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Abstract—There are limitations on the extent to which man-
ually constructed mathematical models can capture relevant
aspects of legged locomotion. Even simple models for basic
behaviours such as running involve non-integrable dynamics,
requiring the use of possibly inaccurate approximations in the
design of model-based controllers. In this study, we show how
data-driven frequency domain system identification methods can
be used to obtain input–output characteristics for a class of dy-
namical systems around their limit cycles, with hybrid structural
properties similar to those observed in legged locomotion systems.
Under certain assumptions, we can approximate hybrid dynamics
of such systems around their limit cycle as a piecewise smooth
linear time periodic system (LTP), further approximated as a
time-periodic, piecewise LTI system to reduce parametric degrees
of freedom in the identification process. In this paper, we use a
simple one-dimensional hybrid model in which a limit-cycle is
induced through the actions of a linear actuator to illustrate
the details of our method. We first derive theoretical harmonic
transfer functions (HTFs) of our example model. We then excite
the model with small chirp signals to introduce perturbations
around its limit-cycle and present systematic identification results
to estimate the HTFs for this model. Comparison between the
data-driven HTFs model and its theoretical prediction illustrates
the potential effectiveness of such empirical identification methods
in legged locomotion.

I. INTRODUCTION

Legged locomotion emerges from a staggering diversity
of animal and robot morphologies and gaits, and modeling
locomotor dynamics remains a grand challenge in both bi-
ology and robotics [1, 2]. Running behaviors, in particular,
are commonly represented by relatively simple spring–mass
models such as the Spring-Loaded Inverted Pendulum (SLIP)
model [3]. A common feature of such models, however, is that
their hybrid system dynamics involve intermittent foot contact
with the ground, alternating between flight and stance phases
during locomotion. Despite the presence of seemingly simple
models for basic behaviors such as running and walking, the
hybrid dynamics associated with these behaviors can be rather
complex, with non-integrable parts such as the stance phase
[4]. Given the utility of having accurate models and associated
analytic solutions in constructing high performance controllers
for nonlinear systems, substantial effort has been devoted to the
construction of approximate solutions to such non-integrable

hybrid models [5–8].

When accurate analytical solutions to the dynamics of
a legged platform are available [7], their structure can be
exploited to yield effective solutions for system identifica-
tion and adaptive control [9]. Despite our previous studies
showing how accurate such models may be, there will always
be unmodeled components in the physical system, resulting
in discrepancies between the model and experiments [10].
Attempts to manually incorporate these effects into the model
is daunting at best, and often impossible. Consequently, we
propose an alternative method in this study, namely using data-
driven system identification methods to derive an input–output
transfer function for such hybrid legged locomotion behaviors,
thereby eliminating the need to manually construct an explicit
mathematical model for the system.

Our main goal in this study is to provide a system
identification framework applicable to a useful (although not
comprehensive) class of legged locomotion models [7], and
possibly more complex robotic systems [11]. Our approach
is based on considering legged locomotion as a hybrid non-
linear dynamical system with a stable periodic orbit (limit-
cycle), corresponding to the locomotor behavior of interest.
We introduce a formulation that addresses the input–output
system identification problem in the frequency domain for a
sub-class of hybrid legged locomotion models. More specifi-
cally, following certain assumptions on the hybrid dynamics
of legged systems, we approximate their hybrid dynamics
around the limit-cycle as a linear time-periodic system (LTP).
However, this first LTP approximation is infinite dimensional,
making parametric identification challenging. We hence further
approximate the dynamics as a finite dimensional piecewise
LTI system (maintaining its LTP nature), thereby limiting
the parametric degrees of freedom while enabling a practical
identification framework.

Existing studies on system identification of LTP systems
focus on modeling these systems as multi-input single-output
LTI systems. This approach is based on the concept of
harmonic transfer functions (HTFs) [12], which are infinite-
dimensional operators that are analogous to frequency response
functions for LTI systems. An identification strategy for such
systems was developed in [13] using power spectral density
and cross spectral density functions. A similar method was978-1-4673-7509-2/15/$31.00 2015 IEEE



used in [14] considering the effects of noise in both input
and output measurements. Different than these studies, local
polynomial methods and lifting approaches were also used for
the identification of HTFs for multi-input single-output models
of LTP systems [15]. Ankarali and Cowan [16] developed a
similar system identification method for hybrid systems with
periodic orbits using discrete-time HTFs.

Our contributions in this paper focus on representing the
dynamics of legged locomotion as a linear time periodic
system, thereby enabling the use of the system identification
method proposed in [13] for such systems. We achieve this
by using a new phase definition in identifying the HTFs,
illustrated in the context of a simplified model designed to mir-
ror structural properties of legged locomotion models. When
the problem is approached as a grey-box model with finite
parameters (piecewise LTI), it suffices to non-parametrically
estimate a finite number of harmonics, to which we later fit
parametric models.

II. BACKGROUND: HARMONIC TRANSFER FUNCTIONS

Many linear time periodic (LTP) systems are represented
in the form

ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t) +D(t)u(t),
(1)

where all system matrices are periodic with a common period
T . This time dependence makes system identification more
challenging than it is for LTI systems. The key reason behind
this difficulty is that LTP systems produce output spectra that
include multiple (possibly infinite) harmonics of the input
stimulus, each with possibly different magnitude and phase
in steady state.

Motivated by this problem, Wereley [17] proposed a linear
one-to-one mapping between the coefficients of an exponen-
tially modulated periodic (EMP) signal at the input of an LTP
system to the coefficients of an EMP signal at its output. This
linear operator, that maps the input harmonics to the output
harmonics of an LTP system, is called a Harmonic Transfer
Function (HTF) [12].

One way of deriving HTFs begins with obtaining the indi-
vidual Fourier series expansions of the T -periodic (pumping
frequency ωp = 2π/T ) system matrices in (1). Based on these
expansions, one can obtain the harmonic state space (HSS)
model of the LTP system by using the principle of harmonic
balance:

sX = (A−N )X + BU
Y = CX +DU , (2)

where HSS parameters are doubly infinite Toeplitz structures
corresponding to initial system matrices in (1). The details
about transforming the classical state space representation to
an HSS model can be found in [12]. Note that a new matrix,
N := blockdiag{jnωpI},∀n ∈ Z, appears in the HSS
model to modulate the input frequency to different harmonic
frequencies.

The HSS model in (2) is useful to determine an explicit
input–output functional relationship between the input and
output signals. This relationship is represented by the harmonic
transfer functions, G(s), which can be computed as

G = C[sI − (A−N )]−1B +D , (3)

as long as the inverse within this equation exists. The re-
sulting G(s) is a doubly infinite Toeplitx matrix, whose
(k, l) entry has the form Gk−l(s + kjωp), where k, l ∈
{. . . ,−2,−1, 0, 1, 2, . . .}; for more details see [12]. Note that
the derivation of HTFs using this approach requires a priori
knowledge of system dynamics. Our goal in this work is to
estimate HTFs using input–output data. Will will use the above
formulation for the parametric identification phase, which
is the second phase of our data-driven system identification
method (see Section IV-C).

The data-driven LTP system identification method that we
adopt in this paper requires the truncation of the number
of HTFs to be estimated to support the implementation on
computers. To illustrate, suppose that our truncation consists
of three different harmonic transfer functions, Ĝ0, Ĝ−1 and
Ĝ1, each corresponding to a different frequency component of
the output. The output can then be expressed as

Ŷ (jω) = Ĝ0(jω)U(jω) + Ĝ−1(jω)U(jω + jωp)

+Ĝ1(jω)U(jω − jωp). (4)

In this new formulation, identification problem is reduced to
estimating a finite number of HTFs for each specific frequency
by using the available input–output data at this specific fre-
quency.

Note that the choice of input signal significantly affects the
system identification performance for both LTI and LTP sys-
tems. However this choice is more nuanced for LTP systems,
because of the specific structure of HTFs [14, 16]. Siddiqi [13]
uses a single input sequence signal for system identification,
constructed by concatenating phase shifted copies of a single
waveform on the input evenly separated by delays within
the system period. A complete characterization of system
dynamics is possible with this method since different modes
of the system were activated through the use of phase-shifted
copies of a single waveform.

The second issue is the need to excite all frequency compo-
nents within the system by providing input signals with a suf-
ficiently wide frequency spectrum. This can be accomplished
through the use of chirp signals, whose frequency varies with
time. The use of chirp input signals, combined with the idea of
supplying multiple, phase-shifted input sequences allows us to
obtain sufficiently rich input–output data to support the system
identification process.

Using this input–output data, one can estimate the HTFs of
the system, so that the error between the actual and estimated
output is minimized. Afreen [13] also adds a cost (penalty)
for the curvatures in the estimated HTFs in order to generate
smooth non-parametric transfer function models. Then the
HTFs can be computed as

Ĝ = (UTU + αD4)−1UTY , (5)

where α and D2 are the weight of the curvature penalty and
the second difference operator respectively.

III. REPRESENTATION OF LEGGED LOCOMOTION AS A
HYBRID DYNAMICAL SYSTEM

Our goal in this study is to provide a system identification
framework for a class of models related to legged locomotion



using harmonic transfer functions (HTFs). For the present
paper, we limit ourselves to “clock-driven” locomotion models,
representative of controllers used by a wide variety of exist-
ing robots [11, 18], with open-loop central pattern generators
(CPG) coordinating control actions to achieve time periodic
behaviour. This will allow us to directly use time periodicity in
our LTP analysis, while eliminating a variety of complications
associated with estimating the phase [19].

A. Modeling Framework for Hybrid Systems

Legged systems are often modeled using hybrid dynamics
due to intermittent foot contact with the ground, which cannot
be represented with a single, smooth dynamical flow. In
the broadest sense, a hybrid dynamical system is a set of
smooth flows together with discrete transitions (and associated
transformations) between these flows triggered by intersections
of system trajectories with sub-manifolds of the continuous
state space [20]. These flows are called charts, indexed with
unique labels I := {0, · · · , d} each with possibly different
equations of motion. Along its trajectories, a hybrid system
transitions from one chart to another, with each transition
defined by the zero crossing of a threshold function. For each
source chart α ∈ I and destination chart β ∈ I, the threshold
function hβα defines the transition from chart α to chart β.
An example transition graph for a hybrid dynamical system is
illustrated in Fig. 1.

Since we are interested in the local behaviour around
the limit-cycle, we assume that there is only one transition
function associated with each chart.1 We further assume that
system trajectories are continuous at transitions, meaning that
system states do not experience discrete changes coincident
with chart transitions. As a final note, we assume that the
hybrid dynamical system we consider has an isolated periodic
orbit ensuring that chart transitions within the limit cycle are
also periodic and consistent.

It is important to note that these assumptions are generally
satisfied by models of common locomotory behaviors such as
running and walking [7, 21] as well as a wide range of legged
robots for which leg masses are negligible compared to the
dynamics of a larger body [11, 18]. Consequently, the system
identification methods we introduce will remain applicable to
systems other than the simplified example we will present in
this paper.

B. Modeling Legged Locomotion as a Linear Time Periodic
System

For clarity, we limit our focus in this section to an example
hybrid dynamical system with only two charts, I = {0, 1},
designed to capture stance and flight phases of simple spring-
mass models of locomotion. Based on a clock driven as-
sumption, for each i ∈ I the continuous dynamics can be
represented with

φ̇ = 1

q̇i = fi(q, φ, u) ,

qi ∈ Rn
(6)

1This approach does not apply to gaits such as pronking that nominally
involve multiple legs making contact with the ground at the same time when
on the limit cycle, because small deviations from the limit cycle can lead to
different touch-down order between legs, violating our assumption.

Chart α Chart β

hβα

hαβ

Fig. 1. A simple state transition graph for a hybrid dynamical system.

and let the associated threshold function be h
mod(i+1,2)
i (q).

The transition map associated with each hybrid event is simply
the identity map, qi 7→ qi, due to the continuity assumption.
Our linearization of these hybrid dynamics towards an LTP
approximation assumes that these transition times, t̂, zero
crossings of h1

0(q) and h0
1(q), maintain their periodicity and

offsets within the period in close proximity of the limit-cycle,
resulting in the following form of the nonlinear dynamics

φ̇ = 1 (7)

q̇ ≈

{
f0(q, φ, u) , if mod(t, T ) ∈ [0, t̂)

f1(q, φ, u) , if mod(t, T ) ∈ [t̂, T )
. (8)

Assuming that the system given above has a limit cycle q̄(t)
with a period T , linearization around q̄(t) yields the piecewise
smooth LTP system

ẋ(t) =

{
A0(t)x(t) +B0(t)u(t), if mod(t, T ) ∈ [0, t̂)

A1(t)x(t) +B1(t)u(t), if mod(t, T ) ∈ [t̂, T )

where

A0(t) :=

[
∂f0

∂q

]
q(t) = q̄(t)
u(t) = 0

, B0(t) :=

[
∂f0

∂u

]
q(t) = q̄(t)
u(t) = 0

,

A1(t) :=

[
∂f1

∂q

]
q(t) = q̄(t)
u(t) = 0

, B1(t) :=

[
∂f1

∂u

]
q(t) = q̄(t)
u(t) = 0

.

It is natural to assume that direct measurement of all x(t)
may not be available or we may only measure a subset of x(t).
Consequently, we also define a time-periodic output equation
as in the form (10).

Since system matrices Ai(t), Bi(t), Ci(t) and Di(t) with
i ∈ {0, 1} are time parametrized functions, the system has
infinite parametric degrees of freedom, making parametric
system identification challenging even when HTFs are used.
At this point, we hypothesize that for hybrid systems, the
variability within a chart is small compared to the change
between charts and we approximate the LTP dynamics using a
piecewise LTI approximation that preserves the LTP structure
of the system. The LTP equations of motion then take the form

ẋ(t) ≈

{
A0x(t) +B0u(t), if mod(t, T ) ∈ [0, t̂)

A1x(t) +B1u(t), if mod(t, T ) ∈ [t̂, T )
(9)

y(t) ≈

{
C0x(t) +D0u(t), if mod(t, T ) ∈ [0, t̂)

C1x(t) +D1u(t), if mod(t, T ) ∈ [t̂, T )
(10)

The formulation above constitutes the basis of our framework
for analyzing and identifying clock-driven legged locomotion
models.



IV. SIMPLIFIED LEGGED LOCOMOTION MODEL WITH
HYBRID SYSTEM DYNAMICS

In this section, we describe a simple, vertically constrained
spring-mass-damper system that possesses hybrid structural
properties similar to the extensively studied Spring-Loaded
Inverted Pendulum (SLIP) model for running behaviors. This
will provide a simple example to illustrate the application of
our system identification method to such systems.

Mg

fk c

Fig. 2. Simplified leg model.

A. System Dynamics

Fig. 2 illustrates the vertical leg model we focus on in this
section. It consists of a mass attached to a leg with a spring-
damper mechanism as well as a force transducer. Unlike the
SLIP model, we assume that the toe is permanently affixed
on the ground. Nevertheless, we recover the hybrid nature of
locomotory gaits by assuming that the damper is turned on
during a “stance phase” (lossy) and off during a “flight phase”
(lossless). This construction recovers the hybrid nature of the
dynamics, while allowing active input throughout the entire
trajectory to support the generation of system identification
data, as well as admitting theoretical computation of its HTFs
for a comparative investigation.

We use the force transducer f in this system for two
purposes. Firstly, active energy input to the system must be
provided to maintain the limit cycle and compensate for energy
losses due to the presence of damping. Second, it will be
used as an exogenous input to the system to support the
system identification process. Many physical legged platforms
include similar active components in their legs to regulate their
mechanical energy [22]. Notwithstanding differences in how
these actuators are incorporated into the system, they can all
be used as the necessary exogenous inputs to perform system
identification. A similar model was also investigated in [15]
but using an additional nonlinear spring for energy regulation.

The equations of motion for this simplified legged loco-
motion model are given by

mẍ =

{
−mg − cẋ− k(x− x0) + f(t), if ẋ > 0

−mg − k(x− x0) + f(t), otherwise.
(11)

The lossy and lossless dynamics in (11) correspond to different
charts in Fig. 1 and zero crossings of ẋ represent threshold
functions for both phases.

Our illustrative examples use the parameters g = 9.81, k =
200, c = 2, m = 1 and x0 = 0.2, chosen to be similar to the
parameters of a vertical hopper platform in our laboratory [23].
As noted above, we choose the linear actuator input f(t) =
f0(t) +u(t), consisting of a forcing term f0(t) to compensate

for energy losses, and a chirp signal u(t) to introduce small
periodic perturbations for system identification.

B. Theoretical Computation of Harmonic Transfer Functions

In this section, we derive the theoretical approximations of
the HTFs for our model as outlined in Section II for validation
purposes and also for use in the parametric identification phase.
To accomplish this goal, we first assume that the forcing input
f0(t) is appropriately chosen to induce an asymptotically stable
limit cycle for this system. For example, our simple leg model
achieves a stable limit cycle with f0(t) = cos(2πt). At this
point, changing into error coordinates away from the limit
cycle with ξ = x(t) − x̄(t), and substituting into (11), the
equations of motion take the form

ξ̈ =

{
−cξ̇ − kξ, if ξ̇ + ˙̄x(t) > 0

−kξ, otherwise
(12)

Due to the simplicity of the dynamics, this corresponds to
a piecewise LTI system without necessitating any additional
approximations, taking the form[

ξ̇1
ξ̇2

]
=

[
0 1

−k −cs(ξ̇, t)

] [
ξ1
ξ2

]
+

[
0
1

]
u(t), (13)

where the hybrid nature of the system is captured by the flag
s(ξ̇, t), with s = 1, when ξ̇ + ˙̄x(t) > 0 and s = 0 otherwise.

We now need to represent this piecewise LTI system as a
linear time periodic system. However, even though the binary
valued function s(ξ̇, t) can be considered time-periodic on the
limit cycle itself, this is not the case for trajectories away
from the limit cycle. To proceed, we hence assume that input
induced perturbations are small, and that the binary valued
function s(ξ̇, t) maintains its period and becomes strictly
time dependent rather than state dependent, taking the form
s(ξ̇, t) ≈ s(t). We now can perform a Fourier series expansion
on s(t) by treating it as a square wave with an offset to obtain
a linear time periodic system in the form[

ξ̇1
ξ̇2

]
=

[
0 1
−k −cs(t)

] [
ξ1
ξ2

]
+

[
0
1

]
u(t), (14)

y = [1 0]

[
ξ1
ξ2

]
.

Plugging these equations into the HTF framework described
in [17], yields analytic solutions to the harmonic transfer
functions. We omit the details of this derivation due to space
considerations, but use the resulting analytic solutions for the
HTFs up to nh = 10 to evaluate the output of our system
identification method.

C. Data-Driven Identification of Harmonic Transfer Functions

In this section, we obtain harmonic transfer functions
corresponding to the linearized dynamics of (14) by using
input–output data without assuming prior knowledge of the
state space model. Using f0(t) = cos(2πt) and u(t) = 0 for
30 cycles without a perturbation, our example system stabilized
to a limit cycle x̄(t) with a period T = 1s. We use the 30th

period as the numerical limit cycle of the nonlinear system and
subtract it from the trajectories of subsequent experiments to
obtain the error function ξ1.
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Fig. 3. Estimation results for the higher order harmonics.
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Fig. 4. Estimation results for the fundamental harmonic.

In order to obtain input–output data for system identifica-
tion, we apply an input signal consisting of nine subsequent
30s long chirp signals, each with a linearly increasing fre-
quency in the range (0, 7] Hz over its duration but with a
different starting phase evenly distributed across the system’s
period, T = 1s. Each chirp signal has an amplitude of 0.004,
chosen to be large enough to perturb system dynamics but
small enough to keep the system close to the periodic orbit.
A sample chirp signal with zero phase can be generated by

u(t) = 0.004 sin(7πt2/30). (15)

The resulting output is then subtracted from the numeri-
cally measured limit cycle to obtain error trajectories ξ1 for
vertical position. The input signal and ξ1 are then used as
in [13] to estimate HTFs for our system. Since our theoretical
computations showed that responses beyond the third harmonic
were very small, we only consider the fundamental harmonic
and three harmonics on both sides for our experiments.

Fig. 4 illustrates the estimation performance of our al-
gorithm for the magnitude and phase of the fundamental
harmonic. Both graphs show that the application of the identifi-
cation algorithm in [13] works well even for nonlinear periodic
systems with hybrid dynamics.

We also show our identification results for three harmonics
in both the negative and positive sides in Fig. 3. Even though
magnitudes for the HTFs are small compared to the fundamen-
tal, the identification algorithm can provide accurate estimates
for these transfer functions except in some narrow regions of
G−2 and G2. The identification algorithm could not correctly
estimate these two harmonics around 12 − 15 (rad/s). One
possible reason for this discrepancy is the presence of strong
responses in all harmonics around the same frequency except
G−2 and G2, resulting in the inability of the identification
algorithm to distinguish between the contributions from each
harmonic absent knowledge of the internal system dynamics.
Alternatively, these discrepancies may also be a result of the
fact that hybrid transitions are not strictly time periodic (rather,
they are state-dependent) which likely has effects on different
frequencies and harmonics. We plan on investigating these
issues further in the future.

For a comparative analysis, we also present results from
a parametric identification in order to show that further cor-
rections on estimation results from a non-parametric method
are possible. To this end, we fit the system parameters k and
c in (14) by comparing root mean square error between theo-
retically computed and estimated harmonic transfer functions
G0, G−1 and G1. We truncate the system response after the
first harmonic in order to discard erroneous regions in higher
harmonics. The resulting estimates were k̂ = 200 for the
spring constant and ĉ = 2.12 for the damping coefficient,
which closely coincide with the parameters used to generate
the input–output data. As such, HTFs obtained from parametric
identification were found to closely match those obtained from
theoretical computations as seen in Fig. 3.

Motivated by these identification results, we plan to extend
our work to the identification of the Spring-Loaded Inverted
Pendulum (SLIP) model and its extensions, widely used as
models of locomotory behaviors in the literature. Our future
goal is to apply our system identification methods to our phys-
ical monopod robot platform and to compare the identification
performances with our previously verified analytical model
[10].



V. CONCLUSION

In this paper, we presented a system identification strat-
egy to estimate input–output transfer functions for a simple
hybrid spring mass damper system as a step towards data-
driven models for legged locomotion. We first showed that
a class of hybrid locomotion models can be approximated
with a piecewise constant LTP systems in close proximity
to their asymptotically stable limit-cycle. Our analysis and
identification framework is based on the concept of harmonic
transfer functions (HTFs) [17].

We first observed that the hybrid system dynamics associ-
ated with this model exhibits piecewise LTI behavior around
its periodic orbit. We then represented this behavior as a
purely time periodic system around the limit cycle in order
to utilize system identification techniques applicable to Linear
Time Periodic systems.

In order to provide a basis for comparison, we computed
analytic expressions for HTFs associated with the LTP approx-
imation to our simplified hybrid model. In our theoretical anal-
ysis, we considered the system’s response up to the 10th har-
monic. We observed that there were no meaningful responses
on both positive and negative sides after the third harmonic.
Therefore, we decided to truncate the system response after
the third harmonic during our identification studies.

We then performed systematic simulation studies and iden-
tified the HTFs of the same model without knowledge of
its internal dynamics. We used an input signal consisting
of successive chirp signals, with phases evenly distributed
across the system’s period, to obtain a full characterization
of system dynamics for our frequency range of interest. Our
studies showed that LTP system identification techniques can
successfully be used to identify the transfer functions of
nonlinear periodic models with hybrid system dynamics.

In the future, we plan to extend this work for modeling and
identifying locomotor systems with sensory and motor delays.
In our previous work, we showed that HTFs allow indepen-
dent estimation of input and measurement delays for simple
locomotion models, such as the one in current paper [24].

ACKNOWLEDGMENT

This material is based on work supported by the National
Science Foundation (NSF) Grants 0845749 and 1230493 (to
N. J. Cowan). This work is supported by The Scientific
and Technological Research Council of Turkey (TÜBİTAK),
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analytic solutions to non-symmetric stance trajectories of the passive
spring-loaded inverted pendulum with damping,” Nonlinear Dynam,
vol. 62, pp. 729–742, December 2010.

[8] M. M. Ankarali and U. Saranli, “Stride-to-stride energy regulation
for robust self-stability of a torque-actuated dissipative spring-mass
hopper,” Chaos, vol. 20, no. 3, p. 033121, September 2010.
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