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Abstract— This paper presents an almost globally convergent
state estimator for the orientation of a rotating rigid body. The
estimator requires knowledge of the angular velocity of the body
at each time instant and the measurement consists of a single
unit vector on the body, which we take without loss of generality
to be the first column of the rotation matrix. The stability
proof involves a relatively simple Lyapunov and invariance-like
analysis. A mild non-degeneracy constraint on the control input
guarantees the fulfillment of the invariance criterion. We apply
the result to needle-tip orientation estimation for tip-steerable
needles.

I. INTRODUCTION
Many developments in control theory over the past 50

years have been driven by the desire for better attitude deter-
mination and control. Much of this work focuses on satellite
attitude regulation, but estimation and control on the rotation
group applies to a wide range of problems. Our particular
treatment of the attitude estimation problem is motivated by a
medical intervention, control of tip-steerable needles [1], [2].
The heart of our problem lies in estimating all three degrees
of freedom of rotation given only a two degree-of-freedom
measurement in the form of a unit vector—in our case, this
unit vector corresponds to one of the columns of the rotation
matrix. The goal is to determine the entire rotation matrix
asymptotically, given that measurement plus knowledge of
the control input.

This application drives the need for an estimator on SO(3)
from measurement restricted to S2, a result that could apply
to any number of other fields involving attitude estimation
for rotating rigid bodies. For example, attitude estimation in
an underwater vehicle based on a gravity sensor or compass
heading comes to mind. In this paper, we demonstrate an
essentially global estimator for this problem; convergence
only fails for initial estimates that are π radians away from
the actual state—a set of measure zero. The proof of con-
vergence is given using (local) exponential coordinates that
are valid over the entire domain of attraction. The method
extends easily to the measurement of multiple vectors, for
which the convergence proof becomes trivial. Our estimator
is invariant in the sense that it is described by a matrix
differential equation with the property that when the initial
condition is on the manifold described by the Lie group
SO(3), exactly integrating the matrix differential equation
will result in the estimate remaining in SO(3) for all time.
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A. Related work

Since the advent of the Kalman filter—the optimal linear
filter—five decades ago, the standard approach for nonlinear
systems has been to wrangle the system into a form amenable
to applications of the Kalman filter, through coordinatization
and linearization. As most problems are ultimately inher-
ently nonlinear, this technique has been the practical, albeit
suboptimal, workhorse of the state estimation systems for
spacecraft, aircraft, submarines, and many other noisy non-
linear system. However, the method is fraught with pitfalls
of divergence due to initial conditions and singularities in
representation and statistics [3], [4].

In the search for an optimal invariant filter with robustness
to initial error, it appears the field is taking the opposite
route to Kalman and Luenberger, where the stochastic and
deterministic cases were treated in that order in 1961 and
1964, respectively. Recent work by Bonnabel, Mahony, and
others has begun to develop a principled framework for
defining convergent, invariant observers [5]–[8]; much of
this recent development takes advantage of the Lie group
structure of SO(3).

Markley [9] attempted to develop an invariant filter, but
the tools to solve the Fokker-Planck equations exactly were
not available and many simplifying assumptions were made,
rendering the solution suboptimal in a similar sense to an
extended Kalman filter. The natural next step is to develop
convergent invariant filters evolving from these invariant
observers, as Kalman filters are to Luenberger observers.
Recent work in stochastic processes on matrix Lie groups
by Park and Chirikjian [10], [11] may provide the tools
necessary to analytically solve (or at least approximate) the
Fokker-Planck equations, where it was previously not pos-
sible. More recently work by Bonnabel [12] implements an
invariant extended Kalman filter (IEKF) using their invariant
observer structure to propagate state and using a linearization
of the system for propagating statistics, which is optimal in
the same sense that the EKF is approximately optimal for
non-invariant observer representations of non-linear systems.

Recently Kinsey and Whitcomb developed invariant adap-
tive identifier methods for systems in which the (unknown)
attitude was fixed and the inputs and the outputs of the
system were known [13]. The work presented in this paper is
similar in the choice of output error, except we allow the at-
titude of the system to be time varying. Another recent appli-
cation was invariant estimation of the homography between
stereo cameras [14]. One can imagine that the techniques
could also be applied to the many applications in physics
described by finite dimensional matrix Lie groups [15].



For our specific application of needle steering, previous
work has been done to develop controller and estimator
pairs in a reduced set of local coordinates [16]–[18]. These
methods were used for both state estimation and control to
a surface defined as part of the state reduction.

The key contribution of our estimator is to provide a
nonlinear output injection term into the tangent space of
the estimator configuration space—a copy of SO(3)—and
to cast the resulting error dynamics as a nonautonomous
matrix differential equation. Given this differential equation,
we provide an associated proof of almost global convergence
of the estimator error to the identity matrix. The nonlinear
output injection is a function of the measurement of a single
vector between the center of rotation and a point on the
rotating body. To the best of our knowledge, the require-
ment of only one measurement vector is a less restrictive
measurement model than all other invariant estimator work
to date. This includes the most recent and complete work
in this field about which we are aware [8] which requires
multiple measurements or full state access. Of course, at
present our method does not constitute a filter, much less
an optimal filter; the previous discussion of attitude filtering
defines our eventual goal for both needle steering and attitude
determination in general.

B. Paper Organization

Section II describes the motivating example of needle
steering and the generic plant and measurement model for
any rotating rigid body; it also provides a general definition
of invariant estimation on the group of rigid body rotations.
In Section III, we prove that the system is observable for
our plant and measurement model. Section IV defines our
contribution of a nonlinear output injection term for the
invariant estimator and provides the associated analysis of
almost-global asymptotic stability. In Section V we present
a few illustrative simulations of the method, for both needle
steering and an arbitrary rotating rigid body. We conclude
with a few observations and proposed directions for further
research.

II. MOTIVATION AND PLANT MODEL

The principal application that motivates the present study
is the problem of estimating the orientation of a flexible, tip-
steerable needle [1], [2], as depicted in Figure 1(A). As these
needles are inserted into tissue, the tip asymmetry causes the
needle to deflect and follow a circular arc. Rotation of the
needle shaft outside the patient causes the needle to act as a
“flexible drive shaft”, reorienting the asymmetric tip before
subsequent insertions.

Needle tip motion can be described as a left-invariant
kinematic vector field on SE(3) [2]. For planning and
control, one would ideally like an estimate of the position
and orientation of the body-fixed frame at the tip of the
needle. Unfortunately, current medical imaging modalities
such as bi-plane fluoroscopy can only be used to extract five
degrees of freedom of the needle: the position in R3 of the
needle tip and the vector direction of the needle in S2, but

the tip orientation about the needle shaft cannot presently
be resolved. So, for the present paper, we assume that we
can measure the vector tangent to the needle shaft at the
tip (namely, aligned with the x-axis in Figure 1(A)) either
through external imaging or a magnetic tracking device.

A. Motivation: Needle Steering

Because the needle tip position can be directly mea-
sured, in this work we neglect the positional estimation
problem, and focus our efforts on the more challenging
attitude estimation problem. The orientation dynamics of
the simplest needle steering kinematic model, called the
“unicycle model”, developed by Webster et al. [2] can be
expressed as follows:

(R−1Ṙ)∨ = u(t) =

 ω(t)
0

−κv(t)

 ,
y = Re1

(1)

where κ is the instantaneous curvature about the z-axis
of the needle path during insertion, ω is the needle shaft
rotational velocity, and v is the needle insertion speed. Here,
y represents the measurement of the orientation of the x
axis. The operators ̂ : R3 → so(3) and ∨ : so(3) → R3

denote the usual isomorphism between R3 and so(3), the Lie
algebra of SO(3).

The practical question addressed by this paper is how
to estimate R(t) ∈ SO(3) asymptotically based on the
measurement y(t) ∈ S2.
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Fig. 1. Kinematic models for a rotating rigid body. (A) Kinematic model
used to represent the insertion of tip-steerable flexible needles [2]. As the
needle is inserted at velocity v, a bevel or other tip asymmetry causes
a lateral force that deflects the needle along a curved path of radius
1/κ. Rotations about the base of angular velocity ω reorient the bevel tip
(Modified with permission from [11]). (B) General rotating rigid body model
(that includes the needle kinematic model). The body frame velocities,
ui ∈ R, about each rotation axis ri ∈ R3, i = 1, 2, 3, are known. The
unit vectors ei, i = 1, 2, 3, represent the world frame. The measurement
(or output model) is a single vector, y(t), defined by a point on the rotating
rigid body with respect to the center of rotation; as depicted, we assume
(without loss of generality) that y(t) = Re1 = r1.

B. Plant Model and Measurement Model

As a slight generalization of the needle steering orientation
estimation problem, we consider a kinematic rotating rigid
body in which the angular velocity with respect to the body



fixed frame is known; see Figure 1(B). As depicted, we also
assume that we can measure a single point a unit distance
from the center of rotation of the rigid body. For sake
of notational simplicity and without loss of generality, we
assume that this point is aligned with the first axis of the
rigid body.

Consider the left invariant kinematic system described
using the Lie group SO(3) and its corresponding Lie algebra
so(3),

RT Ṙ = û, (2)

with output map
y = Re1. (3)

We assume that we know the body frame velocities of the
rigid body, u.

C. Problem Statement

We wish to define an invariant estimator for R(t) ∈ SO(3)
for the system defined by (2)–(3). The estimator should be
invariant in the sense that the estimate R̃ should evolve on
the manifold SO(3). We seek an estimatator that converges
asymptotically to the true value, R(t), as t → ∞ from
essentially any initial condition in SO(3). As will be seen,
this will require us to put some constraints on the control
inputs, u(t).

Our estimator structure is defined on SO(3) by

R̃T ˙̃R = û+ g(y, ỹ), (4)

where the estimator output is

ỹ = R̃e1, (5)

and g(y, ỹ) ∈ so(3).

III. OBSERVABILITY OF A KINEMATIC RIGID BODY
BASED ON A SINGLE VECTOR MEASUREMENT

Before presenting our observer formulation, we examine
the observability of the dynamics given by (2)–(3).

A. Observability

A first step to solving the estimation problem is to ascer-
tain whether the system is observable with the measurement
of a single point on the rigid body. One notion of observ-
ability is whether the state of the system can be determined
from the output of the system and its n− 1 derivatives [19].
Our approach follows Kallem et al. [18] for slightly different
plant and output models.

Lemma III.1. The system described in (2) and (3) is
observable at time t provided the input u(t) 6= αe1 is known.

Proof. The output and its first time derivative are

y = Re1 = r1 (6)

and

ẏ = Ṙe1 = RRT Ṙe1 = Rûe1 = R

 0
u3
−u2

 . (7)

Manipulating these expressions, one can show that

r2 =
u2

u22 + u23︸ ︷︷ ︸
α

(y × ẏ) +
u3

u22 + u23︸ ︷︷ ︸
β

ẏ, (8)

and thus

r3 = r1 × r2 = α [y × (y × ẏ)] + β(y × ẏ). (9)

We see that if the restriction placed on the control input is
violated, then the computation of (8) becomes ill defined.

Note that observability of (2)–(3) requires that the control
input not correspond to a pure rotation about the output
vector, i.e. u 6= αe1. This implies u2 and u3 cannot both
be zero—such a rotation renders y = const., making it
impossible to infer the final degree of freedom.

IV. INVARIANT OBSERVER FOR ATTITUDE ESTIMATION

In this section, we develop an estimator for the attitude
of the rigid body that is almost globally convergent, with
the exception of a set of initial conditions of measure zero.
Many techniques for attitude estimation employ embeddings
or coordinatizations (in the context of needle steering, see
[18]) of the rotation matrix describing the attitude of the rigid
body. Our estimator consists of a matrix differential equation
evolving on the manifold SO(3), such that the estimator state
remains on the manifold for all time.

Given the representation of the kinematic rotating rigid
body (2)-(3), we propose the following as the estimator
correction term for the estimator (4)-(5):

g(y, ỹ) = kR̃T ̂(y × ỹ)R̃. (10)

Note that g(y, ỹ) lies in so(3), ensuring that the estimator
evolves on SO(3).

In the absence of a control input, the output injection term
(10) would cause a rotation of the estimate about an axis
mutually orthogonal to both the first column of the estimator,
r̃1, and that of the rigid body, r1, thereby aligning these two
columns asymptotically. Thus the estimator would remain
in error by some rotation about e1, i.e. R̃ = exp{αê1}R.
Fortunately, when this is the case, “most” inputs to the
system drive r̃1 and r1 apart, which is at the heart of our
invariance-like stability analysis, as shown below.

A. Stability Analysis

We define the error between the kinematic system and the
observer as

E = RT R̃. (11)

For a convergent estimator, this error will approach the
identity matrix as time approaches infinity. By direct com-
putation,

ET Ė = û− ET ûE + kR̃T
(
ŷ × ỹ

)
R̃. (12)

Since
y × ỹ = (Re1)× (R̃e1) = Rê1Ee1, (13)



the body-frame error velocities are given by

ΩE = (ET Ė)∨ = u− ETu− kê1ET e1. (14)

Before proceeding to develop a candidate Lyapunov func-
tion, we point out an important property of the velocities
of error system (14): they have no explicit dependence on
the actual state of the system, R(t), R̃, but rather only
depend on the error between them. While this is a standard
result for the LTI Luenberger observer, this is not generally
true of nonlinear systems; for other choices of nonlinear
output injection than (10), the body frame error will typically
depend on both R and R̃.

Now, we represent the error system in terms of exponential
coordinates,

E = exp(x̂), (15)

which serve as local coordinates for stability analysis of
estimator error. Note that our choice of coordinates cover all
of SO(3), excluding a thin set of rotations, namely rotations
about any axis of π radians.

The Jacobian between exponential coordinates and body-
frame velocities [20] allows us to recast (14) in terms of
exponential coordinates via ẋ = J−1R (x)ΩE , namely:

ẋ = J−1R (x)
[
u(t)− exp(x̂T )u(t)− kê1 exp(x̂T )e1

]
= f(x, t).

(16)

Equation (16) represents the flows of the error system in
terms of a typical nonlinear, nonautonomous differential
equation.

Consider the following candidate Lyapunov function on
the local coordinates of the error system,

V =
1

2
xTx, (17)

with time derivative

V̇ = xT ẋ

= xTJ−1R (x)ΩE

= xTΩE

= xT

u− ETu︸ ︷︷ ︸
A

+k ÊT e1e1︸ ︷︷ ︸
B

 .

(18)

The penultimate step of (18) is due to the fact that x
is a left eigenvector of J−1R (x) associated with a unity
eigenvalue. We are now left to show that the time derivative
of the Lyapunov function implies asymptotic stability. The
following computations show that V̇ is negative semi-definite
for the chosen Lyapunov function. This is accomplished by
expanding the error state, E, in (18) using the Rodrigues
formulation for exponential coordinates given in (15) and
writing x in axis and angle form:

φ = ‖x‖, q̂ =
x̂

‖x‖
. (19)

Then, A from (18) can be simplified as

A = u−
(
I − q̂ sin(φ) + q̂2(1− cos(φ))

)
u

= − sin(φ)ûq − (1− cos(φ))q̂2u.
(20)

A similar computation yields B from (18):

B = − sin(φ)(e1e
T
1 − I)q − (1− cos(φ))

[
ê1qq

T e1
]
. (21)

Thus, the body frame error velocity (14) is

ΩE = A+ kB

= − sin(φ)ûq − (1− cos(φ))q̂2u+ (22)

k
(
− sin(φ)(e1e

T
1 − I)q − (1− cos(φ))

[
ê1qq

T e1
])
.

Using (20) and (21),

V̇ =xT (A+ kB)

=φqT (− sin(φ)ûq − (1− cos(φ))q̂2u

− k sin(φ)(e1e
T
1 − I)q

− k(1− cos(φ))
[
ê1qq

T e1
]
)

=− kφ sin(φ)qT (e1e
T
1 − I)q

=xT
(
−ksinc(φ)ê21

)︸ ︷︷ ︸
M(φ)

x

≤xT
(
−ksinc(φ(t0))ê21

)︸ ︷︷ ︸
M(φ(t0))

x

=V ∗(x) ≤ 0 (∀k < 0).

(23)

Because sinc(φ) > 0 on φ ∈ [0, π) and ê21 is negative
semidefinite; thus for k < 0 then V̇ ≤ 0. We see that the time
derivative of the chosen Lyapunov function is only negative
semi-definite in the parameterized error coordinates and
Lyapunov analysis only guarantees asymptotic convergence
to the set {x : V ∗(x) = 0} = {x : x = αe1, α 6= 0}, or,
equivalently, the set {x : V̇ = 0}.

As a short aside, we earlier discussed the choice of using
e1 in the output map to clarify the presentation. Here, we
point out that had we chosen a different vector in the
output map, say y(t) = R(t)v∗, then the matrix M(φ)
in (23) would still be a rank 2 matrix with v∗ lying in
the null space, and the points to which Lyapunov analysis
guarantees asymptotic convergence are the scalar multiples
of v∗. When multiple measurements are available, the output
injection term in (10) can be written as a sum of the
cross products of the outputs and the result is that M(φ)
from (23) is strictly negative definite. Thus for the multiple
measurement case, traditional Lyapunov theory guarantees
asymptotic convergence, without resorting to the invariance-
like methods used subsequently in the single measurement
case.

To show asymptotic convergence to x = 0, we now
must consider whether the control input renders the system,
in global and local coordinates given in (12) and (16)
respectively, autonomous or nonautonomous. In the case of a
control input that is constant or a function of state, the system
is autonomous and we can proceed with a straightforward
proof using LaSalle’s invariance principle and the theorems
of Barbashin or Krasovskii. For an arbitrary control input, an
explicit function of time, we resort to one of the techniques
called “invariance-like” methods by Khalil [21]. In particular,
we use the theorem first presented by Matrosov [22] and



extended to non-scalar auxiliary functions by Rouche [23].
We refer readers to the translated Matrosov paper and the
Rouche paper for proofs of the original theorems.

1) The vector-field on the set M = {x : V̇ = 0}: From
(14) note that when q = e1 (i.e. x = αe1) we have

ΩE = [I − ET ]u, (24)

where E = exp(φê1). Thus, by direct computation

ẋ = J−1R (φe1)ΩE =

 0
−φu3
φu2

 . (25)

This shows that the non-invariance of M depends on the
control input u(t). If we assume that u(t) is bounded and
piecewise continuous in time, then it is easy to show that
f(x, t) is differentiable in space and time and thus locally
Lipschitz on {x ∈ R3 : ‖x‖ < π}. Further, we impose a
“persistency” condition on u(t), namely that u2 and u3 are
not both zero simultaneously when the system state is on the
problem set M. Written more formally, let

u22(t) + u23(t) > δ2 > 0 for x ∈M. (26)

For this input, it is easy to see from (25) that the vector field
is transverse toM instantaneously when on the problem set.
We wish to show the vector field is transverse over some
nonzero interval of time and hence there exists a time t1 > t
such that x(t1) /∈M. The existence of a finite time for which
x(t) exits an open region containing the problem set lies at
the core of the theorems of Matrosov and Rouche, which can
be viewed as analogues to LaSalle’s invariance principle for
non-autonomous systems.

2) Main Result: Because the control input, u(t), is not
necessarily constant, this system is generally nonautonomous
and thus the traditional theorems concerning LaSalle’s invari-
ance principle are not valid. This is due to the fact that for
general nonautonomous systems, the positive limit sets of
solutions to the differential equations are not invariant [21].

However, we have a system in which the Lyapunov
function and its time derivative are not explicit functions
of time, despite the fact that the system is nonautonomous.
This simplifying feature of our problem is a direct result
of the choice of nonlinear output injection and the resulting
independence of the error system (14) from the state, R,
of the system (2). This feature makes the application of
the aforementioned invariance-like method more simple to
show convergence. Here we restate the theorem as given by
Rouche in the notation of this paper, without proof, for reader
convenience.

Definition 1 (Non-vanishing-definite vector function). The
vector function Y (t, x) : R × Bρ → Rk, where k is a
positive integer, is non-vanishing definite on a set M if,
for every pair of positive numbers υ and ε with υ < ε < ρ,
there is a positive number ξ(υ, ε) and an open covering
{π1, π2, · · · , πm} of the set

F = {x : υ ≤ ‖x‖ ≤ ε, d(x,M) = 0}

such that for every i, (1 ≤ i ≤ m), there is a component Yj
of Y with the property that (t ∈ R)(x ∈ πi)⇒ |Yj(t, x)| >
ξ.

Theorem IV.1 (Rouche Theorem 4.4 from [23]: sufficient
conditions for uniform asymptotic stability). Let there exist
two functions V (t, x) : R × Bρ′ → R and W (t, x) :
R×Bρ′ → Rk (k a positive integer), continuous as well as
their time derivative V̇ (t, x) and Ẇ (t, x) computed along
the solutions of ẋ = f(t, x). If
(a) for all x ∈ Bρ : ‖f(t, x)‖ ≤ A, where A is a positive

constant;
(b) V (t, x) is positive definite; V (t, x)→ 0 uniformly in t

when x→ 0;
(c) there exists a continuous function V ∗(x) : Bρ′ → R

such that V̇ (t, x) ≤ V ∗(x) ≤ 0; V̇ (t, 0) = 0; we write
M = {x : V ∗(x) = 0};

(d) for every L > 0, there is a χ > 0 such that

d(x,M) ≤ χ⇒ ‖W (t, x)‖ < L

(e) Ẇ (t, x) is non-vanishing definite on M;
the, the vanishing solution x ≡ 0 of the system ẋ = f(t, x)
is uniformly asymptotically stable.

Using this theorem, we develop a corollary for our error
system kinematics.

Proposition IV.2 (Corollary to Theorem IV.1). Consider the
nonautonomous system represented in local coordinates as
given in (16), with a Lyapunov function and its negative
semidefinite time derivative given by (17) and (23), respec-
tively. Then, if the control input u(t) is bounded, continuous,
and persistently exciting in the sense of (26), the origin of
the error system, x = 0 is asymptotically stable.

Proof. Let
W (t, x) = ê21x (27)

with the open balls Bρ and Bρ′ defined with ρ′ = π, ρ =
π − ε, and ε > 0.
(a) For bounded control input u(t) and bounded estimator

gain k, the body frame velocity ΩE is bounded. In
addition, the Jacobian J−1R (x) is nonsingular for all
x ∈ Bρ such that ∃A > 0 where the time derivative
of the error coordinates are bounded by A, ‖ẋ‖ =
‖f(t, x)‖ < A;

(b) V (t, x) = 1
2x

Tx > 0, V (t, 0) = 0 by construction;
(c) Let M(ρ) = −ksinc(ρ)ê21 identified with the semidefi-

nite function M( · ) given in (18). Then the time deriva-
tive of the Lyapunov equation is bounded from above
as V̇ (t, x) ≤ xTM(ρ)x = V ∗(x) ≤ 0 (where M(ρ) is
negative semidefinite, as shown in (23)), V̇ (t, 0) = 0,
∀t > t0, and the set where V̇ (t, x) = 0 is M =
{x : x = αe1};

(d) The distance of the current state from the problem set
M is d(x, F ) = x22 + x23. The magnitude of the vector
valued auxiliary function W (t, x) is ‖W (t, x)‖ = x22 +
x23. So for every L > 0, let χ = L

2 such that d(x,M) ≤
L
2 ⇒ ‖W (t, x)‖ < L;



(e) Recall from (19) that x = φq, where ||q|| = 1, and
note that on the problem set M the magnitude of the
angle error, φ, is given by φ2 = ||x||2 = x21, and q =
±e1. Thus the time derivative of the auxiliary function
W (t, x) is

Ẇ (t, x) = ê21ẋ = ê21J
−1
R (φq)ΩE = ±

 0
x21u3
−x21u2

 ,
(28)

We proceed to show that Ẇ (t, x) is a non-vanishing-
definite vector function as defined above. For every υ
and ε, with υ < ε < ρ, we define the set of points in
M with distance from the origin in the region [υ, ε] as

F = {x : υ ≤ ‖x‖ ≤ ε, d(x,M) = 0}
= {x ∈M : υ ≤ ‖x‖ ≤ ε} .

We can choose as an open covering for F the two open
intervals

π1 = (
υ

2
,
ε+ ρ

2
)

π2 = (−ε+ ρ

2
,−υ

2
).

So, for any x ∈ πi then, by inspection from
(28), ‖Ẇ‖1 > υ

2 max(u2, u3). Letting ξ(υ, ε) =
υ
2 max(u2, u3) there is a component Ẇj of Ẇ with the
property that (t ∈ I)(x ∈ πi) ⇒ |Ẇj(t, x)| > ξ. Thus,
Ẇ (t, x) is a non-vanishing-definite vector function on
F .

Since ρ = π − ε with ε > 0 arbitrarily small, the domain of
attraction excludes, at most, rotations of π.

Note that for the body angular velocities for the specific
problem of needle steering, given in (1), that the control input
will always satisfy the conditions of the theorem, namely that
for insertion velocity non-zero u3 = κv > 0.

As one final note, we address a question that naturally
arises about our convergence analysis above. Our local
coordinates neglect all initial conditions with errors that are
rotations of π radians from the identity. Might some, or
perhaps all, initial conditions on this set converge? Certainly
not all of them: global convergence of a smooth vector field
on SO(3) is impossible. Since we exclude only a set of
measure zero from our analysis, we do not find this to be a
major practical limitation of our approach, especially since
truly global convergence is a topological impossibility.

V. NUMERICAL EXAMPLES

Before describing our numerical examples, we note that a
naı̈ve numerical implementation of the estimator (4) would
typically accumulate round-off errors causing the solution to
drift off of SO(3), and while more sophisticated manifold
integration schemes exist, we simply employ a fourth-order
Runge-Kutta integrator in R9 with reprojection onto SO(3)
at each time step [24].

Since our motivating problem is steering flexible needles,
the following example demonstrates the estimator for a
typical type of needle motion of a helical path. This trajectory

is depicted in Figure 2. Rather than exhaustive numerical
tests, these simulations are merely designed to illustrate the
potential effectiveness of the proposed techniques to the
problem at hand.

0

5

10

−101

−3

−2

−1

0

x (cm)

y (cm)
z 

(c
m

)

Fig. 2. Trajectory of a steerable needle for continuous needle insertion
with a rotation at the base with parameters and velocities κ = 3.5 cm/s,
ω = π/4 rad/s, v = 1 cm/s

We have observed anecdotally that convergence was
closely tied to total rotation caused by the input u(t). With
a “good” (hand-tuned) choice in gain, we were typically
able to achieve a convergence rate of 80% per πκ units of
insertion distance. In Figure 3, we show the convergence of
the estimator for a helical needle trajectory with two different
initial error estimates: 90◦ and 179◦. The estimator error
was initialized such that the system output and estimator
output were aligned, with the estimator errors rotations
about the measurement vector. As expected, when there is
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Fig. 3. Convergence of the estimator for a helical path and a judicious
estimator gains, k=0.65, and two different initial estimator errors: (A) 179
degree initial error and (B) 90 degree initial error. The kinematic parameters
and velocities for both trials are κ = 3.5 cm/s, ω = π/32 rad/s, v =
1 cm/s.

a control input about the measurement vector (in the case



of needle steering a rotational velocity at the base of the
needle), the convergence rate is slightly slower. In fact, a
very fast rotation of the needle tip would cause the needle to
bore straight into the tissue and observability is lost, which
may render duty-cycle based approaches to needle steering
problematic [25].

We also see the results of the correction term being
nearly zero at an estimator error near 180◦. The result
is slow initial convergence, with rapid convergence as the
error estimate approaches 90◦. Practically speaking, these
represent enormous errors, and for a practical needle steering
system, ensuring that initial errors not exceed 30◦ would be
straight forward.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper we defined an output injection correction term
for an estimator evolving on the manifold SO(3) when only a
single vector measurement is available. We showed that the
estimator is convergent and provided anecdotal numerical
examples for our specific application of steerable needles.
For steerable needles, the estimator will improve as we
are able to construct methods for tip-steerable needles that
decrease the radius of curvature. The current best curvature
is approximately 3.5 cm and would require about 7 cm of
insertion for an adequate estimate from 90◦ initial error.
However, 90◦ of initial error represents an excessive initial
error; a moderately skilled experimentalist or clinician could
initialize the needle within ±10◦.

Our approach extends to multiple measurements, and the
proof is trivial in this case. We started with the assumption
of a single measurement, a constraint provided by the target
application of estimation for tip-steerable needles.

While the structure of the invariant estimator given in (4)
is fairly well defined, the derivation of the output injection
correction term depends on the available measurements. We
aim to take a similar approach to find other state estimators
based on other output maps (say perspective or orthographic
projection of points on a rigid body onto an imager). In
the original observability analysis given in Lemma III.1, we
assumed the measurement of a single point with respect to
the center of rotation of the rigid body. The proof required
only one derivative of the output map. This leaves the
possibility that systems with less amenable output maps are
still observable and an appropriate estimator correction term
can be found.

This work, in conjunction with recent results on invariant
estimation from Mahony and Bonnabel’s groups and recent
work on probability and statistics on groups by Chirikjian
[10], should provide a framework for developing filters for
rigid body motions that are at least optimal in the sense of
existing extended Kalman techniques, while maintaining the
property of almost global convergence.
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