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Abstract
A common approach to understanding and controlling robotic legged locomotion is the construction and analysis of simplified mathematical models

that capture essential features of locomotor behaviours. However, the representational power of such simple mathematical models is inevitably limited

due to the non-linear and complex nature of biological locomotor systems. Attempting to identify and explicitly incorporate key non-linearities into

the model is challenging, increases complexity, and decreases the analytic utility of the resulting models. In this paper, we adopt a data-driven approach,

with the goal of furnishing an input–output representation of a locomotor system. Our method is based on approximating the hybrid dynamics of a

legged locomotion model around its limit cycle as a Linear Time Periodic (LTP) system. Perturbing inputs to the locomotor system with small chirp sig-

nals yield the input–output data necessary for the application of LTP system identification techniques, allowing us to estimate harmonic transfer func-

tions (HTFs) associated with the local LTP approximation to the system dynamics around the limit cycle. We compare actual system responses with

responses predicted by the HTF, providing evidence that data-driven system identification methods can be used to construct models for locomotor

behaviours.
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Introduction

Legged morphologies admit a wide range of locomotor beha-

viours, for which a variety of mathematical models have been

proposed. For example, simple spring-mass models, including

the Spring-Loaded Inverted Pendulum (SLIP) model (Schwind,

1998), have been very successful in representing running and

walking behaviours (Blickhan and Full, 1993; Full and Tu,

1991). The hybrid structure of these models alternates between

flight and stance phases, each possessing smooth dynamics with

continuous flows; transitions are punctuated with discrete,

state-based transitions. Despite the seemingly simple nature of

these models, however, their dynamics during stance include

non-integrable parts (Holmes, 1990), which prevent the deriva-

tion of exact closed-form solutions. Various approximate solu-

tions have been developed in the literature to address this

problem (Ankarali and Saranli, 2010; Geyer et al., 2005; Saranli

et al., 2010; Schwind and Koditschek, 2000), some of which

have also been verified experimentally (Uyanik et al., 2015).
It has also been shown that these models and associated

solutions can support the design of hierarchical controllers for

more complex platforms and morphologies (Ankarali and

Saranli, 2011; Poulakakis and Grizzle, 2007; Saranlı, 2002).

Moreover, Uyanik et al. (2011) showed that the structure and

efficiency of these analytic solutions can also be exploited to

yield effective solutions for parameter identification and adap-

tive control. Nevertheless, such explicit modelling efforts will

always suffer from inaccuracies resulting from unmodelled

aspects of physical platforms (Uyanik et al., 2015). While one

can certainly introduce more complexity along the template–

anchors continuum (Full and Koditschek, 1999), beyond a

certain point these extended models begin to lose their analytic

tractability in order to gain improvements in accuracy.
Here, we propose an alternative approach that steers away

from explicit mechanical modelling towards data-driven sys-

tem identification. Rather than introducing more and more

specific, detailed mechanistic features of increasing complexity

to mathematical models in order to compensate for particular

sources of inaccuracy in a physical platform, such a

data-driven approach treats the system as a black box, focus-

ing on the adequacy of available data and the identification

method for increased accuracy. The goal with such empirical

models is to complement, not replace, mechanistic models
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which have the benefit of trying to explicitly connect system

behaviour to physical design details and controller parameters.
More specifically, our approach in this paper is to use a

Linear Time Periodic (LTP) system structure to approxi-

mately model locomotor behaviours around their limit cycles,

using associated system identification techniques to obtain a

linearized input–output representation for the system. To this

end, we first approximate state-dependent hybrid transitions

of these systems as time-dependent transition functions. We

then linearize these approximate dynamics around the limit

cycle, yielding a piecewise smooth LTP system.
An important and powerful tool for the analysis and data-

driven identification of LTP systems is the concept of

Harmonic Transfer Functions (HTFs), which are analogous

to traditional transfer functions for Linear Time Invariant

(LTI) systems (Wereley, 1991). Unlike LTI systems, an input

signal with a specific frequency supplied to an LTP system

produces output components spread across different harmonics

of the periodic system frequency and components of the HTF

structure define the coupling between different harmonics.

Within this framework, Siddiqi (2001) developed an identifica-

tion strategy to estimate the individual HTFs for an LTP sys-

tem by exciting the system using specially designed chirp

signals and using modified ‘‘power spectral density’’ and ‘‘cross

spectral density’’ functions as in the case of LTI systems. In this

work, we adopt this technique to estimate the HTFs for a

spring-mass damper model of vertical hopping. Alternative

identification strategies for LTP systems were proposed by

Hwang (1997) and Louarroudi et al. (2011). In the present

study, we rely on chirp signals with their well-defined frequency

range and predetermined power spectral density (Annus et al.,

2012), rather than the sum of sines inputs used by Louarroudi

et al. (2011). Hwang (1997) uses single sine inputs, but the

method requires multiple experiments to cover the frequency

range that we are interested in this paper. For these reasons,

our identification method is based on Siddiqi’s approach.
Prior to our work, a system identification method for

smooth rhythmic dynamical systems was developed by

Kiemel et al. (2013) using continuous-time HTFs. Later,

Ankarali and Cowan (2014) developed a new identification

method for hybrid (non-smooth) dynamical systems based on

discrete-time HTFs. In this paper, we show that identification

methods based on continuous-time HTFs can be applied to a

clock-driven hybrid dynamical model of locomotion.
In this context, we extend and apply the HTF-based sys-

tem identification method described in Siddiqi (2001), which

we briefly review in the next section, to a clock-driven hybrid

vertical locomotion model for which the analytic derivation

for the HTF representation appears to be challenging (or

infeasible). In so doing, we show that identification methods

normally designed for continuous systems can be applied to

systems with hybrid components that are inevitable for legged

locomotion, while also establishing the accuracy of the identi-

fication process through systematic simulation studies.

Harmonic transfer functions

Many finite-dimensional LTP systems can be described by a

state space model of the form

_x(t)=A(t)x(t)+B(t)u(t)

y(t)=C(t)x(t)+D(t)u(t)
ð1Þ

where A(t), B(t), C(t), and D(t) are all periodic with period T.

Despite its linear nature, the time dependence of matrices in

this representation makes it impossible to directly apply anal-

ysis and identification techniques developed for LTI systems.

System identification methods for asymptotically stable

LTI systems are well established, thanks in large measure to

the one-to-one mapping between frequency response charac-

teristics of input and output signals at steady state. This

allows one to obtain empirical frequency response functions

(i.e. ‘‘Bode plots’’) describing the magnitude and phase

changes in the input signal at each specific frequency for the

desired system. Due to the time dependence of matrices in

equation (1), however, the response to a sinusoidal input with

a specific frequency passing through an LTP system may

include multiple (possibly infinite) harmonics, with different

magnitudes and phases. In general, neglecting all higher order

harmonics of the system (Leonhard, 1963) to obtain a one-to-

one mapping between the input and output signals in the fre-

quency domain may lead to unacceptable inaccuracies.

Consequently, a different approach is required for data-

driven identification of such systems.
Wereley and Hall (1990) proposed a solution to this prob-

lem by transforming the input and output signals to exponen-

tially modulated periodic (EMP) signals. In this domain, it is

possible to obtain a one-to-one mapping between the Fourier

coefficients of the input and output EMP signals. In the

resulting structure input–output representation is determined

by multiple (possibly infinite) parallel LTI sub-systems whose

inputs are multiplied by complex periodic signals. Figure 1

illustrates the resulting HTF structure (original source

Möllerstedt, 2000). These LTI sub-systems are called HTFs

and they characterize the frequency response characteristics

of an LTP system. A detailed frequency domain analysis of

LTP systems based on HTFs has also been investigated by

Sandberg et al. (2005). Subsequent sections in this paper

review the theoretical derivations behind the HTF framework

as proposed by Möllerstedt (2000). We then present a data-

driven identification strategy (Siddiqi, 2001) to estimate these

HTFs in the absence of an explicitly constructed state space

representation of the system.

Structure of harmonic transfer functions

In this section, we summarize the derivation of the HTF struc-

ture using the time periodic impulse response representation

of an LTP system (Möllerstedt, 2000) for reader convenience

and to establish notation. The output of an LTP system, such

as those in the form of equation (1), can also be represented

using its time periodic impulse response functions as

y(t)=

Z t

0

H(t, t)u(t)dt ð2Þ

where H(t, t) = H(t2T, t2T) and T is the period of the sys-

tem. In other words, all time-varying impulse response
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functions of the system are periodic in both arguments.
Letting t = t2r, we have H(t, t) = H(t, t2r) which is T per-
iodic in t. This periodicity allows us to expand H(t, t2r)
through an infinite Fourier series expansion with pumping

frequency, vp = 2p/T, yielding

H(t, t � r)=
X‘

k =�‘

Hk(r)e
jkvpt,

Hk(r) :¼ 1

T

ZT
0

e�jkvptH(t, t � r)dt

ð3Þ

Switching back to t through r = t2t gives

H(t, t)=
X‘

k =�‘

Hk(t � t)ejkvpt ð4Þ

Substituting equation (4) into equation (2), we get

y(t) =
P‘

k =�‘

RT
0

Hk(t � t)ejkvptu(t)dt

=
P‘

k =�‘

RT
0

Hk(t � t)ejkvpt�tu(t)ejkvptdt

=
P‘

k =�‘

(Hk(t)e
jkvpt) * (u(t)ejkvpt)

ð5Þ

where * denotes the convolution operator. Finally, taking the
Laplace transform of both sides yields

Y (s)=
P‘

k =�‘

Hk(s� jkvp)U (s� jkvp) ð6Þ

Now, let us define Gk(s) := Hk(s 2 jkvp) as the elements
of the HTF structure. An alternative method to obtain these

HTF components relies on a time-varying state space repre-

sentation and the principle of Harmonic Balance (Wereley,

1991; Wereley and Hall, 1990).

Non-parametric identification of harmonic transfer
functions

When an explicit representation of a system is given, either in

state space form or through an impulse response function as

in equation (2), the derivations of the previous section can be

used to obtain the corresponding HTFs. However, manual

construction of such explicit models is often impractical

beyond a certain level of complexity. Consequently, the esti-

mation of HTFs without the need for such explicit models is

of great practical interest. In this section, we review the data-

driven system identification method introduced by Siddiqi

(2001) for LTP systems, together with our extensions to sup-

port its application for clock-driven legged locomotion

models.
The HTF structure of equation (6) includes an infinite

number of harmonics, which is problematic for practical

applications. Consequently, these harmonic components are

often truncated beyond a certain order to enable effective

computational implementations. Similarly, some LTP system

identification methods also focus on a preselected number of

harmonics. For clarity, our review of Siddiqi’s method in this

section considers only three HTFs, Ĝ0, Ĝ�1 and Ĝ1, leading

to a representation of the system output in the frequency

domain as

Y (jv)’ Ŷ (jv) :¼ Ĝ0(jv)U (jv)+ Ĝ�1(jv)U (jv+ jvp)

+ Ĝ1(jv)U (jv� jvp) ð7Þ

Figure 1. Illustration of the HTF structure (adapted from Möllerstedt, 2000). The input–output relation of an LTP system can be expressed by

multiple (possibly infinite) parallel LTI sub-systems.
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where variables annotated with a hat denote estimated ver-

sions of their system counterparts. Based on this definition,

the data-driven system identification problem can be reduced

to the problem of estimating the quantities Ĝ0(jv), Ĝ�1(jv)

and Ĝ1(jv) at each specific frequency, v, such that the differ-

ence between the measured and estimated output vectors is

minimized.
The correct choice of input signals plays a crucial role in

the system identification process. Input signals must be

designed to expose as much dynamic behaviour in the system

as possible. To this end, chirp signal inputs as shown in

Figure 2, can be used to to cover a sufficiently wide frequency

spectrum. The accuracy of the identification critically depends

on particular aspects of these chirp inputs, such as their dura-

tion, frequency range and sweep rate. Moreover, the phase

timing of the input signal relative to the LTP system also

effects the activation of different dynamic components within

the system. Siddiqi (2001) addresses these problems by design-

ing a single input sequence, incorporating phase-shifted repli-

cas of an original chirp signal spanning a sufficiently wide

range of frequencies. Phase shifts ensure that the system is

excited evenly throughout the system’s period, while the wide

frequency range explores different modes in the system

towards a complete characterization of the effects of internal

system dynamics on system output.
Using the resulting input–output pairs, one can then com-

pute the ‘‘extended power spectral density’’ and ‘‘extended

cross spectral density’’ functions FUU(v) and FUY (v), respec-

tively. Even though FUU(v) and FUY (v) are analogous to

power spectral density and cross spectral density functions

for LTI systems, they differ in their representation as matrix

operators. Detailed definitions of these functions can be

found in Siddiqi (2001) and are omitted here for space

considerations.
Now, the three HTF components of the LTP system can

be estimated as

Ĝ(jv) :¼
Ĝ1

Ĝ0

Ĝ�1

2
4

3
5=(FUU)

�1FUY ð8Þ

An important problem with this formulation, however, is

that it embodies an under-determined fitting problem. A sin-

gle pair of input and output vectors may not be sufficient to

accurately estimate all three HTFs even though equation (7)

represents a single-input single-output LTP system. In order

to address this problem, Siddiqi (2001) observes continuity

properties of physical transfer functions and introduces addi-

tional constraints to penalize high curvature within each HTF
towards better output prediction performance. More for-

mally, having modelled the system with three HTFs, its out-

put response due to an input can be expressed as

Y (jv)=
X1

k =�1

U (jv� kjvp)Ĝk +E(jv) ð9Þ

= Ŷ (jv)+E(jv) ð10Þ

The error term captures the difference between the mea-

sured system response and the predictions of the estimated

HTFs. The cost function adopted by Siddiqi (2001) for the
minimization problem penalizes the quadratic output predic-

tion error and the curvature of the HTFs, taking the form

J :¼ ½(Y�UTĜ)2 +a(D2Ĝ)2� ð11Þ

where D2 is the second-order difference operator, a is a scalar

weight to tune the smoothness of the resulting transfer func-
tions, and Y, U and bG are defined as in Siddiqi (2001).

Differentiating J with respect to Ĝ and equating to zero yields

the estimated HTFs as

Ĝ(jv)= (FUU +aD4)�1FUY ð12Þ

Identification of a vertical hopping robot
model

In this section, we apply the HTF system identification

method described in the previous section to a vertical hopping
robot model, VHOP, that captures some aspects of the well-

known SLIP model of running. We also provide simulation

results to illustrate our approach and to characterize the per-
formance of the system identification method applied to the

VHOP system. Note that all the system simulations including

the estimation of HTFs are implemented in a Matlab envi-
ronment by using standard ordinary differential equation sol-

vers and built-in matrix operations.

The vertical hopping model

The VHOP model, illustrated in Figure 3 consists of a verti-

cally constrained point mass attached to a compliant leg with
viscous damping. A linear actuator in parallel with the leg

spring is incorporated to compensate for energy losses due to

damping, and to implement behavioural controllers. The
model also incorporates a very small mass at the toe which

also allows both better correspondence to physical robot plat-

forms, as well as the ability to apply inputs to the system dur-
ing flight.

Our use of a linear actuator as an input to the system is

inspired by similarly structured robot implementations in the

literature (Piovan and Byl, 2013; Secer and Saranli, 2013).
There are two significant roles for the linear actuator in the

VHOP model. First, it allows us to obtain a clock-driven

0 2 4 6 8 10 12 14 16 18 20
−0.1

   0

 0.1

Time (s)

C
hi

rp
 S

ig
na

l

Figure 2. Chirp signal used to perturb the system for system

identification, consisting of a sinusoid with amplitude 0.1 and frequency

increasing linearly in time within the range (0,5] Hz in 20 s.
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structure, facilitating the construction of asymptotically stable

limit cycles. Second, it can also be used to inject additional

‘external’ input signals to support our system identification

approach. This clock-driven structure with an additive input

allows us to avoid phase resetting (Kiemel et al., 2013) and

the complications associated with estimating phase (Revzen

and Guckenheimer, 2008). Previously, Sracic and Allen (2011)

also adopted clock-driven models to perform LTP type analy-

sis on non-linear systems.
Our ultimate goal is to apply the techniques in this paper

to more complex models such as the SLIP and its many var-

iants. As a first step, however, we use the relatively simple

VHOP model to keep our focus on LTP system identification

of hybrid dynamics. Non-linearities and control system chal-

lenges associated with more complex models are hence left

out of the scope of the present study. Nevertheless, despite its

simplicity, the VHOP model still possesses some of the critical

features of locomotor dynamics, including hybrid dynamics
with flight and stance phases, discontinuities in the state due

to collisions, as well as periodic behaviour in the form of limit

cycles.
The VHOP model alternates between stance and flight

phases and hence can be modelled as a hybrid dynamical sys-

tem consisting of a set of smooth flows with discrete

transitions between them (Guckenheimer and Johnson, 1995).
As usual, the stance phase corresponds to states where the

foot is in contact with the ground, while the flight phase cor-
responds to states when the robot is off the ground.
Transitions from and to stance are called ‘‘liftoff’’ and
‘‘touchdown’’ events, respectively. A simple diagram of
VHOP phases and transitions is shown in Figure 4. The sys-
tem state for both phases is defined as

x :¼ h ht
_h _ht

� �T ð13Þ

Vertical hopping system dynamics

Structural differences between the stance and flight phases
require their modelling through separate differential equa-
tions, leading to the hybrid nature of the VHOP model.
During flight, the toe has no contact with the ground and is

hence free to move vertically, leading to the equations of
motion

M€h= �Mg � d( _h� _ht)+ k(‘0 � (h� ht))+ u(t) ð14Þ

m€ht = �mg+ d( _h� _ht)� k(‘0 � (h� ht))� u(t)

where the viscoelastic leg has damping coefficient, d, spring
constant, k, and rest length ‘0. Even though this formulation
leaves the actuator input u(t) unspecified, we will impose a
clock-driven structure on this input signal of the form u(t) =a

cos(vpt) + uc(t), incorporating a periodic open-loop forcing
term to achieve a limit cycle, and an additive uc(t) for addi-
tional control affordance. The signal uc(t) will be the input
used for system identification.

During stance, the toe is assumed to remain stationary on
the ground until liftoff and the body mass experiences the
spring, damper and actuator forces. The corresponding equa-
tions of motion hence take the form

M€h= �Mg � d _h+ k(‘0 � h)+ u(t) ð15Þ

m€ht = 0 ð16Þ

where the same actuator action is used. Kinematic and
dynamic parameters for both phases are detailed in Table 1,
chosen to be consistent with the physical monopod platform
in our laboratory (Uyanik, 2011) for future extensions to
real-world applications.

The final remaining components in the hybrid dynamics
are the threshold and transition functions. The liftoff event

occurs during stance when the net vertical force on the toe
mass crosses zero, beyond which the toe lifts off the ground
and the flight phase starts. The corresponding boundary con-
dition is flo(x) :¼ �d _h+ k(‘0 � h)+ a cos (vpt)+ uc(t)= 0.
In contrast, the touchdown event, defining the transition from
flight to stance, occurs when the toe touches the ground, cap-
tured through the boundary condition ftd (x) := ht = 0.

System trajectories remain continuous through the liftoff
event, but the touchdown event induces discontinuous state
trajectories due to the associated collision, modelled through
a transition function ensuring that _ht(t

þ
td)= 0. An important

consequence of this discrete change is that the derivation of a

u k d

h

ht

m

M

Figure 3. The VHOP model with leg compliance, damping and a

parallel linear actuator.

Figure 4. The two phases of locomotion with the VHOP model and

associated transition events. Each phase has its own smooth flow.
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closed-form, time-varying state space model is not feasible

with available methods. However, Ankarali and Cowan

(2014) explicitly showed that a hybrid dynamical system with

discrete jumps in system states and even system dimension can

be modelled (locally) with a discrete-time impulse response

function by choosing a set of Poincaré sections and consider-

ing the mapping between those sections. Motivated by this

result, we conjecture that the discrete jumps and hybrid transi-

tions can be embedded into a continuous-time, time-periodic

impulse response function model. This is more general than a

state space model and hence allows us to utilize the HTF

structure. We leave attempts to prove this conjecture as a

future work. Note, however, that analytic derivations of time-

periodic impulse response functions are not straightforward

even for very simple LTP systems, which further motivates

our use of a data-driven system identification approach.

Non-parametric system identification for the vertical
hopping model

The VHOP dynamics of equations (14) and (15) clearly do

not correspond to a linear time-periodic system. Linearization

of these dynamics around an isolated point is also not useful

since the expected behaviour takes the form of periodic trajec-

tories that never stabilize around a single point in the state

space. Consequently, our approach is to linearize the system

around its periodic behaviour.
We start by assuming that the system has an asymptoti-

cally stable limit cycle xlc(t) :¼ ½hlc(t), ht, lc(t), _hlc(t), _ht, lc(t)�T
with period T when uc(t) = 0. Such a limit cycle can be

obtained through suitable choices of the periodic excitation

component a cos(vpt) within u(t). For example, choosing

a = 75 and vp = 2p/0.33, results in the limit cycle illustrated

in Figure 5 that appears to be asymptotically stable according

to numerical simulations. In this paper we selected the height

of the upper mass, h(t), as our output measurement to con-

struct an input–output model. We treat the output relative to

the nominal behaviour on the limit cycle, i.e. y(t) := h(t)2hlc
(t), where hlc(t) is the robot height on the limit cycle, assumed

to be known (e.g. recorded during operation with uc(t) = 0).

Then, the resulting LTP system can be modelled via its

impulse response

y(t)=

Z t

0

H(t, t)uc(t)dt ð17Þ

where the impulse response function is periodic, H(t, t) =

H(t2T, t2T), with period T = 2p/wp. We apply the system

identification method described earlier on these coordinates.

To this end, we use uc(t) to perturb the system away from the

limit cycle and analyze the effects on system trajectories. As

noted earlier, chirp signals are a good choice for these pertur-

bations, exciting as many modes and components in the sys-

tem dynamics as possible.
In particular, we use an input signal formed by the conca-

tenation of 21 phase-shifted instances of the chirp signal illu-

strated in Figure 2, whose frequency changes linearly in the

range of zero to 5 Hz in 20 s. Each instance of this chirp signal

is shifted in time by T/21 relative to the previous signal. The

magnitude of these chirp signals was chosen through manual

tuning in such a way that the perturbations are sufficient, but

do not appear to excite significant non-linearities. Each chirp

signal ui
c(ti) with i 2 {1, 2, ., 21}, is hence defined as

ui
cðtiÞ ¼ 0:1 sinð0:25 � p � t2Þ ð18Þ

where ti := t2((i21)D2(i21)T/21) 2 [0, 20) and D = 20 s is

the duration of each chirp application. This yields the final form

of our perturbation input (partially shown in Figure 6) as

uc tð Þ=

u1
c t1ð Þ, if 0� t\D

..

. ..
.

u21
c t21ð Þ, if 20D� t\21D

0, if 21D� t

8>>><
>>>:

ð19Þ

Finally, we compute the Fourier transforms of the input

and output signals as uc(jw) and Y(jw), respectively. The iden-

tification methods described earlier compare the actual out-

put to the predicted output Ŷ (jw) of equation (7), resulting in

the desired estimates of the three HTFs Ĝ0, Ĝ�1 and Ĝ1 for

the VHOP system.

Table 1. VHOP model parameters.

Parameter Description Value Unit

M Body mass 2.7 kg

m Toe mass 0.05 kg

k Compliance 6500 N/m

d Damping 12 Ns/m

a Pumping magnitude 75 N

vp Pumping frequency 2p/0.33 rad/s

g Gravity 9.81 m/s2

‘0 Rest length 0.2 m

−1 0 1
0.19

0.23

0.26

0.29

0.32

ḣ(m/s)

h 
(m

)

 

 
Flight
Stance

-0.5 0.5

Figure 5. A cross-section of an example VHOP limit cycle obtained

with the periodic excitation u(t) = 75cos(2pt/0.33). Red and blue

sections represent the stance and flight phases on the limit cycle,

respectively.
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We evaluate the accuracy of the system identification by

comparing the output from VHOP dynamics to the inverse

Fourier transform of Ŷ (jw) obtained using the estimated

HTFs in Ĝ. Figure 7(A) shows the output y(t) for the VHOP

response to the chirp signal defined by equation (5), whereas

Figure 7(B) shows the discrepancy between the actual and

predicted system outputs as a function of time.
As seen in Figure 7, the estimated harmonic transfer func-

tions can successfully predict system response. This result, how-

ever, is for the response of the system to the chirp input used

for system identification itself and hence is not suitable for a

fair evaluation of the prediction performance. A good predictor

should be able to estimate system outputs for input signals that

might differ substantially from those used for system identifica-

tion. In the following section, we will present a more systematic

characterization of the predictive accuracy obtained through

the estimated HTFs using sinusoid and step inputs.

Prediction accuracy of HTF responses to
sinusoid and step inputs

To evaluate the prediction performance of the HTFs, we vali-

date the input–output model identified using chirp excitation

on sinusoidal and step input waveforms. We calculate the per-

centage error based on the difference between the actual and

predicted system responses to a particular input

Erms :¼ 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Trms

R Trms

0
(y(t)� ŷ(t))2dt

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
Trms

R Trms

0
y(t)2dt

q ð20Þ

where Trms is the duration of the sinusoidal input.
We simulate the VHOP dynamics of the previous section

using sinusoidal inputs with amplitude 0.1 and frequencies in

the range f 2 [0.1, 20] Hz to find the ‘actual’ outputs of the

system. We then compute the output predictions by plugging

the previously estimated HTFs into the extended version of

equation (7) with nh harmonics for comparison.
Figure 8(A) illustrates Erms for each input sinusoid fre-

quency when the system identification was performed with a

chirp signal covering frequencies from 0 to 5 Hz, whereas

Figure 8(B) illustrates the same quantity when system identifi-

cation was performed with a wider chirp signal covering fre-

quencies from 0 to 10 Hz. Our results show that increasing

the frequency coverage of the chirp signal used for training

increases the accuracy of the resulting HTF representation

for higher frequencies. This is, of course, expected since excit-

ing the system with a wider frequency range allows the HTFs

to be properly trained to also match the system response for

these higher frequencies. Both the smoothness condition

imposed by the system identification process, as well as the

nature of LTP systems wherein an input with a single fre-

quency component yields many other frequencies in the out-

put, result in improvements in prediction accuracy for even

higher frequency ranges when the chirp spectrum is increased.

These results show that the choice of training input has a sub-

stantial impact on the accuracy of the resulting HTF

estimates.
As noted, practical implementation of this system identifi-

cation method requires truncating the HTF beyond a certain

order, but this threshold cannot be determined beforehand, in

general. Consequently, we have explored the effect of incor-

porating different numbers of HTFs on prediction perfor-

mance. The four plots in each graph of Figure 8 correspond

to system identification with 11, 15, 21 and 31 HTFs taken

into account. Theoretically, we should expect prediction accu-

racy to increase when more harmonics are included in the

representation, which we verify empirically as illustrated in

Figure 8. Beyond a certain number of harmonics (21 in our

case), improvements no longer seem substantial, suggesting a

reasonable threshold for our system. Including additional

harmonics only increases computational complexity without

any further significant improvements in accuracy.
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Figure 6. The perturbation input uc (t) used for the system

identification process. (A) Phase-shifted repetitions of the original chirp

signal, concatenated sequentially (only the 1st and 21st are shown for

better illustration). (B) 1st and 21st chirp signals superimposed on top of

each other for better visualization of phase difference between them.
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signal. (A) The VHOP system output, (B) discrepancy between the actual

and predicted system outputs. The time axis is normalized with the

hopping period. Stance and flight phases are indicated at the bottom by

the letters S and F, respectively.
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A final comment is required on the performance results of

Figure 8. The predictive performance of the HTF degrades

significantly around 3 Hz, which corresponds to the VHOP
limit cycle frequency. As detailed before, LTP systems gener-
ate output signals at the input frequency plus harmonics of
the pumping frequency. When the input and system frequen-
cies are same (vp = 3 Hz in our case), different harmonics at

multiples of vp may also affect the response at this frequency.
Ankarali and Cowan (2014) showed that the identification of
HTF should not be performed at frequencies k

vp

2
, k 2 Z

when using sum-of-sines input stimuli for identification. A
similar phenomena may be contributing to the errors in our
result. However, it is also possible that our linearity assump-
tion is being violated near the pumping frequency. Addressing
this problem further is left to future work

In addition to sinusoid inputs at specific frequencies, we
have also investigated HTF prediction performance under a
step input with magnitude 0.01. Note, once again, that system
identification is still performed with a chirp signal and the step
input is only applied for characterizing the prediction perfor-
mance of the resulting HTF representation. The step input
was applied to the system after the 200th cycle, making sure
that it has reached steady state. In this case, the estimated sys-
tem output was computed using an extended version of equa-
tion (7) with nh harmonics identified using the chirp signal.
Then inverse Fourier transform was used to compute the time
domain step response prediction of the HTF system.

Figure 9 illustrates a comparison of measured and pre-
dicted responses of the HTF system for a single sinusoid at
frequency 1 Hz in panel (A) and the step input in panel (B).
As expected, the HTF representation accurately predicts sys-
tem response as shown in Figure 9(A), consistent with the
results shown in Figure 8 (Erms = 3.3%). On the other hand,
the prediction results for the step input exhibit significant
errors as shown in Figure 9(B). Even though the HTF
response captures the qualitative behaviour of the step
response, including the spiked response around touchdown,
noticeable errors remain with Erms = 68%. This is somewhat
similar to the large prediction errors observed around the sys-
tem periodic frequency and may be due to the harmonics of

the step input in the pumping frequency.
One possible reason for these errors may be the relatively

small range of frequencies covered by the chirp signal for the
identification process. Unfortunately, increasing the fre-
quency range covered by the chirp signal requires substan-
tially longer durations for the input signal. This dramatically
increases both the duration of the simulation for data collec-
tion, as well as the computational complexity of the identifi-
cation process. Even though increasing the frequency range,
and hence the chirp duration, may increase accuracy, it would
impair the feasibility of the system identification method on
physical robot platforms due to the resulting need for sub-
stantially longer experiments with sustained locomotion.

The non-linearities and the hybrid nature of the VHOP
model may also be contributing to these errors. Note that
both the system identification and evaluation tests were per-
formed around a limit cycle of the VHOP model. Our method
assumes that trajectories around the limit cycle exhibit hybrid
transitions that are consistently timed with the limit cycle.
However, especially for trajectories obtained with a step
input, these transitions may occur much earlier than the limit
cycle’s corresponding transition. This violates one of the
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underlying assumptions in representing system behaviour

around the limit cycle as an LTP system. Moreover, the uni-

directional forcing of the step input results in a larger devia-

tion from the limit cycle than the symmetric sinusoid input,

which may lead to a further violation of the linearity assump-

tion behind the LTP representation. These effects can be

more significant around the harmonics of the pumping fre-

quency, which also includes the DC frequency.
Despite these prediction errors, however, an important fea-

ture observed in Figure 9(B), is the ability of the HTF repre-

sentation to predict the hybrid transitions in the system

output resulting from the collision at touchdown. The effects

of such impact collisions were investigated in a number of

studies (Hutter et al., 2010; Uyanik et al., 2015), and are

rather difficult to model within explicitly constructed models.

Consequently, the ability of a data-driven system identifica-

tion approach to model such hybrid features of a system is

promising since they are an inevitable part of any locomotor

system.

Prediction accuracy of HTF responses
under uncorrelated input and output noise

In the previous section, we investigated the prediction perfor-

mance of the estimated HTFs for different input waveforms

assuming perfect measurement of input and output signals.

However, our goal is to develop a data-driven system identifi-

cation framework applicable to physical legged robot plat-

forms. Therefore, we contaminate the input–output data used

for system identification with zero-mean Gaussian noise in

order to simulate its performance in more realistic settings.
In order to accomplish this, we use the noise modelling

approach for HTFs adopted by Hwang (1997). Figure 10 is a

block diagram representation of how noise affects the system

identification data. Measured input and output data are cor-

rupted by uncorrelated noise with zero mean and standard

deviations; sU and sY, respectively. In other words, the mea-

sured input, ~uc(t), and output, ~y(t), are represented with

~uc(t)= uc(t)+ n(t) ð21Þ

~y(t)= y(t)+ v(t) ð22Þ

where n(t) and v(t) are zero-mean noise signals affecting the

input and output data, respectively.
Figure 11 illustrates the prediction performance of the esti-

mated HTFs for different cases (perfect measurement, input

noise only, output noise only and input and output noise) of

how the noise applied to sinusoid input tests with different

frequencies. Note that the addition of noise deteriorates the

prediction performance of the estimated HTFs as expected.

The single sinusoid excitation results show that our identifica-

tion strategy is robust to noise corruption in input and output

data up to SNR values of 12.5 (where SNR := (Asignal /

Anoise)
2, with A denoting the rms amplitude) as in the case of

Hwang (1997). However, further increasing the standard

deviations drastically reduces the prediction performance,

since noise starts to dominate the information necessary for

system identification.

Discussion

Summary of approach

In this paper, we proposed a data-driven system identification

strategy to represent a simple VHOP model. Most existing
work on models of legged locomotion is based on explicit

mathematical models. Even though these models are suffi-

ciently accurate to describe various aspects of locomotory

behaviours, their correspondence to physical behaviour
degrades in the presence of unmodelled components in actual

hardware platforms. Our strategy has been to use data-driven

system identification techniques to describe legged locomo-

tion systems.
The identification strategy we used relies on the perturba-

tion of locomotion behaviours with small chirp signals, with

the resulting system response used as output data. LTP sys-

tem identification techniques were then applied to this input–

output data. As a specific example, we estimated HTFs for
our VHOP model around a periodic, stable hopping trajec-

tory. We then compared the output prediction of the esti-

mated HTFs with actual output data obtained from VHOP
simulations. Our results showed that HTFs can be used as

predictors of simple locomotion models on training data.
Specifically, we performed prediction tests with numeri-

cally identified HTFs on step inputs. Our results showed that

the predictive performance of the HTF representation on step
inputs is not as good as its performance on sinusoid inputs.

Nevertheless, our results revealed that HTFs are still capable

of capturing the qualitative effects of hybrid transitions asso-

ciated with touchdown collisions on system output. This type
of phenomena is usually difficult to incorporate into explicit

uc(t)

n(t) ũc(t)

v(t)

y(t) ỹ(t)VHOP
System

Figure 10. Block diagram representation of the VHOP system

incorporating measurement noise on the input and output signals.

Figure 11. Percentage prediction errors Erms for the HTF

representation of the VHOP system with input and measurement noise

(with SNR values of 12.5) in response to single sinusoid excitations at

different frequencies in the range [0, 1] Hz.
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mathematical models. We have shown that HTFs can capture

and predict such discrete jumps in system dynamics, which is

a promising result that highlights possible advantages of using

data-driven techniques for the identification of legged loco-

motion models.

Limitations and future work

The hybrid nature of the VHOP model does not allow us to

obtain theoretical HTFs due to discontinuities in the system

state associated with collisions. A comparison of the system

identification results to an ultimate, theoretical HTF represen-

tation was hence not possible. Consequently, we performed

systematic simulation tests to characterize the adequacy of the

numerically identified HTFs in representing system behaviour

for simple legged locomotion models. To this end, we pre-

sented single sinusoid input tests to evaluate the prediction

performance of HTFs. In addition, we corrupted the input–

output data with uncorrelated noise to investigate its accuracy

towards experimental inquiries. Our simulation studies

showed that LTP system identification techniques yield pro-

mising results on the identification of simple locomotion mod-

els when sufficient numbers of harmonics are considered

during the identification process. However, an important next

step will be to more formally address hybrid transitions in a

continuous HTF framework.
Our approach is based on modelling legged locomotion

systems as LTP systems around their limit cycles. Legged loco-

motion models exhibit hybrid dynamics during their locomo-

tion, with discrete transitions between different dynamics. For

trajectories in close proximity to the limit cycle, phase resetting

does not occur and these transitions can be approximated as

time-dependent for stable clock-driven systems. This enables

us to use an LTP structure for local system behaviour around

limit cycles. We are planning to extend our methods to systems

which are not clock-driven by adopting the methods developed

by Ankarali and Cowan (2014) and Kiemel et al. (2013).
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Holmes P (1990) Poincaré, celestial mechanics, dynamical-systems

theory and ‘‘chaos’’. Physics Reports 193(3): 137–163.

Hutter M, Remy CD, Hopflinger MA and Siegwart R (2010) SLIP

running with an articulated robotic leg. In: IEEE/RSJ interna-

tional conference on intelligent robots and systems (IROS‘10), Tai-

pei, Taiwan, 18–22 October 2010, pp. 4934–4939. Piscataway:

IEEE Press.

Hwang S (1997) Frequency domain system identification of helicopter

rotor dynamics incorporating models with time periodic coefficients.

PhD Thesis, University of Maryland, USA.

Kiemel T, Logan D, Ivanenko Y, Lacquaniti F and Jeka JJ (2013) Char-

acterizing perturbations of human walking in the frequency domain.

In:Dynamic walking 2013, Pittsburgh, USA, 10–13 June 2013.

Leonhard A (1963) The describing function method applied for the

investigation of parametric oscillations. In: 2nd world congress of

the international federation of automatic control (IFAC‘63), Basel,

Switzerland, pp. 21–28.

Louarroudi E, Pintelon R, Lataire J and Vandersteen G (2011) Esti-

mation of nonparametric harmonic transfer functions for linear

periodically time-varying systems using periodic excitations. In:

IEEE instrumentation and measurement technology conference

(I2MTC), Binjiang, China, 10–12 May 2011, pp. 1–6. Piscataway:

IEEE Press.
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