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Abstract

Robots consisting of several concentric, preshaped, elastic tubes can
work dexterously in narrow, constrained, and/or winding spaces, as
are commonly found in minimally invasive surgery. Previous models
of these “active cannulas” assume piecewise constant precurvature
of component tubes and neglect torsion in curved sections of the de-
vice. In this paper we develop a new coordinate-free energy formula-
tion that accounts for general preshaping of an arbitrary number of
component tubes, and which explicitly includes both bending and tor-
sion throughout the device. We show that previously reported models
are special cases of our formulation, and then explore in detail the
implications of torsional flexibility for the special case of two tubes.
Experiments demonstrate that this framework is more descriptive of
physical prototype behavior than previous models� it reduces model
prediction error by 82% over the calibrated bending-only model, and
17% over the calibrated transmissional torsion model in a set of ex-
periments.
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1. Introduction

An active cannula is a continuum robot consisting of concen-
tric elastic tubes, each of which has a preset curved shape (see
Figure 1). This thin continuum robot design is mechanically
simple, and has the ability to reach dexterously into confined
or winding environments (Webster et al. 2009). The tubes of
the cannula form a single “backbone” that elastically changes
shape as they translate and rotate axially. Transmitting mo-
ments within the backbone in this way provides an alternative
to prior continuum robot designs that use support disks with
tendon wires (Dario et al. 2000� Hannan and Walker 2003),
elastic sleeves with embedded tendons (Camarillo et al. 2008),
flexible push rods (Simaan et al. 2004), or pneumatic actuators
(Chirikjian 1995� Jones et al. 2006) to apply bending moments.
Despite its mechanical simplicity, computing equilibrium con-
formations of an active cannula (i.e. the forward kinematics
problem) remains a challenge.

The idea of deriving dexterity from counter-rotated, pre-
curved concentric tubes was introduced relatively recently.
Note that the kinematic conditioning of larger scale robot ma-
nipulators (with complex linkages, cabling, and actuation) will
typically exceed that of active cannulas, so in the present con-
text “dexterity” simply describes the affordance of multiple de-
grees of freedom at the tip given only basal actuation. Loser
(2002) developed a steerable needle composed of two fully
overlapping precurved cannulas whose bases rotate (but do not

Original submission, 22 September 2008� Revised version received 4 March
2009� Second revised version received 5 September 2009� Third revised ver-
sion received 18 January 2010� Accepted for publication 15 February 2010.

1263

 at JOHNS HOPKINS UNIVERSITY on August 25, 2013ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


1264 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / September 2010

Fig. 1. A prototype active cannula made of four superelastic
Nitinol tubes and one central wire (with three tubes and the
wire visible).

translate) relative to one another to change needle curvature.
Daum (2003) patented a deflectable needle assembly in which
a curved “catheter” is deployed through a rigid outer cannula.
A similar system is the “Curved Multi-Tube” (CMT) of Fu-
rusho et al. (2006), where the tubes do not translate, but are
constructed such that a portion of the inner tube lies beyond
the end of the outer (Terayama et al. 2007). Initial CMT mod-
els required infinite flexural rigidity of every outer tube with
respect to the collection of smaller tubes inside it, and infinite
torsional rigidity of all tubes.

Recently, the more general active cannula mechanism—
telescoping, concentric tubes that both translate and rotate with
respect to one another—has emerged, along with beam me-
chanics models that account for flexural and (limited) torsional
elasticity (Webster et al. 2006b� Sears and Dupont 2006, 2007�
Webster et al. 2008, 2009). Assuming piecewise-constant pre-
curvature and torsional rigidity in curved sections, these mod-
els describe active cannula backbone shape by balancing mo-
ments between component tubes. Under these assumptions,
the resulting active cannula shape is comprised of a finite se-
quence of mutually tangent circular arcs.

This new actuation strategy appears to be well suited for
applications at the “meso-scale” (� 0�1–100 mm) that re-
quire thin, dexterous manipulators, including minimally inva-
sive surgical procedures. Specific applications for which ac-
tive cannulas have been proposed include accessing the lung
via the throat (Webster et al. 2008, 2009), transgastric surgery
(Webster et al. 2006b), fetal procedures (Furusho et al. 2006),
steering needles embedded in tissue (Loser 2002� Sears and
Dupont 2006), cardiac procedures (Sears and Dupont 2006),
and transnasal skull base access (Webster et al. 2006b). An
overview of several specific ways active cannulas might be
used in medicine is given in Webster (2007). It is also possi-
ble in principle to construct very small active cannulas which
may be useful in cell manipulation (Sun and Nelson 2002� Ku-
mar et al. 2003� Ediz and Olgac 2004) and other microsurgical
applications. In some of the above applications (e.g. lung), ac-
tive cannulas will be used in air-filled cavities, and thus the
free-space cannula models developed in this paper will apply
directly.

When the cannula is embedded in tissue (e.g. when used
as a steerable needle), a free-space kinematic model will need
to be coupled to a tissue model to predict cannula shape, as
has been done for straight needles (Alterovitz et al. 2003� Di-
Maio and Salcudean 2005�Glozman and Shoham 2007). When
used as steerable needles in the tissue embedded case, active
cannulas will have both benefits and drawbacks when com-
pared with tip-based steering techniques that utilize tissue in-
teraction forces to steer (Okazawa et al. 2005� Webster et al.
2006a). Benefits include the potential to manipulate tissue in-
tentionally using cannula shaft shape change, and the ability
to leave one soft-tissue medium, traverse open space, and en-
ter another. Potential drawbacks include increased complexity
of control and the fact that cannula preshaping may impose
restrictions on achievable shapes within tissue to which tip-
steered needles are not subject. Independent of whether an ac-
tive cannula is used in tissue or free space (e.g. in the lung), the
first step in practical implementation is being able to predict
cannula shape in free space as a function of axial rotations and
translations of the component tubes, the “joint variables” of the
robot.

Prior models neglect torsional effects in curved sections,
but a recent model incorporating torsional effects in straight
sections of the device (Webster et al. 2006b, 2009) demon-
strates the critical role of torsion in describing categorical fea-
tures of the energy landscape, as well as in accurately predict-
ing tip position (Webster et al. 2008, 2009). For the specific ex-
perimental setup reported by Webster et al. (2009), this model
predicts the location of the cannula end point with an aver-
age accuracy of 3.0 mm. However, the difference between
predicted and experimental cannula tip positions is not uni-
form over the workspace, and is worst (8.76 mm) near the
workspace boundary. Moreover, in this region, the model of
Webster et al. (2009) indicates that torsion in the straight sec-
tion is at its highest. This suggests that, although neglected by
this “lumped-parameter” model, there may be high torsional
moments in the curved sections. Support for this was found in
the first model that accounted for torsion in curved sections of
a two-tube cannula with circular precurvatures, an initial ver-
sion of which is available in Rucker and Webster (2008), and
an enhanced presentation of which can be found in Section 4.
A subsequent presentation of the closed-form two-tube solu-
tion appeared in Dupont et al. (2009). Derivation of the multi-
tube case with variable curvature and torsion that we present in
this paper has also been developed concurrently and indepen-
dently and presented simultaneously in Rucker and Webster
(2009a) and Dupont et al. (2009), where different analytical
methods are applied to achieve the same final equations. Thus,
it has come to be known that torsion in curved sections is a
significant phenomenon that should be modeled. This moti-
vates the generalized free-space model we present in this pa-
per, which accounts for both bending and torsion throughout a
multi-tube cannula, and enables use of cannulas incorporating
variable precurvature.
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Significant progress toward such a general model for wire-
driven continuum robots with a single flexible backbone has
been made in recent years. A general formulation for the en-
ergy stored in a deformed elastic backbone is given and min-
imized using variational calculus in Chirikjian and Burdick
(1995), and used for wire driven continuum robots in Grav-
agne and Walker (2000) and Gravagne (2002). In this paper,
we adopt a similar strategy to describe the equilibrium confor-
mations of multiple precurved concentric tubes. Other recent
related work has considered slender beam deformation from
a group theoretic perspective (Selig and Ding 2001). There, a
model was derived that can predict beam deflection due to an
applied wrench, which reduces in the 2D pure bending case to
classical results. This work shows the feasibility of approach-
ing beam mechanics problems via group theory.

In this paper, we present a coordinate-free formulation for
the energy stored within an active cannula. With arc length
(rather than time) taken as the independent variable, the stored
elastic energy in the backbone is analogous to the kinetic en-
ergy of a free rigid body. This formulation explicitly accounts
for both bending and torsion throughout the cannula. It also
accounts for general (non-circular) precurvatures of compo-
nent tubes. We present several specific examples that illustrate
how the Euler–Lagrange and Euler–Poincaré equations can be
applied to derive a set of differential equations, a solution to
which corresponds to the minimum energy conformation of
the cannula.

Furthermore, we show that, with appropriate assumptions,
our formulation includes prior models as special cases. We also
present an analysis of the shape of curved, concentric tubes
under both bending and torsion, deriving an analytical solu-
tion for the two-tube case, and demonstrating that the resultant
cannula shape will be non-circular. The experimental contri-
bution of this paper is a demonstration that the new model-
ing framework can reduce model prediction error by 82% over
the prior bending-only model, and 17% over the prior trans-
missional torsion model in a simple set of experiments with
a prototype active cannula. These results were obtained with
calibrated model parameters in all three cases.

2. Formulating the Energy Functional
We begin by formulating an energy functional which describes
the total elastic energy due to bending and torsion stored in all
tubes of a general n-tube cannula. We first provide a conven-
tion for describing the curves which define the shape of the in-
dividual tubes and the overall cannula shape. We then describe
the total elastic (strain) energy stored in a single tube. The gen-
eral energy functional can then be obtained by summing these
individual tube energies.

2.1. Assumptions

The energy formulation in this section is performed under the
standard assumptions of Kirchhoff rod theory, a special case of

Cosserat rod theory (see Antman (2005) for an in-depth treat-
ment of both). Kirchhoff theory assumes inextensibility and
neglects transverse shear strain, which are generally regarded
as good assumptions for long thin rods like the tubes that make
up our active cannula. We also neglect gravitational effects in
this analysis, because they have little effect at the scales and
stiffnesses involved in our work. This can be seen from stan-
dard cantilever beam theory, which predicts a tip deflection
caused by gravity of only 60 �m for a single straight, hori-
zontally cantilevered tube 100 mm long, with an outer diame-
ter (OD) of 1.6 mm, an inner diameter (ID) of 1.3 mm, and a
Young’s modulus of 50 GPa. Note that this is a highly conserv-
ative calculation because (1) the actual cannula will consist of
several concentric tubes and thus have a higher bending stiff-
ness, (2) it will not generally be straight, (3) it will not gen-
erally be horizontally cantilevered, and (4) the elastic modu-
lus may actually be up to 75 GPa (the manufacturer, NDC,
Inc., quotes a range of 41–75 GPa). Thus, while it will cer-
tainly be useful in future work to develop models that take
into account external loading (e.g. to enable force control of
cannulas interacting with tissue), it does not appear to be nec-
essary to consider gravitational loading in free-space models
such as we derive in this paper. Similarly, we neglect friction
as has been done in all active cannula models to date. Qualita-
tively the authors have observed some frictional hysteresis in
prototypes with tightly packed tubes, but do not observe any
discernible hysteresis in the prototype described in the exper-
imental section of this paper. It is likely that frictional effects
will be complex functions of a number of parameters includ-
ing curvature functions, arc lengths, tolerances between tubes,
surface smoothness, lubrication, etc., and a detailed study of
all such effects is left to future work. Quantitatively, the suit-
ableness of all of the assumptions listed above can be tested by
comparing model predictions with experimental tip positions.
We provide such a comparison in the experimental section of
this paper.

2.2. Parameterization of Curves and Notation

Suppose that each tube in isolation is described by an arc-
length-parameterized space curve ti �s� for s � [0� 1], with
ti �0� � 0. Let us attach a reference frame at each value of arc
length, s, with the local z-axis pointing along the tangent to the
curve, �ti � dti�ds, and with the origin of the reference frame
at ti�s�. Furthermore, let us establish the local x and y axes
in any canonical way. For example, we can use the Frenet–
Serret apparatus, or use Bishop’s frames (Bishop 1975), etc.,
as reviewed by Chirikjian and Kyatkin (2001). In any case, this
will mean that a set of reference frames gi �s� � SE�3� will be
defined, one for each tube as

gi �s� �
�
�Ri �s� ti �s�

0T 1

�
� � (1)
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where Ri �s� � SO�3� is the rotation of the frame at the point s
along the curve relative to the base frame at s � 0 and

ti �s� �
� s

0
Ri �� �e3 d� (2)

is the translation of the frame.
Let us assume that the only degrees of freedom required to

describe the conformations of each tube under all possible de-
formations due to moderate forces are bending and twisting. In
other words, if R�i �s� defines the precurved shape then the only
admissible deformations will be of the form R�i �s�� Ri �s� �
SO�3�. In this model, arc length is not changed by deformation
(implying that each cannula tube behaves as an inextensible
rod), and the relationship between position and orientation in
(2) applies to the deformed parameters ti �s�� Ri �s� as well as
the original parameters t�i �s�� R�i �s� (implying that there is no
shear strain in the deformations).

In general, R�s�T �R�s� � ���3� is a 3 	 3 skew symmetric
matrix, that can be parameterized by a three-vector. The iso-
morphism �3 
 ���3� is defined by

�:

�
����
	1

	2

	3

�
			� ��

�
����

0 �	3 	2

	3 0 �	1

�	2 	1 0

�
			� � (3)

where ���3� is the Lie algebra of SO�3�. For 
 � �			 � ���3�,
the inverse is given by  :
 ��



	1 	2 	3

�T
. The unit

vectors e1�e2�e3 � �3 are the standard basis.

2.3. The Kinetic Analogy

Throughout this paper we employ the well-known kinetic anal-
ogy from the mechanics literature, which enables one to dis-
cuss concepts from mechanics using language that is perhaps
more familiar in the robotics community. For a review of the
kinetic analogy see Kehrbaum and Maddocks (1997). In the
context of this paper, use of the kinetic analogy has implica-
tions for interpretation of 			�s�, which denotes a vector of arc-
length-parametrized curvatures. For example, using any frame
convention with its z-axis tangent to the curve (which we do
exclusively in this paper1), 			�s� is a vector of three elements,
the first two of which denote curvatures about the x- and y-
axes, and the last of which denotes the torsion about the z-
axis. Equivalently, from the perspective of the kinetic analogy,
			�s� can be viewed as the angular velocity (parametrized by
arc length rather than time) of a coordinate frame that trav-
els along the centerline curve of the cannula. This distinction
has no bearing on the mathematical equations presented in
the remainder of this paper—the equations can be understood
equally well from both perspectives.

1. Although we note that our energy formulation is general enough to account
for any frame choice.

2.4. Elastic Energy Stored in a Collection of Tubes

The deformation energy for an inextensible and shearless lin-
early elastic rod is given by

E � 1

2

� L

0
[			�s��			��s�]TK �s�[			�s��			��s�] ds� (4)

where 			��s� � �R��s�T �R��s�� is the local curvature (in
the kinematic analogy the body “angular velocity” of the pre-
shaped, unloaded tube frame g�s�, with arc length as the inde-
pendent variable rather than time) and 			�s� � �R�s�T �R�s��
is the local curvature after deformation. Equation (4) is an ex-
pression for the strain energy due to bending and torsion in
a rod under the assumption of the Bernoulli–Euler constitutive
law in which the internal moment is proportional to the change
in curvature. It is also invariant to frame assignment, meaning
that use of Frenet–Serret frames, Bishop’s frames, or another
frame convention will yield the same total energy. A very sim-
ilar formulation of elastic energy in a Kirchhoff rod can be
found in Bergou et al. (2008), and a more general formulation
(for a tendon-driven continuum robot) which includes extensi-
bility and shear is available in Gravagne (2002). In general, the
symmetric stiffness matrix in (4) depends on the material prop-
erties of the tube, its geometry, and the way in which the refer-
ence frame is attached. For example, if the local x- and y-axes
of the reference frame are attached according to the Frenet–
Serret apparatus, and in this system K �s� is diagonal (and
possibly also independent of s), then in another reference sys-
tem, such as a Bishop’s frame which evolves along the back-
bone with minimal total orientational change, then �K �s� �
QT�s�K �s�Q�s� where Q�s� � exp

��e3��s�
 � SO�3� is the

relative rotation between these two systems of backbone ref-
erence frames around the z-axis. However, in the special case
that

K �

�
����

k1 0 0

0 k1 0

0 0 k3

�
			� (5)

is constant in one such coordinate system (i.e. when the tube
has an annular cross section), then �K �s� � K . Thus, the stiff-
ness matrix will be independent of the local orientation about
the z-axis of the coordinate systems, and thus the energy will
be also. For a cylindrical tube of constant cross-sectional in-
ertia, I , and polar moment, J , then k1 � E I and k3 � G J ,
where E denotes the Young’s modulus and G denotes the sheer
modulus. Note that K can never be a scaled identity for cylin-
drical tubes, since

E I � G J � E

G
� J

I
� 2 � 2�1� �� � 2 � � � 0�

and, for physical materials, � �� 0.
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Fig. 2. The coordinate frames for the first and the i th tubes
at an arbitrary cross section of the active cannula. They differ
by an angular rotation of � about their z-axes, which are both
tangent to the curve. The curvatures, � and �i , of the frames
are not pictured, since they may in general lie in any direction
with respect to the coordinate frames.

For a general n-tube cannula, we assume that all tubes over-
lap continuously for s � [0� L]. Then, the stored elastic energy
in entire device will be the sum of the energies stored in the
individual tubes:

E � 1

2

n�
i�1

� L

0
[			i �s��			�i �s�]TKi�s�[			i �s��			�i �s�] ds� (6)

where 			�i �s� � �R�i �s�T �R�i �s�� is the preshaped curvature
and 			i�s� � �Ri �s�T �Ri �s�� is the equilibrium curvature for
tubes i � 1� � � � � n. The tubes are concentric (and, thus, con-
strained to follow a common trajectory in space), implying
ti �s� � t1�s�. Hence, there are only 2 � n independent de-
grees of freedom to account for in the final deformed can-
nula. Specifically, suppose that the first tube is deformed via
R�1�s� � R1�s� (or, equivalently, 			�1�s� � 			1�s�, since
R�i �0� � Ri �0� � I ). This requires three degrees of freedom
since 			1 � �3. As can be seen from (2), all subsequent tubes
must share the same z-axis, namely Ri �s�e3 � R1�s�e3, to
ensure that ti �s� � t1�s� for i � 2� � � � � n. This leaves only
one extra degree of freedom per tube: a rotation around the
z-axis. Thus, the final conformation of each tube can be pa-
rameterized with a rotation � i � �1 � � mod 2 , namely
Ri �s� � R1�s� exp

��e3� i �s�


, s � [0� L], i � 2� � � � � n. Fig-
ure 2 illustrates how � i �s� relates g1�s� to gi �s�.

The curvatures of coordinate frames along these subsequent
tubes will be related to that of the first tube via

			i �s� � e��e3� i �s�			1 �s�� �� i �s�e3� i � 2� � � � � n� (7)

Note that the energy functional (6) is invariant under actions of
SO�3�: the rotation R1 does not appear in the expression. The
objective of this paper is to minimize (6) over all paths

�			1�s�� �2�s�� ��2�s�� � � � � �n�s�� ��n�s�� � �3 	 T�n�1 (8)

on the interval s � [0� L], where �k � �1 	 � � � 	 �1 (k times)
denotes a k-torus, and T�k 
 �k 	 �k denotes its tangent

bundle. Here, �3 is identified with the tangent space of SO�3�
via left translation, i.e. T SO�3� � �R� �R� �� �R� RT �R� ��
�R�			� � SO�3�	�3.

3. Two Special Cases

We now examine two special cases of the minimization of (6)
using a variational approach, and show that for these cases,
the variational approach reduces to “pointwise” minimization
of the integrand in (6). We begin with a simple illustrative ex-
ample of two tubes with co-planar precurvature. The result is
the same as that obtained for circular curves in Webster et al.
(2009), but here we generalize to variable planar curvature. We
then consider the case where the two planar curves are rotated
axially with respect to one another, but are infinitely torsion-
ally rigid. Again, the result presented here for general curva-
tures agrees with previous results for piecewise constant cur-
vatures, assuming no torsion (Sears and Dupont 2006� Web-
ster et al. 2006b, 2009). It is also possible to include torsion in
the straight transmission alone for piecewise constant curva-
ture (Webster et al. 2009) in a straightforward manner. There-
fore, we generalize in Section 4 and present the solution to the
case in which any number of arbitrarily preshaped tubes are
rotated axially at their bases with respect to one another, and
undergo torsional deformation along the length of the curves.
Unlike the special cases discussed in this section, solution to
the general case requires a variational approach.

3.1. Planar Theory: A Degenerate Case

In the planar case, we can assume without loss of generality
that all curvatures are of the form 			�s� � ��s�e1 where ��s�
is the curvature. The energy in this case will be

E � 1

2

� L

0
�k1���s�� ��1�s��2

� k2���s�� ��2�s��2� ds� (9)

where ki � Ei Ii . If we minimize this integrand pointwise with
respect to ��s�, the result is

��s� � k1�
�
1�s�� k2�

�
2�s�

k1 � k2
� (10)

This result is true independent of whether or not the stiffnesses
depend on s, and it is also true independent of whether planar
tube precurvatures are circular.

Note also that the same result can be obtained via varia-
tional methods. To see how this is true, simply replace � with
the equivalent �� , where � is the counterclockwise-measured
angle that the tangent to a curve makes with respect to a fixed
line, and apply the Euler–Lagrange equation. In this case, the
Euler–Lagrange equation reduces to � f�� �� � c where c is an
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arbitrary constant. This gives a result identical to (10) up to
the constant of integration c. One can then determine c by sub-
stituting the result back into the original energy functional and
noting that if there are no constraints on �� , then E is minimized
when c � 0. Thus, the pointwise and variational minimization
approaches produce the same result.

3.2. The Three-dimensional Case with No Torsion

Next, consider an active cannula with two tubes that are
infinitely torsionally rigid. That is, tube cross sections are not
able to rotate relative to one another about their common z-
axes along their lengths, namely �2 � 0. This was the assump-
tion in Webster et al. (2009) and Sears and Dupont (2006) for
sections of the active cannula in which			�i �s� �� 0 for any of the
overlapping tubes. With a proper choice of coordinate frames,
this reduces the variables over which we are minimizing (8) to
			 � 			1 � 			2.

We seek the rotation matrix R�s� (or, equivalently, the cur-
vature 			 � �RT �R� since R�0� � I is known), and from this
the corresponding curve defined by (2), such that the following
energy is minimized:

E � 1

2

2�
i�1

� L

0
[			�s��			�i �s�]T Ki [			�s��			�i �s�] ds� (11)

Completing the square inside the integrand, we have

E � 1

2

� L

0
�			�s�� ����s��TK �			�s�� ����s��� C�s� ds

� 1

2

� L

0
�			�s�� ����s��TK �			�s�� ����s�� ds � constant�

where

K � K1 � K2�

����s� � K�1�K �
1			1�s�� K2			

�
2�s��� and

C�s� � 			�T
1 K1			

�
1 �			�T

2 K2			
�
2 � ���T K����

Here, C�s� is independent of 			, and its definite integral is a
strictly positive constant. This can be seen by noting that the
integrand in (11) is always non-negative, so when 			 � ���,
the only piece of the integrand remaining is C�s�, which must
be greater than or equal to zero. Thus, 			�s� � ����s� provides
the global energy minimum by minimizing the integrand in a
“pointwise” fashion. This is the curvature that minimizes the
energy, and is identical to the solution determined in Webster
et al. (2006b, 2009) and Sears and Dupont (2006) for piece-
wise constant curvature tubes. One could also employ a vari-
ational approach to derive the energy minimum, as we will in
the general case of the next section, namely the Euler–Poincaré
equations.

4. The Many-tube Case with Torsion

We now turn our attention to the general problem of an ac-
tive cannula with any number of tubes that are flexible in both
bending and torsion. Here torsional deformation is allowed in
the curved sections, unlike in prior work.

The stored elastic energy is given by (6). By using (7), the
variables over which we are minimizing reduce to the set given
in (8). To simplify notation, let 			�s� � 			1�s� denote the de-
formed curvature of the first tube and let t�s� � ti �s�. Denot-
ing R� � e�e3��s�, then from (7) we have 			i � RT

� i
			 � �� i e3.

Substituting (7) into (6), we have

E � 1

2

� L

0
[			 �			�1]TK1[			 �			�1]

�
n�

i�2

[RT
� i
			 � �� i e3 �			�i ]TKi [RT

� i
			 � �� i e3 �			�i ] ds

� 1

2

� L

0
			TK1			 � 2			T K �

1			1 �			�T
1 K �

1			1

�
n�

i�2

�			T Ki			 � 2			TKi �� i e3 � 2			T R� i Ki			
�
i

�			�T
i Ki			

�
i � 2			�T

i Ki �� i e3 � ��2
i eT

3 Ki e3� ds� (12)

Since we are concerned with the case of tubes with annular
cross sections, Ki is diagonal with its first two elements equal,
and so

			T R� i Ki RT
� i
			 � 			T Ki			 and

			T R� i Ki �� i e3 � 			T Ki �� i e3� (13)

To simplify the above expression, let

			�i � R� i			
�
i � �� i e3�

K �
n�

i�1

Ki �

��� � K�1�K1			
�
1 �

n�
i�2

Ki			
�
i ��

C � 			�T
1 K1			

�
1 �

n�
i�2

			�T
i Ki			

�
i � ���TK���� (14)

Here, C � C��2� �3� � � � � �n� ��2� ��3� � � � � ��n� is a leftover
non-negative constant as before, but now it depends on the
state variables, as does ��� � �����2� �3� � � � � �n� ��2� ��3� � � � � ��n�.
As with the no torsion case of Section 3.2, we can complete
the square:
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E � 1

2

� L

0
�			 � ����TK �			� ����� C ds� (15)

In our approach, one applies the Euler–Poincaré equations
on the integrand of (15) with respect to the Lie group SO�3�	
�

n . For a derivation and review of the Euler–Poincaré equa-
tions see Kim and Chirikjian (2006) and Chirikjian (2011).
This gives a system of differential equations in the variables
			� �� �� :

K � �			 � ������			 	 �K �			 � ����� � 0 (16)

� f

�� i
� d

ds

�
� f

� �� i

�
� 0� (17)

For illustrative purposes, we note that (15) can be minimized
pointwise by setting			 � ���� this happens to be the trivial solu-
tion to (16).

Also, the application of static equilibrium conditions gives
the same result (Rucker and Webster 2008). Writing a moment
balance at an arbitrary cross section of the cannula and apply-
ing (7) and the definition of ���, we have

K1�			�			�1��
n�

i�2

R� i Ki �			i�			�i � � 0 �� 			 � ���� (18)

The algebraic relation 			 � ��� provides 			 in terms of
�2� �3� � � � � �n and ��2� ��3� � � � � ��n , so we apply (17) (which is
also the classical Euler–Lagrange equation), to the functional
in (15) n � 1 times, once with respect to each � i .

Below, we apply Euler–Lagrange before substituting in
the relationship 			 � ���. Substituting before applying Euler–
Lagrange is equivalent to assuming that			 � ��� is a holonomic
constraint (Murray et al. 1994). This constraint turns out to be
holonomic, which is verified by the fact that our result in the
next section can be obtained by substituting before or after ap-
plying Euler–Lagrange. To apply the Euler–Lagrange equation
to our functional f , we begin by first expanding f to obtain

f � 			T K			 � 2			TK��� �			�T
1 K1			

�
1 �

n�
i�1

			�T
i Ki			

�
i � (19)

Based on this, the terms we need for the Euler–Lagrange equa-
tion are

� f

�� i
� �2			T K

����

�� i
� 2			�T

i Ki
�			�i
�� i

� and

� f

� �� i
� �2			T K

����

� �� i
� 2			�T

i Ki
�			�i
� �� i

� (20)

Then, noting that

����

�� i
� K�1 Ki

�			i

�� i
�

����

� �� i
� K�1 Ki

�			i

� �� i
� and

d

dt

�
�			i

� �� i

�
� 0� (21)

we can simplify the Euler–Lagrange equation to

�			 �			�i �TKi
�			�i
�� i

� � �			 � �			�i �TKi
�			�i
� �� i

� 0 (22)

for i � 2� � � � � n. Then applying			 � ���, we have a set of n� 1
differential equations describing �2� � � � � �n,

���� �			�i �T Ki
�			�i
�� i

� � ���� � �			�i �TKi
�			�i
� �� i

� 0� (23)

where the boundary conditions are � i �0� � � i0 and �� i��� � 0
for i � �2� � � � � n�.

We note that using the Euler–Poincaré equations provided
a simple one-step way to obtain the governing equations,
whereas the method of a static equilibrium balance combined
with the Euler–Lagrange equation provided the same result via
a more circuitous route. This becomes important as the com-
plexity of the model increases. Since the Euler–Poincaré equa-
tions are simpler to apply and require less physical intuition,
they may be particularly advantageous in future work which
may include, for example, the effects of shear and extension.

4.1. Model Evaluation

Numerical evaluation of active cannula models has been ad-
dressed previously by Rucker and Webster (2009a) and Rucker
and Webster (2009b). For completeness, we provide a brief re-
view of these results here. In general, one can solve this sys-
tem numerically for �2� � � � � �n . The expression (23) can be
expanded in terms of precurvatures and stiffness matrices as
follows,

eT
3

�
� n�

j�2

�� j K j K�1 � �� i

�
� Ki e3 � ���TKi

�R� i

�� i
			�i � (24)

In the case of n � 2 and constant curvature (			�i � � xi e1)
this expression reduces to the differential equation derived in
Rucker and Webster (2008). Equation (24) can be reformulated
into a format amenable to numerical integration by first writing
it in matrix form as

���� � T�1f��2� � � � � �n�� (25)

where T�


ti� j

�
is an n�1	n�1 symmetric torsional stiffness

matrix given by

ti� j �

���
��

�Ji�1Gi�1
�n

k�1�k ��i�1 Jk Gk�n
k�1 Jk Gk

i � j�

Ji�1Gi�1 J j�1G j�1�n
k�1 Jk Gk

i �� j�
(26)

Here,

���� �


��2 � � � ��n

�T
� and

f��2� � � � � �n� �



f1 � � � fn�1

�T
� (27)
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where

fi � ���TKi
�R� i

�� i
			�i � (28)

One can use the standard state definition procedure to write
(25) in the form of a first-order system �� � f ��� by augment-
ing the vectors on each side of the equation. Let xi � � i�1 for
1 � i � n � 1 and let xi � �� i�n�2 for n � i � 2n � 2. The
augmented first-order system is then

�x �

�
���



xn� xn�1� � � � � x2n�2

�T

�����������
T�1f�x1� x2� � � � � xn�1�

�
		� � (29)

This system may now be solved with any of a number
of numerical techniques for solving boundary value prob-
lems with mixed boundary conditions, for example Matlab’s
bvp4c function, or a shooting method which iteratively con-
verges on the proper initial conditions to satisfy the boundary
conditions. Since all of the tubes are the same length here, the
boundary conditions will be xi �0� � � i�1�0� for 1 � i � n�1
and xi ��� � �� i�n�2��� � 0 for n � i � 2n � 2.

Equation (29) governs the behavior of a single section of
overlapping tubes. It is straightforward to apply this to an ac-
tive cannula with multiple regions of overlap, where tubes end
at different arc lengths. One can consider each unique region
of tube overlap (between arc lengths where tubes end) sepa-
rately. In each region, the variables obey (29) for the particular
combination of tubes in that section. All that must be done
to join these separate systems together is to enforce continu-
ity of the boundary conditions at the junctions between sys-
tems and shift each distal end boundary condition to the end
of its particular tube. This procedure is mathematically equiv-
alent to defining a new system similar to (29), but which is
piecewise defined by a separate system for each unique region
of tube overlap. However, this piecewise-defined differential
equation will be discontinuous at points where curved sections
begin and where tubes end. So, an adaptive step size numeri-
cal solver may unnecessarily attempt to refine the mesh around
these points when integrating through them. Thus, for reasons
of numerical efficiency and repeatable accuracy, we recom-
mend the process of integrating each continuous section one at
a time in series while algebraically enforcing continuity across
the boundary from one section to the next.

Once one has solved (29) numerically to obtain all � i �s�
and �� i �s�, the result can be used to obtain			 algebraically from
(18). The resulting backbone trajectory of the cannula can be
calculated by integrating �R�s� � RT�s��			�s� to get R�s� and
then integrating (2) to obtain t�s�. There exist a number of
numerical integration methods that preserve the structure of
SE�3�, which can be used to obtain R�s� from 			�s�. For a re-
view of these techniques we refer the reader to Park and Chung
(2005).

In the remainder of this paper, we provide an analytical so-
lution for an important special case of (23), where the active

cannula consists of two circularly precurved tubes. A version
of this analytical solution was first presented in Rucker and
Webster (2008), and subsequently discussed further in Dupont
et al. (2009). This special case is interesting because an analyt-
ical solution exists, and because despite the fact that many-tube
active cannula prototypes have been built, all experimental in-
quiries to date into active cannula behavior have addressed ex-
clusively this particular case (see e.g. Webster et al. (2009)
and Dupont et al. (2009). Our general model (23) and more
specifically the analytical solution of the special case, provides
the first means for exploring the effects of torsion on active
cannula shape.

4.2. Analytical Solution for Two Circular Tubes with
Torsion

While (23) can be solved numerically for any number of com-
ponent tubes, much insight into the fundamental behavior of
active cannulas can be gained buy considering the case of an
active cannula composed of two circularly precurved tubes,
for which an analytical solution can be found. Without loss
of generality, one can define the two tube frames such that
			�1 � [�1 0 0]T and 			�2 � [�2 0 0]T. Expanding (23) in this
case yields

G1 J1G2 J2

G1 J1 � G2 J2

�� � �1�2
E1 I1 E2 I2

E1 I1 � E2 I2
sin � � 0� (30)

where �2 has been replaced with � . Under the assumption that
the two tubes have the same value of �, Poisson’s ratio, this
equation reduces to

�� � �1�2�1� �� sin � � 0� (31)

however, we will not make this assumption here, for the sake
of generality. Let

a � �1�2
E1 I1 E2 I2�G1 J1 � G2 J2�

G1 J1G2 J2�E1 I1 � E2 I2�
� (32)

so that
�� � a sin � � 0� (33)

The appropriate boundary conditions here are the initial angle
determined by the relative angular position of the tube bases,
��0� � �0, and the natural boundary condition at the free end,
���L� � 0. This natural boundary condition can be intuitively
understood by considering that ���s� � axial torque applied at
s. At L there is no torque being applied to the distal end of
either tube. Thus, ���L� � 0.

Note that (33) has the same form as the differential equation
which describes a simple pendulum. Fortunately, this equation
arises often, and it has a known analytical solution in terms of
Jacobi’s elliptic functions. We solve it following the solution
procedure similar to the method described in Ames (1968),
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which begins by multiplying both sides of (33) by �� , and in-
tegrating once. Applying the boundary condition �� L � 0 then
yields

��2 � 2a cos � � 2a cos � L � (34)

Rearranging (34), we obtain

s � � 1�
2a

� ��s�

�0

d��
cos � L � cos �

� (35)

Now we use cos�� � �1 � 2n�� � � cos � for all n � Z ,
and cos 2� � 1� 2 sin2 � , to write this in terms of incomplete
elliptic integrals of the first kind as follows. First let

� � � � �1� 2n�� k � sin
� L

2
�

�
1� cos � L

2
� (36)

and let � be defined by

cos � � 1� 2k2 sin2�� (37)

Then we have

cos � � cos � L � 2k2 cos2� and

sin � � 2k sin��1� k2 sin2��1�2� (38)

So that (35) becomes

s � �
�

1

a

� ��s�

��0�

d��
1� k2 sin2���

� �
�

1

a

�
F ���s�� k�� F ���0�� k�

�
� (39)

where F��� k� is the elliptic integral of the first kind with am-
plitude � and modulus k. We can now use the Jacobi ampli-
tude functions, sn and cn which are the sine and cosine of the
inverse function of F defined by the identities

sn�F��� k�� k� � sin� and

cn�F��� k�� k� � cos� (40)

to obtain the following solutions:

��s� � 2 sin�1
�
ksn

�
F ���0�� k���as� k

��� �1� 2n�

���s� � �2k
�

acn
�

F ���0�� k���as� k
�
� (41)

The� signs in (41) and take the same sign as � L ��0, and n is
chosen such that � L takes on a value in the range � � � L �
 .

Table 1. Physical Properties of the Tube and Wire used in
the Simulation

Outer tube Inner wire

Young’s modulus (GPa) 58 58

Shear modulus (GPa) 21.5 21.5

Inner diameter (mm) 2.01 0

Outer diameter (mm) 2.39 1.60

Length (mm) 140 200

Curvature (mm�1) 0.0099 0.0138

4.3. Examples

In order to illustrate how to use the solution described above
to obtain the shape of an active cannula, and to investigate the
phenomena of multiple solutions and non-circular equilibrium
shapes, we provide the following example. Consider a tube
and a wire with properties given in Table 1. The long curved
lengths of L1 � 200 mm and L2 � 140 mm for the inner wire
and the outer tube, respectively, make the interaction of the
curved portions pronounced and thus more easily visualizable.
The boundary condition at the proximal end, where s � 0, is
��0� � �0 � �2 � �1, where �2 and �1 are the base rotation
angles applied by the actuators at the tube bases. The bound-
ary condition at the free distal end where the outer tube ends
(s � L2) is �� L2 � 0, which was already implicitly enforced
on our solution in Equation (34). The analytical solution (41)
contains the unknown constant, � L2 within k, so we need to
find a solution for � L2 which satisfies the proximal boundary
condition �0 � �2 � �1. We can then think of “starting at the
distal end” and use the change of variables � � L2 � s to
rewrite (41) in terms of � L2 as

��� � � 2 sin�1
�
ksn

�
F ���L2�� k���a�� �� k

��
� �1� 2n�� (42)

so that � L2 must be determined to satisfy

�2 � �1 � 2 sin�1
�
k sn

�
F ���L2�� k���a�L2�� k

��
� �1� 2n� � 0� (43)

This can be done using standard non-linear root finding tech-
niques such as MatLab’s fzero. Once � L is found, the ana-
lytical solution (41) is used to obtain ��s�, which enables us
to obtain each tube’s deformed curvature from (18) and (7).
Then, the resulting shape of each tube can be obtained by nu-
merically integrating �Ri �s� � Ri �s�e�			�s�i and using (2) to de-
termine t�s�.

Webster et al. (2009) considered torsion in straight trans-
mission sections of a cannula. It was shown that in this case,
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Fig. 3. Simulation of the tubes given in Table 1 with the in-
ner wire rotated to a base angle of �1 � �180� so that
�0 � 180�. Three equilibrium conformations are shown cor-
responding to the three boundary condition solutions shown in
Figure 4. The solution with � L2 � 84�4� is reached by rotating
�1 in the negative direction to �1 � �180�, and the solution
� L2 � 275�6� is be reached by rotating �1 in the positive direc-
tion to �1 � 180�. The solution with � L � 180� is the trivial
(unstable) solution, with the tubes undergoing no torsion.

multiple solutions (local minimum energy configurations) can
emerge. We see the same phenomenon here. In general, there
can be more than one value of � L which satisfies (43). The
particular root which the algorithm converges to is dependent
on the initial guess. As noted by Webster et al. (2009) the
particular configuration (solution) taken by the cannula will
depend on actuator history. We illustrate this phenomenon in
our example below. The inner wire is rotated to an angle of
�1 � �180�, while the outer tube stays at �2 � 0�, making
�0 � 180�. The left-hand side of Equation (43) is depicted in
Figure 4 with respect to � L2 . Note that there are three places
where the graph crosses the x-axis, representing three differ-
ent solutions to (43), and corresponding to the three different
configurations shown in Figure 3. The solution at � L2 � 180�
is a trivial solution to the differential equation, representing
the case where neither tube undergoes any torsion (a torsion-
ally rigid model would produce this result). This is an unsta-
ble configuration in that the cannula will snap to one of the
other solutions if perturbed slightly. The cannula will reach
the � L2 � 84�4� solution if the actuator starts at �1 � 0�
and increases �1 continuously until �1 � 180�. If the actu-
ator decreases continuously from �1 � 0� to �1 � �180�,

Fig. 4. Plot of the left-hand side of Equation (43) versus � L for
the tubes in Table 1 and �0 � 180�. Solutions for � L satisfying
(43) are shown at � L � 180�, � L � 84�4�, and � L � 275�6�.

the solution � L2 � �84�4� will be reached, which corre-
sponds to the � L2 � 275�6� solution for �1 � 180�. In or-
der to solve (43) for the value of � L2 which corresponds to
the actual configuration of the cannula, it is helpful to start
simulating at a known configuration for which there is only
one solution (e.g. �0 � 0). Then, by undergoing incremen-
tal changes in �0, the solution for � L at the previous step
can be used as the initial guess for the current configuration.
This results in the simulation portraying the same solution
as the physical cannula until a bifurcation in the cannula en-
ergy is reached (where the current solution vanishes, see Web-
ster et al. (2009)) and the cannula “snaps around” to a new
solution.

For the a simple, two-tube, circular precurvature case we
are currently considering, it is possible to predict analytically
when multiple solutions will exist (see Dupont et al. (2009) for
an alternate derivation of the following result). For �0 � 180�
(the angular input where multiple solutions will first exist) we
can examine the integral in Equation (39) to determine whether
multiple solutions are possible. If � L � 180�, the integral is
zero by definition, which means cannulas of any overlapped
length have a solution � L � 180�. For � L �� 180�, the inte-
gral has a lower bound of �2, which can be seen in Figure 5
and is shown in (44). Thus, by rearranging (39) and applying
this inequality, it can be seen that for cannulas with a value
of L

�
a � �2, only the trivial solution exists. On the other

hand, if L
�

a � �2, two non-trivial solutions also exist, sym-
metric about � L � 180�. Thus, as shown in (45), the dimen-
sionless parameter L

�
a, which is composed of the overlapped

length, stiffness, and curvature of the tubes, can be used to pre-
dict whether a two tube cannula will exhibit multiple solutions
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Fig. 5. For �0 � 180� the value of the integral in (44) is shown
in blue as a function of � L ranging from 0� to 360�. Because
it is lower bounded by �2, the dimensionless parameter L

�
a

can be used to predict when multiple solutions can occur.

and thus have the potential to “snap” from one stable solution
to another.

To summarize our multiple solutions discussion above, we
have the inequality

�2 �
     
� ��L�

0

d��
1� k2 sin2���

     for all � L �� 180�� (44)

which when combined with (39) yields the conditions:

L
�

a � �2 � only one solution�

L
�

a � �2 � multiple solutions exist� (45)

As shown in Figure 3, the two solutions with torsion are sig-
nificantly different than the no torsion solution. Thus, torsion
in the overlapping curved section can be very important for de-
termining overall shape. Still, it would appear that each section
is very close to circular, suggesting that some kind of adjust-
ment to a piecewise circular model could be an effective way
to compensate for torsion in the curved sections. Modeling the
individual sections of an active cannula as circular arcs leads to
very convenient kinematic formulations that have been widely
exploited in prior work (e.g. Webster et al. (2009), Furusho
et al. (2006), Sears and Dupont (2006), etc., see also Webster
and Jones (2010) for an overview of piecewise constant cur-
vature kinematics for continuum robots). However, the pres-
ence of torsion can, in some cases, lead to curved shapes that
are qualitatively different and which cannot be approximated
well by circular arcs. If the overlapped arc length is long or

Fig. 6. Four configurations of a simulation of two fully pre-
curved, fully overlapping tubes, whose material properties are
given in Table 1. Both tubes have a longer arc length of
636.5 mm (equal to one full circle of the outer tube). The inner
wire is rotated in the positive direction to angles of 90�, 225�,
315�, and 350� at the base. It is evident that in extreme cases,
circular tubes with precurvature can form highly non-circular
shapes when combined due to the effects of torsion.

the curvatures are large, torsional relaxation makes it possible
to obtain highly non-circular shapes from two circularly pre-
curved tubes. To illustrate this, we extend the curved portions
of both tubes used in our first example to 636.5 mm (corre-
sponding to one full circle of the outer tube) and rotate the
inner wire from �1 � 0� to �1 � 350�. The resulting shape
is shown in Figure 6, where the inner wire has been rotated in
the positive direction to angles of 90�, 225�, 315�, and 350�
at the base. It is clear from Figure 6 that the resulting shape
cannot be well approximated by a circle. However, for cannu-
las of sufficiently short curved overlap and sufficiently small
curvature, piecewise circular models are reasonably accurate
at predicting cannula shape. Such was the case for many prior
prototypes (e.g. Webster et al. (2009) and Sears and Dupont
(2006)).

5. Experimental Validation of the Analytical
Model

The range of possible diameters for active cannula robots is
defined by the diameters of elastic tubes that can be manufac-
tured, shaped, and actuated. The prototype used in this study is
composed of superelastic Nitinol tubes, but any material with
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a high recoverable strain that can be appropriately shaped (e.g.
plastics) may be used. Nitinol tubes can be shape-set by heat
treatment or plastic deformation, and are available in stock
sizes ranging from 0.2 to 8.0 mm (see www.nitinol.com). Fur-
thermore, the dexterity of the design improves with miniatur-
ization because smaller tubes can sustain higher precurvatures
(Webster et al. 2006b).

In this section we compare the predictions of three available
models for active cannula shape with a set of experiments on
a prototype cannula. The three models are the “bending only”
model (Sears and Dupont 2006), the “transmissional torsion”
model (Webster et al. 2006b, 2008, 2009), and the model pro-
vided in Section 4, a preliminary version of which was pre-
sented in Rucker and Webster (2009a). The experimental data
set used here is the same as that provided in Webster et al.
(2009).

5.1. Model Implementation

As described in Webster et al. (2009), these experiments use
an active cannula constructed of one tube and one wire, each
of which has an initial straight transmission, followed by a cir-
cularly curved section near its tip. Thus, as shown in Figure 7,
this prototype can be considered to have four distinct regions
or “links”, which begin and end where tubes begin and end, or
where tubes transition from straight to curved. For example,
beginning at the base of the cannula, the links will often be
as follows: (1) a link where both tubes are straight, (2) a link
where one tube is curved and the other is straight, (3) a link
where both tubes are curved, and (4) a link where only one
tube is present and curved.

Since our experimental prototype contains straight trans-
mission segments that connect the actuators to the start of the
curved tube sections, our model implementation must account
for the torsional compliance of the transmission in addition to
that of the curved sections. In order to use the general model
directly as derived in Section 2, we (without loss of generality)
consider s � 0 to refer to the point where both tubes become
curved (the beginning of link 2, labeled �2, in Figure 7). We
need to modify the boundary condition given by (43) to ac-
count for the straight length of each tube before it becomes
curved. We know that the angle of twist for both tubes varies
linearly with arc length in the sections which have at least one
straight tube (the trivial solution of (6) with n � 2). Using this
and the fact that the moments about the z-axes to achieve �1

and �2 must balance, we can obtain

��0 � ��0 � �1 � �2�
G1 J1 � G2 J2

G1 J1 D2 � G2 J2 D1
� 0� (46)

thus (46) is to be satisfied instead of (43) where �0 and ��0 are
expressed as functions of the unknown value � L2 as follows

Fig. 7. Diagram of tube overlap configuration with variables
from (46) shown.

�0�� L2� � 2 sin�1
�
ksn

�
F ���L2�� k���a�L2�� k

��
� �1� 2n�

��0�� L� � �2k
�

acn
�

F ���L2�� k���a�L2�� k
�
� (47)

where D1 and D2 are the arc lengths between the actuators and
the link in which both tubes are curved, and �1 and �2 are the
tube base input angles as shown in Figure 7.

5.2. Experimental Dataset

Here, we summarize the experimental data set (the dataset
from Webster et al. (2009)) which was used to compare the
model given in Section 2 with the transmissional torsion
model. In these experiments, an outer tube and an inner wire
were arranged in two different translational positions and a
range of input angles were applied. The two translational posi-
tions were referred to as the “full overlap case” and the “partial
overlap case”. In the full overlap case, the tube and wire were
arranged so that the link lengths were as follows: �1 � 10 mm
(tube curved, wire straight), �2 � 82�3 mm (both curved), and
�3 � 2�7 mm (only wire present). For the full overlap case,
data was recorded for 15 different input angles ranging from
0� to 280� in 20� increments. In the partial overlap case, the
tube and wire were arranged so that the link lengths were as
follows: �1 � 48 mm, �2 � 44�3 mm, and �3 � 40�7 mm. For
this overlap configuration, data was recorded for 11 different
input angles ranging from 0� to 200� in 20� increments. The
workspace range covered by these actuation inputs is depicted
in Figure 9.

5.3. Procedure and Model Calibration

Each of the above configurations were input to the base of
the cannula tube and wire using the manual actuation unit
shown in Figure 8. For each, the resultant overall shape of
the cannula was recorded via a calibrated pair of stereo cam-
eras (Sony XCD-X710 firewire cameras with a resolution of
1�024 	 768 pixels). The fiducial markers shown in the inset
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Fig. 8. Manual actuation mechanism used in the experiments. In this apparatus, both tube and wire are affixed to circular acrylic
input handles at their bases, which are etched to encode rotation. The support structure is etched with a linear ruler to encode
translation. Spring pin locking mechanisms lock the input disks at desired linear and angular input positions. The inset image
of a striped cannula on a white background is an example of an image captured using one of our calibrated stereo cameras. The
black bands seen are electrical tape and allow for point correspondences to be identified for stereo triangulation. The red circles
indicate the locations at which Euclidean errors were calculated. Calibration of model parameters was done to minimize the sum
of these errors over all experiments.

image in Figure 8 enabled determination of point correspon-
dences for stereo triangulation, after they had been identified
in image coordinates by manually clicking on the center of the
black bands in video frames. One source of error in this data
collection procedure is the accuracy of manual point selection
in images, which is estimated to be approximately 2 pixels or
0.6 mm. Another is fiducial size (they are not infinitesimal
points), causing small differences in intended selection loca-
tions. We estimate that fiducial dimensions introduce error of
approximately the diameter of the wire itself (1.6 mm). Based
on these, our overall vision system measurement error is ap-
proximately 2.2 mm, in a worst-case sense.

The nominal physical properties of the tube and wire used
in our experiments are given in Table 2. We compare the model
of Section 4 with the prior transmissional torsion model using
both the nominal values given in Table 2 and calibrated para-
meters (a calibration procedure for the transmissional torsion
model is provided in Webster et al. (2009)). Examining the
equations in Section 4, we see that the stiffness coefficients in
Equations (18) and (33) can be expressed in terms of the three
dimensionless parameters

c1 � �1� c2 � �2� and c3 � E1 I1

E1 I1 � E2 I2
� (48)

Fig. 9. Configuration space covered in experiments. Left: par-
tial overlap case. Right: full overlap case.

Poisson’s ratio is often taken to be approximately 0.35 for
Nitinol. It has also been noted that plastic deformation can in-
crease Poisson’s ratio for Nitinol to 0.5 (White 2001). Since
we preshaped our tubes via plastic deformation, we assume a
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Table 2. Measured and Assumed Physical Quantities for
the Experimental Tube and Wire

Outer tube Inner wire

Young’s modulus (GPa) 58 58

Shear modulus (GPa) 21.5 21.5

Inner diameter (mm) 2.01 0

Outer diameter (mm) 2.39 1.60

Straight length (mm) 93.5 218.5

Curved length (mm) 92.3 85

Curvature (mm�1) 0.0099 0.0138

range of 0.30–0.50. An expected range for c3 can be deduced
from the uncertainty in each quantity upon which it depends.
Nitinol dimensions are specified by the manufacturer (Nitinol
Devices and Components, Inc.) to �0�0010 inch, while the
elastic modulus E is reported as 41–75 GPa. Applying stan-
dard error propagation, the expected range for parameter c3

is 0.143–0.431. These ranges provide a basis for comparison
with fitted parameter values produced by the parameter fitting
procedure. To calibrate the parameters, we minimize the sum
of the positional errors at the tip of the wire, the tip of the
tube, and the measured point nearest the base, as shown in
Figure 8. Matlab’s fmincon function was used to optimize
the values of the three dimensionless parameters given in (48)
with upper and lower bounds set to the expected ranges of the
parameters. As described in Webster et al. (2009), the trans-
formation between the stereo camera coordinate frame and a
frame fixed at the base of the cannula was first estimated us-
ing point cloud registration (Arun et al. 1987). Images of a
15-mm checkerboard pattern (with corners at known physical
locations with respect to the cannula base frame) were cap-
tured. Sixteen corners on the checkerboard were triangulated
with the stereo vision system. This registration was only ex-
pected to provide a rough estimate of the frame transformation.
Thus, six “nuisance parameters” (a three-vector for position
and a three-vector for orientation with magnitude of rotation
encoded as length) describing the cannula base frame were
included in the calibration procedure and initialized with the
results from the point cloud registration. Nuisance parameters
showed only small changes during optimization, with cannula
base frame moving only 0�5 mm, and rotating through X–Y –Z
Euler Angles of � � 0�9�, � � 0�3�, and � � 4�0�.

5.4. Results

The calibrated parameter values are given alongside their nom-
inal values in Table 3, and we note that they fall well within
their expected ranges and converge to near the same values for
initial guesses in a range within �5% of the optimal values.

Table 3. Nominal and Calibrated Dimensionless Parame-
ters

Parameter Nominal value Calibrated value

c1 0.350 0.451

c2 0.350 0.449

c3 0.287 0.341

Table 4. Uncalibrated Tip Error Statistics for the Current
Model Compared with Prior Models

Mean tip Maximum
error (mm) tip error (mm)

Bending only model 24.8 54.3

Transmissional torsion model 10.1 22.1

Model of Section 4 4.7 12.7

In Webster et al. (2009), calibration led to one of the parame-
ters falling outside its expected range, which illustrates that
the model presented in this paper captures the underlying me-
chanics more completely. Note that the unmodeled presence
of friction would have a similar effect on our data as lowering
the torsional rigidity of the tubes, namely increasing torsional
windup. Thus, the calibration process would tend to increase
c1 and c2 to compensate for frictional effects. This may ac-
count for the slightly high values of c1 and c2, but they are
nevertheless still within their expected ranges.

This is also supported by the data in Table 4. When using
nominal parameters from data sheets, the model of Section 4
is significantly more accurate than the transmissional torsion
model. Specifically, the model of Section 4 results in an aver-
age tip error of only 4.72 mm as opposed to 10.1 mm for the
transmissional model. Figure 10 shows the experimental data
and the predictions of both models using nominal parameters
for the two worst experimental cases, where angular input an-
gle differences are at the edge of the workspace and torsion is
most significant. These are 280� in the full overlap case, and
200� in the partial overlap case.

Quantitatively, the model of Section 4 with calibrated pa-
rameters exhibits a mean tip error of 2.5 mm across all ex-
periments with a maximum tip error of 7.1 mm, as shown in
Table 5). In comparison, the calibrated transmissional torsion
model exhibits a mean of 3.0 mm and a maximum of 8.8 mm,
and the bending only model a mean of 13.6 mm and a max-
imum of 31.5 mm. With calibrated parameters, the model of
Section 4 improves the mean tip error 82% over the bending
only model, and 17% over the transmissional torsion model.

Plots of the experimental data and the predictions of both
models using calibrated parameters are shown in Figure 11,
picturing the same two “worst-case” experiments shown in
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Fig. 10. Comparison of shape for the transmissional torsion
model (green – dotted line) with nominal parameters, the
model given in Section 4 (red – solid line) with nominal
parameters, and experimental data (blue – dashed line) for
configurations near the edge of the active cannula workspace.
Note that the model given in Section 4 produces predictions
closer to experimentally observed cannula shape. Left: partial
overlap case. Right: full overlap case.

Table 5. Calibrated Tip Error Statistics for the Current
Model Compared with Prior Models

Mean tip Maximum
error (mm) tip error (mm)

Bending only model 13.6 31.5

Transmissional torsion model 3.0 8.8

Model of Section 4 2.5 7.1

Figure 10. The behavior pictured is common to all experimen-
tal positions using either calibrated or uncalibrated parameters,
namely that the prediction of the model of Section 4 lies nearer
the experimental data than the transmissional torsion model
prediction. Note also that the predictions of the bending only
model are not shown for clarity, since they are sufficiently far
from the experimental data that they would obscure the differ-
ences between the other two models. As discussed by Webster
et al. (2009), the bending only model neglects the torsional
windup that occurs in an active cannula, so its predictions be-
come increasingly structurally incorrect as the angle input dif-
ference increases.

Fig. 11. Comparison of shape for the transmissional torsion
model (green – dotted line) with calibrated parameters, the
model given in Section 4 (red – solid line) with calibrated
parameters, and experimental data (blue – dashed line) for
configurations near the edge of the active cannula workspace.
Note that the model given in Section 4 produces predictions
closer to experimentally observed cannula shape. Left: partial
overlap case. Right: full overlap case.

To demonstrate the fact that tip error is a good metric to
use, we give the error between the model prediction with nom-
inal parameters and the experimental backbone location in Fig-
ure 12 as a function of arc length for the worst experimen-
tal case (the left-hand case in Figure 11). It shows the com-
mon characteristic that the positional error increases with arc
length.

Using the model of Section 4, Figure 13 shows the angle
defining the plane of curvature of the experimental cannula as
a function of arc length. The plot shows that while this angle
is not exactly piecewise constant, it is approximately so. This
illustrates why previous studies (e.g. Webster et al. (2006b)
and Sears and Dupont (2006)) have successfully used models
which imply piecewise constant curvature. The out-of-plane
motion was small enough that it was not obvious experimen-
tally, and cannula shape was approximately piecewise circular.
These quantitative results also indicate that the general mod-
eling framework is providing enhanced predictive ability by
reducing tip error, and thus may expand the range of medical
procedures to which active cannulas can be applied.
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Fig. 12. Error versus arc length for the 200� partial overlap case with nominal parameter values using the model of Section 4.
The general increase in error from base to tip is characteristic of all experiments, and thus tip error provides a reasonable metric
for our experimental dataset.

Fig. 13. Angle � of that defines the resulting instantaneous
plane of curvature of the active cannula. Left: partial overlap
case. Right: full overlap case.

6. Conclusions

We have presented a general coordinate-free energy formu-
lation for modeling the shape of concentric tube continuum
robots known as active cannulas. This formulation is able to
account for precurvatures and stiffnesses that vary along the
length of component tubes, and to explicitly model torsion
throughout the device. Further, previous models are special
cases of this new general modeling framework, and we showed
that the moment balance equations assumed in prior work arise
naturally within our new modeling framework. In this work
we also showed via simulation and experiments that the new
model described in this paper captures the underlying mechan-
ics of the cannula more accurately than prior models. This was
illustrated in simulation by the fact that tubes with circular pre-
curvatures can combine to form a dramatically different shape
if torsion is allowed in curved sections. In the experiments it
was shown that the calibrated parameter values fell within their
expected ranges, which was not the case for the model with
only transmissional torsion.

This new model may have significant implications for ac-
tive cannula applications in both medicine and industry. In
this paper we have not addressed design guidelines for active
cannulas, a discussion of which can be found in Webster et
al. (2009) and Webster (2007). Rather, we have provided the

model necessary to simulate possible designs and judge their
merits in comparison to design goals. Explicitly accounting for
torsion throughout the cannula can significantly enhance the
model, enabling active cannulas to be used in more demand-
ing applications. Furthermore, active cannulas with variable
precurvatures will be able to reach further and through more
complex trajectories while using fewer tubes. This new model
also facilitates future studies on patient-specific preshaping of
active cannula component tubes, so that one may match the
capabilities of the device to the particular location and entry
trajectory required by a specific patient. An important area
for future work is the development of active cannula mod-
els that consider external loading. This may be accomplished
through use of the Euler–Poincaré approach, or by application
of Cosserat rod theory. As suggested by Mahvash and Dupont
(2008) and partially explored by Rucker et al. (2010), such
a future model will be useful for determining cannula shape
when it is interacting with tissue, using the cannula itself as a
force sensor (by sensing shape), and implementing force con-
trollers. If it becomes necessary in future models to take into
account the effects of shear and elongation or other complicat-
ing factors, the Euler–Poincaré approach may be particularly
valuable.
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