over visual feedback alone, not by regulating the rate of con-

vergence to steady state, but rather by reducing cycle-to-cycle variability.

Symmetry: Neglecting evident characteristics of a system can certainly be a mod-
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eling convenience, but it may also produce a better statistical model. For example,

the dynamics of human locomotion is frequently treated as symmetric about the

sagittal plane for modeling convenience. In this work, we test this assumption by

examining the statistical consequences of neglecting (or not) bilateral asymmetries in

the dynamics of human walking. Indeed, we show that there are statistically signif-

icant asymmetries in the walking dynamics of healthy participants (N=8), but that

by ignoring these asymmetries and fitting a symmetric model to the data, we arrive

at a more consistent and predictive model of human walking.

Dynamics: Rhythmic hybrid dynamic behaviors can be observed in a wide variety

of biological and robotic systems. Analytic (white-box) modeling tools of such sys-

tems are limited to the case when we have a full (and preferably simple) mathematical

model that can accurately describe the system dynamics. In contrast, data-driven

(block-box) system identification methods have the potential to overcome this fun-

damental limitation and could play a critical role in describing and analyzing the

dynamics of rhythmic behaviors based on experimental data. And yet few tools ex-

ist for identifying the dynamics of rhythmic systems from input–output data. In

this context, we propose a new formulation for identifying the dynamics of rhythmic

hybrid dynamical systems around their limit-cycles by using discrete-time harmonic

transfer functions.

Primary Reader: Noah J. Cowan
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curve represents a sample trajectory starting from an initial condition
located at Σ. As illustrated in the figure, the trajectory converges to
the limit cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Virtual paddle juggling using a haptic interface. The one-
degree-of-freedom (1-DOF) haptic device measures the vertical dis-
placement of a subject’s hand, and uses this to control the position of
a virtual paddle. A ball is rendered to the computer screen. When the
ball strikes the paddle, a brief force impulse can be provided depending
on the experimental condition. The goal is to bounce the ball (gray
circle) under the influence of gravity so that it reaches apex (bold plus
sign) within a goal region (between the parallel horizontal lines) using
a virtual paddle (horizontal rectangle). . . . . . . . . . . . . . . . . . 15

2.2 Sample data obtained with our experimental setup. Paddle and
ball trajectories are depicted as solid and dotted curves, respectively.
Users were instructed to maintain the ball within the goal region (gray).
The initial apex of the ball is outside the goal region for this illustrative
example (in experiments, the first apex was set to the middle of the
goal region). But, the user achieves successful rhythmic juggling within
t ≈ 3 s and maintains this throughout the trial. . . . . . . . . . . . . 16

xv



LIST OF FIGURES

2.3 Haptic feedback does not enhance nominal stability. (A) Im-
pact acceleration statistics of each individual. Markers and error bars
indicate the means and standard deviations. (B) Combined statistics of
impact accelerations based on grouping the mean impact acceleration
of each individual with respect to haptic condition. Shaded light gray
region in both figures illustrates the open-loop stable trajectories ac-
cording to (2.3) for α = 0.8. Haptic and no haptic feedback conditions
are depicted by solid gray and hollow black markers respectively. . . . 26

2.4 Passage time and computational modeling for MFPT. (A) Data
from a single example trial (not used for analysis) showing the ball
height (dark gray) paddle height (light gray). Four cycles (five consec-
utive apex heights) are shown (filled circles at peaks of ball height).
Here, the user failed to keep the apex height of the ball within the goal
region at the fourth cycle. Accordingly, passage time (# of cycles)
for this trial was 4. (B) Discretization process for model-based MFPT
computation. We discretized the state space (apex height of the ball)
into a finite set of representative states (bins). By convention the first
state was assigned to the whole failure region (shown in light gray).
Thus for our juggling paradigm, the first state corresponds to apex
heights that lie above or below the goal region. All other states are
equally spaced within the goal region. 50 bins were used to compute
the MFPT; increasing the number of bins to 100 produced negligible
differences in numerical values (less then 0.01%) . . . . . . . . . . . . 31

2.5 Haptic feedback enhances performance. Performance in two met-
rics PO (Percentage of outlier apex heights, hollow markers) and CV
(coefficient of variation, solid markers), was significantly improved with
haptic feedback; larger values of these metrics indicate inferior perfor-
mance. Each marker compares the performances (based on one of the
metrics) of a single individual for the two haptic conditions. Perfor-
mance was enhanced by haptic feedback for points Lying below the 45◦

line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.6 Haptic feedback does not enhance closed-loop eigenvalues.

The closed-loop eigenvalues identified from experiments with and with-
out haptic feedback are not significantly different. Each marker on the
figure corresponds to an individual’s closed-loop eigenvalues without
(abscissa) and with (ordinate) haptic feedback. 45◦ line indicates ideal
agreement in eigenvalues of conditions with and without haptic feed-
back. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

xvi



LIST OF FIGURES

2.7 Direct and model-based MFPT estimates agree. Markers indi-
cate the MFPT estimates (the horizontal axis is model-based, and the
vertical axis is direct estimation—see Methods) for all users and both
haptic conditions (with and without haptic timing cue). The 45◦ solid
black line would indicate ideal agreement between direct and model-
based MFPT estimation. Vertical and horizontal error bars indicate
the 95% confidence bounds for the direct and model-based MFPT es-
timates, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.8 Haptic feedback enhances metastability (MFPT). Markers in-
dicate the MFPT values without (horizontal axis) and with (vertical
axis) haptic feedback. Direct and model-based MFPT estimates are
depicted by solid light gray and hollow dark gray markers respectively. 46

2.9 Simplified schematic representation of juggling behavior with
different hypotheses on the role of haptic feedback. Dashed
lines represent (slow) parametric or “structural” tuning of the dynam-
ics. Solid lines represent (fast) dynamical signals. z and ẑ represent the
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Chapter 1

Introduction

The fundamental objective of this thesis is to discover the rules by which the

human nervous systems controls rhythmic dynamic behaviors—and locomotion in

particular. Addressing this grand challenge in neuroscience and biomechanics is criti-

cal in the long term since it will provide a foundation on which to build new locomotor

rehabilitation techniques, neural prosthetic interface designs, engineered systems for

(forceful) human-computer interaction, and robust bio-inspired engineering systems.

Human locomotion emerges from a control system: a nervous system connected

to a body via muscles and sensors, all operating in closed loop. Few studies address

the fundamental control-systems modeling of rhythmic motor control in humans. On

the other hand, there is a long history of modeling of human motor control in the

context of goal-directed tasks [81,156]. Locomotion is not a point-to-point movement,

and so, while some insight may certainly extend from the static to the rhythmic, we

1



CHAPTER 1. INTRODUCTION

know little about the human rhythmic motor control from a computational point of

view [138].

Locomotion is essential for quality of life of individuals suffering from motor

deficits, and yet it is clear that there is a scientific void in our computational under-

standing of this fundamental scientific problem. Towards this ultimate goal, I address

three important aspects—variability, symmetry, and dynamics—in human rhythmic

motor control through a combination of experimental, computational, modeling, and

theoretical analyses. I formulate and test new metrics and methods to find the fac-

tors that influence the closed-loop neuromechanical system during rhythmic tasks the

most.

1.1 Modeling Rhythmic Behaviors

In this thesis, the fundamental approach to analyzing and modeling rhythmic

dynamic behaviors centers around treating the underlying behavior as a nonlinear

rhythmic dynamical system operating around a stable attracting limit cycle. This

type of modeling approach has been successful for robotic [2, 8, 33, 46] and biological

systems, from the level of individual neurons to whole-organism behavior [10, 37, 62,

86, 129, 141]. A limit cycle is an isolated periodic orbit that is a solution to the

equations governing the nonlinear dynamical system [72]. The term isolated means

that all neighboring trajectories around periodic-orbit are not closed. A limit cycle

2



CHAPTER 1. INTRODUCTION

is said to be stable if all trajectories in a sufficiently small neighborhood of the limit

cycle converge to it. Fig. 1.1 illustrates a 3D stable (smooth) rhythmic dynamical

system and its limit-cycle.

One of the most powerful and useful tools used in the analysis [2, 67], control

[29,71], and identification [9, 129] of rhythmic dynamic system is Poincaré theory. A

Poincaré section, Σ, is a co-dimension 1 submanifold that is transverse to the flow

of the dynamical systems. A Poincaré (return) map, P : Σ → Σ, is obtained by

integrating the flow from Σ back to itself [72, 86].

A return map reduces the continuous (or hybrid) dynamical system into a lower

dimensional discrete-time system that describe the behavior in terms of cycle-to-cycle

transitions. Many of the essential properties of the behavior are preserved by this

discrete-time dynamical system [85]. The intersection of the limit cycle with the

Poincaré section is an isolated fixed point of the return map. The limit cycle is

asymptotically stable if and only if this fixed point is stable. Our second fundamental

modeling approximation in this thesis is based on the Hartman-Grobman theorem

(or linearization theorem), which states that local flow around any hyperbolic fixed

point is homeomorphic to the one governed by its linearization around the fixed point

itself. Thus, we assume that the dynamic behaviors that we analyze in this paper

remain within a local region where the linear dynamics dominate, and we we fit linear

models to data on Poincaré sections to analyze different rhythmic human behaviors

(i.e. juggling in Chapter 2 and walking in Chapter 3).

3



CHAPTER 1. INTRODUCTION

Σ

Figure 1.1: Illustration of a stable smooth 3D rhythmic dynamical system.
The black closed orbit is the limit cycle of the system. The two-dimensional cross-
section illustrate a Poincaré section. The red curve represents a sample trajectory
starting from an initial condition located at Σ. As illustrated in the figure, the
trajectory converges to the limit cycle.

.
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1.2 Thesis Organization

In the following chapters, we examine three important features—variability, sym-

metry, and dynamics—of rhythmic motor control in humans. First, in Chapter 2, we

explore the connection between haptic feedback and variability in rhythmic behaviors

using a virtual “paddle juggling” experimental paradigm. Second, in Chapter 3, we

analyze the statistical consequences of assuming or not bilateral symmetry during dy-

namic modeling of human walking. Finally, in Chapter 4, we introduce a new method

for input–output system identification of the dynamics of rhythmic hybrid systems.

1.2.1 Variability

Little is known about how haptic feedback, particularly during discrete events,

such as the heel-strike event during walking, enhances rhythmic behavior. To de-

termine the effect of haptic cues on rhythmic motor performance, we investigate the

integration of visual and haptic information during a “virtual paddle juggling” be-

havior. We show that the timing and state cues afforded by haptic feedback decrease

the nervous system’s uncertainty of the state of the ball to enable more accurate

control but that, to our initial surprise, the convergence rate of the the system to the

steady-state is unaltered.
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1.2.2 Symmetry

Dynamical systems modeling often involves neglecting certain characteristics of a

physical system as a modeling convenience. For example, in the dynamics of locomo-

tion, the musculoskeletal system is commonly treated as symmetric about the sagittal

plane. But, to what extent are these modeling approaches “correct” (or at least “use-

ful”)? We propose a new technique for evaluating the statistical consequences of

assuming (or not) bilateral symmetry in locomotor systems that are “approximately”

symmetric about the sagittal plane. We verify that there are statistically significant

asymmetries in the dynamics of human walking, but nevertheless show that ignoring

these asymmetries results in a more consistent and predictive model.

1.2.3 Dynamics

Rhythmic hybrid dynamic behaviors can be observed in a wide variety of bio-

logical and robotic systems. Powerful analytical and numerical tools exists in order

to control and analyze such systems. Analytic (white-box) modeling tools are lim-

ited to the case when we have a full (and preferably simple) mathematical model

that can accurately describe the system dynamics. On the other hand, input-output

(black-box) system identification methods provides a powerful complement for mod-

eling and analyzing general dynamical systems and they have been widely used for

many engineering applications. However, few tools exist for identifying the dynamics

6
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of rhythmic systems from input–output data, and yet such methods could be very

helpful in our understanding of human rhythmic motor control. In this context, we

propose a new formulation for rhythmic hybrid dynamic systems using discrete time

harmonic transfer functions that enables us to perform input–output system ID in

the frequency domain.

7



Chapter 2

Haptic Feedback Reduces

Rhythmic Variability

Stability and performance during rhythmic motor behaviors such as locomotion

are critical for survival across taxa: falling down would bode well for neither cheetah

nor gazelle. Little is known about how haptic feedback, particularly during discrete

events such as the heel-strike event during walking, enhances rhythmic behavior. To

determine the effect of haptic cues on rhythmic motor performance, we investigated

a virtual paddle juggling behavior, analogous to bouncing a table tennis ball on a

paddle. Here, we show that a force impulse to the hand at the moment of ball–

paddle collision categorically improves performance over visual feedback alone, not

by regulating the rate of convergence to steady state (e.g. via higher gain feedback or

modifying the steady-state hand motion), but rather by reducing cycle-to-cycle (i.e.

8
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steady state) variability. This suggests that the timing and state cues afforded by

haptic feedback decreases the nervous system’s uncertainty of the ball’s state to enable

more accurate control, but that the feedback gain itself is unaltered. This decrease in

variability leads to a substantial increase in the mean first passage time, a measure

of the long-term metastability of a stochastic dynamical system. Rhythmic tasks

such as locomotion and juggling involve intermittent contact with the environment

(i.e. hybrid transitions). Timing of such transitions is generally easy to sense via

haptic feedback and potentially would be more precise than the one provided by

visual feedback due to the significant delays in human vision. This additional precise

timing information may improve metastability, equating to less frequent falls or other

failures depending on the task.

2.1 Introduction

Terrestrial locomotion [86] and other rhythmic motor control tasks such as jug-

gling [137] and finger tapping [169], often involve hybrid transitions, namely discrete

changes in the contact configuration of the animal with its surrounding environment.

There is important information conveyed in the timing of these transitions: a mea-

surement of an early or late hybrid transition carries information about the state of

the body and/or environment.

We hypothesize that providing sensory feedback to the nervous system regard-
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ing the timing and state of these transitions can enhance motor control perfor-

mance. Specifically, we investigate the role of haptic cues during virtual paddle “jug-

gling”. A similar juggling paradigm has been extensively explored by Sternad and

colleagues [130,131,137,152,162], laying the theoretical and experimental foundation

upon which the current study is built. In a theoretical model of paddle juggling,

Schaal et al. [137] showed that if the nominal motor pattern, measured in terms of

the “average” periodic trajectory of the paddle during steady-state juggling, exhibits

negative accelerations1 at the time of ball–paddle collision, then the system would be

open-loop stable; in other words, if the nominal paddle motion were replayed in open-

loop (in a Gedankenexperiment), then small perturbations to the ball would diminish

over time, and the ball would return, asymptotically, to its nominal bouncing height.

This is often referred to as “open-loop stability” in the literature but this term is

misleading because human hand motions are clearly not executed in an open-loop

fashion. Indeed, the human paddle juggling behavior is a closed-loop system that

relies on active sensory feedback (vision and haptic feedback). Both our own data

and prior studies [130,147,148,162,163] support the fact that active sensory feedback

plays a significant role in the human paddle juggling task. Thus, when referring to the

stability of the nominal motor pattern, this thesis adopts the term nominal stability.

Sternad et al. [152] drew the intriguing conclusion that nominal stability seemed

to improve in the presence of haptic feedback. To the best of our knowledge, this

1Note that the nominal paddle velocity at the time of impact still has to be positive (upward
direction) for a successful limit-cycle behavior
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observation—that a change in the availability of enriched sensory information causes

subjects to adopt a different nominal pattern—has not been repeated in another

behavior or in the same behavior by a different research group.

In the present study, we re-examine the role of haptic feedback in juggling. Our

juggling task is virtual: users “juggle” by using this virtual paddle controlled via a

haptic interface to repeatedly hit a virtual ball on a computer screen. The haptic

timing cue is provided in the form of a brief mechanical impulse imparted to the

subject’s hand via the haptic paddle.

We indeed confirmed that the haptic timing information improves juggling per-

formance as previously reported, but we were unable to corroborate previous find-

ings [152] that nominal stability depends on the availability of haptic information.

More surprisingly, we also found no difference in the closed-loop convergence rate in

the two haptic conditions. So, haptic feedback did not change the closed-loop “gain”

nor the nominal pattern, contradicting previous findings. As described in the Dis-

cussion (See Section 2.4) and Appendix A, there are several possible reasons for this

discrepancy, including the differences in the experimental setup between our work

and that of Sternad et al. [152], although it appears likely that the difference arises

from complexities in estimating paddle acceleration at impact (see Appendix). Irre-

spective of these differences, our results show that rhythmic motor performance can

be enhanced due to a haptic timing cue, despite no apparent change to the nominal

(“open-loop”) or closed-loop convergence rates.

11
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How does haptic feedback improve performance without affecting either closed-

loop or nominal convergence rate? In an effort to understand the closed-loop mecha-

nism underlying the significant performance improvement haptic feedback affords over

vision alone, we adopted a stability metric, the Mean-First-Passage-Time (MFPT),

that incorporates not only the deterministic dynamics, but also the stochastic nature

of the system [154]. This metric has been used to describe the long-term metasta-

bility of rhythmic locomotion of robotic systems [27]. There are two primary ways

to improve metastability (that is, to increase the MFPT). One way is to decrease

the noise, and the other is to increase the convergence rate. We illustrate later in

this thesis that decreasing the noise (e.g. sensory or motor) can have a much more

dramatic effect on improving the MFPT than quickening convergence.

If long-term metastability were enhanced by a haptic timing cue, despite no change

in convergence rate, it would suggest that the haptic cue enhanced the estimate of the

ball and paddle state, thus reducing the nervous system’s uncertainty. By contrast,

increasing the feedback gain itself would increase the convergence rate.

2.1.1 Juggling as a Model System in Neuroscience

and Robotics

How animals control rhythmic behavior—such as locomotion and juggling—is one

of the grand challenges in neuroscience. It has been examined at all levels of bio-
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logical organization from individual ionic currents [44], to central pattern generating

networks [90, 120], to whole-organism dynamics [86], and it has been analyzed using

behavior [120], physiology [82], and modeling [37,86].

Yet, detailed computational models of rhythmic motor behavior remain limited.

Indeed, while the tools for this type of analysis are emerging [128,129], they are still

in their infancy. Perhaps more importantly, rhythmic motor behaviors may recruit

different computational circuits than those used during discrete motor tasks [139].

Thus, it is essential to rigorously quantify rhythmic motor behavior and create models

of such behaviors without assuming that lessons learned for discrete motions will

apply.

Our main goal in this work is to understand the rules of rhythmic motor co-

ordination. Terrestrial locomotion generally involves extremely complicated biome-

chanics, and even the simplest and most impoverished models are challenging to

analyze [86, 140] and control [8, 29]. Yet, several studies on neuromechanical sys-

tems [34,41,83,158] highlight the role of biomechanics in decoding the neural circuits

that control locomotion. To overcome these challenges and to isolate neural systems

from biomechanics, this chapter considers a virtual one-dimensional paddle juggling

task, which has extremely simple mechanical dynamics compared to other tasks such

as walking, running, or flying.

Juggling has been addressed from several perspectives, including nonlinear dy-

namics [32,72,86,157], robotics and control [22,23,171], and human movement anal-
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ysis [47, 118, 131, 147, 148, 162]. From the human movement analysis point of view,

several researchers [130, 131, 137, 162, 163] have investigated the same simplified jug-

gling task we consider here, in which a ball is stabilized in the air by hitting it upwards

with a paddle. Despite its apparent simplicity, rhythmically bouncing a ball raises

fundamental questions common to the study of general rhythmic movements (includ-

ing walking). To rhythmically juggle a ball requires fine tuning of the movements of

the hand in order to hit the ball with the appropriate velocity, at the right place,

and at the right time. The result of successful juggling is a hybrid dynamical system

that displays limit-cycle-like behavior, just as with walking. The wide interest in this

behavior likely arises from its simplicity, experimental tractability, and relevance to

neural control. Of course, this simplicity is relative as juggling can exhibit surpris-

ingly complex behavior (thanks to its hybrid dynamic nature): Guckenheimer [72]

showed that a ball bouncing on a periodically driven planar surface exhibits a wide

variety of motions, including steady states, period bifurcations, strange attractors,

and chaotic motion.

2.1.2 Dissemination

The work presented in Chapter 2 has been reported at several scientific meetings

[11, 12], and in a journal paper [10]. Figures and the text in this chapter of the

dissertation appeared in these publications.
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2.2 Materials and Methods

Figure 2.1: Virtual paddle juggling using a haptic interface. The one-degree-
of-freedom (1-DOF) haptic device measures the vertical displacement of a subject’s
hand, and uses this to control the position of a virtual paddle. A ball is rendered to
the computer screen. When the ball strikes the paddle, a brief force impulse can be
provided depending on the experimental condition. The goal is to bounce the ball
(gray circle) under the influence of gravity so that it reaches apex (bold plus sign)
within a goal region (between the parallel horizontal lines) using a virtual paddle
(horizontal rectangle).

In order to analyze human motor control of a rhythmic behavior, we used a one-

degree-of-freedom (1-DOF) haptic device and a virtual environment (Fig. 2.1) [10].

In our experiments, subjects manipulated a haptic paddle with their hand, causing a

virtual paddle to move up and down on the computer screen and “juggled” by using

this virtual paddle to repeatedly hit a virtual ball, much like bouncing a table tennis

ball. The paddle and ball physics were simulated and conveyed to the participant

haptically via force impulses at impact rendered with the 1-dof haptic interface and

visually via rendered ball and paddle movement on a computer screen (Fig. 2.1). The
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goal was to cause the ball to reach its apex between two horizontal lines. Example

data acquired from this system is depicted in Fig. 2.2. In the Appendix A, we describe

the rationale for using a virtual juggling setup over a physical juggling setup.
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Figure 2.2: Sample data obtained with our experimental setup. Paddle and
ball trajectories are depicted as solid and dotted curves, respectively. Users were
instructed to maintain the ball within the goal region (gray). The initial apex of
the ball is outside the goal region for this illustrative example (in experiments, the
first apex was set to the middle of the goal region). But, the user achieves successful
rhythmic juggling within t ≈ 3 s and maintains this throughout the trial.

2.2.1 Experiments

Eighteen college- and graduate-school-aged participants (2 Female, 16 Male) at-

tempted to perform the given juggling task. The experiments were approved by the

Johns Hopkins University Institutional Review Board (IRB). Each experiment con-

sists of a demonstration session, four training sessions and two final data collection

sessions. The duration of each session was 2.5 min. Between each session, participants
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were given 30 sec rest to prevent fatigue.

During the demonstration session the experimenter explained how to use the hap-

tic device to the participant and then performed a brief demonstration of the juggling

task. For training and data collection sessions, we asked participants to bounce the

ball so as to repeatedly cause the ball to reach its apex within the goal region. In

training sessions, the subjects performed the task with and without haptic feedback

based on a fixed order: 1) without haptic feedback, 2) with haptic feedback, 3) with-

out haptic feedback, 4) with haptic feedback.

The purpose of the training sessions was to enable subjects acclimate to the en-

vironment and behavior. In the data collection sessions, one session was performed

without haptic feedback and the other session was performed with haptic feedback.

Half of the subjects started the data collection sessions without haptic feedback, and

the other half started with haptic feedback.

2.2.2 Experimental Setup and Virtual Reality Im-

plementation

2.2.2.1 Experimental Apparatus

The haptic device measured the displacement of a user’s hand, which was mapped

to the position of the virtual racket on the screen. Depending on the experimental

condition, the haptic paddle could simulate the virtual ball–paddle collision by pro-
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viding a force impulse to the hand. The juggling paddle was coupled to a DC motor

(A-max 26 Series–110170, Maxon Precision Motors, Inc., Fall River, MA) with a back-

drivable capstan mechanism. Haptic force feedback was simulated via generating an

impulsive torque to the motor shaft. In order to generate the desired torque on the

DC motor, a PCI-DAS6014 DAQ card (Measurement Computing Corporation, Nor-

ton, MA 02766) is used for sending voltage commands to a current amplifier based on

an OPA544 power op-amp (Texas Instruments, Inc., Dallas, Texas 75243) that drives

the DC motor. The DC motor was also equipped with a HEDS 5540 quadrature laser

encoder (Avago Technologies US Inc., San Jose, CA) which was used for measuring

the rotation in the motor shaft. In order to read the encoder inputs a PCI-QUAD04

encoder card (Measurement Computing Corporation, Norton, MA 02766) is used.

The virtual reality part of the system was developed in the C# programming lan-

guage environment (Microsoft Corporation, Redmond, WA 98052), and the loop rate

of the whole system was 1 kHz.

2.2.2.2 Mechanical System Model and Virtual Reality Im-

plementation

Paddle juggling, like many other rhythmic dynamic tasks, is a hybrid dynamical

system. Roughly speaking, a hybrid dynamic system is one for which smooth dy-

namics are punctuated with discrete “jumps” triggered by threshold functions [76].

In this context, we divide the ball dynamics into two parts: a continuous flight phase

18



CHAPTER 2. HAPTIC FEEDBACK REDUCES RHYTHMIC VARIABILITY

Table 2.1: Notation in Chapter 2

Parameter Units Description

System parameters

g m/s2 Gravitational acceleration

α Ball–paddle coefficient of restitution

bmax m Upper limit of goal region

bmin m Lower limit of goal region

Continuous-time variables

t s Time

b m Height of ball

ḃ m/s Velocity of ball

ḃ− m/s Velocity of ball just before the collision

ḃ+ m/s Velocity of ball just after the collision

p m Position of paddle

ṗ m/s Velocity of paddle

p̈ m/s2 Acceleration of paddle

Discrete-time variables at specific events

k Index of apex events

tk s Time of kth ball apex event

bapex[k] m Apex height at kth cycle

bss m Steady-state value of ball apex height

x[k] m Deviation of ball apex height around steady-state

p̈impact m/s2 Acceleration of paddle at collision
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describing the dynamics of flight, and a discrete transition phase describing the state

transitions due to collision between the paddle and the ball. Table 2.1 provides the no-

tation we use throughout the chapter. Neglecting aerodynamic drag, flight dynamics

of the ball take the form

b̈ = −g, (2.1)

subject to appropriate position and velocity initial conditions, where b, ḃ and b̈ denote

the height, velocity and acceleration of the ball respectively. To implement the physics

digitally on a computer, we discretized the continuous dynamics in (2.1). Let tk denote

the time of the kth time step, and let

zk =

b(tk)
ḃ(tk)


denote a discrete-time state variable. Then,

zk+1 =

1 ∆tk

0 1

 zk +

−1
2
g∆tk

2

−g∆tk

 ,

where ∆tk = tk+1− tk is the time between two sampling instants. In real ball–paddle

dynamics, a collision event is triggered when the ball hits the paddle, which occurs
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when the following conditions are satisfied:

b = p,

ḃ < ṗ,

(where p, ṗ and p̈ the height, velocity and acceleration of the paddle respectively)

which were approximated in discrete-time (to implement in virtual reality) as the

first discrete time, tk, for which

b(tk) < p(tk),

ḃ(tk) < ṗ(tk).

The ball position and velocity were simulated and were therefore known to the numer-

ical precision of the computer, but the paddle position and velocity were estimated in

real time from optical encoder measurements. To estimate paddle velocity, encoder

position data was low-pass-filtered and passed through a backward difference filter.

To model the discrete transition due to collision between the paddle and the ball,

we assumed that the collisions were purely elastic and the mass of the paddle was

infinite such that the paddle velocity was not affected by the collision. Based on

these assumptions, using the coefficient of restitution rule, the discrete transition at
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the collision instant was defined as

b+ = b−,

ḃ+ = −αḃ− + (1 + α)ṗ,

(2.2)

where α is the coefficient of restitution. In the experiments with haptic feedback, we

applied an impulsive force (short duration 10 ms, constant magnitude) proportional

to the impact velocity to the haptic paddle, vimp = ṗ − ḃ, (with a gain of 0.1 Ns/m

) immediately after collision. We manually tuned the amplitude and duration of the

haptic feedback in our preliminary analysis based on the authors’ perception of the

haptic experience, such that the haptic feedback was noticeable, natural, and within

the capabilities of our haptic device hardware.

2.2.3 Task Performance

We asked the participants (N = 18) of our experiment to keep the apex height

of the ball within a goal region, and they performed the task both with and without

haptic feedback. In order to ease the task for the participants, we displayed a plus

sign showing the last apex height of the ball (Fig. 2.1). We also asked the participants

their opinions about the difficulty level of completing the task with and without haptic

feedback.

First, we analyzed the importance of haptic feedback based on two performance

measures: percentage of outliers (PO) and coefficient of variation (CV). Percentage
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of outliers corresponds to the percentage of apex heights that are not inside the goal

region. Lower PO values indicate good performance. CV is the coefficient of variation

of apex height values, which is found by dividing the standard deviation of the data

set to the mean value and multiplying by 100. CV captures the variability of the

behavior.

Since our goal was to study successful rhythmic juggling behavior, we excluded

the unsuccessful experimental data. Two of the subjects were unable to produce

successful rhythmic juggling regardless of haptic condition, and their performance

was unacceptably poor in both cases for both metrics (PO values > 80% and CV

values > 60%). A third subject achieved stable juggling with haptic feedback (PO

= 19.8% and CV = 6.2%), but this subject failed to produce successful rhythmic

juggling without haptic feedback (PO = 70.2% and CV = 85.3%). Since this subject

produced no useful data without haptic feedback, we excluded all of the subject’s

data from our statistical analysis (although this subject supports our general finding

that haptic feedback enhances performance). As a result, we analyzed the data of 15

subjects.
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2.2.4 Nominal Behavior and Nominal (Open-loop)

Stability

Nominal stability, also called open-loop or passive dynamic stability, is an im-

portant concept in rhythmic dynamic behaviors [32, 48] and it has been analyzed

extensively, especially for legged locomotion [62,66,67,113].

In previous studies on paddle juggling behavior, researchers extensively investi-

gated nominal (“open-loop”) stability [137,152,162,163]: nominal stability in paddle

juggling would imply that if the average motor pattern were recorded, and played

repeatedly, then small errors in ball motion would diminish over time, even without

sensory feedback. The open-loop juggling model initially introduced by Schaal et

al. [137] requires that the paddle motion has to be strictly time periodic and the pad-

dle has to hit the ball with an upward velocity. Under these conditions, ball bouncing

becomes a nonlinear dynamical system, operating near a limit cycle [86]. One way to

test for stability is to analyze the eigenvalues of the Poincaré return map [8, 69, 75];

if the eigenvalues all have magnitudes less than unity, then the system is (locally)

asymptotically stable.

Schall et al. [137] showed that under the conditions described above, open-loop

stability of the juggling pattern is guaranteed if and only if the acceleration of the
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paddle at the impact (p̈impact) satisfies

−2g
1 + α2

(1 + α)2
< p̈impact < 0. (2.3)

In human subject trials with a physical (not virtual) paddle juggling system,

Schaal et al. [137] and Sternad et al. [152] found that in fact subjects adopt impact

accelerations that satisfy the constraint in (2.3), suggesting that paddle juggling is

nominally stable. One major issue associated with negative impact acceleration is

that it unavoidably creates a deviation from optimal nominal input effort (which is

achieved at zero acceleration [152]). In other words, there is a trade-off between open-

loop stability and nominal energetic cost. Previous results [137,152,162] suggest that

humans sacrifice energetic optimality in order to achieve nominal stability.

In this study, we analyzed impact accelerations with and without haptic feedback

(Fig. 2.3(A)). Previously, Sternad et al. [152] analyzed nominal stability during ball

bouncing and also compared impact accelerations with and without haptic feedback

(N = 3 participants).

Let T denote the period of the nominal paddle trajectory. To analyze nominal

stability, we only require characterization of the paddle trajectory in the vicinity of

ball–paddle collision. For each impact time, tk, we measured the paddle position over

a 0.1s time interval, [tk − 0.1s, tk]. We applied a causal smoothing filter, rlowess,

in Matlab (Mathworks Inc., Natick MA) to the paddle position data and estimated
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Figure 2.3: Haptic feedback does not enhance nominal stability. (A)
Impact acceleration statistics of each individual. Markers and error bars indicate
the means and standard deviations. (B) Combined statistics of impact accelerations
based on grouping the mean impact acceleration of each individual with respect to
haptic condition. Shaded light gray region in both figures illustrates the open-loop
stable trajectories according to (2.3) for α = 0.8. Haptic and no haptic feedback
conditions are depicted by solid gray and hollow black markers respectively.

velocities using a central difference approximation. These velocity estimates were

further smoothed (rlowess in Matlab).

After filtering, we fit a third-order polynomial to the smoothed velocity data:

v[t̂] = a0 + a1Δt+ a2Δt2 + a3Δt3, (2.4)

Δt = t− tk, (2.5)

where a0, a1, a2, a3 were the paddle trajectory polynomial coefficients, averaged across

impacts within a single trial. In addition to limit-cycle analysis, we used these poly-

nomials to derive the impact accelerations as described above.
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As an alternative to this filtering and estimation method, one might have used

simple non-causal linear filters (which have the benefit of introducing zero phase

lag) to the paddle data for the experiments with haptic feedback [137, 152, 162, 163].

However, our analysis in the Appendix shows that the rapid negative force applied

to the paddle at impact generated a small but significant negative acceleration, and

non-causal filters therefore produced consistent biases to the velocity and acceleration

estimates at the impact instant.

Computation of the limit cycle also required the period T . One possible estimation

of the period would be the average of the elapsed times between successive impacts.

However, this method produces estimates for the limit-cycle period that do not, in

general, satisfy the constraint that the ball must have the same speed before and

after impact, i.e. |ḃ+| = |ḃ−|. Enforcing this constraint, we computed the period of

the limit cycle as

T =
2(1 + α)

g(1− α)
ṗimpact. (2.6)

Open-loop stability based on the acceleration constraints from Equation (2.3)

provides a categorical result—stable or unstable—not a graded measure of stability.

Thus, we estimated the nominal (linearized) return-map eigenvalues that measure

convergence (or divergence) rate of the limit cycle. In order to find eigenvalues, we first

found the states of the system—paddle position, ball position, and ball velocity—at
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the instant of impact. We numerically estimated the linearized return map (Jacobian

matrix) by using a finite-difference approximation. The eigenvalues of this Jacobian

matrix characterize nominal stability.

2.2.5 Closed-Loop System Identification

As explained in Section 1.1, we use Poincaré theory and assume that the closed-

loop juggling behavior is a rhythmic dynamical system operating near a limit cycle.

Thus, we fit a linear dynamical system model of the apex-to-apex dynamics as an

estimate of the closed-loop linearized Poincaré return map. We assume that, in our

experiments, subjects remain within a local region where the linear dynamics domi-

nate. Based on our assumptions and motivations we fit a linear stochastic dynamical

system—an auto regressive (AR) Gaussian model—to the apex height data for each

subject and for each haptic condition. A first-order AR model takes the form

x[k] = ax[k − 1] + e[k] , e[k] ∼ N (0, σ2), (2.7)

where x[k] = bapex[k] − bss is the relative displacement of the ball apex height at

time k, measured with respect to bss, the steady-state apex height. We estimated the

parameters in ((2.7)) using least-squares that minimizes the following loss function

E =
N∑
k=1

ê[k]2. (2.8)
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In addition to the first-order AR model in (2.7), we also tested zeroth- and second-

order AR models and computed the loss functions in (2.8). Note that zeroth-order AR

model simply treats the evolution of apex heights as a pure noise process centered

around the nominal height. We compared the quadratic losses provided by both

zeroth-, first- and second-order models, (i.e. E0, E1, and E2), by evaluating the

relative improvement at each order increase, 100|En+1 − En|/En+1, which must be

traded off with the addition of extra parameters. The mean improvement of the first-

order model with respect to zeroth-order model was substantial (20%), whereas the

mean improvement of the second-order model with respect to the first-order model

was negligible (2%). Thus we selected the first-order AR model for our data analysis.

The order of the fitted model can also be considered as the dimension of the slow,

template dynamics [61,129] that emerge in the closed-loop behavior. The parameter

a in (2.7) is the eigenvalue of the dynamics which measures convergence rate, namely

the slowest time constant associated with recovery to equilibrium, one of the most

common metrics for quantifying stability of dynamical systems.

Our fitted AR model is a “black-box” model that makes fewer assumptions than

the open-loop juggling model by [137]. However since it is a linear model there could

be nonlinear affects that can not be captured by our model. There could be nonlinear

control strategies such as the “mirror law” [22] or robust hybrid stabilization [74].

However, we approximate the system in a local region around the goal, where the

linear dynamics likely dominate.
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2.2.6 Mean First Passage Time

Mean first passage time (MFPT) is a stability metric that incorporates time and

stochasticity and has been recently applied to legged locomotion [27]. Recently Milton

et al. [115,116] used MFPT to measure performance in a human balance control task

and Venkadesan el al. [161] used MFPT in the context of a hand manipulation task;

however these tasks are not rhythmic hybrid dynamical systems, thus our methods

and approach regarding MFPT generally build more directly upon the derivations by

Byl and Tedrake [27].

The MFPT is also referred to as the mean time between failures. For juggling,

the passage time refers to the number of cycles until the apex of the ball fails to land

in goal region; in the example depicted in Fig. 2.4(A), the passage time is 4 cycles

because the ball apex first lands outside the goal region on the fourth successive

cycle. Note that passage time in our task is a discrete random variable, unlike the

interpretation in some previous studies [115,116,161], where passage time is measured

in seconds and is a continuous random variable.

The MFPT metric is the probabilistic expectation of the passage time. Of course,

this must be estimated from data. We propose two different estimation methods

for the MFPT: estimation directly from failure events and estimation based on a

stochastic dynamical model.

The first method is a direct statistical approach, which does not require a stochas-

tic dynamical model for the system. For a given trial, we record all the observed

30



CHAPTER 2. HAPTIC FEEDBACK REDUCES RHYTHMIC VARIABILITY

Ball

xmin

Paddle

Time

Ba
ll/

Pa
dd

le
 H

ei
gh

t

xmax

A B
xmax

xmin

x2

x3

x4
.
.
.
.
.

xN

x1

x1

Figure 2.4: Passage time and computational modeling for MFPT. (A) Data
from a single example trial (not used for analysis) showing the ball height (dark gray)
paddle height (light gray). Four cycles (five consecutive apex heights) are shown (filled
circles at peaks of ball height). Here, the user failed to keep the apex height of the ball
within the goal region at the fourth cycle. Accordingly, passage time (# of cycles) for
this trial was 4. (B) Discretization process for model-based MFPT computation. We
discretized the state space (apex height of the ball) into a finite set of representative
states (bins). By convention the first state was assigned to the whole failure region
(shown in light gray). Thus for our juggling paradigm, the first state corresponds
to apex heights that lie above or below the goal region. All other states are equally
spaced within the goal region. 50 bins were used to compute the MFPT; increasing
the number of bins to 100 produced negligible differences in numerical values (less
then 0.01%)
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passage times (times between failures). Let {kp,1 , kp,2 , · · · , kp,N} be the set of

observed passage times. Our goal is to estimate the MFPT, µmfpt, from data. The

sample mean of the data gives such an estimate:

µ̂mfpt =
1

N

N∑
i=1

kp,i. (2.9)

Assuming that passage times are independent and identically distributed geometric

random variables, Equation (2.9) corresponds to the maximum likelihood estimate,

namely µ̂mfpt = E[µmfpt]. Direct estimation via the sample mean in Equation (2.9)

is simple, but may require many failures to obtain a low-variance estimate. Unfortu-

nately, failure is often a rare event so this method may be impractical. Estimating

mean time between falls in human locomotion, for example, would require waiting un-

til subjects actually fall, which is challenging due to safety and other reasons. For our

juggling experiments, the goal (hitting the ball to reach apex within a desired region)

was designed so that subjects typically fail at least 2-3 times in a single experiment

(often more). However, there are many trials for which we have few enough failures

that large uncertainty in MFPT estimate is inescapable via the direct sample-mean

estimate.

To overcome this issue, we developed a second, model-based, method built upon

the derivations by Byl and Tedrake [27]. They estimated MFPT for a simulated

robotic system, and thus the equations of motion (including noise terms) and the
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feedback control laws were completely specified. However, in the present work, our

goal is to estimate MFPT from experimental data—no model is known a priori. So,

to apply the technique, we first must fit a stochastic dynamic model to behavioral

data. We use the first-order AR model fitted to the data; see Equation (2.7) above.

This model must be augmented to include a definition of failure (passage). For our

experimental setup, failure is defined as the first apex event that exceeds the limits of

the goal region; see Figure 2.4. In other words, the state x[k] is a failure if x > xmax

or x < xmin (where xmax = bmax − bss and xmin = bmin − bss).

In order to compute MFPT from this model requires the assumption that there

exists a dominant metastable distribution2 [27,154], which we now assume. The state

(apex height) evolution in Equation (2.7) represents a discrete-time, continuous-state

Markov process. For computational purposes,we discretize the state space into a finite

set of states as illustrated in Fig. 2.4(B). After that we compute the stochastic state

transition matrix, T:

Tij = Pr(X[n] = xj|X[n− 1] = xi) . (2.10)

Tij is the probability of going to jth state from ith state. Since x1 corresponds to the

2The metastable distribution is the stationary distribution conditioned on having not absorbed
by the failure state.
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failure region, we consider it as the absorbing state, such that

T11 = 1, T1j = 0 ∀j 6= 1. (2.11)

For all other elements we use the AR model in Equation (2.7) to complete the stochas-

tic state distribution matrix. The n-step dynamics are revealed by the Chapman–

Kolmogorov equation,

p[n] = p[n− 1]T, (2.12)

where p[n] is the state distribution vector defined as

pi[n] = Pr(X[n] = xi). (2.13)

Assuming that the second-largest eigenvalue of T is less than one, this absorbing

Markov chain will have a unique stationary distribution, with the entire probability

mass in the absorbing state. Since there is only one absorbing state and it is possible

to jump to the absorbing state from any state (due to properties of Gaussian noise),

our system inherently satisfies this assumption. The stochastic state transition matrix
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T in our problem takes the following specific form

T =

 1 0

r T̄

 (2.14)

with T ∈ RN×N , T̄ ∈ R(N−1)×(N−1),0 ∈ R1×(N−1), r ∈ R(N−1)×1. The dynamics of

escape to the absorbing state can be investigated using eigenmode analysis [27]. Let

us order the eigenvalues of T , λi, in order of decreasing magnitude. The transition

matrix from an absorbing Markov chain will have λ1 = 1, with (left) eigenvector

v1 = [1 0 · · · 0] representing the stationary distribution on the absorbing state. The

magnitude of the remaining eigenvalues (0 ≤ |λi| < 1,∀i > 1) describe the transient

dynamics and escape rate to the stationary distribution.

We assume that the second-largest eigenvalue, λ2, (which is also the largest eigen-

value of T̄ , i.e. λ2 = λ̄1) is close to (but still less than) 1, λ2 . 1 and also λ2 � |λ3|,

which means that initial conditions (in eigenmodes 3 and higher) decay quickly, and

eigenvector of T̄ (v̄1) associated with λ̄1 = λ2 describes the long-living (metastable)

distribution of the state. The metastable distribution is given by v̄1—the eigenvec-

tor associated with largest eigenvalue of T̄ with proper normalization. Under these

circumstances MFPT is approximated by

µ̂mfpt ≈
1

1− λ2

. (2.15)
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Note that the sub-matrix T̄ is a positive matrix (not to be confused with positive-

definite matrix), such that based on Perron-Frobenius theorem the largest eigenvalue

of T̄ (λ̄1) is always positive, and the magnitudes of all other eigenvalues are strictly

lower than λ̄1, i.e. λ̄1 ∈ R+ and λ̄1 > |λ̄i| ∀i > 1.

Making use of (2.15) is practically equivalent to assuming that metastable distri-

bution is a good summary of the initial conditions. In fact, if the initial condition is

a random variable that is drawn from the metastable distribution, (2.15) is the exact

MFPT of the system. By assuming that |λ3| � λ2 . 1, the distribution will tend to

quickly converge to the metastable distribution, making (2.15) a good approximation.

In order to test the reliability of the metastable distribution, we computed the

MFPT starting from different initial conditions and generated confidence bounds

on the MFPT estimate given by (2.15). The vector of MFPTs (~µmfpt) for all non-

absorbing states can be computed as

~µmfpt =


µ̂mfpt,2

...

µ̂mfpt,N

 = (I − T̄ )−11 (2.16)

where 1 = [1 · · · 1]T and µ̂mfpt,i denotes the MFPT starting from initial condition

xi. Specifically, we computed the 5th and 95th percentiles of ~µmfpt in order to form a

confidence bound on (2.15).
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2.3 Results

2.3.1 Subjects Believe Haptic Feedback Improves

Their Performance

After completing the experimental session, all participants completed a brief ques-

tionnaire on their perception of task difficulty with and without haptic feedback.

Among the fifteen participants whose data were not excluded, thirteen participants

reported that the task seemed easier with haptic feedback. Two (out of fifteen) sub-

jects reported no apparent difference in both cases. Among the three participants

whose data were excluded, one subject reported that the task seemed easier without

haptic feedback. This subject was also one of the subjects who failed to perform the

task in both haptic conditions. The other subject who failed to perform the task in

both haptic conditions was among the group that reported no apparent difference in

both haptic conditions. Finally, the subject who did well with haptic feedback, but

failed to achieve rhythmic juggling without haptic feedback, reported that the task

was easier with haptic feedback.

2.3.2 Haptic Feedback Improves Performance

Each subject (excluding the three whose data was not included) performed better

with haptic feedback in at least one performance metric (see Fig. 2.5). Based on the
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PO metric, each subject performed better with haptic feedback and the difference

in performance was statistically significant (p < 0.00001, paired t-test). For the

CV metric, all but one subject also performed better with haptic feedback and this

performance improvement was also statistically significant (p < 0.001, paired t-test).
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Figure 2.5: Haptic feedback enhances performance. Performance in two metrics
PO (Percentage of outlier apex heights, hollow markers) and CV (coefficient of varia-
tion, solid markers), was significantly improved with haptic feedback; larger values of
these metrics indicate inferior performance. Each marker compares the performances
(based on one of the metrics) of a single individual for the two haptic conditions.
Performance was enhanced by haptic feedback for points Lying below the 45◦ line.
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2.3.3 Nominal Stability is Fragile and Unchanged

by Haptic Feedback

Impact accelerations illustrated in Fig. 2.3(A) show that majority (thirteen out

of fifteen) of the participants did not adopt predominantly negative mean impact

accelerations in either haptic condition, contradicting previous results [152]. Ac-

cording to [152], the impact acceleration is predominantly negative if it satisfies

p̈impact ∈ [−6,−2] m/s2. For the experiments with haptic feedback, they reported a

median impact acceleration across all individuals of p̈impact = −4.16 m/s2, whereas for

the no haptic feedback experiments the median impact acceleration is p̈impact = −0.31

m/s2. Even in a recent juggling study [162] from same group, reported mean impact

acceleration with haptic feedback is not predominantly negative (p̈impact = −1.75

m/s2, mean across 7 individuals and 4 different coefficient of restitution values), but

this study did not compare impact accelerations with and without haptic feedback.

In our experiments, all subjects exhibited many positive impact accelerations,

even for those whose average impact accelerations were negative. So, while the mean

impact accelerations across individuals for both haptic conditions were slightly (but

statistically significantly, p < 0.05 one sided t-test) negative (see Table 2.2), nominal

stability does not appear to be a robust strategy: for 21 out of 30 trials (15 Subjects

× 2 Haptic Conditions), 25% or more of the impact accelerations were positive.

Indeed, statistics of the data from Wei et al. [162] suggest similarly non-robust nominal
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stability; even though the mean impact acceleration of each individual was negative in

that study, for five out of seven participants at least 15% of the impact accelerations

were positive.

Table 2.2: Mean impact accelerations (p̈impact [m/s2]) in different studies

Our Study Sternad et al. [152] Wei et al. [162]
Haptic Feedback -0.863 -4.16 -1.75
No Haptic Feedback -0.778 -0.31 –

We examined whether haptic feedback changes nominal stability by comparing the

mean impact accelerations for each individual between the two haptic conditions, as

shown in Fig. 2.3(B). We found no statistically significant difference (p > 0.4, paired

t-test). Thus, haptic feedback cannot be shown to have had an effect on nominal

stability, which contradicts previous conclusions [152].

Table 2.3 lists the magnitude of the largest eigenvalues for each subject and condi-

tion, computed based on limit cycle estimates (see Methods). Many subjects achieved

a nominal eigenvalue of 0.8 (based on the average impact acceleration) in both haptic

conditions, corresponding to the best (smallest) nominal eigenvalue possible, given

the coefficient of restitution used in our experiments (α = 0.8) [137]. As for our

nominal stability analysis based on paddle accelerations (see Fig. 2.3), we observed

no significant improvement in the open-loop eigenvalues with the addition of hap-

tic feedback (p > 0.65, paired sign test). Note that the eigenvalue distribution was

non-normal because a significant fraction of the eigenvalues were concentrated at the

coefficient of restitution of 0.8, and thus we used the more conservative signed test
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rather than a t-test, which is not based on normality.

Table 2.3: Eigenvalues of the Nominal Behavior

|λ|max

Subject # 1 2 3 4 5 6 7 8
HF 0.8 0.8 0.8 0.8 2.00 1.54 0.8 0.8

No HF 0.8 0.8 0.8 0.8 1.82 0.8 0.8 0.8

Subject # 9 10 11 12 13 14 15
HF 0.94 1.43 0.8 0.8 0.8 0.8 0.94

No HF 0.84 1.65 0.8 0.8 1.00 0.8 0.8

Also, although we did not observe predominately negative accelerations in paddle

trajectories (Fig. 2.3), the “typical” subject seems to achieve the best possible nominal

eigenvalue in both haptic conditions. However, this observed nominal stability is

fragile since many accelerations for each subject lies in the open-loop unstable region

(nominal eigenvalue greater than 1).

2.3.4 Closed-Loop Eigenvalues are Stable, but Un-

changed by Haptic Feedback

Nominal stability—which was not dependent upon the haptic condition—could

not explain the performance enhancement afforded by haptic feedback during rhyth-

mic juggling. Thus we examined the closed-loop dynamics. Specifically, we fitted a

first-order AR model to the apex height time-series data (see Methods) and analyzed

the closed-loop eigenvalues to quantify the stability of the behavior. The closed-loop

eigenvalues of each subject are illustrated in Fig. 2.6.
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Figure 2.6: Haptic feedback does not enhance closed-loop eigenvalues. The
closed-loop eigenvalues identified from experiments with and without haptic feedback
are not significantly different. Each marker on the figure corresponds to an individ-
ual’s closed-loop eigenvalues without (abscissa) and with (ordinate) haptic feedback.
45◦ line indicates ideal agreement in eigenvalues of conditions with and without haptic
feedback.
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Comparing the closed-loop eigenvalues with the nominal eigenvalues listed in Ta-

ble 2.3 reveals that the least stable closed-loop eigenvalue in both haptic conditions,

λmax = 0.58, is significantly more stable than the best eigenvalue, λbest = 0.8, that

could be achieved in open loop. Clearly, active sensory feedback control played a crit-

ical role in this juggling task. Similarly, Wei et al. [162, 163] and Ronsse et al. [130]

observed that a purely passive model failed to explain measurements of closed-loop

behavior in terms of “relaxation times” (convergence rate), thus indicating the exis-

tence of active error corrections.

Even though active feedback control clearly plays a role for the behavior, we

observed no statistically significant trend in closed-loop eigenvalues between the two

haptic conditions (p > 0.3, paired t-test). In fact, about half (seven of fifteen) of

the subjects had more stable eigenvalues without haptic feedback. The results based

on both the closed-loop and open-loop eigenvalues suggests that haptic feedback was

not used by the nervous system to regulate the convergence rate in this juggling task,

and the performance improvement must be explained by other means.

2.3.5 Haptic Feedback Improves Mean First Pas-

sage Time

MFPT provides a measure of stochastic stability for the closed-loop behavior.

We verified the consistency of the two independent MFPT estimation methods (see
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Figure 2.7: Direct and model-based MFPT estimates agree. Markers indicate
the MFPT estimates (the horizontal axis is model-based, and the vertical axis is
direct estimation—see Methods) for all users and both haptic conditions (with and
without haptic timing cue). The 45◦ solid black line would indicate ideal agreement
between direct and model-based MFPT estimation. Vertical and horizontal error bars
indicate the 95% confidence bounds for the direct and model-based MFPT estimates,
respectively.
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Methods) by directly comparing them. Since each estimation method used the same

data in categorically different ways, there were differences in the estimates; however,

there was a strong correlation between estimates obtained via the two distinct meth-

ods (see Fig. 2.7). The 95% confidence bounds (direct estimates) overlapped with

the model-based estimate in all cases. Thus, the two methods were independent, but

mutually consistent, ways to assess the stochastic stability of the behavior.

We also observed the statistics of the λ2 and λ3 (second and third largest eigenval-

ues of T in (2.14), respectively) distributions obtained from our experimental data.

The mean and standard deviations of the λ2 and λ3 data were (µ2, σ2) = (0.8, 0.1) and

(µ3, σ3) = (0.15, 0.09) respectively; given that these eigenvalues are bounded between

0 and 1, λ3 was much lower than λ2, as expected. In order to test further the relia-

bility of (2.15) (i.e. model-based MFPT estimates), we scrutinized our assumptions

by computing 95% confidence bounds on (2.15). The confidence bounds (Fig. 2.7)

indicated that the uncertainty of the model based method was much lower than the

uncertainty of the direct estimation method.

A shown in Fig. 2.8, each subject’s MFPT was higher (i.e. more stable) with

haptic feedback and the differences were significant (p < 10−4, direct method and

p < 0.005, model-based method; paired t-test).
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Figure 2.8: Haptic feedback enhances metastability (MFPT). Markers indicate
the MFPT values without (horizontal axis) and with (vertical axis) haptic feedback.
Direct and model-based MFPT estimates are depicted by solid light gray and hollow
dark gray markers respectively.
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2.4 Discussion

What is the mechanism by which the haptic cue at the instant of ball–paddle

collision improves juggling performance? We suspected that the haptic cue would

quicken convergence. Surprisingly, however, haptic feedback had no significant effect

on the convergence rate as measured by either the nominal or closed-loop eigenvalues

of the dynamics in our study. Instead, we found that long-term metastability—

namely, the persistence of the system—was enhanced. The haptic timing cue is

a measurement that decreases the nervous system’s uncertainty of the ball’s state.

Decreasing noise may improve stability as measured by persistence, while potentially

having very little effect on convergence rate. Indeed, it may not be the speed of

convergence, but rather the infrequency of failures that matters most for a great

many behaviors.

2.4.1 Stability: Convergence or Persistence?

It has long been hypothesized that human motor control policies are derived from

an economic policy made by the nervous system, such as optimizing energetic cost,

reward rate, and stability [81, 94, 99, 121, 143]. However, little is known about how

stability might affect the neural controller or how stability might be evaluated in such

a cost function.

The most common measure of system stability is the tendency of a system to
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return to steady-state after a perturbation. This tendency can be measured in terms

of a system’s eigenvalues. Thus, it is natural to hypothesize that one of the goals of the

nervous system is to effectively regulate the eigenvalues of the closed-loop behavior.

If this measure of stability were important, then one might predict faster convergence

rates in the presence of haptic feedback. In paddle juggling, we investigated the

two main possible ways of regulating the convergence rate. One way is shaping the

nominal paddle trajectories without adjusting the feedback controller, and the other

ways is regulating the feedback controller itself. The human nervous system might

choose either (or both) ways to tune the stability of the behavior. Different hypotheses

on the role of haptic feedback for human paddle juggling behavior are illustrated in

Fig. 2.9.

In contrast to previous results [152], we observed no statistically significant change

in nominal patterns, suggesting that haptic feedback did not enhance nominal stabil-

ity (Fig. 2.3). Perhaps this is not so surprising: it seems counterintuitive that adding

haptic sensory information would decrease optimality. Recall that increasing nominal

stability of the nominal pattern requires higher (absolute) negative accelerations at

impact; thus immediately before impact the paddle (and arm) must reach a peak ve-

locity that is actually substantially higher than the impact velocity. Producing faster

arm motions than nominally necessary likely wastes energy. However, since it is pos-

sible to regulate convergence rate in rhythmic ball motion using active closed-loop

neural feedback without changing the nominal trajectories, there may be no need to
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Feedforward
Control

Feedback
Control

Juggling
Dynamics

State
Estimator

Visual Sensing

Haptic Sensing

Figure 2.9: Simplified schematic representation of juggling behavior with
different hypotheses on the role of haptic feedback. Dashed lines represent
(slow) parametric or “structural” tuning of the dynamics. Solid lines represent (fast)
dynamical signals. z and ẑ represent the actual and estimated (continuous and dis-
crete) states of the dynamics, respectively. u is the control input to the juggling
dynamics which is regulated by the feedforward and feedback controllers. In princi-
ple, haptic sensing information could be used for tuning or regulation of feedforward
(nominal) motor patterns (dashed light gray line), regulation of feedback controllers
(dashed dark gray line) and/or state estimation (solid line). We found that neither
the feedforward pattern nor the feedback gains were altered by the presence of haptic
feedback. This suggests that haptic feedback serves mostly a state-estimation-like
role that reduces uncertainty, thus improving performance in paddle juggling.
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sacrifice energetic optimality for nominal stability. So, we investigated the stability

of the closed-loop system (Fig. 2.9) by analyzing its eigenvalues.

The closed-loop eigenvalues illustrated in Fig. 2.6 verify our hypothesis that the

closed-loop dynamics are dramatically more stable than the nominal eigenvalues.

Indeed, the slowest closed-loop eigenvalue extracted from all trials was significantly

more stable than the best possible nominal eigenvalue of 0.8. However, the addition

of haptic feedback did not change the closed-loop stability (Fig. 2.6). Taken together,

these results strongly suggest that haptic feedback provided at the moment of ball–

paddle collision had no significant effect in convergence rate (in either nominal or

closed-loop). Thus, the regulation of convergence rate cannot explain the difference

in performance in between two haptic conditions.

Rate of convergence to an equilibrium point, while commonly used and easy to

quantify, is hardly the only measure of stability that is relevant to rhythmic behav-

iors [32, 124]. Moreover, different stability measures may yield qualitatively different

results. For example, [32] showed that open-loop linear stability does not correlate

well with the size of the domain of attraction for an open-loop juggling model. More

recently, [27] applied the MFPT as a stability metric to quantify long-term metasta-

bility. The MFPT can be thought of as the tendency of a system to persist for long

periods of time, rather than the tendency of a system to converge.

Eigenvalues again play a role, but here the eigenvalue of interest, λ2 (see (2.15)),

is the one associated with the (statistical) “escape rate” of the system—the associ-
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ated MFPT is given by µ̂mfpt = 1/(1 − λ2). We suspect that the eigenvalues of the

dynamics fail to explain the performance improvement with added haptic feedback

due to their deterministic nature; they cannot capture stochastic characteristics of

the real system. So, we adopted the MFPT as stability metric because it embraces

the inherent stochasticity of the system. All biological systems suffer from some un-

certainty or stochasticity, thus MFPT—i.e. persistence—may be a useful alternative

to traditional eigenvalues—i.e. convergence—as a measure of stability. Indeed, our

analysis with MFPT shows that haptic feedback enhanced the long-term closed-loop

metastability as measured via the MFPT (Figure 2.8).

We suspect that the primary effect of haptic feedback in this task was to mitigate

noise or uncertainty (a natural consequence of adding additional sensory information),

thereby enhancing persistence of the dynamics and ultimately improving subject per-

formance in the task.

To illustrate the profound effect of decreasing uncertainty on metastability and

persistence, as compared to aggressively regulating the convergence rate, in Fig. 2.10

we illustrate the dependence of MFPT on two parameters—the eigenvalue and the

uncertainty—of a scalar stochastic dynamical system with additive white Gaussian

noise. Uncertainty in Fig. 2.10 is measured in the form of a normalized standard

deviation (standard deviation divided by the vertical size of the goal region). As

shown, a decrease in normalized standard deviation is dramatically more effective than

a decrease in the eigenvalue in terms of improving MFPT-based stability. In other
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words, minimizing the deterministic eigenvalues (which may be highly suboptimal) is

ineffective compared to mitigating noise, and thus the first goal of additional sensory

measurements may be to reduce uncertainty, not regulate convergence rate.
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Figure 2.10: Reducing noise is more effective for increasing MFPT than
regulating eigenvalues. The MFPT is shown as a function of the eigenvalue and
uncertainty of a scalar stochastic dynamical system with additive white Gaussian
noise (see Eq. (2.7)). Upper and lower failure limits are symmetric with respect to
the origin. Uncertainty is measured in the form of a normalized standard deviation,
which is computed by dividing the standard deviation by the size of the goal region
(bmax − bmin). Darker means more stable (i.e. higher MFPT) in the contour plots.

2.4.2 Sensing of Hybrid Transitions for State Es-

timation

Rhythmic motor control tasks, such as legged locomotion, often involve hybrid

transitions, namely discrete changes in the contact configuration of an animal with
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its surrounding environment. When a rhythmic system operates near a limit cycle

(see Methods), these hybrid transitions punctuate the system dynamics at particular

instants in phase [128], a measure of the time elapsed since the beginning of a cycle,

relative to the overall cycle time. Sensing the timing and state of hybrid transitions

may enhance rhythmic motor control performance.

Haptic sensing plays a critical role in motor control, as has been shown for rhyth-

mic finger movements [55, 153, 168] and continuous haptic feedback during dynamic

manipulation tasks [60, 88]. However, surprisingly few neuroscience studies address

how haptic feedback—especially provided by hybrid transitions—enhances neural

control during dynamic rhythmic behaviors such juggling [152].

To furnish a mechanistic explanation for how haptic sensing may enhance perfor-

mance in this rhythmic dynamical task, it is natural to interpret our results in terms

of state estimation and feedback control [97, 138]. In this context, one possibility is

that the nervous system may processes haptic cues at hybrid transitions to improve

state estimation, thereby reducing uncertainty, as has been demonstrated in legged

robotic systems [78,107]. The estimated states could be used by a separate controller

whose goal may be regulating energy, cost of transport, stability etc. This interpre-

tation resembles the “separation principle” in the linear-quadratic-Gaussian (LQG)

control problem [15]. LQG is an optimization problem where the goal is to minimize

a cost function for linear systems that suffer from uncertainty in the form of additive

Gaussian noise, and the solution involves a combination of a Kalman filter and linear-
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quadratic regulator (LQR). The Kalman filter optimally estimates the states and the

LQR optimally applies state feedback—based only on state estimates—to control the

plant. A loose analogy can be drawn between the LQG problem and our paddle-

juggling control problem: adding haptic feedback in the juggling problem amounts

to adding an additional sensor measurement. Assuming linear dynamics around the

nominal trajectory, and applying the separation principle, then only the estimator,

i.e. the Kalman filer, would be affected by the number of measurements, and the state

feedback gains would remain the same. Our data suggest that this mechanism could

be at play for the human motor control of paddle juggling. Indeed, it has been shown

that the human nervous system integrates haptic cues with other sensory modalities

in a statistically optimal fashion for estimating the size of an object [56] and for syn-

chronizing finger motions [55, 168]. Thus, it is possible that humans may integrate

haptic and visual feedback under a Kalman-filter-like strategy to estimate the states

of the ball (and hand) in paddle juggling behavior while keeping the controllers fixed.

Our findings suggest that haptic cues during hybrid transitions improve state estima-

tion and a separate controller uses these state estimates for control, in a manner not

dissimilar from a separate Kalman filter plus a LQR controller for a linear control

system.

However, the separation principle does not necessarily apply to nonlinear systems

such as juggling. For example, since the removal of sensory information can decrease

the reliability of sensor-based state estimates, the nervous system may rely on shaping
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nominal paddle motions to improve nominal stability and less on sensory feedback.

[152] reported the reverse of this in paddle juggling, where the addition of haptic

feedback caused steady-state hand trajectories to become more nominally stable, but

also energetically more costly. We were unable to reproduce this result.

2.4.3 “Perfect-Time” Control

Almost all control system formulations implicitly depend on the assumption that

time can be perfectly observed. What happens if this assumption is violated, i.e. if

the chronometer is imperfect? Perhaps due to the remarkable precision of engineered

clocks, this question has been largely ignored. Neural control systems in nature, by

contrast, exhibit significant temporal variability [18]. Thus, while neglecting uncer-

tainty in time leads to accurate control systems for many engineering applications,

perfect timekeeping may be a poor assumption for the modeling and analysis of bio-

logical control systems. And yet, all computational models of human motor control

implicitly assume that time is known to the neural controller [81, 98, 143, 144, 155],

including our own prior work [31].

Both open- and closed-loop controllers may be time varying, thus both categories

of control policies may suffer from the imperfections in chronometry. For example,

Lamperski and Cowan [101,102] extended the finite-horizon LQR problem to account

for temporal uncertainty, and showed that in this context the classical solution pro-

duces suboptimal results. Open-loop control policies, such as for juggling [137], even
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more sharply illustrate the potential problems in assuming perfect timekeeping. An

open-loop control policy is typically formulated as a function that maps the time t into

control input u(t). However, time must be measured and/or estimated; is it appropri-

ate to call this open-loop control, or rather perfect-time feedback control [104]? Indeed,

it is even possible for a system that has been stabilized using open-loop (perfect-time

feedback control) to be destabilized by small imperfections in timing [104].

Open-loop control is appealing because it potentially obviates the need for com-

plex computations and active feedback [62,66,67,113,137]. Since the animal nervous

system does not have access to a precise master clock, the nervous system must es-

timate and process time [17, 24, 51], likely integrating feedback from sensory stimuli.

Carver et al. [30] showed that even for a simplified model of motor control, time es-

timation requires complex computations. Thus, “open-loop” control does not, after

all, eliminate the need for feedback or complex computations, since time itself must

be estimated. Perhaps sensory feedback provided during hybrid transitions not only

enhances state estimates, but also enhances time estimates, therefore decreasing un-

certainty in both feedback and feedforward control, ultimately enhancing long-term

metastability. Recently, Studenka et al. [153] showed that adding event based tactile

feedback in a rhytmic circle drawing task can enhance the structure of timing vari-

ability supporting our theory regarding the connection between haptic feedback and

human timing.
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Chapter 3

Walking dynamics are symmetric

(enough)

Many biological phenomena such as locomotion, circadian cycles and breathing are

quasi-periodic in nature and can be modeled as rhythmic dynamical systems. Dynam-

ical systems modeling often involves neglecting certain characteristics of a physical

system as a modeling convenience. For example, human locomotion is frequently

treated as symmetric about the sagittal plane. In this work, we test this assumption

by examining human walking dynamics around the steady-state (limit-cycle). Here

we extend statistical cross validation and bootstrapping techniques in order to ex-

amine whether there are statically significant asymmetries, and even if so, test the

consequences of assuming bilateral symmetry anyway. Indeed, we verify that there

are significant asymmetries in the dynamics of human walking, but nevertheless show
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that ignoring these asymmetries results in a more consistent and predictive model. In

general, neglecting evident characteristics of a system can be more than a modeling

convenience—it can produce a better model.

3.1 Introduction

The concept of symmetry has helped shape our understanding of engineering and

biology alike. The Roman text “De architechura” by Vitruvius and the eponymous

“Vitruvian Man” by Leornado Da Vinci exemplify the influence of symmetry in an-

imals and humans on man-made works of art and engineering. Symmetry serves

to simplify and reduce complexity, making it a powerful tool in computational and

analytical applications. The ubiquity of bilateral (left–right, sagittal plane) symme-

try in animals is genetically encoded [58], and from an engineering point of view,

building machines with bilateral symmetry is justified by the fact that the left–right

axis is unbiased either by gravity or by direction of movement. However, genetic

encoding of symmetry manifests itself imperfectly: numerous factors, such as differ-

ences in contralateral limb lengths, dominance of “leggedness” and handedness, and

developmental processes break perfect symmetry, and enhance asymmetry.

Various measures and indices of asymmetry have been used to argue that human

locomotion is bilaterally symmetric or asymmetric (for reviews, see [87,133]). Symme-

try is thought to confer some advantages on motor abilities (e.g. improved energetic
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efficiency [57, 100, 112]). The common trend among previous work is the compari-

son of kinetic and/or kinematic gait parameters between the right and left halves

of the body, i.e. joint angles [59, 80, 92, 126], ranges [77, 151] and velocities [105],

stride lengths [35, 36, 77, 126], ground reaction forces [79, 84, 114, 159], EMG pro-

files [14, 28, 111, 122], limbs forces and moments [16, 45, 103, 160], or center-of-mass

oscillations [42,43,70]. However, as Sadeghi et. al. [133] state, “. . . can we argue that

it is acceptable to conclude that able-bodied gait is asymmetrical just because of the

existence of statistically significant differences between two corresponding parameters

(which we call local asymmetry) calculated from the right and left limbs?” During

human walking, do steps from left-to-right and right-to-left recover significantly dif-

ferently from perturbations? Indeed, there are differences in leg dominance—e.g.

preferred kicking leg—that might lead to different responses from step-to-step.

Aside from demonstrating asymmetry (or not) in gait parameters, we found no

studies examining the potential benefits of neglecting evident asymmetries. If there is

a step-to-step dynamical asymmetry, does fitting a model from stride to stride (two

step) rather than step to step (one step) better capture the dynamics of human walk-

ing? Of course, no single physical system has perfect “symmetry”. Thus symmetric

models are inherently wrong for any physical system, but may nevertheless be useful

for simplifying both the modeling and analysis.

“Essentially all models are wrong, but some are useful” wrote George E. P. Box in

his seminal book [20]. According to Box, the important practical concern regarding
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the models of physical phenomena is “how wrong do they have to be to not be

useful?” With regard to bilateral asymmetry in human walking, we attempt to frame

this concern as follows. How wrong is it to neglect asymmetry from a statistical

point of view? And how useful is symmetric modeling in terms of predictive power

and simplicity? In most cases correctness and usefulness are directly related, and

they are tested simultaneously. However, in the context of data-driven modeling of

human walking dynamics, the “wrongness” and “usefulness” of assuming symmetry

are related but have critical, nuanced differences. The methods presented in this

thesis allows us to independently (statistically) address these differences.

In this chapter, we test the assumption of bilateral symmetry in the dynamics of

human walking. As an example, consider fitting linear models to two distinct data

sets (e.g. “left steps” and “right steps”) and testing these models in terms of their

respective ability to predict isolated validation data from just the one of the data sets,

say “left steps”. If walking were perfectly symmetric, both the left-step (“correct”)

model and right-step (“wrong”) model would perform indistinguishably in left-step

validation. However, we show that there are statistically significant asymmetries in

the dynamics of human walking in healthy subjects in the sense that the “wrong”

model performs statistically worse than the “correct” model in validation. Despite

these asymmetries, we also show that a more consistent and predictive model of the

dynamics is obtained by assuming symmetry, and pooling all the data from both left

and right steps to form a generic model. Quite surprisingly, this fit significantly out-
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performs the mapping fitted to only left steps even when predicting left-step data.

This is good news because in addition to our finding that it is statistically better

to neglect asymmetry, it is also practically and theoretically convenient to assume

symmetry. These advantages lead us to conclude that the assumption of symmetry

in walking dynamics, though clearly wrong in a platonic sense, is nevertheless more

useful for all practical purposes.

3.1.1 Limit-Cycle Dynamics and Symmetry

As explained in Section 1.1, our approach to analyzing and modeling walking in-

volves treating the underlying behavior as a rhythmic dynamical system operating

around a stable limit cycle and we further use Poincaré theory in our analysis of

rhythmic walking dynamics. The specific Poincaré section that we adopt for human

walking is the heel strike event, as explained in Section 3.2.2. Here, we define sym-

metry in the context of limit-cycle modeling of walking and consider what kind of

symmetries (and asymmetries) can be addressed using this approach.

In our modeling approach, there are two core elements: the limit-cycle of the

rhythmic system which characterizes the steady-state behavior, and the dynamics

(both deterministic and stochastic) around the limit-cycle. In this study, we are

interested in the latter.

Beyond its utility for approximation, bilateral symmetry of the (steady-state)

limit-cycle trajectory may have physiological significance, such as reducing metabolic
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cost [57, 100, 112]. Indeed, the kinematic and kinetic variables that are the focus

of the majority of studies that address human [133] or animal [119, 123] locomotor

symmetry are steady-state (periodic) variables that correspond to the limit cycle of

a dynamic model.

Here, we consider the dynamics near, but off of the limit cycle, using data from

Poincaré sections to estimate return maps. Hence our analysis is not based on the

steady-state parameters of gait, but how the gait deviates from and recovers to these

steady-state parameters. To the best of our knowledge, this is the first study that

analyzes the dynamical symmetry of biological rhythmic systems. We validate our

methods in data from normal human walking experiments. These methods are also

applicable to robotic or biological locomotor behavior with approximately symmetric

gait patterns.

3.1.2 Dissemination

Figures and the text presented in Chapter 3 have been reported in a preprint on

arXiv [9].

3.2 Methods

The system of interest is human treadmill walking. This data set is obtained for

eight healthy young adult participants, at three different belt speeds (0.5, 1.0, and 1.5
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m/s). We required the subjects to cross their arms in order to continuously record

the marker positions. The Johns Hopkins Institutional Review Board approved all

protocols and all subjects gave informed written consent prior to participation.

3.2.1 Kinematic Data

We placed infrared (IR) markers on subjects’ left and right shoulder, hip, knee,

ankle, and toe. Markers were tracked in 3D using Optotrak (Northern Digital) at

100 Hz. The marker data was used to calculate the four sagittal plane angles on

each side as illustrated in Figure 3.1. The raw angular data was smoothed with

a fifth-order, zero-phase-lag (non-causal) Butterworth filter to remove measurement

noise and ease angular velocity estimation. In order to estimate angular velocities, a

central difference filter and another zero-phase-lag Butterworth filter was applied to

the smoothed angular data. We assume that the smoothed angles (8) and angular

velocities (8) form a 16 dimensional state space for walking. The state vector includes

angles (rad),

θL(t) =

[
θfL θaL θkL θhL

]T
,

θR(t) =

[
θfR θaR θkR θhR

]T
,

θ(t) =

θL(t)

θR(t)


(3.1)
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and angular velocities (rad/s),

θ̇L(t) =

[
θ̇fL θ̇aL θ̇kL θ̇hL

]T
,

θ̇R(t) =

[
θ̇fR θ̇aR θ̇kR θ̇hR

]T
,

θ̇(t) =

θ̇L(t)

θ̇R(t)

 .
(3.2)

Subscripts f , a, k, and h stand for foot, ankle, knee, and hip, respectively. L and R

mnemonically denote the left and right legs.

In order to analyze the data independently from the physical units, the state

space was non-dimensionalized based on the time constant associated with pendular

walking [4, 19, 49,134]:

θ̄ = θ

¯̇θ = θ̇

√
l0
g
,

(3.3)

where the bar represents the corresponding non-dimensionalized variable, g is the

gravitational acceleration, and l0 is the leg length of the subject, which is estimated

from the marker positions on right hip and ankle.
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Figure 3.1: Visualization of leg angle vector θ. The left leg (blue) and right
leg (red) alternate between stance and swing phase over the course of a stride. The
variables θfL, θaL, θkL, and θhL correspond to the left foot, ankle, knee, and hip
angles respectively. The corresponding right leg angles, θfR, θaR, θkR, and θhR, are
not labeled. The 8 leg angles and their respective angular velocities form the 16-
dimensional state vector.
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3.2.2 Events and Section Data

The treadmill used in this study features a split belt1 that mechanically decouples

the vertical ground reaction forces caused by each foot. Each belt is instrumented

with a separate load cell, facilitating the estimation of the timing of heel-strike events.

We chose heel-strike events as Poincaré sections for the analyses.

Let t[k] be the times of heel strike events, where k ∈ K = {1, 2, 3, . . . , kmax}, with

kmax being the total number of heel-strike events of both legs in one walking trial. For

example, if the first heel-strike event (k = 1) corresponds to the left leg, sets of odd

(KL) and even (KR) integer indices from 1 to kmax correspond to the left and right

heel-strike events, respectively, such that K = KL ∪ KR. Over one stride of walking,

there are two Poincaré sections of interest at heel-strike events. The measurement of

the state vector at these Poincaré sections is given as follows:

z[k] =

θ̄(t[k])

¯̇θ(t[k])

 . (3.4)

During steady-state walking and in the absence of noise, the periodic orbit would

remain on the limit cycle:

z[m] = µL , ∀m ∈ KL

z[m′] = µR , ∀m′ ∈ KR

(3.5)

1While the belts of the treadmill can be driven at different speeds, this study addresses bilateral
symmetry so both belts were driven at the same speed.
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where µL and µR are the fixed-points with respect to each of the two distinct Poincaré

sections. Note that assuming bilateral symmetry implies that these two fixed points

are identical up to a relabeling [33, 50, 106, 167]. This relabeling can be expressed as

a linear mapping of right-heel-strike coordinates:

M :



θ̄L(t[k])

θ̄R(t[k])

¯̇θL(t[k])

¯̇θR(t[k])


7→



θ̄R(t[k])

θ̄L(t[k])

¯̇θR(t[k])

¯̇θL(t[k])


, ∀k ∈ KR, (3.6)

where

M =



0 I4×4 0 0

I4×4 0 0 0

0 0 0 I4×4

0 0 I4×4 0


. (3.7)

As explained in Section 1.1 our approach to modeling human walking centers

around fitting linear maps between Poincaré sections around the associated fixed

points. First, we estimated the fixed points via

µ̂L =
1

|KL|
∑
k∈KL

z[k],

µ̂R =
1

|KR|
∑
k∈KR

z[k],

(3.8)
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where |KL| and |KR| denote the cardinality of sets KL and KR respectively. Note that

kinematic asymmetry could be measured directly in terms of the difference between

respective fixed points µ̂L and µ̂L. While potentially of interest, the current study

focuses on dynamical asymmetry (measured in terms of the section maps), and thus

we computed the residuals by subtracting the estimated fixed points from the section

data:

qL[k] = z[k]− µ̂L, k ∈ KL,

qR[k] = z[k]− µ̂R, k ∈ KR.
(3.9)

Section maps were estimated using these residuals. A section map from qL to the

subsequent qR is denoted as L 7→ R. We fit two categories of section maps: step-to-

step (L 7→ R and R 7→ L) and stride-to-stride (L 7→ L and R 7→ R). See Fig. 3.2.

(a)

(b)

Figure 3.2: Types of input–output pairs analyzed in this thesis. L and R rep-
resent the Poincaré sections associated with heel-strike events of the left and right legs.
(a) Left-to-right step maps (top) and right-to-left step maps (bottom). Step maps are
denoted using straight arrows. (b) Left-to-left stride maps (top) and right-to-right
stride maps (bottom). Stride maps and step maps are distinguished throughout the
thesis by shape (straight versus curved arrows, respectively).

68



CHAPTER 3. WALKING DYNAMICS ARE SYMMETRIC (ENOUGH)

3.2.3 Fitting Section Maps

To fit the section maps for each category explained above, we stack all the appro-

priate residuals (qL and/or qR) in matrices X (input) and Y (output):

X = [x1, · · · , xN ]T , Y = [y1, · · · , yN ]T , xi, yi ∈ Rd, (3.10)

where xi and yi represent residuals (q) from sections evaluated in the data. For

example, to fit the L 7→ R step-to-step map, one would set the columns of X and Y

as follows:

x1 = qL[1], y1 = qR[2],

x2 = qL[3], y2 = qR[4],

...
...

xN = qL[2N − 1], yN = qR[2N ].

(3.11)

The linear section maps are modeled as follows:

yi = Axi + δi , ∀i, (3.12)

Y = XAT + ∆, (3.13)

where δi is additive noise. The section map can be estimated via least squares:

Â =
(
X†Y

)T
. (3.14)
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where X† is the Moore-Penrose pseudoinverse of X.

3.3 Statistical Approach

We extended classical cross validation and bootstrapping techniques in order to

examine the symmetry in the walking dynamics. This section describes the cross-

validation approach. Details of the bootstrap approach can be found in the Ap-

pendix B.

3.3.1 Extending Monte Carlo Cross-Validation

Classical cross validation (CV) involves fitting a model to a training set of input–

output data, and validating the model by comparing its predictions on a complemen-

tary test set of input–output data. In classical CV, there exists n pairs of input–output

data which are then split into a training (fitting) set (nf pairs) and complementary

test (validation) set (nv = n − nf pairs). The training set is used for model fitting.

The fitted model is then applied to the inputs of the test set to generate output

predictions; the error metric between the predicted and actual outputs is the cross-

validation error (CVE). The CVE is used to evaluate the performance of the model.

CV methods are commonly used for selecting models based on their predictive abil-

ity [109, 125, 145, 170]. A fairly recent review paper by Arlot and Celisse [13] nicely

summarizes different cross-validation methods and discusses their powers and also
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limitations.

A critical question when using a CV method is how to split the data [145]. As-

suming no replacement, there exists
(
n
nv

)
different ways of splitting the data set. The

most popular CV method, often called leave-one-out cross validation (LOOCV), uses

nv = 1, because it incurs the least computational cost. However, LOOCV is incon-

sistent (asymptotically biased) [145], and its performance is poor in practice if the

sample size is large. However for nv � 1 and (n−nv)� 1, computing cross validation

for all
(
n
nv

)
possibilities can be computationally expensive. One way of decreasing the

computational complexity is to apply k-fold cross validation [13,96].

In k-fold CV, the data is initially split into k mutually exclusive, equal-sized

subsets, and a LOO-type analysis is performed at the level of the subsets. Note that

k-fold CV is computationally much more feasible than testing all possible ways of

splitting up the data, but there is a trade-off: picking small k increases the variance

of the CVE estimate, while picking large k, which tends toward LOOCV, is biased

for large sample sizes.

A common way to overcome the artificial trade-off between bias and variance

imposed by k-fold CV, and still offer computational tractability, is Monte-Carlo cross

validation (MCCV) [145]. MCCV randomly splits the data m times with fixed nf and

nv (size of training and test sets respectively) over the m iterations. For each iteration,

the CVE is computed using the respective training and test sets; the overall CVE is

estimated using the mean of these m CVEs. If n
nv
� m �

(
n
nv

)
, MCCV estimates
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the CVE with a computationally feasible sample size, and with negligible variance

compared to the estimate provided by k-fold CV. Also, since we fit the model more

times (m� k), MCCV provides a better mechanism for estimating model uncertainty

than k-fold CV.

As mentioned before, the model being fit to input–output data in our case is a

linear map. Suppose there are n pairs of input–output data, (xi, yi), where i ∈ I =

{1, 2, 3, . . . , n}. Split this data into a training set F 3 (xf , yf ) comprising nf pairs,

and test set V 3 (xv, yv) comprising nv pairs. Define XF as the matrix whose rows

are xTf , and define YF , XV , and YV similarly. We use the following definition of CVE

from F to V :

CVEF7→V :=
||YV −XVATF ||2

||YV ||2
(3.15)

where || · || denotes the Frobenius norm and

AF :=
(
X†FYF

)T
(3.16)

is the least-squares solution (3.14) given the training data F .

Our extension of this classical CV is for systems that may exhibit discrete sym-

metry. We focus our discussion and notation on human walking, but these methods

are applicable to other forms of locomotion that involve nearly bilaterally symmetric

gaits, e.g. walking and trotting, but not clearly asymmetric gaits, e.g. galloping [38].

72



CHAPTER 3. WALKING DYNAMICS ARE SYMMETRIC (ENOUGH)

In classical Monte Carlo CV, at each iteration, one CVE is computed using (3.15),

where as in our extended CV method we compute three types of CVEs. Each CVE

computation uses the same test set, but the models are fit using three different train-

ing sets.

Each application of extended CV requires a “normal” set, N , and an equal size

“mirrored” set, M. In this thesis, we analyze four different (N ,M) pairs, which

are generated using the input–output data types illustrated in Fig. 3.2, i.e. step-to-

step transitions ({L 7→ R} and {R 7→ L}) and stride-to-stride transitions ({L 7→ L}

and {R 7→ R}). For example, if the normal data set comprises the left-to-right

step transitions, N = {L 7→ R}, the associated mirrored dataset is M = {R 7→ L}.

Similarly, for strides, ifN = {L 7→ L} represents the set of all transitions from left heel

strike to the subsequent left heel strike, then M = {R 7→ R} are the corresponding

right-to-right transitions. All (N ,M) combinations are listed in Table 3.1.

The normal and mirrored sets each include n mutually exclusive input–output

pairs, denoted by (xi, yi) ∈ N and (x̂i, ŷi) ∈ M, respectively where i ∈ I =

{1, 2, · · · , n}. Each iteration of extended CV randomly splits this index set I into

a training index set If and test index set Iv in a manner identical to classical CV:

If ∪ Iv = I and If ∩ Iv = ∅. The three types of CVE computations described below

draw the test set from the normal dataset:

V = {(xv, yv) ∈ N | v ∈ Iv}. (3.17)
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Normal Cross Validation (NCV) is the same as classical Monte Carlo CV,

in that the training data are also drawn from N :

FNCV = {(xf , yf ) ∈ N | f ∈ If}. (3.18)

This set is used for fitting the linear model AFNCV
using (3.16). Given AFNCV

, the

CVE is computed on the common test set V using (3.15). For NCV, the mirrored

data M is not used.

Mirrored Cross Validation (MCV) draws the training data from the mir-

rored dataset M, using the same training index set If as NCV:

FMCV = {(x̂f , ŷf ) ∈M| f ∈ If}. (3.19)

As before, this set is used for computing the linear model AFMCV
using (3.16). The

common test set V is used for computing the CVE. In MCV, we are using the “wrong”

training data (mirrored), which will be critical to detect dynamical asymmetry in

walking. Note that the size (and in fact the indices) of the training data in both

MCV and NCV are the same.

Combined Cross Validation (CCV) uses training data that is the union of

the training sets from NCV and MCV:

FCCV = FNCV ∪ FMCV. (3.20)
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And, as before, this data is used to fit the linear model AFCCV
and the common test

set V is used for calculating the CVE. Thus the model is fitted on data pooled from

both N andM, while the test data remains the same. Note that CCV uses twice as

much data for fitting as either NCV or MCV.

Fig. 3.3 illustrates the set partitioning for one iteration of extended cross val-

idation for a general dataset. Fig. 3.4(a) illustrates one iteration of the extended

cross validation algorithms on step data, where the normal dataset is N = {L 7→ R}

and the mirrored dataset is M = {R 7→ L}. Fig. 3.4(b) illustrates one iteration of

the extended cross validation algorithms on stride data where N = {L 7→ L} and

M = {R 7→ R}.

Table 3.1: Catalog of normal, N , and associated mirrored,M, datasets combinations
used in our extended CV analysis.

N M

Step
{L 7→ R}
{R 7→ L}

{R 7→ L}
{L 7→ R}

Stride
{L 7→ L}
{R 7→ R}

{R 7→ R}
{L 7→ L}

The comparison between NCV and MCV will be critical for statistically testing

the symmetry of human walking. Since both NCV and MCV have training sets of

the same size and MCV uses mirrored data, the difference in CVEs offer a direct

measure of dynamical asymmetry. For a symmetric system NCV and MCV errors

should be statistically indistinguishable. If there are asymmetries, we should observe

higher MCV errors than NCV errors.

However, this comparison alone is not enough to address all concerns because
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Figure 3.3: Illustration of the subsets V, FNCV, FMCV, and FCCV after random
splitting during an iteration of extended cross validation methods. The
normal dataset, N , is randomly split into the normal training set FNCV and the
common test set V . FMCV shares the same indices as FNCV but is drawn from the
mirrored dataset, M. The training set for the CCV is simply the union of the other
two training sets: FCCV = FNCV ∪ FMCV. Note that the subset M\ FMCV (greyed
out) is not used in any of the three CV computations.

the main advantage of assuming symmetry is that we double the amount of data by

combining the normal and mirrored data sets and fitting a single model. We introduce

a potential bias by neglecting the asymmetries in the behavior, but reduce the variance

in the estimation by simply doubling the amount of data used for fitting. From

this perspective, comparison between NCV and CCV will be critical for statistically

testing predictive powers of asymmetric and symmetric modeling approaches, which

is an effective way testing the “usefulness” of the symmetry assumption.

3.4 Results

The results presented here are based on the methods presented in Section 3.3.1

which rely on Monte-Carlo sampling and cross-validation. The results presented
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NCV

MCV

CCV

NCV

MCV

CCV

(a)

(b)

Figure 3.4: Illustration of extended CV dataset partitioning. (a) For step-
to-step data, the normal dataset (N ) comprises all left-to-right step ordered pairs,
whereas the mirrored dataset (M) comprises all right-to-left step ordered pairs. (b)
For stride-to-stride data, the normal dataset (N ) comprises all left-to-left stride or-
dered pairs, whereas the mirrored dataset (M) comprises all right-to-right stride
ordered pairs. In both cases, for each iteration, a common test set (V , green arrows),
used for all CV methods, is randomly sampled from the normal dataset. The training
sets, however, are unique to each method. NCV: the remainder of the normal dataset
is used for training (FNCV, blue arrows). MCV: the training set (FMCV, red arrows) is
obtained using the same indices (dashed lines) as for FNCV. CCV: the union of the test
sets for NCV and MCV, comprise the combined training data (FCCV = FNCV∪FMCV,
red and blue arrows).
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below were qualitatively similar (and stronger in one case) to those obtained using

the bootstrap method—see Appendix.

We set the sample size of Monte-Carlo iterations to m = 1000 based on pilot ex-

periments, which showed that increasing the sample size beyond this had a negligible

effect on cross validation error. In each iteration, 20% (nv
n

= 0.2) of the normal data

set, N , was withheld for validation. Training sets for the three CV computations were

drawn from the remaining data according to the procedure detailed in Section 3.3.1.

3.4.1 Symmetric vs. Asymmetric Modeling

The question being addressed in this thesis is not just the symmetry versus asym-

metry of the dynamics of human walking, but also the statistical consequences of

choosing one approach over the other. We applied our extended cross-validation

method (Section 3.3.1) to expose these consequences.

3.4.1.1 Step Maps

To apply the extended CV to step-to-step transitions, we analyzed both combina-

tions of normal and mirrored data: (N ,M) = ({L 7→ R}, {R 7→ L}) and (N ,M) =

({R 7→ L}, {L 7→ R}); see Table 3.1. For each category of cross validation—NCV,

MCV, and CCV—we averaged the errors for both combinations of (N ,M).

Fig. 3.5(a) compares MCV and CCV errors to NCV error from step-to-step data.

MCV errors are (statistically) significantly higher than NCV errors at all speeds
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(p1.5m/s = 0.004, p1m/s = 0.008 and p0.5m/s = 0.004; one-sided Wilcoxon rank-sign

test). This shows that our data is indeed dynamically asymmetric between L 7→ R

and R 7→ L.

The comparison of CCV and NCV errors illuminates a different perspective (Fig-

ure 3.5(a)). For speeds of 1.5 m/s and 1.0 m/s CCV and NCV errors were statistically

indistinguishable (p1.5m/s = 0.38 and p1m/s = 0.84; Wilcoxon rank-sign test), suggest-

ing that for these speeds, the predictive power of a model that assumes symmetry

is just as great as one that embraces the asymmetry. More surprisingly, the average

CCV error for the slowest speed tested was (statistically) significantly lower than

the average NCV error (p0.5m/s = 0.0039. Wilcoxon one-sided rank-sign test) for the

slowest speed (0.5m/s). In other words, assuming symmetry (CCV) produces a single

step-to-step model that has greater predictive power than is achieved by refining the

analysis to produce separate {L 7→ R} and {R 7→ L} step maps.

3.4.1.2 Stride Maps

We analyzed the dynamical symmetry and the statistical consequences of sym-

metric modeling on the stride-to-stride transitions. Similar to before, we analyzed

two different (N ,M) combinations, (N ,M) = ({L 7→ L}, {R 7→ R}) and (N ,M) =

({R 7→ R}, {L 7→ L}); see Table 3.1. And again, for each category of cross valida-

tion, we averaged the CV errors for both combinations of normal and mirrored data.

As in the previous section, we first compared NCV and MCV errors to test if the
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Figure 3.5: Walking is asymmetric, but neglecting this can nevertheless
improve fitting. (a) Step-to-step maps. At all speeds, the mean mirrored cross
validation errors (light grey diamonds) were significantly worse than for normal cross
validation, indicating that steps were indeed asymmetric. Despite this left–right
asymmetry, the mean combined cross validation errors were not significantly different
than for normal cross validation at the two fasted walking speeds tested, and, more
surprisingly, were actually lower at the slowest walking speed. The slopes of the fitted
lines (dashed) determine the relative increase (m > 1) or decrease (m < 1) in CV error
relative to the NCV error. (b) Stride-to-stride maps. By the same statistical measure,
strides were also asymmetric at all speeds, but less substantially so. Moreover, the
mean CCV error was lower than mean NCV error at all speeds.
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stride-to-stride data is statistically asymmetric. The NCV and CCV errors were also

compared in order to compare the symmetric and asymmetric modeling approaches.

Fig. 3.5(b) compares the MCV and CCV errors to NCV error for stride-to-stride

data. MCV errors were higher (on average) than NCV errors for all speeds and

these differences were statistically significant (p1.5m/s = 0.0391, p1m/s = 0.0117 and

p0.5m/s = 0.0039; paired one-sided Wilcoxon rank-sign test). This shows that our data

is dynamically asymmetric between L 7→ L and R 7→ R.

However, the comparison of NCV and CCV errors in stride-to-stride data is more

striking than in the step-to-step case in that CCV errors were statistically significantly

lower than the NCV errors at all three speeds (p1.5m/s = 0.004, p1m/s = 0.012 and

p0.5m/s = 0.004; paired one-sided Wilcoxon rank-sign test).

3.4.1.3 Model Uncertainty

Cross-validation errors are powerful metrics for comparing the effectiveness of

symmetric and asymmetric modeling approaches. However, if two models have similar

CVEs, the next thing to address is how well the data constrain the two models—i.e.

how much uncertainty there is in the model parameters [109]. This was particularly

important for our step-to-step data because symmetric and asymmetric modeling

produced indistinguishable CVEs for 1.5 and 1.0m/s walking. This implies that both

modeling approaches are equally powerful from the perspective of CVE. However,

the parameters of the fitted section map model may exhibit greater variability for the
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asymmetric modeling approach since it uses less data for fitting.

In order to measure the uncertainty of the models, we adopted following metric:

Ξ =
d∑
i=1

d∑
j=1

σ2
ij (3.21)

where σ2
ij is the sample variance of aij, i.e. element at the ith row and jth column of

the section map AF fit during Monte-Carlo iterations of the extended CV method.

Symmetric model uncertainty was computed using the fitted matrix samples of the

CCV method. Model uncertainties of the {L 7→ R} and {R 7→ L} (and {L 7→ L}

and {R 7→ R}) maps were averaged to have a single asymmetric model uncertainty

for step maps (and stride maps).

We found that by neglecting asymmetry and fitting a single return map, there

was a substantial reduction in model uncertainty for both the step-to-step and stride-

to-stride data. See Figure 3.6. Thus, even though in a few cases, the CV errors

were similar for NCV and CCV, the models produced using CCV (that is, neglecting

asymmetry and pooling the data) are substantially less variable.

For step maps, assuming symmetry substantially lowers model uncertainty: we

saw 56%, 54%, and 72% improvement with symmetric approach for speeds 1.5, 1.0

and 0.5 m/s respectively. All improvements were statistically significant (p = 0.0039,

one-sided Wilcoxon signed-rank test). We observed the same trend with stride maps:

61%, 58%, and 74% improvement with symmetric approach for speeds 1.5, 1.0 and 0.5
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Figure 3.6: Model uncertainty at all three speeds was lower when symmetry
was assumed in both (A) step-to-step and (B) stride-to-stride maps. Each
marker compares the model uncertainty with asymmetry and with symmetry of a
single individual. Dashed line denotes the best fitted line (passing trough the origin)
to the comparison markers. The percentage improvement is given by (1−m)× 100,
where m is the slope of the fitted line.

m/s respectively (p = 0.0039, one-sided Wilcoxon signed-rank test). See Figure 3.6.

3.4.2 Step Return Maps vs. Stride Return Maps

One of the advantages of assuming dynamical bilateral symmetry (i.e. neglecting

asymmetry) is that one step becomes the fundamental period of the system: the

mapping from step to step defines the return map of the dynamics. On the con-

trary, if we embrace the asymmetry, the stride becomes the fundamental period. The

disadvantage of using stride-to-stride return maps compared to step-to-step maps is

a potential loss of signal-to-noise ratio due to the fact that stride maps reduce the

temporal resolution. Thus, one can expect that stride-to-stride return maps would
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have lower predictive power in the CV setting.

In order to compare the predictive powers of step and stride return maps, we

analyzed the CVEs by assuming symmetry and fitting lumped return maps to both

step and stride data. Specifically we compared the CCV errors of step and stride data

in our method. In order to estimate CCV error of step return map, we take the mean

of CCV errors of {L 7→ R} and {R 7→ L}. Likewise, in order to estimate CCV error

of stride return map, we take the mean of CCV errors of {L 7→ L} and {R 7→ R}.

The results illustrated in Fig. 3.7 show that there is a dramatic signal-to-noise

ratio loss with stride-to-stride return maps and that step-to-step return maps have

more predictive power in the CV setting. CCV errors of stride return maps are

significantly higher than the ones with step return maps: 79%, 87%, and 31% more

CV error with stride return maps for speeds 1.5, 1.0, and 0.5 m/s respectively. The

differences are statistically significant (p = 0.0039, one-sided Wilcoxon signed-rank

test).

3.5 Discussion

In this chapter, we focused our attention on bilateral dynamic asymmetry in

human walking. Specifically, we introduced a statistical framework based on applying

cross validation techniques and fitting linear maps to the data associated with the

heel strike events. Our statistical methods allowed us to examine the “wrongness”
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Figure 3.7: Illustration of the CCV errors of step return maps and stride
return maps. Each marker compares the CCV errors of step and stride return maps
of a single individual. Dashed lines illustrate the best fitted lines (passing trough the
origin) to the comparison markers with m being the associated slope of the line.

and “usefulness” of neglecting bilateral dynamic asymmetry.

We applied our methods to data obtained from eight different individuals walking

at three different speeds. Based on the results obtained with this data set, we observed

that dynamical asymmetry in walking is significant and statistically distinguishable.

These results underscore what several studies have previously observed on steady-

state parameters [1, 45,59,77,103,105,122,151].

Despite the existence of significant asymmetry, we show that ignoring this and

modeling human walking dynamics as symmetric produces significantly more consis-

tent models (see Fig. 3.6). Moreover, the predictive power of these symmetric models

is higher than (or at worst equal to) their asymmetric counterparts (see Fig. 3.5).

This shows that neglecting bilateral asymmetry—an inescapable characteristic of the
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human form—not only provides modeling convenience but, more importantly, pro-

duces better models in terms of consistency and predictive power. It is not only “OK”

to neglect asymmetry; in some cases, it is better.

One should also note that the slight differences between two “symmetrically”

placed sensors (e.g. load cells) can generate an appearance of asymmetry that is

not related to the actual system. However, we suspect that these asymmetries domi-

nantly affect the limit-cycle symmetry—because their effects are persistent and almost

same for each cycle—and by approaching the problem from the dynamical symmetry

perspective, we minimize asymmetries in the data associated with the measurement

bias. In our case, this point is moot: despite possible measurement asymmetries that

would likely exacerbate asymmetries in modeling, a symmetric dynamic model was

still preferable for our data.

Even though we applied our methods to human walking data, they are directly

applicable to a wide range of rhythmic dynamical systems in biology and robotics.

Specifically, we are interested in behaviors that exhibit alternating (out of phase) gait

patterns but are symmetric via reversing the left–right axis for half the stride. This

class includes bipedal walking, running, and sprinting [39,110]; quadrupedal walking,

trotting, and pacing [21, 38]; hexapedal alternating tripod gait [63, 136]; and even

swimming [91,142].

In the context of robotics, our methods can be used for diagnostics and calibra-

tion since symmetry is considered a desirable property in the design and development
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of robotic systems. Asymmetric robotic gaits can potentially increase energy ex-

penditure, reduce performance, and introduce a steering bias, hindering the control

and operation of the robot. It may be possible to eliminate this steering bias by

using existing gait adaptation methods [64, 164] which, to date, requires external in-

strumentation and specialized arenas. However, our method relies on only internal

kinematic measurements, which are directly available in most robotic systems, and

so perhaps the methods presented in this chapter can be used to develop fast and

effective calibration methods for field robotics.

On the biological side, there is scientific value in investigating dynamical sym-

metry across species. Models of biological locomotion can be decomposed into two

components: the mechanics of the locomotion (plant), and the neural feedback (con-

troller) [132]. A “less wrong” model of the plant provides better understanding of

the controller, and vice-versa [40, 41]. The locomotor pattern of a behaving animal

is the closed-loop interaction of the plant and controller. Investigating dynamical

symmetry (or asymmetry) in the locomotor gait as well as symmetry (or asymmetry)

of the kinematics allows us to better predict the structure of the corresponding neural

controller.

With regard to human health in particular, our tools may be useful for under-

standing motor deficits during locomotion. Specifically, these methods provide an

important extension to those that center on kinematic symmetry and its relations to

human physiology [57, 126]. Individuals with damage to the musculoskeletal system
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or nervous system often use asymmetric kinematic walking patterns (e.g. amputees,

stroke patients). The kinematic asymmetry can be in the amount of time standing

on one leg versus the other, the extent of limb movements, or some combination. An

understanding of the underlying dynamical asymmetry (or even symmetry) in these

cases would provide more information about the nature of the deficit, and perhaps

suggest new targets for focusing rehabilitation treatments.

Finally, an interesting extension of our methods would be analyzing dynamical

asymmetry in gaits with categorically asymmetric steady-state kinematics such as

quadrupedal galloping and bounding. The steady-state limit-cycles of such gaits are

obviously asymmetric, but the dynamics around those limit-cycles may be symmetric

(enough).
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Chapter 4

System Identification of Rhythmic

Systems

Few tools exist for identifying the dynamics of rhythmic systems from input–

output data. This chapter investigates the system identification of stable, rhythmic

hybrid dynamical systems, i.e. systems possessing a stable limit cycle but that can

be perturbed away from the limit cycle by a set of external inputs, and measured

at a set of system outputs. By choosing a set of Poincaré sections, we show that

such a system can be (locally) approximated as a linear discrete-time periodic sys-

tem. To perform input–output system identification, we transform the system into

the frequency domain using discrete-time harmonic transfer functions. Using this

formulation, we present a set of stimuli and analysis techniques to recover the compo-

nents of the HTFs nonparametrically. We demonstrate the framework using a hybrid
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spring-mass hopper. Finally, we fit a parametric approximation to the fundamental

harmonic transfer function and show that the poles coincide with the eigenvalues of

the Poincaré return map.

4.1 Introduction

In this chapter, we propose a framework for system identification of rhythmic

hybrid dynamical systems around their limit cycles. Rhythmic dynamic behaviors

can be observed in a wide variety of biological and robotics systems, such as terrestrial

locomotion [19, 39, 136, 150] and juggling [10, 22, 137]. Such behaviors often include

hybrid characteristics in that they exhibit both smooth flows punctuated by discrete

jumps and are often modeled as hybrid dynamical systems [26,86].

Powerful analytical and numerical tools have been developed in order to control

and analyze such hybrid dynamical systems and behaviors [3,4,29,86]. However, these

tools are limited to the case when we have a full (and preferably simple) mathemat-

ical model—typically derived from first principles—that can accurately describe the

system dynamics, but such modeling requires many creative decisions about what to

neglect. More critically, it is impossible to derive equations, from first principles, that

capture the influence of the nervous system on these hybrid dynamics [40,132,158].

In the context of non-rhythmic dynamical systems near equilibria, system identifi-

cation is a mature field [108,149]. System ID provides a very powerful complement to
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modeling systems using first principles. A system identification method can solely rely

on data driven approaches, these class of algorithms are called “black-box” methods,

or it can combine a data driven approach with some priori information (which may

be provided by first principles) and these kind of algorithms are called “grey-box”

methods.

By contrast, system ID for rhythmic and/or hybrid systems remains radically lim-

ited. Several researchers have addressed system ID and analysis of rhythmic systems

by studying the steady state behavior and synthesizing these results using dynamical

systems language [95]. Most popular of such an approach is using SLIP (spring-

loaded intervened pendulum) and its extensions for modeling legged locomotion in

animals [7,61,68]. However, this type of approach is extremely limited for answering

the question of such as how these systems recover from perturbations.

There are also recent studies that attempt to estimate and quantify the dynamics

around the limit cycles of such systems from data [10, 127, 129]. The most popular

mathematical framework used in such analysis is based on Poincaré return maps which

reduce the rhythmic dynamical system to a lower dimensional discrete-time system

that describes the behavior in terms of its cycle-to-cycle transitions. Linearization of

this reduced system yields a discrete time LTI system. The power of Poincaré theory

is that it connects rhythmic dynamical systems to LTI systems theory, affording rich

and powerful tools for both analysis and identification. However, the obvious limi-

tation of this approach is that only one measurement per cycle is used. But, there
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are other limitations to this approach. The approach lumps all effects within a cycle

together, making it difficult to relate system-level dynamics with the roles of individ-

ual component-level details. Relatedly, there is a severe loss in temporal resolution.

In addition, the approach presumes access to all state variables, an assumption not

realistic when dealing with neural control systems.

In order to resolve some of these issues, Revzen et al. [127] introduced an identifi-

cation framework inspired by Floquet theory and it utilizes multiple sections within a

cycle and identifies mappings between them. However, this approach is “input free”

and the identification is performed only based on the output measurements (and thus

doesn’t address the problem of hidden states). Typically, for the identification of

dynamical systems input–output methods are more powerful and accurate compared

to output only methods.

Kiemel et al. [93] proposed a new formulation that addresses the input–output

identification of rhythmic systems around their limit cycles in the frequency domain.

Specifically they approximate the dynamics near the limit cycle as a linear time-

periodic (LTP) system. In this framework, they non-parametrically estimate LTP

dynamics in frequency domain using harmonic transfer functions [117, 166]. How-

ever, the assumption of smooth dynamics does not readily apply to many rhythmic

behaviors that involve hybrid dynamic characteristics.

In order to fill these gaps, we propose a new formulation for hybrid rhythmic

dynamic systems using discrete time harmonic transfer functions that enables us to
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perform input–output system ID in frequency domain.

4.1.1 Dissemination

Some figures and the portions of text presented in Chapter 3 have been reported

in a conference paper [6].

4.2 Hybrid Dynamical System Formula-

tion with Exogenous Input

The section follows briefly summarizes the development of [86] and modifies it to

include exogenous inputs.

The state space of a hybrid system is a union

V =
⋃
α∈I

Vα

where I is a finite index set and each Vα is an open, connected subset of Rnα . Each

element of this union, i.e. Vα, is called a chart. Note that for some α, β ∈ I it

is possible to have a nonempty intersection set, i.e. Vα ∩ Vβ 6= ∅ and there is no

continuity requeirment on these intersection sets. The dimension of the charts can

typically depend on α [25, 26, 165]. A state of the overall hybrid dynamical system

consists of an index α together with a point in the chart Vα. We assume that a
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(smooth) continuous time dynamical system is defined on each chart. Since Vα ⊂ Rnα

we can represent the smooth dynamical system on each chart using

q̇α = fα(qα, uα, t) (4.1)

where q̇α ∈ Vα is the state of the vector-field associated with chart α and u ∈ Rlα

represents the small external perturbations used for system identification. One should

also note that, similar to the state vector qα, dimension of the exogenous input may

depend on α for hybrid dynamical systems. Indeed, exogenous inputs may not avail-

able (lα = 0) for some charts. As a convenience of notation, and without loss of

generality we assume that there exists a û ∈ Rlmax which can be freely controlled by

the experimenter, and a set of coordinate dependent mappings, gα : Rlmax → Rlα , such

that lmax = maxα∈I lα and uα = gα(û), ∀α. These maps should be locally onto (so

as not to throw away “useful” perturbation inputs), and without loss of generality,

gα(0) = 0. On charts for which lmax > lα, the extra inputs are “thrown away” by the

dynamics. Under these constraints (4.1) takes the form

q̇α = fα(qα, û, t) (4.2)

We assume that for each α ∈ I, there exists a finite set of real-valued piecewise-smooth

threshold functions, hβiα (qα, û). Zero crossings of a threshold function is called an event

which triggers the transition to a new chart indexed by βi. We further assume that
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there are transition maps, qβ = Tα(qα, û) that apply a transformation to the points

at an event. The images of the transition maps are taken as initial conditions for

the continuous-time trajectory inside the new chart. Conceptually, the evolution of

the system is viewed as a sequence of trajectory segments where the endpoint of one

segment is connected to the initial point of the next by a transition map.

Given an input û(t), an initial chart α0, and initial condition on that chart qα0(t0),

we define a trajectory on the interval [t0, tn] as follows. Denote events t1, . . . , tn−1, such

that t0 < t1 < · · · < tn. Each event time corresponds to a hybrid transition, giving

rise to a sequence of discrete states α0, · · · , αn−1 and smooth trajectories qαi(t) ∈ Vαi ,

t ∈ [ti, ti+1], such that each qαi is a trajectory of the continuous-time dynamical

system on Vαi given in (4.2). Further, the initial condition for each trajectory is

given by qαi , and for i = 1, . . . , n − 1, these are calculated via the transition map:

qαi(ti) = Tαi−1
(qαi−1

(ti), û(ti)).

In the absence of external inputs i.e. û(t) = 0 ∀t, we assume the existence of an

isolated, hybrid period orbit, or limit cycle, γ(t) ∈ V , that satisfies

lim
t̂→t−

[
γ(t̂)− γ(t̂+ T )

]
= 0,

lim
t̂→t+

[
γ(t̂)− γ(t̂+ T )

]
= 0.

Similar to the previous work on rhythmic hybrid dynamical systems [26], we limit our

attention to hybrid systems undergoing a finite number of isolated hybrid transitions
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near the limit cycle. We also assume that in a local neighborhood of the limit cycle

that the number and order of hybrid transitions is fixed (although the transition

times can and typically will vary) and both the threshold functions and transition

maps associated with these transitions are locally smooth.

4.3 Mapping Between Poincaré Sections

A Poincaré section, Σi ⊂ V , is an embedded submanifold that intersects the

periodic orbit at exactly one point [26]:

{(εi, αi)} = γ ∩ Σi, αi ∈ I, εi ∈ Vαi ,

dim (Σi) = dim (Vαi)− 1

where (εi, αi) is called the fixed point of Σi. The flow should be transverse to Σi in

a neighborhood of εi for all sufficiently small inputs. Let Wi ⊂ Σi be an open subset

containing εi.

Let Σj be another Poincaré section with associated fixed point (εj, αj). We define

a mapping, Pi→j : Wi × Rlmax → Σj by assuming û = ui is constant (i.e. a “zero-

order hold”) and tracing the hybrid trajectories from qi ∈ Wi forward in time until it

intersects Σj at qj:

qj = Pi→j(qi, ui). (4.3)

We assume that Pi→j is a well-defined and smooth map around (εi, 0). If Σi = Σj and
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ui = 0 this maps becomes the more familiar Poincaré return map. It is natural to

assume that our measurements of states qi are indirect and though a smooth mapping:

zi = hi(qi, ui). (4.4)

Linearizing state and output mappings in (4.3) and (4.4) around (qi, qj, ui) =

(εi, εj, 0) yields

xj = Aixi +Biui,

yi = Cixi +Diui.

(4.5)

It is worth noting that Ai need not be square, depending on the dimensions of Σi and

Σj. Now assume that we have N distinct isolated sequential (in the order they are

punctuated by the limit cycle) Poincaré sections indexed by {0, 1, · · · , N − 1}; see

Fig. 4.1. We formulate the linearized mapping between consecutive sections using

x[n+ 1] = A[n]x[n] +B[n]u[n],

y[n] = C[n]x[n] +D[n]u[n],

(4.6)

where A[n] = A[n+N ] (and likewise for B,C,D).

The linearized mappings between successive Poincaré sections forms a linear dis-

crete time periodic (LDTP) dynamical system which facilitates input–output model-

ing. Using (4.6) we can compute the linearized Poincaré return map at any section.
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Let i ∈ {0, · · · , N − 1} be the section that we are interested. Then,

DPi→i =
i∏

k=i+N−1

A[k] = A[i+N − 1] · · ·A[i] (4.7)

yields the linearized Poincaré return map at that section. It is obvious that for hybrid

systems in which the dimension of charts (dim (Vα)) changes with α, the linearized

Poincaré return map in (4.7) is always rank-deficient for some i ∈ {0, · · · , N−1} [165].

It has been shown that the rank of a Poincaré return map is bounded above by the

minimum dimension of all of the charts, i.e.

rank (DPi→i) ≤ min
α∈I

dim (Vα) (4.8)

or equivalently

rank (DPi→i) ≤ min
j∈{0,···1}

dj, xj ∈ Rdj , (4.9)

if there exits at least one Poincaré section in the chart with the minimum dimension.

Even with rank deficiencies and the dimension of x[n] is time varying, the liner

time varying dynamics in (4.6) is suitable for deriving harmonic transfer functions

using impulse response representation.
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4.4 Harmonic Transfer Functions (HTF)

for LDTP Systems

The computations above in Section 4.3 demonstrate that hybrid dynamical sys-

tems, operating near a limit cycle, can be approximated using a LDTP system. How-

ever, a transfer function representation may be more amenable to input–output sys-

tem identification. In this section we will reformulate the derivations in [117] to suit

LDTP systems. Any (causal) LDTP systems such as in (4.6) can be represented using

time-periodic impulse response

y[n] =
n∑
k=0

H[n, k]u[k], (4.10)

where H[n, k] = H[n−N, k −N ]. For the sake of clarity of derivations, throughout

the chapter we assume that N is even (easily relaxed). Let k = n− r then H[n, k] 7→

H[n, n− r] which is periodic in n for any fixed r thus can be expressed as a Fourier

series:

H[n, n− r] =

N
2
−1∑

m=−N
2

Hm[r]ei
2πm
N

n, (4.11)

where

Hm[r] =
1

N

N
2
−1∑

n=−N
2

H[n, n− r]e−i
2πm
N

n. (4.12)
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Plugging r = n− k gives

H[n, k] =

N
2
−1∑

m=−N
2

Hm[n− k]ei
2πm
N

n. (4.13)

Combining (4.10) and (4.13), y[n] can be written as

y[n] =
n∑
k=0

N
2
−1∑

m=−N
2

Hm[n− k]ei
2πm
N

nu[k]

=

N
2
−1∑

m=−N
2

n∑
k=0

Hm[n− k]ei
2πm
N

nu[k]

=

N
2
−1∑

m=−N
2

n∑
k=0

Hm[n− k]ei
2πm
N

(n−k)u[k]ei
2πm
N

k

y[n] =

N
2
−1∑

m=−N
2

(
Hm[n]ei

2πm
N

n ∗ u[n]ei
2πm
N

n
)
.

Taking the Z-transform of y[n],

Y (z) =

N
2
−1∑

m=−N
2

Hm

(
ze−i

2πm
N

)
U
(
ze−i

2πm
N

)
(4.14)

where

Hm (z) = Z {Hm[n]} . (4.15)

100



CHAPTER 4. IDENTIFICATION OF RHYTHMIC SYSTEMS VIA HTF

We can obtain the frequency response version of the HTF equation in (4.14) using

the mapping z 7→ eiw:

Y (ω) =

N
2
−1∑

m=−N
2

Hm

(
ω − 2πm

N

)
U

(
ω − 2πm

N

)
. (4.16)

Hm(z) (or Hm(w)) is the mth harmonic of the HTF structure that defines the coupling

between the output at frequency w (or w+ 2πm
N

) and the input at frequency w− 2πm
N

(or w).

4.5 Identification of HTF of LDTP Sys-

tems

4.5.1 Identification via Single Cosine Inputs

In this section we show how harmonic transfer functions can be estimated using

single cosine inputs and the limitations of this approach. Let the input be a (real)

phase shifted cosine signal u[n] = a
π

cos(ω̄n + φ), w̄ ∈ [0, π). If we use the HTF
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structure in (4.16), the response to u[n] can be computed in frequency domain as

Y (ω) =

N
2
−1∑

m=−N
2

Hm

(
ω − 2πm

N

)
aeiφδ

(
ω − 2πm

N
− ω̄

)

+

N
2
−1∑

m=−N
2

Hm

(
ω − 2πm

N

)
ae−iφδ

(
ω − 2πm

N
+ ω̄

)

Let us analyze the steady-state frequency response for ω = ω̄ + 2πl
N

where l ∈

{−N/2, . . . , N/2}:

Y

(
ω̄ +

2πl

N

)
= Hl (ω̄) aeiφ

+ sgn(m∗)Hl−m∗

(
ω̄ +

2πm∗

N

)
ae−iφ

where

m∗ =


ω̄N
π
, if ω̄N

π
∈ Z+

0, otherwise

If m∗ 6= 0 then, there exist two unknowns, thus it is not possible to identify neither

Hl (ω̄) nor Hl−m∗
(
ω̄ + 2πm∗

N

)
using a single cosine input. However if m∗ = 0 (or

equivalently ω̄N
π
/∈ Z+), then we can identify Hl(ω̄) via

Hl(ω̄) =
Y
(
ω̄ + 2πl

N

)
aeiφ

.
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In conclusion, in order to identify the elements of HTF using single cosine inputs

(for each frequency), the input frequency must not be an integer multiple of half of

the so-called “pumping frequency” (ωp = 2π
N

), i.e., ω̄N
π
/∈ Z+.

Note that it is possible to identify the elements of the HTF at these harmonics

by simply exciting the system using two cosine inputs (same frequency, different

phase) [89]. However, if we assume the HTFs are smooth and the resolution of the

DFT frequencies are high enough, the HTFs at these frequencies can be interpolated

in order not to increase the number of experiments.

4.5.2 Identification via Sums of Cosine Inputs

In this section our goal is to determine the rules such that elements of the HTF can

be estimated uniquely (assuming no noise) from the experiments where the input stim-

ulus is the sum of cosine inputs. Let {ω̄1, · · · , ω̄K}, {φ1, · · · , φK}, and {a1
π
, · · · , aK

π
}

be the set of input frequencies, phase shifts, and magnitudes respectively. The input

signal for the experiment can be constructed as

u[n] =
K∑
k=1

ak
π

cos(ω̄kn+ φk). (4.17)
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Since single sine experiment is a special case of a sum of sine experiment, the obvious

first rule for the identification is

ω̄kN

π
/∈ Z+ ∀k (4.18)

For the sake of clarity let’s assume that K = 2. Then frequency response of the

system to the input (4.17) at the frequency ω = ω̄1 takes the form

Y (ω̄1) = H0 (ω̄1) a1e
iφ
1

+ sgn(m∗1)Hm∗
1

(
ω̄1 −

2πm∗1
N

)
a2e

iφ2

+ sgn(m∗2)Hm∗
2

(
ω̄1 −

2πm∗2
N

)
a2e
−iφ2

where

m∗1 =


(ω̄1−ω̄2)N

2π
, if |ω̄1−ω̄2|N

2π
∈ Z+

0, otherwise

m∗2 =


(ω̄1+ω̄2)N

2π
, if (ω̄1+ω̄2)N

2π
∈ Z+

0, otherwise

Similar structure is obtained if we extend to arbitrary K and observe the response

at ω = ω̄k + 2πl
N

. From this result, we observe that in order to identify the elements

of the HTF uniquely, in addition to the constraint on each individual frequency in
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(4.18), we also require that the difference and the sum of any two frequencies in the

input stimulus must not be an integer multiple of the pumping frequency. Under

these rules elements of the HTF structure can be estimated using

Hl(ω̄k) =
Y
(
ω̄k + 2πl

N

)
akeiφk

.

Under these rules our system identification procedure using sum-of-sine inputs is as

follows:

• Define the frequency band of interest, ω̄k ∈ (0, ωmax] and compute the resolution,

ωres, of the DFT frequencies based on the length of the input–output data.

• Construct a global set of frequencies, Ω = {ωres, 2ωres, 3ωres, · · ·ωmax}.

• Remove the frequencies that are the integer multiples of half of the pumping

frequency, i.e. Ω̄ = Ω−
{
π
N
, 2π

N
, 3π

N
, · · ·

}
.

• Partition Ω in to S sub sets, Ω̄ = Ω1∪Ω2 · · ·∪ΩS, such that for each Ωs following

condition is satisfied:

|ω̄i − ω̄j|N
2π

6∈ Z+ &
(ω̄i + ω̄j)N

2π
6∈ Z+

∀ω̄i, ω̄j ∈ ΩS

105



CHAPTER 4. IDENTIFICATION OF RHYTHMIC SYSTEMS VIA HTF

• For each subset construct an input stimulus

us[n] =
∑
ω̄k∈Ωs

ak
π

cos(ω̄k + φk),

and perform the experiment to compute the elements of HTF.

4.6 Results and Discussion

4.6.1 Example Model System

We apply our system identification framework to the vertical hopper model illus-

trated in Fig. 4.2. We adopted the model from [25] and added an exogenous input u

acting on the upper body mass M to be used for system identification. The “clock-

driven” hopper alternates between flight (α = 0) and stance (α = 1) charts during
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hopping. Flight and stance dynamics of the hopper are

Flight : α = 0, q0 = [φ, yM , ẏM , ym, ẏm]T ∈ V0

φ̇ = 2π, f = a sin(φ),

˙yM =
−k(yM + ym − l0) + f + u

M
− g

˙ym =
k(yM + ym − l0)− cẏm − f

m
− g

Stance : α = 1, q1 = [φ, yM , ẏM ]T ∈ V1

φ̇ = 2π, f = a sin(φ),

˙yM =
−k(yM + ym − l0) + f + u

M
− g

The touchdown event defines the transition from flight to stance chart. The zero cross-

ing of the threshold function, ho(q0) = ym, triggers the transition and the states of the

new chart is defined by the transformation q0 7→ T0(q0) where T0(q0) = [I3×3 03×2] q0.

The liftoff event defines the transition from stance to flight, which is triggered by

the zero crossing of the threshold function h1(q1) = k(l0 − yM) + f + mg. The ini-

tial state of the new flight chart is determined by the transformation q1 7→ T1(q1)

where T1(q1) = [I3×3 03×2]T q1. We simulated the hybrid hopper model in MATLAB

(Mathworks, Inc.), using a custom hybrid dynamical simulation toolkit [4,5] with the

sample parameters ([m M k bl0 a g]T = [1 210 5 2 20 2) used in [25]. We verified

with our simulation toolkit that this set of parameters (when external input u = 0)

produces a stable limit cycle. The non-zero eigenvalues of the Poincaré maps of the
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system are λ1,2 = 0.25 ± 0.7i, computed via the numerical Jacobian of the return

map.

4.6.2 Phase Coordinates and Set of Poincaré Sec-

tions

As detailed in Sec. 4.3 our system identification method relies on mappings be-

tween selected discrete phase coordinates (i.e. set of Poincaré Sections). We expect

that the structure of HTF depends on the selected phase coordinates.

In this chapter, we utilized two “causal” phase definitions to select Poincaré sec-

tions. Existence of exogenous input and its dependence on phase coordinates makes

the straight forward implementation of non-causal methods [128] impossible. The

hybrid system we are analyzing is an asymptotically stable clock–driven model, thus

one natural way of selecting Poincaré sections is using the isochrons [73] which are

directly given by the phase of the clock. We select N equally spaced Poincaré sections

within φ ∈ [0, 2π). The phase of the ith Poincaré section corresponds to φi = 2π
N
i. As

expected this definition of phase results in discretizing the time samples with a fixed

time step ∆t = 1/N (since the pumping frequency is 1Hz). In a class of legged robotic

platforms [65, 135, 136], there exist an central architecture (CPG) that generates an

open–loop time periodic pattern and all other sub-level controllers are synchronized

to this clock. For these kind platforms phase of the center clock can be used to define
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isochrons and our HTF based identification method can be easily applied.

However, the majority of rhythmic hybrid system models are not driven by an

open–loop clock thus there is no straightforward way of accessing the isochrons, es-

pecially using a causal method. The main advantage of our method is that it works

with any set of well defined Poincaré sections. In addition to isochrons, we use a

definition similar to the kinematic phase used in [127]. Using the states yM , ẏM , we

define a phase variable:

rp =
yM − op
sp

, rv =
ẏM − ov
sv

φ̂ = φrp + irv, φ̂ ∈ S1

where (op, ov) and (sp, sv) simply shifts the origin and scales the coordinates, respec-

tively. Based on this definition of phase, we select equally spaced N Poincaré sections

within φ̂ ∈ [0, 2π). In our simulations, for both isochrons and kinematic phase, we

choose N = 32 and align the φ = 0 and φ̂ = 0 events on the limit cycle.

4.6.3 Simulation Results

4.6.3.1 Non-parametric Harmonic Transfer Functions

In this section we present the estimated non-parametric harmonic transfer func-

tions based on three different phase coordinates: isochrons and kinematic phase I
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with (op, ov, sp, sv) = (1.9, 0, 0.3, 1.9), and kinematic phase II with (op, ov, sp, sv) =

(1.95, 0, 0.3, 1.9).

We identify the HTF blocks from u[n] to y[n], where y is either taken as the

deviation of the height from the fixed point, namely δyM , or the deviation of the

vertical velocity from the fixed point, δẏM . In order to compute the limit–cycles, we

run the hybrid simulation script in the absence of any external input for 60s and use

the last cycle of this simulation as the baseline for the limit cycle. We use the method

proposed in 4.5.2 and excite the system with inputs that are sums of cosine signals.

The length of the each sums of cosines experiment is 84 cycles, however we only

use the last 64 cycles in order not to capture any transient effects on the frequency

response data. 64 cycles of data with N = 32 provides a frequency resolution of

fres = 1
32

(or ωres = π
16

rad/s). f is the normalized frequency with units of cycles

per fundamental period. We compute the HTFs in the frequency band f ∈ (0, 10).

As explained in Sec.4.5.1 we remove the frequencies that are the prime multiple of

the f = 0.5 (or ω = π
32

) and we were left with 620 frequencies for which we need

to identify the HTF components. We divide these 620 frequencies into 80 subsets

randomly following the rules derived in Sec. 4.5.2. For each subset we construct an

input signal, perform the experiment, and compute the HTF components associated

with those frequencies.

Fig. 4.3 illustrates the magnitude plots of the empirical HTFs. For all phase

coordinates we found that the magnitude of the components, Hi, for |i| ≥ 2 were
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negligible compared to |H0(z)|, |H1(z)| & |H−1(z)| thus we only illustrate those three

responses. This is somewhat surprising, because even for a hybrid system for which

the dimension of charts are not constant three harmonics can accurately describe the

dynamics around the limit cycle.

4.6.3.2 Phase Coordinates Affect Zeros, not Poles

If we compare the HTFs from different phase coordinates, we can see that the

structure of the HTF is indeed affected by the choice of Poincaré sections. In the

context of H0(z) the gain is doubled if we use isochrons instead of the kinematic

phase definition (note the vertical shift in Fig. 4.3 in the blue curve). The phase

coordinates affects the harmonics H1(z) and H−1(z) structurally (red and dashed red

curves). However, it seems that the “resonant” frequencies (peaks of the magnitude

plots) are located at approximately same locations for all phase coordinates. We

suspect that this is because choice of Poincaré sections do not move the pole dynamics

of the HTF but instead changes the zeros.

4.6.3.3 Estimation of Poincaré Return Map Eigenvalues

In this section, we present an approximate parametric estimation approach for the

non-zero eigenvalues of the Poincaré return map through parametric identification

of the fundamental transfer function, i.e. H0(z). If we observe the bode plots of

H0(z) illustrated in Fig. 4.4, we see that all of them approximately look like transfer
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functions with two poles, so we assumed a second-order transfer function with one

zero and two poles. From the results we see that the parametric transfer functions

fit the frequency response data very well except some higher order “bumps” around

f = 2Hz, i.e. twice the system pumping frequency. Since we have a parametric

estimation of H0(z) we can now recover the eigenvalues of the Poincaré return map.

Let p be a pole of the HTF, then the eigenvalues of the Poincaré return map can be

computed simply λ = pN . All of the six parametric transfer functions were correctly

estimated the true eigenvalues of the system λ1,2 = 0.25±0.70i (with numerical errors

at the third significant digit).
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Σ 0
Σ 1

Σ N

Figure 4.1: Illustration of a stable rhythmic hybrid dynamical system with
two charts, i.e. I = {0, 1}. For simplicity, each chart has the same dimension,
and is a subset of R3. The limit cycle of the system (black) is discontinuous. The
two-dimensional surface (green) illustrates a hybrid transition (patch) boundary in
which the transition is continuous (no jump in continuous variables of the state space)
but not necessarily differentiable. The pair of surfaces (purple) connected by dashed
lines illustrate a hybrid transition boundary in which the transition is discontinuous.
The two-dimensional cross-sections (grey) illustrate the N Poincaré sections chosen
by the experimenter. (These can be the hybrid boundaries, but in this example are
chosen not to be.) The red curve represents a sample trajectory starting from an
initial condition located at Σ0. As illustrated in the figure, in the absence of external
inputs trajectory converges to the limit cycle.

.
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Figure 4.2: Schematic of the hopper model
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Figure 4.3: Non-parametric estimates of |H0(z)|, |H1(z)| and |H−1(z)|. Magni-
tude plots in the top row (A, B, and C) represents the HTFs between the input and
δyM , where as bottom row (D, E, and F) belongs to the HTFs between the input and
δẏM . First (A and D), second (B and E) and third column (C and F) represents the
HTFs where the phase coordinates are selected using isochrons, kinematic phase I,
and kinematic phase II respectively.

114



CHAPTER 4. IDENTIFICATION OF RHYTHMIC SYSTEMS VIA HTF

G
ai

n 
[m

/N
]

0.1 1

−200
−100

0
100

Ph
as

e 
[d

eg
]

f [cycles/period]
0.1 1 0.1 1

0.1

1

f [cycles/period] f [cycles/period]

Velocity
Height

A B C
Isochrons Kinematic Phase I Kinematic Phase II

Figure 4.4: Non-parametric and parametric estimates of |H0(z)|s. Figures
in the top row indicates the magnitude plots, where as the ones in the bottom row
indicates the phase plots. Green and red curves represents the magnitude and phase
plots for the HTFs from input to δyM and from input to δẏM respectively. Black
curves the magnitude and phase plots of the estimated parametric transfer functions.
First (A), second (B), and third column (C) represents the HTFs where the phase
coordinates are selected using isochrons, kinematic phase I, and kinematic phase II
respectively.

115



Chapter 5

Conclusion

In this dissertation, we described three important baby steps towards the ultimate

goal of discovering the rules by which the human nervous system controls rhythmic

behaviors such as circadian cycles, heartbeats, juggling, and locomotion. Specifi-

cally we investigated three key features—variability, symmetry, and dynamics— in

human rhythmic motor control by using two different experimental paradigms, i.e.

paddle juggling (Chapter 2) and walking (Chapter 3). In order to achieve our goals,

we adopted and developed new statistical and theoretical tools, such as mean-first-

passage time in Section 2.2.6, extended cross validation in Section 3.3.1, and discrete

time harmonic transfer functions in Section 4.4.

In Chapter 2, we sought answers to this question: how does haptic (“touch”)

feedback during hybrid transitions, such as heel-strike event during walking, enhance

rhythmic behavior? To determine the effect of haptic cues on rhythmic motor perfor-
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mance, we investigated a simplified “virtual paddle juggling” behavior. We showed

that haptic feedback, in the form of a force impulse to the hand at the moment of

ball–paddle impact, categorically improves performance over visual feedback alone,

not by regulating the rate of convergence to steady state (e.g. via higher gain feedback

control or reshaping the nominal hand motion), but rather by reducing cycle-to-cycle

variability of the stochastic juggling behavior. Based on this result, we speculated that

the timing and state information provided by haptic feedback decreases the nervous

system’s uncertainty (i.e. variability) of the ball’s state to enable more “accurate”

control, but that the feedback and feedforward controllers are unaltered.

In Chapter 3, we showed that neglecting an evident characteristic of a system can

be more than a modeling convenience, it can also produce a better model. We focused

our attention on bilateral dynamic symmetry (or asymmetry) in human walking. We

proposed a statistical framework which is a simple extension of the classical Monte

Carlo cross-validation method. We applied this method to data obtained from eight

different healthy individuals walking at three different speeds. We observed that the

asymmetry in walking dynamics is statistically significant. Despite the existence of

significant asymmetries, we showed that by ignoring these asymmetries and modeling

walking dynamics as symmetric produces models that have more predictive power

and are more precise than the models in which asymmetry is enforced. Indeed, we

showed it is not only “OK” to neglect asymmetry; in this cases, it is better.

In Chapter 4, we introduced a new method for the system identification of rhyth-
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mic systems. Our motivation was the fact that few tools exist for identifying the dy-

namics of rhythmic hybrid dynamical systems from input–output data, even though

it is critical to many applications in robotics and biology. We proposed a new formu-

lation that addresses the system identification problem of rhythmic hybrid dynamical

systems in the frequency domain using discrete-time harmonic transfer functions. In

order to show the feasibility and important features of our approach, we tested our

method on a simulated hybrid hopper model.
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Appendix for Chapter 2

A.1 Virtual Versus Physical Paddle Jug-

gling

Our preference toward virtual juggling [47,130,131,162,163] over physical juggling

[137, 152] stems from our ability to control the physical dynamics that the human

interacts with during control. Indeed, these dynamics play a critical role in decoding

and understanding neural circuits that control motion [34,41,83,158].

One of the main limitations of the physical juggling used in [137, 152] was that

it required two experimental systems, one that displays haptic feedback, and a dis-

tinct system that did not. Specifically, with haptic feedback, the subject controlled

the motion of a physical paddle whose surface remained horizontal via a mechani-
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cal linkage, and the paddle hit a table tennis ball that was fixed to a hinged boom.

Because the linkage was mechanical, impact forces were transmitted nearly instanta-

neously to the user’s hand. To create the no-haptic-feedback condition, by contrast,

a telerobotic system mechanically decoupled the user’s hand from the paddle. The

user’s hand motions provided a reference trajectory that was tracked by a robotically

controlled paddle. In this case, haptic feedback regarding the ball–paddle collision

was not transmitted back to the user’s hand. This setup introduced a confound: the

setup without haptic feedback included an entire tele-robotic system with its own

dynamics (including potential filtering and phase lags), which likely affected results.

Indeed we show below (in the specific context of offline filtering), that subtle differ-

ences to filtering dynamics can dramatically alter estimates of impact acceleration.

Therefore, in this thesis we re-examine the role of haptic feedback in a context where

the two experimental conditions (with versus without haptic feedback) are directly

related.

Estimating the time of the ball–paddle collision, and the acceleration of the pad-

dle at that instant, is coupled in the physical apparatus. When the ball bounces,

it imparts significant (negative) momentum to paddle. The time at which the ball

reaches a local minimum is used to estimate impact time [137,152]. Because the ball’s

rapid positive acceleration and reversal is concomitant with the negative momentum

changes to the paddle, the point in time corresponding to a local minimum in the ball

height also corresponds to a moment when the paddle has already necessarily accel-
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erated downward. The detection of impact time and the estimation of acceleration at

impact are fundamentally coupled in this physical juggling system in a way that leads

to a negative bias in the estimated impact accelerations for the haptic condition, a

bias consistent with previous findings [152].

The coupling of detecting the moment of ball–paddle impact and estimating accel-

eration at impact can be eliminated in virtual juggling since the computer can detect

the (virtual) impact, and only then impart the force to the haptic paddle. This allows

us to (causally) determine impact acceleration without being potentially biased by

our method for detecting impact time based on physical accelerations of the paddle

and/or ball.

A.2 Causal vs Non-causal Impact Accel-

eration Estimation

As described in Methods, in order to estimate the acceleration of the paddle at

the time of impact we follow a causal method and only the kinematic information

before the time of impact is used. As an alternative to our filtering method, one might

have used simple non-causal filters [131, 137, 152, 162, 163] which have the benefit of

introducing zero phase lag and thus are quite commonly used in data analysis.

However, the force that we applied to the paddle during the impact instant gener-

ated a small but significant negative acceleration at the hand, and non-causal filters

121



APPENDIX A. APPENDIX FOR CHAPTER 2

therefore produced consistent biases to acceleration estimates at the impact instant.

For smoothly changing data, non-causal filters typically provide accurate estimates

so we developed a causal filter that, for the no-haptic feedback case (without force

impulse generation), our scheme provided similar results to a well-tuned causal filter.

Fig. A.1 illustrates our comparison of causal and non-causal mean impact accelera-

tion estimates of each individual and for both haptic conditions. For the data without

haptic feedback both estimation methods agree showing no statistically significant dif-

ference (p > 0.3 Paired t-test). However, in the haptic case the non-causal estimation

method resulted in significant negative bias compared to causal estimation method

(p < 1e − 6, Paired one sided t-test). These results show that non-causal impact

acceleration estimation methods can generate misleading negative acceleration.
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Figure A.1: Non-causal filtering biases the estimate of impact acceleration
with haptic feedback. Markers indicate estimated impact accelerations (abscissa
and ordinate belong to causal and non-causal estimates, respectively). Hollow dark
markers and solid light markers correspond to scenarios without and with haptic feed-
back, respectively. The 45◦ solid black line would indicate ideal agreement between
causal and non-causal estimates.

123



Appendix B

Appendix for Chapter 3

B.1 Verification of Results by Extended

Leave-One-Out (LOO) Bootstrap

Model selection methods based on bootstrap sampling [53,54,146] offer a powerful

set of alternatives to cross validation. In order to examine these as well as validate

our scientific results, we performed a parallel analysis using a bootstrap sampling

approach. Similar to our approach in applying cross-validation methods (Sec. 3.3.1),

we extended a bootstrap method, specifically LOO bootstrap [52]. We chose LOO

bootstrap because it has a critical feature—the ability to isolate a validation sam-

ple from the test sample—that is necessary to test our statistical question at hand,

specifically to test mirrored and combined data against normal data.
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Classical Leave-one-out Bootstrap

Consider n pairs of input–output data, (xi, yi), where i ∈ I = {1, 2, 3, . . . , n}.

Draw B bootstrap samples I∗b = {1∗b , 2∗b , 3∗b , . . . , n∗b}, b = {1, 2, 3, . . . , B}, where i∗bs

are randomly sampled from I with replacement. For each bootstrap sample, I∗b ,

construct the bootstrap analogs of X∗b and Y ∗b matrices as follows:

X∗b = [x1∗b
, · · · , xn∗

b
]T ,

Y ∗b = [y1∗b
, · · · , yn∗

b
]T ,

(B.1)

and using these matrices find the bootstrap analog of the least squares solution in

(3.16), A∗b = (X∗b
†Y ∗b )T . Then leave-one-out bootstrap prediction error can be com-

puted as

ELB =
1

n

n∑
i=1

1

|B−i|
∑
b∈B−i

||yi − A∗bxi||2

||yi||2
, (B.2)

where B−i is set of indices of bootstrap samples that does not contain observation i

and |B−i| is the cardinality of this set.

Extending LOO Bootstrap

Using the same approach that we performed for the extension of cross-validation,

we can extend classical LOO bootstrap. In classical LOO bootstrap, one bootstrap

error is computed using Eq. (B.2), whereas in our method we compute three types of

bootstrap errors. Each application of extended LOO boostrap requires a normal set,
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N , and an equal-sized mirrored set, M. The normal and mirrored sets each include

n mutually exclusive input–output pairs, denoted by (xi, yi) ∈ N and (x̂i, ŷi) ∈ M,

respectively where i ∈ I = {1, 2, · · · , n}. As for classical LOO boostrap, we start

with drawing B bootstrap samples I∗b = {1∗b , 2∗b , 3∗b , . . . , n∗b}, b = {1, 2, 3, . . . , B}.

Again similar to extended CV, the validation samples for computing all three

bootstrap errors are selected from N .

Normal LOO Boostrap (NLB) is the same as LOO bootstrap, in that boot-

strap analogs of input–output matrices in (B.1) are constructed from N using the

bootstrap index set samples, I∗b . Thus, for each bootstrap sample the bootstrap

analog of the model matrix, A∗bNLB, is computed as

(xi∗b , yi∗b ) ∈ N ,

X∗b = [x1∗b
, · · · , xn∗

b
]T ,

Y ∗b = [y1∗b
, · · · , yn∗

b
]T ,

A∗bNLB = (X∗b
†Y ∗b )T .

(B.3)

Then NLB prediction error is computed as

ENLB =
1

n

n∑
i=1

1

|B−i|
∑
b∈B−i

||yi − A∗bNLBxi||2

||yi||2
. (B.4)

Mirrored LOO Bootstrap (MLB) constructs the bootstrap analogs of the

input–output matrices in (B.1) from the mirrored dataset M, using the same boot-
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strapped index set samples, I∗b . Thus, for each bootstrap sample the bootstrap analog

of the model matrix, A∗bMLB is computed as

(x̂i∗b , ŷi∗b ) ∈M

X̂∗b = [x̂1∗b
, · · · , x̂n∗

b
]T

Ŷ ∗b = [ŷ1∗b
, · · · , ŷn∗

b
]T

A∗bMLB = (X̂∗b
†Ŷ ∗b )T .

(B.5)

Then MLB prediction error is computed as

EMLB =
1

n

n∑
i=1

1

|B−i|
∑
b∈B−i

||yi − A∗bMLBxi||2

||yi||2
(B.6)

Combined LOO Bootstrap (CLB) constructs the bootstrap analogs of the

matrices in (B.1) from both the normal N and mirroredM data sets, using the same

bootstrapped index set samples, I∗b . Thus, for each bootstrap sample the bootstrap

analog of the model matrix, A∗bCLB, is computed as

A∗bCLB =


 X∗b

X̂∗b


†  Y ∗b

Ŷ ∗b



T

. (B.7)
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Then CLB prediction error is computed as

ECLB =
1

n

n∑
i=1

1

|B−i|
∑
b∈B−i

||yi − A∗bCLBxi||2

||yi||2
. (B.8)

B.2 Results for LOO Bootstrap

B.2.1 Symmetric vs Asymmetric Modeling

In Sec. 3.4.1, we tested the statistical consequences of symmetric and asymmetric

modeling assumptions in the dynamics of human walking, by comparing NCV, MCV,

and CCV errors. Likewise, our parallel analysis compared NLB, MLB, and CLB

errors.

Fig. B.1(a) compares MLB and CLB errors to NLB error for the step-to-step

data. MLB errors are (statistically) significantly higher than NLB errors at all speeds

(p1.5m/s = 0.004, p1m/s = 0.004 and p0.5m/s = 0.004; one-sided Wilcoxon rank-sign

test). This shows that the bootstrap-based method also detects a dynamical asym-

metry between L 7→ R and R 7→ L. On the other hand, the comparison of CLB

and NLB errors illuminates a different perspective (Fig. B.1(a)). Surprisingly, the

average CLB error was (statistically) significantly lower than the average NLB error

at all speeds (p1.5m/s = 0.02, p1m/s = 0.02, and p0m/s = 0.004; one-sided Wilcoxon

rank-sign test), which indicates an even stronger gain by neglecting symmetry than
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what we observed with CV errors (Fig. 3.5(a)).

Fig. B.1(b) compares the MLB and CLB errors to NLB error for stride-to-stride

data. MLB errors were higher (on average) than NLB errors for all speeds and

these differences were statistically significant (p1.5m/s = 0.004, p1m/s = 0.004 and

p0.5m/s = 0.004; paired one-sided Wilcoxon rank-sign test). This result verifies that

our data is dynamically asymmetric between L 7→ L and R 7→ R. In agreement

with the CV case (Fig. 3.5(b)), the comparison of NLB and CLB errors in stride-to-

stride data shows that CLB errors were statistically significantly lower than the NLB

errors at all three speeds (p1.5m/s = 0.004, p1m/s = 0.004 and p0.5m/s = 0.004; paired

one-sided Wilcoxon rank-sign test).

To summarize, even though there were distinguishable asymmetries in our data,

we always gain (for all speeds and both step-to-step and stride-to-stride data) statisti-

cally significant predictive power by assuming symmetry in modeling human walking.

These results further strengthen our claim that neglecting dynamical asymmetry (an

evident and also statistically significant feature) produces stronger models in terms

of predictive power.

Model Uncertainty

Here, we computed the the model uncertainty in (3.21) using the bootstrap sam-

ples for both symmetric and asymmetric modeling approaches. The qualitative results

are similar to those presented in Sec. 3.4.1.3; for fitting a single return map, there was
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a substantial reduction in model uncertainty for both the step-to-step and stride-to-

stride data. On the other hand, quantitative results based on bootstrap samples are

very close to the ones obtained with Monte-Carlo samples which are reported in Fig-

ure. 3.6. Model uncertainty results obtained from both CV samples and bootstrap

samples are reported in Table B.1. All improvements were statistically significant

(p = 0.0039, one-sided Wilcoxon signed-rank test).

Table B.1: Percentage decrease of model uncertainty when using symmetric modeling
(and therefore doubling the data set).

CV Samples Bootstrap Samples
Step Maps Stride Maps Step Maps Stride Maps

1.5 m/s 56% 61% 51% 57%
1.0 m/s 54% 58% 53% 58%
0.5 m/s 72% 74% 72% 75%

B.2.2 Step Return Maps vs. Stride Return Maps

In order to measure the loss of signal-to-noise ratio based on the extended LOO

Bootstrap method, we analyzed the bootstrap errors by assuming symmetry and

fitting return maps to both step and stride data. Specifically we compared LOO

bootstrap errors of both step and stride data in our method. The qualitative results

from both CV based and LOO bootstrap methods match. There is dramatic signal-

to-noise ratio loss with stride-to-stride return maps. Moreover, step-to-step return

maps have more predictive power in both the CV setting and bootstrap setting.
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Quantitative results are summarized in Table B.2 for both settings.

Table B.2: Percentage increase in prediction error when using stride maps instead of
step maps.

CV LOO Boot.

1.5 m/s 79% 64%
1.0 m/s 87% 64%
0.5 m/s 31% 24%
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Figure B.1: We reach the same conclusion if compare bootstrap based re-
sults, illustrated in this figure, and cross-validation-based results, illus-
trated in Fig 3.5. Walking dynamics is statistically asymmetric, but neglecting
this by training a model on the combined data can nevertheless improve statistical
performance. (a) Step-to-step maps. At all speeds, the mean mirrored LOO bootstrap
errors (light grey diamonds) were significantly worse than for normal cross validation,
indicating that steps were indeed asymmetric. Despite this left–right asymmetry, the
mean combined LOO bootstrap errors are significantly lower at all speeds. The
slopes of the fitted lines (dashed) determine the relative increase (m > 1) or decrease
(m < 1) in LOO Bootstrap error relative to the Normal LOO Bootstrap error. (b)
Stride-to-stride maps. By the same statistical measure, strides were also asymmetric
at all speeds, but less substantially so. Moreover, the mean CLB error was lower than
mean NLB error at all speeds.
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