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SI Materials and Methods
Experimental Apparatus. The experimental test section of the flow
tunnel (Fig. 2A) is ∼90 cm long, 25 cm wide, and 30 cm deep.
Steady-state flow speed through the tunnel can be adjusted using
a frequency controller connected to the electric pump. Flow
speed in the test section was calibrated, as a function of pump
frequency, by timing small drops of colored dye as they traversed
a known distance through the test section at pump frequencies
from 0 to 60 Hz in increments of 3 Hz, which resulted in flow
speeds from 0 to 15 cm/s (flow speed = 0.25 × pump frequency,
R2 = 0.996).
A pco.1200s high-speed camera (Cooke Corp.) with a Micro-

Nikkor 60-mm f/2.8D lens (Nikon, Inc.Y) captured video from
below. The videowas captured at 100 frames per second for all trials.

Ribbon Fin Tapers at Both Ends. The height of the ribbon fin is not
constant along the body, and the fin is tapered at both ends. For
use in a computational fluid model and calculation of amplitude
of angular deflection of fin rays from the 2D motion of the ribbon
fin (fin motion was captured from the bottom view as explained in
Materials and Methods), the fin height profile, h(x), was digitized
for each individual fish. Fish were briefly anesthetized and po-
sitioned to capture a lateral image. The fin height profile of a
representative trial is shown in Fig. S2. The blue curve depicts h
(x) and −h(x) of an individual during steady-state swimming at
U = 3 cm/s.

Amplitude of Angular Deflection. In a 2D snapshot of the ribbon fin
captured from the bottom view, digitized peaks and troughs
correspond to the fin rays that are oscillating with the amplitude
of angular deflection at that instant (orange and green circles in
Fig. 2B). Using all digitized peaks and troughs in 100 video
frames, an envelope curve was calculated for each wave. In Fig.
S2, envelopes for tail and head waves of a representative fish are
shown in orange and green, respectively. At each tested flow
speed, the amplitude of angular deflections for all fin rays along
the tail and head waves, namely, θt and θh, were calculated by
minimizing a sum of squared differences between the 2D projection
of fin rays and the envelopes of digitized data from fin motion.

Computational Simulation.Here, we describe a computational model
for computing the net force produced by a single traveling wave.
During the derivation below, we suppress the subscripts t and h,
which indicate tail and head waves, respectively, until we compute
the overall forces Ft and Fh in Eq. S10, below.
As discussed in the main text, drag force applied to the pro-

pulsive infinitesimal element is given by:
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where CD is the coefficient of the drag, ρ is the density of the
fluid, dA is the area of the infinitesimal element, and ns

! is
the unit normal to the surface at the centroid of the infinites-
imal element (see below). The function u!ðx; rÞ is the relative
velocity of the centroid of the element on the fin and steady-
state flow speed:
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The sign of the last term is negative for the rostral wave and pos-
itive for the caudal wave, and
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where r is the radial distance from the base of the fin ray to the
centroid of the infinitesimal element, x is the rostrocaudal co-
ordinate of the element, and θ is angle of the fin for the two
waves, as defined in Eq. 4.
The 2D surface of a rectangular ribbon fin can be parame-

terized as a set of points in three dimensions:
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Here, x∈ ½Lmin;Lmax� is defined over the half-wave of interest,
and the range of r∈ ½0; hðxÞ� depends on the fin profile function,
h(x) (see above).
Geometric properties of the surface, such as the unit normal

vector, n!s, of the surface at each point, can be derived from the
metric tensor (1):
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where θx is ∂θ
∂x.

Note that the normal, n!s, is defined relative to one side of the
fin but that at each local peak or trough of the fin, there is a
switch in which side of the fin is traveling “upstream”; this switch
depends on both the sign of θx and the wave direction, which is
different for the head and tail waves. Thus, the normal vector for
each infinitesimal element on the surface of the fin is n!= ±ns

! .
Using the normal vector for each differential element, we have
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whereV−U corresponds to the head wave andV+U corresponds to
the tail wave. Instantaneous net force is computed by integrating dF

!
over the half-wave of interest; the two half-wave forces can then be
added to compute the total force on the fin. The time-averaged force
over one period of fin undulation is zero for y and z (lateral) compo-
nents; this can be seen by the periodic y and z components in the unit
normal vector shown in Eq. S5. The time-averaged thrust force gen-
erated by each half-wave in the x direction can be computed by
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where n!x is the unit vector in the x direction, V − U corresponds
to the head wave, and V + U corresponds to the tail wave. In the
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analysis of forces generated by the fin, we use the kinematic
parameters measured for each individual trial (frequency, wave-
length, and amplitude of angular deflection), which are assumed
to remain constant over one period of undulation. The fin height
function for each fish, h(x), is obtained via digitization of the fin
profile (see above for experimental methods). The net thrust
force, generated by the ribbon fin, is the summation of thrust
forces generated by two half-waves.

Plant Model for Station Keeping in Eigenmannia. In addition to the
detailed force analysis for each biological trial, in which the
digitized height profile is taken into account, we further ap-
proximate the fin to capture the essential structure of counter-
propagating wave mechanics in a lumped-parameter model. We
assume the fin has a rectangular profile [i.e., the height of fin is the
same along the length of fin (note that this matches the mor-
phology of our biomimetic robot)]. Because we are averaging the
force over one period of oscillation (T = 1/f), for a fixed r in Eq.
S8, the integrand becomes independent of variable x. Thus, the
time-averaged generated thrust is F ∝ LfinðV ±UÞ2, where Lfin is
the length of the fin, V is the wave speed along the fin, and U is
the steady-state flow speed. Net force over the body includes the
thrusts generated by the two waves and drag force over the body:

Fnet =Ft +Fh +Fdrag; [S9]

where subscripts t and h stand for tail and head, respectively. If
we take Lhead = Ltail = L/2 as the reference for the nodal shift,
ΔL= 0, the generated thrust by each wave is:

Ft = − aðL=2−ΔLÞðV +UÞ2 i!

Fh = aðL=2+ΔLÞðV −UÞ2 i!; [S10]

where a is a constant. The simplified expression for the net thrust
generated by the two waves is:

Ft +Fh =


κ+ γU2�ΔL− βU; [S11]

where κ= 2aV 2, γ = 2a, and β= 2aLV . For low-speed swimming
ðU2 ≈ 0Þ, the last equation can be further simplified to:

Ft +Fh = κΔL− βU: [S12]

For low-speed swimming, the drag force over the body is also neg-
ligible ðFdrag ≈ 0Þ. Moreover, during steady-state swimming, the
net force over the body has to sum to zero, Fnet = 0. Thus,
antagonistic forces generated by two waves should balance each
other according to Eq. S9 ðFt +Fh ≈ 0Þ. The second-order lumped
model can be used as a task-level plant model of the ribbon fin for
low-speed refuge tracking:

m€x+ β _x= uðtÞ; [S13]

where β is the damping constant and u(t) is the net thrust gen-
erated by the ribbon fin. In the case of counterpropagating
waves, uðtÞ= κΔL, where κ is the nodal shift gain.

Linear Quadratic Controller to Track a Reference Trajectory. The
second-order lumped model (Eq. S13) can be written in state
space:

_x=Ax+BuðtÞ; [S14]

where A = [0 1; 0 − b/m] and B = [0; 1/m], with the state vector
containing the position and velocity x= ½x; _x�. By discretizing the
linear system, an optimal affine control law exists according to
table 4.4-1 in ref. 2.

Mechanical Energy During Tracking and Hovering. In the limit, as the
tracking amplitude goes to zero (and assuming no disturbances),
the mechanical work done by a single traveling wave is zero, but
even for perfect hovering, counterpropagating waves are con-
tinuously doing work on the surrounding fluid. It is natural to ask
whether it remains costly to use counterpropagating waves during
tracking behavior.
To examine this question, we estimated the worst case me-

chanical energy required for a single traveling wave for the largest
amplitude tracking motion compared with the energy required for
simple hovering using counterpropagating waves as a conservative
measure of howmuch more it costs the animal to use this strategy.
The instantaneous power from each infinitesimal element is

given by dP= − dF
!

· u!, where u! is the instantaneous velocity of

the element relative to the fluid and −dF
!

is the force applied by
each infinitesimal element of the fin to the fluid. Total power was
estimated by integrating the dP over the fin. Mechanical work
over each cycle was then estimated by integrating P(t) over one
period (5 s) of the tracking task (Fig. 5).

SI Data and Discussion
Other Wave Parameters Varied Minimally with Flow Speed. For each
trial, wavelengths of the tail and head waves, λt and λh, were
computed by averaging the rostrocaudal distances between all
adjacent pairs of peaks and troughs in each wave over 100 video
frames (Fig. S3A). The tail and head wavelengths varied mini-
mally as a function of flow speed, trending downward and up-
ward slightly for tail and head waves, respectively, at the highest
swimming speeds. Similarly, the maximum angular deflection of
both waves varied minimally as a function of steady-state flow
speed (Fig. S3B). The temporal frequency of tail and head waves
(fT and fH) was calculated for all trials. For the four trials at U =
12 cm/s, there was only one single traveling wave from head to
tail. Temporal frequencies averaged over all trials as a function
of steady-state swimming speeds are shown in Fig. S3C. Using
the data shown in Fig. S3 A and C, wave speeds ðV = λf Þ of the
tail and head waves are shown in Fig. S3D. At lower swimming
speeds, where we believe the counterpropagating waves strategy
is the dominant mechanism for control, the wave speeds of the
two waves (product of wavelength and temporal frequency) are
very similar. Note that despite differences in frequency and
wavelength, these differences result in roughly equal wave speed
in the two waves; that is, the two waves travel at approximately
the same speed during slow swimming (i.e., near hovering). The
difference becomes more significant at higher swimming speeds.
Although beyond our present scope, this deviation could possibly
be explained by the transition from the counterpropagating waves
strategy to the single traveling wave strategy. In other words,
although nodal shift serves as the dominant strategy for modu-
lating the thrust force at low-speed swimming, the role of other
kinematics, such as frequency and wavelength, may become
important at higher swimming speeds. Lastly, the tail wave be-
comes very short (shorter than one complete wavelength) at the
highest swimming speeds tested. As a result, there may be subtle
artifacts associated with estimating the tail wavelength in the
digitization process.
In Fig. S3, the shaded regions depict the entire range of var-

iation across all trials and all individuals. Although there was
moderate variability across individuals, each individual was ex-
tremely consistent. At each tested flow speed, the SD of the
angular deflection for each of the five individual fish was between
0.1° and 7.2° for the tail wave ðθtÞ and between 0.1° and 4.7° for
the head wave ðθhÞ. Similarly, the SD of the wavelength for each
of the five individual fish was between 0.1 cm and 0.26 cm for the
tail wave ðλtÞ and between 0.1 cm and 0.3 cm for the head wave
ðλhÞ. The SD of frequency for each of five individual fish was
between 0.1 Hz and 2.3 Hz for the tail wave (ft) and between
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0.1 Hz and 1.6 Hz for the head wave (ft). The SD of wave speed
for each of five individual fish was between 0.02 cm/s and 4.85 cm/s
for the tail wave (Vt) and between 0.01 cm/s and 1.84 cm/s for the
head wave (Vh).

Counterpropagating Waves Modulate Fore–Aft Thrust for Hovering.
During station keeping, the net forces over the body include the
antagonistic thrust forces generated by the head and tail waves, as
well as the drag force over the body and pectoral fins. Although
nonzero net force is necessary for transient movement and un-
steady swimming, net forces over the fish body must sum to zero
during station keeping.
Eigenmannia modulates net thrust, generated by the two waves,

mainly by moving the nodal point. When there is no ambient flow,
the nodal point remains near the middle of the fin. If the ribbon
fin were not tapered at its ends and the kinematic parameters of
the two counterpropagating waves were identical, then, in theory,
the nodal point would be exactly in the middle of the fin. For
relatively slow flow speeds (i.e., under 12 cm/s in this study), the
tail wave travels against the flow, whereas the head wave travels
along with, although faster than, the flow. Moreover, the nodal
point moves caudally as the steady-state swimming speed increases
during upstream station keeping. This produces two competing
effects in the amount of force generated by each wave: a change of
length (and thus area) of each wave and a change in the relative
velocity between the waves and the ambient flow. Although the
tail wave (Ltail) shortens, the relative velocity between the tail
wave speed ðVt = λtftÞ and flow speed (U) increases [Vt − (−U) =
U + Vt]. By contrast, although the head wave (Lhead) lengthens,
the relative velocity between the head wave speed ðVh = λhfhÞ and
flow speed [−Vh − (−U) = U − Vh] decreases. As a result of these
two competing effects (i.e., decrease/increase in fin length and
increase/decrease in relative velocity between the ribbon fin wave
speeds and the flow speed), antagonistic forces generated by the
two waves balance each other during station keeping.

Outlier Replicate in Biological Data. As explained in the main text,
the kinematics of the ribbon fin of five fish were digitized in this
study, and at each tested flow speed, three replicates of data were
collected. The nodal shift of the third replicate collected for fish 3
followed the qualitative trends of other replicates but was an
outlier quantitatively. Measured nodal shift of this replicate is
shown with a different color (purple) in Fig. S4.

Nodal Shift Gain in Robot and Eigenmannia. Kinematic parameters
used for the robotic experiment are shown in Table S1. In each
trial, the net longitudinal force was measured as a function of
nodal shift. Nodal position was varied from −8.15 cm to 8.15 cm,
measured from the middle point along the fin, with 1.63-cm in-
crements. The increment of 1.63 cm was equivalent to 5% of the
robotic fin length. In Fig. S5 A and B, the measured forces
are shown as a function of nodal shift. Results reveal that the
thrust varies linearly as a function of nodal shift. Fig. S5 A and
B also reveals that the nodal shift gain increases as the temporal
frequencies of counterpropagating waves and the amplitude of
angular deflection of fin rays increase, respectively. Nodal shift
gains, corresponding to the results shown in Fig. S5A, as a function
of temporal frequency (f) are depicted in Fig. S5C. Nodal shift
gain, κ, is increasing roughly quadratically as a function of fre-
quency, f.
Finally, using the kinematics measured corresponding to hov-

ering in biological experiments, nodal shift gain was estimated for

Eigenmannia. In each set of simulations, the kinematic and mor-
phological parameters of the model were set to match the kine-
matics measured with no ambient flow trial (U = 0) in the
biological experiments. Nodal position was varied from −10 mm
to 10 mm. Simulation results for three replicates of a represen-
tative fish are depicted in Fig. S5D. Forces generated by the head
wave, tail wave, and net thrust are shown for three replicates.
Each color represents the result for one replicate (set) of data.
The results reveal that the force generated by the two waves
increases linearly as a function of nodal position. Simulation re-
sults for four other individual fish are similar to the results shown
in Fig. S5D. The nodal shift gain, κ, was 0.0209 N/m (SD = 0.0084
N/m) over all replicates of data.

Damping Constant in Robot and Eigenmannia. Kinematic parame-
ters used for the robotic experiment and simulation were the same
as those shown in Table S2. The nodal point was held at the center
of the robotic fin ðΔL= 0Þ; thus, the lengths of the two coun-
terpropagating waves were equal. Ambient flow speed was varied
from 0 cm/s to 10 cm/s with 0.5-cm/s increments. Only the ro-
botic fin was submerged in this experiment. The measured forces
as a function of steady-state ambient flow are shown in Fig. S6 A
and B. From Fig. S6 A and B, it can also be observed that the
damping constant increases as the temporal frequencies of coun-
terpropagating waves and the amplitude of angular deflection of
fin rays increase. Damping constants, corresponding to the re-
sults shown in Fig. S6A, as a function of temporal frequency (f)
are depicted in Fig. S6C. The damping constant, β, is increasing
linearly as a function of temporal frequency, f.
Finally, the damping constant was calculated for theEigenmannia.

Similar to the simulations explained in the previous section, in
each set of simulations, kinematic parameters of the model were
set to the kinematics captured during zero flow speed (U = 0) in
the biological experiment. The nodal position remained fixed at
ΔL= 0. The steady-state flow speed was varied from −5 cm/s to 5
cm/s. Predicted forces generated by each wave and the net force
are shown in Fig. S6D, and, as shown, the damping forces in-
crease linearly as a function of nodal position. Simulation results
for four other individual fish are similar to the results shown in
Fig. S6D. The damping constant, β, was 0.0053 N·s·m (SD =
0.0019 N·s·m) over all replicates.

Mechanical Energy Cost of Counterpropagating Waves. We esti-
mated the mechanical cost of counterpropagating waves during
hovering and compared this with the cost during high-amplitude
tracking using a single traveling wave (SI Materials and Methods).
For the fish, hovering with counterpropagating waves requires

1.1mJ of mechanical work in 5 s, whereas high-amplitude tracking
using a single traveling wave requires 0.35 mJ. Likewise, for the
robot, hovering with counterpropagating waves requires 1.7 J of
mechanical work in 5 s, whereas high-amplitude tracking using
a single traveling wave requires 0.4 J. That is, for our setting, the
mechanical energetic cost of counterpropagating waves is at least
threefold that of single traveling waves.
Themechanical energy required by each strategy is a factor that

contributes to metabolic cost, but we cannot conclude that the
differences in metabolic cost are commensurate to those in me-
chanical energy. Moreover, it is unknown whether the metabolic
expenditure for either strategy is significant with respect to the
metabolic budget.
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Fig. S1. Experimental setup for the knifefish robot. (A) Knifefish robot was suspended into a water tunnel from a frictionless air-bearing system above. To
measure force, the platform was rigidly attached to mechanical ground through a force sensor. Force measurements were collected for varying fin kinematics
and flow speeds. (B) For the virtual refuge tracking experiments, the robot was allowed to move freely along the longitudinal axis. A linear encoder provided
positional feedback of the robot. Experiments included controlling either fin oscillation frequency or nodal shift of counterpropagating waves to follow
sinusoidal trajectories of varying frequency and amplitude.
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Fig. S2. In the 2D bottom view, the ribbon fin is tapered at both ends. The fin height profile was digitized for each individual fish. The fin height profile for
a representative fish is shown in blue. The envelope of all digitized peaks and troughs is shown in orange (tail wave) and green (head wave). 2D visualization of
the fin with fitted θt and θh is shown in black.
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Fig. S3. Ribbon fin kinematics as a function of steady-state flow speed. At each tested flow speed, the averages over all replicates of data are shown with
a filled circle. Shaded regions indicate the full range of a given kinematic parameter for all trials and all fish. (A) Wavelength of the tail (red) and head waves
(blue) remain nearly constant across flow speeds. (B) Angular amplitudes of the tail wave (red) and head wave (blue) also remain nearly consistent across flow
speeds, although there is a small trend, particularly for the tail wave. (C) Similar to wavelength and angular amplitude, the temporal frequency of the tail wave
and head wave also remains nearly constant, particularly for lower swimming speeds. (D) Wave speeds ðV = λfÞ of the tail (red) and head (blue) waves are
roughly equal at lower swimming speeds.
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Fig. S4. One replicate of data was removed from the statistics. The measured nodal shift for the outlier replicate is shown in purple.
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Fig. S5. Force measurements from the robotic setup (nodal point shift gain). (A) For a constant angular amplitude ðθ= 308Þ, forces generated by robotic fin are
shown for different frequencies. (B) For a constant frequency (f = 3 Hz), forces generated by robotic fin are shown for different angular amplitudes. (C) Nodal
shift gains computed from a linear fit to the results shown in A are depicted as a function of frequency. κ varies nonlinearly as a function of f. (D) Compu-
tational results. Measured kinematics of fish 4 from three replicates of the data during hovering (no ambient flow) are used as inputs for the computational
model. Computed forces as a function of nodal shift ðΔLÞ are shown. The three colors (red, green, and blue) correspond to three replicates (sets) of data. Forces
generated by the head wave (+), forces generated by the tail wave (x), and the net force produced by the two waves (filled circles) are shown.
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Fig. S6. Force measurements from the robotic setup (damping constant). (A) For a constant angular amplitude ðθ= 208Þ, forces acting on the robotic fin are
shown for different frequencies. (B) For a constant frequency (f = 3 Hz), forces acting on the robotic fin are shown for different angular amplitudes. (C)
Damping constants computed from a linear fit to the results shown in A are depicted as a function of frequency. β varies linearly as a function of f. (D)
Computational results. Measured kinematics of fish 4 from three replicates of the data during hovering (no ambient flow) are used as inputs for the com-
putational model. Computed forces over the ribbon fin are shown as a function of steady-state flow speed (U). The three colors (red, green and blue) cor-
respond to three replicates (sets) of data. Forces generated by the head wave (+), forces generated by the tail wave (x), and the net force produced by the two
waves (filled circles) are shown.
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Movie S1. Counterpropagating waves at three different steady-state swimming speeds (U = 0, 6, and 12 cm/s) captured using high-speed videography.

Movie S1

Table S1. Fin kinematic parameters for force measurement in
the first robotic experiment

Experimental set f, Hz θ,° No. of waves, Lfin/λ

Set 1 1, 2, 3, 4 30 4
Set 2 3 20, 25, 30 4

Table S2. Fin kinematic parameters for force measurement in
the second robotic experiment

Experimental set f, Hz θ,° No. of waves, Lfin/λ

Set 1 1, 2, 3, 4 20 4
Set 2 3 20, 25, 30 4

Movie S2. Biomimetic robot tracking with two control strategies.

Movie S2
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Movie S3. Counterpropagating waves during hovering and swimming forward and backward captured using high-speed videography.

Movie S3
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