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Abstract— State estimation and control typically depend on
the implicit assumption that actuation and measurement occur
at known points in time. This assumption is predicated on
sufficiently precise timekeeping afforded by engineered clocks.
Biological control systems do not have access to quartz-crystal
technology and yet animals perform behaviors that engineered
systems cannot. Here, we examine the problem of state es-
timation using imprecisely timed measurements, with known
temporal statistics. We consider the case that there are two
controllers, each with its own imperfect clock, performing a
cooperative task—formulated in a leader–follower paradigm.
In our problem, the follower estimates the state of the leader’s
noisy clock along with other state variables. An example of a
complex cooperative leader-follower task is ballroom dancing.

I. INTRODUCTION

No known clock tells time perfectly [1].1 We, therefore,
expect no objection to the statement that biological time-
keeping falls short of perfection. However the consequences
this unobjectionable statement have hardly been explored for
motor control and sensory processing.

How does imperfect chronometry affect estimation and
control? First, we point out that there are two problems: the
initial synchronization and the ongoing problem of temporal
drift. We focus our efforts here on a particular problem in
which two agents perform a simplified cooperative control
task that is loosely analogous to ballroom dancing and
more closely analogous to “cooperative sawing.” Cooperative
sawing might be performed by two lumberjacks, pushing and
pulling on opposite ends of a saw. This task is illustrated
schematically in Figure 1. The goal is to drive y(t) to follow
the reference signal r(·), but since neither agent knows
real time, t, they must synchronize their chronometers in
order to achieve the cooperative behavior. That is, the agents
must agree on what time it is relative to the task, r(·).
Here we assume the clocks start synchronized, and consider
the ongoing problem of staying synchronized, despite the
fact that one or both partners have imperfect timekeeping.
Clearly synchrony means, in this case, synchronization of
clocks between agents without regard to some hypothetical
external clock. Even for a linear plant, if r(·) is nonlinear
(e.g. periodic), synchrony requires nonlinear estimation, and
in this paper we resort to an Extended Kalman Filter (EKF).
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A. Biological Time Keeping

Neuroscientists have long recognized that the brain must
keep or process time—from circannual rhythms to pre-
cise moment-to-moment motor control—to perform behav-
iors [3]. Temporal processing has been implicated [4] in
sensory perception such as sound localization, motion pro-
cessing, music and speech perception, locomotion, breathing,
vocalizations, circadian rhythms, and many other functions.
Further, many species of animals coordinate their behavior
(among two or more individuals) over wide temporal scales,
from milliseconds to years.

Biological clocks have been found in all tissues, and
implemented using a wide variety of strategies [5]. Time
keeping for the control of behavior, however, is generally
the provence of excitable tissues, particularly the nervous
system. Within the nervous system of an organism, we
commonly find multiple clocks using multiple independent
mechanisms for timekeeping [6]. For example, central pat-
tern generators (CPGs) are collections of neurons that can
oscillate at a preferred frequency and are used in motor
control [7]. Another strategy for temporal processing is the
use of labeled lines [8]. In this case, time-varying sensory
information is passed through filters that have differences
in their temporal dynamics – these differences are used to
determine the temporal structure of salient sensory stimuli.

Labeled lines have been implicated in barn owl sound
localization [8] where they are known to operate on the
scale of microseconds. More exotic mechanisms have been
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Fig. 1. A simplified block-diagram of two controllers cooperatively
controlling a single plant. Inspired by cooperating (duetting) songbirds
[2], we assume both controllers have a representation of the combined
cooperative performance; this is illustrated here as a copy of desired
trajectory of the plant output in the memory of each controller. However,
each controller is assumed to have its own estimate of time, s1 and s2, that
are not intrinsically synchronized, and thus the synchronization of control
inputs requires synchronization of the clocks.



hypothesized for the range of microseconds and seconds
such as the internal clock model [9], the population clock
model [10] or the multiple oscillators model [11]. In these
timescales, neural mechanisms remain least understood [12].
Researchers have a better handle on some clocks with larger
timescales, such as the one for circadian rhythms [13].

To be sure, the model described here does not replicate
neural mechanisms of timing, but rather our interest is in
understanding the consequences of imperfect time keeping on
the control of behavior, and on the estimation of quantities
relevant to the control of behavior.

B. Our imperfect clock
There are undoubtably many choices for a model of

the control agent’s clock, particularly in light of different
hypothesized neural mechanisms. To begin to explore the
consequences of imperfect timekeeping, we choose to start
with only one clock—the simplest possible imperfect clock
model that we can find to suit our purpose. Here we choose a
“ticking clock” with random, but approximately regular ticks.
Our choice is based entirely on simplicity and parsimony and
not on an assessment of biological relevance.

We have a notion of “real time,” i.e. the time a perfect
clock would read if one existed. The agent’s imperfect clock
“ticks” at real times tk, for k = 1, 2, . . . . These tk are
random variables. will also assign an initial tick with certain
value t0 = 0.

As a further simplification of our model we will assume
that the inter-tick times ∆k = tk − tk−1 for k = 1, 2, . . . ,
are independent and identically distributed (IID) random
variables with common probability density function (PDF)
f(∆). Here we choose the PDF of an inverse Gaussian for
f , although other choices could be made. Let δ denote the
mean of the distribution given by f and let σ denote its
standard deviation. Note that while δ and σ parameterize
the inverse Gaussian distribution, they are not the most
common parameterization. We assume that these statistics
are accurately known to the agent.

For our purposes, we want the clock to have a continuous
state s that evolves in time, but still ticks at events, with
independent intertick intervals. This desire is our motivation
for the choice of the inverse Gaussian distribution for f .
Indeed, let the clock’s state follow a drift-diffusion equation:

ds(t) = dt+ b1 dW (t),

s(0) = 0, with probability 1.
(1)

Here W (t) is a (standard) Wiener random process, and b1
is a positive number called the clock’s diffusion coefficient.
For simplicity, by choice of its initial condition, the diffusive
clock starts synchronized with real time. We call this a
diffusive clock with unit drift. The nth tick occurs when the
diffusion first crosses level nδ. It follows that the intertick
times are distributed Inverse Gaussian and with mean δ and
standard deviation σ = b1

√
δ.

C. Literature on control with imperfect timekeeping
We found very little in the literature concerning the

consequences of imperfect timing for estimation and control.

Indeed our literature search pulled up only one conference
proceeding by LaValle & Egerstedt [14]. The authors open
their abstract with the following strong and provocative state-
ments: “this paper addresses the peculiar treatment that time
receives when studying control systems. For example, why
is the ability to perfectly observe time assumed in virtually
all control formulations?” They cite no papers which violate
this assumption, and moreover we have found no additional
papers that do so.

LaValle and Egerstedt’s most prescient results concern
the implications for imperfect timing on open-loop stability.
Three examples show a range of possible stability behaviors
for an imperfectly timed controlled system. Their first ex-
ample shows that it is possible for a system to be stabilized
by a controller with perfect timing, but the same system
with the same control law will suffer catastrophic instability
if there is any imperfection in the timing. Their second
example concerns a system with three stable states. Which
stable point attracts the system’s trajectory depends on when
(and if) the controller delivers a stereotyped impulse. All
three stable states are possible limit points (and the only
possible limit points). In the last example, the controller
throws a switch which changes the unstable system into
a stable system. LaValle Egerstedt call this “strongly open
loop stable,” because stability—in this case, convergence to
the origin—does not depend on when the controller throws
the switch—only, that, in fact, the controller does throw the
switch. LaValle and Egerstedt clearly see their paper as the
first of many on this topic. They close with a section on
“open questions and issues” and “argue that many fascinating
directions for future controls research emerge.” We agree.

II. COOPERATION PROBLEM

We start with a plant of the form

ẏ(t) = u1(t) + u2(t), (2)

where y is the state variable of the plant, and u1 and u2
are the inputs from two controllers. The shared goal of the
controllers is to make the plant produce a desired output. The
desired output is a function—called the task representation—
denoted r(t), e.g. r(t) = sin(t). In other words, together, the
controllers aim to make y(t) ≈ r(t). To accomplish this goal,
we assume controllers know the functions r(·), ṙ(·), and
r̈(·), have clocks (perfect or imperfect), and can measure the
present plant state y(t) (with or without measurement noise).
Initially, we assume the clocks and plant measurements
are perfect, then consider the case that really interests us:
imperfect observations of both time and plant state.

In what follows, we assume that Controller 1 and Con-
troller 2 are posed together, with knowledge of each other’s
control law. We do not solve the adaptive control problem
in which each Controller is naive to the other’s control law.

A. Single Actor, Perfect Clock

We assume one actor; specifically, u2(t) = 0, for all t. We
pose Controller 1 (the actor) as follows:

u1(t) = −Ky(t) + 2f(t), (3)



where
f(t) =

K

2
r(t) +

1

2
ṙ(t), (4)

K is a positive gain, and r(t) is the actor’s representation of
the task. Controller 1’s ability to implement this control law
is predicated on the assumption that Controller 1, at every
moment, knows the present t (has a perfect clock) and knows
the present y, (perfectly observes the plant).

Why does this control law lead the plant to follow r(t)?
The control law implies, (plugging u1(t) and u2(t) into (2)),
that

ẏ(t) = −Ky(t) +Kr + ṙ, (5)

and so
d

dt
(y(t)− r(t)) = −K(y(t)− r(t)). (6)

Using K > 0, we conclude that y(t)→ r(t) exponentially.

B. Symmetric Actors, Perfect Clock

Here we assume that each controller can, at every time t,
perfectly observe t and the y(t). We set

u1(t) = −K
2
y(t) + f(t),

u2(t) = −K
2
y(t) + f(t),

(7)

where f is given by (4). The same conclusion follows.

C. Single Actor, Imperfect Clock

We return to the case in which Controller 1 (the actor)
saws alone (u2 = 0), but we now relax the assumption that
the actor knows the present t. For the purposes of simplicity,
we still assume that the actor, at all times t, can perfectly
observe y(t). When we later move to the leader-follower
paradigm, only the follower will rely on a Kalman filter,
while both will have imperfect clocks. Assuming the leader
measures the plant continuously and accurately will simplify
the follower’s model for the leader.

We assume the actor’s clock is a diffusive clock, with
state s(t) that satisfies stochastic differential equation (1).
The clock’s state s(t) is the actor’s estimate of time. Because
the drift (coefficient on dt in (1)) is unity, s(t) is an unbiased
estimate of t.

The actor’s control law, based on s, is then

u1(t) = −Ky(t) + 2f(s(t)), (8)

where f(·) is given as in (4). Again, in (8) we assume the
actor has access to y(t) at time t, even though the actor does
not know t.

D. Single Actor, Separate Observer, Imperfect Clocks

Here, the actor, Controller 1, remains the same (see
subsection II-C, above), but we let other agent observe the
process, rather than just lie dormant. As before, the actor
saws solo, i.e. we still have u2(t) = 0, for all t. This situation
is analogous to the one considered by Wolpert and coauthors
in [15].

The observer measures y(t), at discrete times, and with
measurement noise, and has its own diffusive clock, q(t).
The evolution of q is given by (1), with q replacing s,
and an independent Wiener process, (i.e. independent from
W ), replacing W . Here q(t) serves as the follower’s crude
estimate of s(t). The observer, derives a better (lower vari-
ance error) estimate of s(t), called ŝ(t), by combining the
plant measurements with q, and knowledge of the actor’s
task representation r. Our derivation is based on an EKF, as
follows.

The evolution of the plant state y(t) is given by (2), (8),
and u2 = 0, as follows:

dy(t) = (−Ky(t) + 2f(s(t))) dt. (9)

For simplicity, we choose r(0) as the initial condition for
y—the task starts as represented by r. We combine (1) and
(9) into the observer’s model of the leader and plant—the
following a single two-dimensional coupled SDE for the state
x(t) = (s(t), y(t)):

dx(t) = a(x(t)) dt+ b dW (t),

x(0) = (0, r(0)),
(10)

where

a(x(t)) = a(s(t), y(t)) =

[
1

−Ky(t) + 2f(s(t))

]
, (11)

b =

[
b1
0

]
. (12)

These diffusive clocks have positive (unit) drift, so they
reach all positive levels, with probability one. Let δ be a
positive number. We say the observer’s diffusive clock ticks
when the diffusion level first reaches nδ, for all integers n. It
follows that δ is the expected inter-tick interval. Now let N
be a positive integer. We say that the observer’s clock chimes
when the diffusion level first reaches kNδ for all integers k.
Chimes happen every N ticks, and the expected inter-chime
interval is Nδ.

Measurements are taken at chimes. Ticks times determine
the discretization of the observer’s SDE model for the system
using the Euler-Maruyama method. The observer’s Kalman
predict step generates state estimates corresponding to these
discretization times. But the estimates are only based on
measurements up to the previous chime, and are therefore
available to the observer immediately after the previous
chime. Thus while the observer does something at chimes
(takes measurements), it does nothing of consequence at
ticks. This situation will change when the observer becomes
a follower: the ticks will trigger a discrete change in the
actuation of the follower’s control input u2(t).

Let ηk be the time of the kth chime. Then the measurement
taken at that time is y(ηk)+ζk, where ζk is a normal random
variable with mean zero and variance R.

1) Extended Kalman filter operation: Let Xn denote the
model’s state at tick n—this quantity is a random variable
because it depends on the actor’s imperfect clock. For n ∈
{0, 1, . . . , N}, let Xn|k denote Xn+Nk conditioned on all
measurements up through chime k. The extended Kalman



filter computes E[Xn|k] and Cov[Xn|k], for all chimes k
and for all inter-chime ticks n ∈ {0, 1, . . . , N}.

The initial condition X0|0 has value (0, r(0)), with prob-
ability one. The Kalman filter alternates between predict
steps and update steps, one each for each chime. The
k + 1st predict step computes, by recursion, the means and
covariances of the random variables X0|k, X1|k, . . . , XN |k.
The k + 1st update step derives the statistics of X0|k+1

from the statistics of XN |k. Both of these random variables
(respectively, posterior and prior) correspond to the same
tick—namely, chime k + 1, when a measurement occurs.

2) Predict Step: Given values for E[Xn−1|k] and
Cov[Xn−1|k], we want to compute values for E[Xn|k] and
Cov[Xn|k]. Note that the chime number, k, remains constant
throughout a predict step. In an abuse of notation, we will
drop our reference to k and refer to Xn|k as Xn.

We name the components of the expected state vector as
follows:

E[Xn] = X̂n =

[
ŝn
ŷn

]
. (13)

We recall the nonlinear recursion given by the Euler-
Maruyama stochastic integration method for time step en−1.
Here en−1 is the inter-tick interval, which is known in the
classical application of the method. In our case, the time
step is random and unknown, but its statistics are known.
The recursion follows:

Xn = Xn−1 + a(Xn−1)en−1 + b
√
en−1νn−1. (14)

Here νn−1 is a standard normal random variable. We know
the full distribution for en−1 (inverse Gaussian), but we will
only make reference to its first two moments—its mean, δ,
and its standard deviation, σ. If we were to assume any
other distribution for en−1, our derivation would still hold,
upon substitution of the correct statistics. Regardless of the
distribution chosen, we assume the inter-tick intervals are
independent and identically distributed, and en−1, Xn−1 and
νn−1 are mutually independent.

Now rewrite (14) as

Xn = g(Xn−1, en−1, νn−1), (15)

where
g(x, e, ν) = x+ a(x)e+ b

√
e ν. (16)

Here x ∈ R2, a(x) ∈ R2, b ∈ R2, e ∈ R, ν ∈ R. Now we
linearize g around an arbitrary point (x0, e0, ν0):

g(x, e, ν) ≈ g(x0, e0, ν0)

+
∂g

∂x

∣∣∣
(x0,e0,ν0)

(x− x0)

+
∂g

∂e

∣∣∣
(x0,e0,ν0)

(e− e0)

+
∂g

∂ν

∣∣∣
(x0,e0,ν0)

(ν − ν0).

(17)

Now, instead of an arbitrary point, we choose to linearize g
around the expected value of (Xn−1, en−1, νn−1) which is

(X̂n−1, δ, 0). If we evaluate the terms of (17), put everything
together and simplify we obtain:

Xn = (I +A1
n−1δ)Xn−1 −A1

n−1δX̂n−1

+A0
n−1en−1 + b

√
δνn−1, (18)

where

A0
n−1 = a(X̂n−1) =

[
1

−Kŷn−1 + 2f(ŝn−1)

]
, (19)

A1
n−1 =

∂

∂x
a(X̂n−1) =

[
0 0

2f ′(ŝn−1) −K

]
. (20)

Now replace the nonlinear recursion (14) with the linear
recursion (18). We treat matrices A0

n−1 and A1
n−1 as constant

(nonrandom) in computing the following expectations. This
is the linearization approximation. Now find recursion for
mean:

E[Xn] = E[Xn−1] +A0
n−1δ. (21)

Now find recursion for covariance, using the fact that the
terms of (18) are mutually independent:

Cov[Xn] = (I +A1
n−1δ)Cov[Xn−1]

(
I +A1

n−1
T
δ
)

+A0
n−1Cov[en−1]A0

n−1
T

+ b
√
δCov[νn−1]

√
δbT . (22)

Simplifying yields

Cov[Xn] = Cov[Xn−1]

+ δ
(
A1
n−1 Cov[Xn−1] + Cov[Xn−1]A1

n−1
T
)

+ δ2A1
n−1Cov[Xn−1]A1

n−1
T

+ σ2A0
n−1A

0
n−1

T
+ δbbT . (23)

3) Update Step: At the kth chime, we have arrived at real
time ηk with state x(ηk). Before the measurement, we esti-
mate the state’s statistics as E[XN |k−1] and Cov[XN |k−1].
We now derive the Bayes update yielding E[X0|k] and
Cov[X0|K ]. Call the prior statistics m̄, and P̄ , respectively,
and the posterior statistics m, P , respectively.

At the kth chime, the observer takes measurement yk. The
model of this measurement process is given by:

yk = h(x(ηk), ζk) = y(ηk) + ζk, (24)

where h is the function that evaluates the y-component of the
state and adds ζk, assumed to be a normal random variable
with mean 0 and variance R. Recall that x = (s, y).

For the purposes of the extended Kalman filter, we model
the measurement as follows:

ȳk = h(m̄k, ζk = 0) = m̄k
y . (25)



Now define the linearization matrices

H =
∂h(x, ζ)

∂x
(26)

=
[
∂h
∂s

∂h
∂y

]
(27)

=
[
0 1

]
, (28)

V =
∂h(x, ζ)

∂ζ
(29)

= 1. (30)

Because the measurement equation is linear, the matrices H
and V do not depend on k.

We calculate the innovation mean:

vk = yk − ȳk. (31)

We calculate the innovation covariance:

Sk = HP̄ kHT + V RV T . (32)

We calculate the Kalman gain:

Kk = P̄ kHT {Sk}−1. (33)

We calculate the updated mean:

mk = m̄k +Kkvk. (34)

We calculate the updated covariance:

P k = P̄ k −KkSk{Kk}T . (35)

E. Both Saw, One Leads, The Other Follows

When the observer becomes a follower, its EKF-based
estimate of the leader’s time s together with the task rep-
resentation through time r(·) will determine the follower’s
sawing. In this case we have three clocks: the leader’s
motor clock s(t), the follower’s sensory clock q(t), and the
follower’s motor clock. Here the follower’s motor clock is
its estimate of the leader’s motor clock ŝ(t). All clocks start
synchronized with real time at real time zero.

The leader’s motor clock, s(t), obeys SDE (1), and is never
updated by feedback from the follower. The leader produces
motor command u1(t), sawing away according to the shared
task representation r(·) and directed by its own autonomous
clock s(t) – with no feedback from the plant or follower.

u1(t) = −K
2
y(t) + f(s(t))), (36)

where f(·) is given by (4).
The follower produces motor command u2(t), according

to the shared task representation r(·) but instead of using
an autonomous clock to direct its sawing, it cooperates with
the leader by using its estimate of the leaders clock ŝ(t) to
direct its sawing:

u2(t) = −K
2
ŷ(t) + f(ŝ(t))). (37)

Now the plant equation is given by

ẏ(t) = u1(t) + u2(t)

= −K
2

(y(t) + ŷ(t)) + f(s(t)) + f(ŝ(t)).
(38)

The sensory clock q emits a tick at real times {t0, t1, . . . },
where t0 = 0, where the inter-tick intervals are inverse
Gaussian distributed with E[tn − tn−1] = δ and Var[tn −
tn−1] = σ2. The ticks time feedforward updates to ŷ(t) and
ŝ(t), where the zero-order-hold rule is enforced. In other
words, the follower’s estimate, ŷ(t) and ŝ(t), are constant
between ticks of the sensory clock q(t). The follower’s
system model is still given by (10), (11) and (12). Chimes
of the sensory clock trigger measurements of the plant and
feedback updates to ŷ(t) and ŝ(t). A numerical example for
following a single cycle of a sinusoidal reference is shown
in Figure 2(A).

Figure 2(B) shows simulation for which the leader’s clock
and the follower’s model of the leader’s clock have different
drift rates. This difference clock drift rates is equivalent to a
different time-scaling of r(t). This error in the model leads
to a constant DC offset (mod 2π) that, eventually, although
remarkably the cooperative performance is still achieved for
long bouts. Future work will test a clock model that specifies
s̈(t) = white noise, allowing for constant, but unspecified
drift, so that the eventually the follower’s phase rate would
adapt to that of the leader.

III. DISCUSSION

Do the imperfections of biological clocks matter? Are
biological clocks, like quartz-crystal clocks, so precise that
control theory can ignore2 their imprecisions. The question
is both experimental and theoretical. The question is experi-
mental because we need to know just how precise biological
clocks actually are. And the question is theoretical because
we need to know just how precise biological clocks need
to be to ignore their imprecisions. Of course there is no
one answer to either of these questions. Biological clocks
exist on many timescales [12] employing different mecha-
nisms and undoubtably possessing varying precision. Partic-
ularly on the timescales of motor control, these mechanisms
are poorly understood, and a wide range of hypothetical
mechanisms remain conceivable. For example, our follower
synchronizes its clock by observing the continuous plant
output rather than observing explicit synchronization events.
It would be interesting to see how Bayes-optimal updates
(of the follower’s estimates of state) with observations of
synchronization events, would improve performance. There
is also an issue of uncertainty in producing and measuring
such events—i.e. imprecisely timed events and imprecisely
delayed measurements of such events may have the same
effect.

Just as there are many clocks, there are many behaviors
that rely on clocks. Different behaviors undoubtedly need
different clock precisions and indeed use clocks in different
ways. For example, pure state feedback around an equilib-
rium may work well without accurate timekeeping, whereas

2We thank an anonymous reviewer for pointing out that an accounting
for uncertain time-keeping may also be needed in engineering applications
in which fast time scales and/or long durations render significant the
imperfections of engineered clocks.
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Fig. 2. (A,B): Simulation of a cooperative sawing task in which both agents have a shared representation, r(·) of the desired task, which is to follow a
simple sine wave. The control law is such that both agents apply half the required control signal necessary to achieve perfect tracking (see Equation (7)),
but when the two work together the output can be tracked. However, since both agents have noisy clocks, the “follower” must estimate the leader’s internal
clock, to keep the two agents synchronized. The top panel shows the evolution of the second controller’s estimate of the first controller’s time, and the
bottom panel shows that the pair of cooperating agents succeed in achieving this simple task. (C,D): Simulation of a cooperative sawing task in which the
leader has a clock that follows ds = 1.3 dt+ b dW , with a drift of 1.3, but the follower’s model still obeys (1) (i.e. the follower assumes that the drift
rate is still 1.0, not 1.3). Between 0 and 5 seconds (real-time), the leader gets “ahead” of the follower and then the follower begins to keep pace. From
10 to 20 seconds the follower is out of sync with the leader, but there is phase reset at around real-time 20 s, at which time the follower locks in about
2π behind the leader, and it is back in sync. Notice that between 5 and 10 s, and again between, 25 and 35, the follower’s clock advances with roughly
the same slope (1.3) as the leader’s clock, although a persistent “DC” error is maintained, as expected since the follower does not adapt to discover the
leader’s phase rate.

following a memorized trajectory may require accurate time-
keeping in order to produce appropriately timed forces.
Still it remains to be seen to what extent the imperfections
in biological timekeeping make testable predictions about
animal motor control, or constrain the possible controller
schemes that can be used to explain animal behavior.

Concerning the different types of proposed mechanisms, a
natural question arises: do different clocks lead to different
predictions about estimation and control? This possibility
should be seen as positive, for it would open the door
to experiments that could test which type of neural clock
(or clocks) underlie animal motor control. On the contrary,
the discovery that different imperfect mechanisms make the
same predictions would mean that we can continue devel-
oping our motor control theory with the simplest possible
model.
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