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INTRODUCTION
Weakly electric fish emit an electric organ discharge (EOD) that is
used for electrolocation (Caputi and Budelli, 2006; von der Emde,
2006) and communication (Hopkins, 1974; Fortune, 2006; Hupé
and Lewis, 2008; Triefenbach and Zakon, 2008). In wave-type
electric fish, the EOD is quasi-sinusoidal and has a relatively stable
baseline frequency when undisturbed (Bullock, 1969; Bullock et
al., 1975; Moortgat et al., 1998; Zakon and Dunlap, 1999; Zakon
et al., 2002). When two or more fish are in close proximity, their
EODs interact to produce emergent amplitude modulations (AM)
at the difference frequency (df) between the fish. Eigenmannia
virescens shift their baseline EOD frequency in response to low
(<15 Hz) dfs (Watanabe and Takeda, 1963; Bullock et al., 1972),
which have been shown to impair aspects of electrolocation
(Heiligenberg, 1973; Bastian, 1987). The direction of the frequency
shift is determined by the sign of the df and results in an increase
in the magnitude of the df. This behavior is known as the Jamming
Avoidance Response (JAR).

The JAR has been analyzed at all levels of organization, from
whole-organism behavior down to specific ion channels (Fortune
and Rose, 2003; Heiligenberg, 1991; Bastian and Heiligenberg,
1980; Heiligenberg and Bastian, 1980). Despite the fact that the
JAR is among the best understood sensorimotor circuits, the
sensorimotor responses have not been modeled as a dynamical
system. One challenge to modeling the temporal dynamics arises
from the intrinsically ‘unstable’ nature of the JAR. This is because
the fish shifts its EOD frequency (f1) in the direction away from the

frequency of the conspecific (f2), resulting in an increase of |df|,
where df=f2–f1. We overcame this challenge by closing a feedback
loop around the natural behavior: the frequency of a conspecific-
like signal was calculated and adjusted in real-time to stabilize the
response and drive it to any desired frequency in a neighborhood
of the fish’s original baseline frequency.

Perturbation experiments on the stabilized closed-loop system
were used to characterize the dynamics of the JAR. These
perturbations included sinusoids, sums of sinusoids, chirps and band-
limited noise. Responses to these stimuli were used to estimate a
non-parametric frequency response function (FRF). The FRF was
then used to infer the frequency response of the open-loop behavior,
i.e. the JAR itself. A first-order delayed parametric model was fitted
to the behavior near its equilibrium.

This local model does not, however, capture the nonlinear
features of the behavior: the biological relevance of the JAR lies in
its escape from the unstable equilibrium. To address this, we
extended the linear model using additional experiments in which
the dfs were ‘clamped’ to furnish a complete nonlinear model. The
nonlinear model was parsed into terms that capture competing
avoidance and return responses and was validated by comparison
with responses to open-loop stimuli. The model was also used to
predict a saddle–node bifurcation in the vector field of the system.
The bifurcation causes one stable equilibrium to vanish, ultimately
manifesting as the ‘snap-through’ of the fish’s frequency (f1) from
one stable equilibrium (low |df|) to another (high |df| of opposite
sign).
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MATERIALS AND METHODS
Experimental setup

Adult Eigenmannia virescens (Valenciennes 1836) (10–15 cm in
length, EODs between 346 and 452 Hz) were obtained from
commercial vendors. The fish were housed in group aquarium tanks
that had a water temperature of ~27°C and a conductivity in the
range 150–500 μS cm–1 (Hitschfeld et al., 2009). All experimental
procedures were approved by the Johns Hopkins Animal Care and
Use Committee and followed guidelines established by the National
Research Council and the Society for Neuroscience.

The experimental tank was maintained at a temperature of
25±3°C and a conductivity of 150±25 μS cm–1. Each fish (N=7; n=5
reference-tracking trials, n=2 clamp trials) was tested individually.
Each fish was acclimated to the testing tank for a minimum of 24 h
prior to the start of the experiment. After the initial acclimation
period the fish was restricted in a chirp chamber for 2–3 h to allow
the EOD frequency to stabilize. The chirp chamber served to restrict
the movement of the fish and prevent changes in orientation during
the experiment, resulting in more consistent measurements of the
EOD frequency. A pair of measurement electrodes (red) were placed
longitudinally (near the fish’s head and tail) to record the EOD and
a second pair of stimulus electrodes (black) were placed transverse
to the fish to provide a frequency-controlled sinusoidal stimulus
(Fig. 1A). The distance between the electrodes in each pair was
25 cm.

The EOD of the fish, recorded via the head-to-tail electrodes
(Fig. 1A; red circles), was filtered and amplified (0.1 Hz to 1 kHz
bandpass, gain 100; A-M Systems Model 1700, Sequim, WA, USA)

and input to a frequency-to-voltage converter (F2V; FV-1400, Ono-
Sokki, Yokohama, Japan). The F2V calculates the frequency of
the signal using measured time differences between zero crossings,
digitally averages these values over four cycles, and outputs a
voltage that varies linearly with frequency over a set range (e.g.
the range ±5 V would correspond to 475–525 Hz). This creates a
time lag of no more than four cycles of the EOD. The F2V output
was further filtered (Chebyshev low-pass, 30 Hz cutoff). All told,
these delays correspond to a worst-case phase lag of 5.2 deg relative
to the highest reference stimulus frequency (1 Hz), at the lowest
EOD baseline (346 Hz) tested. Both the amplified signal and the
filtered F2V output were fed into a Power1401 Mk.II signal
acquisition device (CED, Cambridge, UK) which ran a custom-
written sequencer script that read the input signal, performed the
feedback calculation and generated a sinusoid with the desired
output frequency. Using this setup enabled regular temporal
sampling intervals and provided more deterministic computation
time than including a standard computer in the feedback. The signal
acquisition device received parameters and reference signal for each
trial from the Spike2 software (CED), which ran simultaneously
on a computer. During the trials, this software received and
recorded data from the input, output and intermediate channels.
The amplitude of the stimulating sinusoid was 100 μV cm–1 (unless
otherwise noted), which produced 14–43% contamination across
individuals (EOD amplitudes 232–715 μV cm–1) measured at a 1 cm
dipole placed adjacent to the head of the fish. We performed an
identification experiment on the feedback system to assess what
its characteristics were, especially the delay introduced by the
equipment. The contribution was minimal (~2 ms delay) due to fast
instrumentation. As such, the feedback delay was not incorporated
into subsequent calculations.

The closed-loop approach
The fish EOD frequency f1(t) and the stimulus frequency f2(t) are
functions of time. Under constant lighting, temperature and
conductivity, and without conspecific stimulation, the EOD
frequency remains relatively stationary over long periods of time
(Bullock, 1969). The initial time t=0 for each trial was preceded by
a period of no stimulation for at least 300 s, and we defined the
baseline (initial) frequency f1(0) as the EOD frequency at that initial
time.

The following control variables were chosen as frequencies
relative to f1(0):

We refer to u(t) as the ‘input’ and y(t) was the measured ‘output’
of the behavior. Note that u(t) and y(t) are frequencies relative to
the baseline frequency, and are thus an abstraction of the stimulus
and response, and not the raw signals themselves. The signal d(t)
is the difference between these signals, also referred to as the df.

Given a reference signal r(t), a simple proportional controller was
able to stabilize the system:

The frequency of the applied signal S2 was simply f2(t)=u(t)+f1(0).
The controller gain was typically selected as α=2 (unless otherwise
noted) and was positive for all experiments.

In the frequency domain, J(s) denotes the input–output transfer
function corresponding to the behavior at frequency s=jω. Thus J(s)
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Fig. 1. Experimental setup. (A) Schematic diagram of the closed-loop
system. The reference frequency r(t), electric organ discharge (EOD)
frequency y(t) and the frequency of the input signal u(t) are all baseline
subtracted, so that 0 Hz corresponds the fish’s baseline EOD frequency.
The EOD is measured (recording electrodes, red), amplified, and its
frequency y(t) is extracted. The input frequency u(t)=α[y(t)–r(t)] is fed to a
signal generator, which outputs a sinusoid of that frequency. This sinusoid
is played back through a stimulus isolation unit (SIU) to the fish (stimulating
electrodes, black). (B) A block diagram representation of the experimental
system. Here, R(s), U(s), Y(s) and D(s) are the Laplace transforms of the
reference, input, output and difference frequencies, respectively. J(s)
represents the (open-loop) JAR behavior, namely the transfer function from
U(s) to Y(s). G(s) is the open-loop transfer function from the computed
difference D(s) and output Y(s). The closed-loop transfer function H(s)
relates R(s) to Y(s).
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is the behavior transfer function from U(s) to Y(s), where U(s)  and
Y(s) are the Laplace transforms of u(t) and y(t), respectively. G(s)
is the open-loop transfer function between D(s)=[Y(s)–U(s)] and
Y(s). Similarly, H(s) is the closed-loop transfer function between
R(s)  and Y(s) (Fig. 1B). The open-loop transfer function, J(s), can
be converted to closed loop, H(s), and vice versa. The following
equations relate these three transfer functions:

Stimulus types
Single sines

Sinusoidal stimuli were of frequencies 0.01, 0.055, 0.215 and
0.995 Hz and of durations 1000, 1000, 500 and 200 s, respectively.
The stimulus durations were chosen to have a sufficient number of
beat cycles for spectral analysis.

Sum of sines
These stimuli were the sum of 10 logarithmically spaced sinusoids
with randomized phase, in the range 0.01–1 Hz. The sum-of-sine
stimuli included the four single-sine frequency components. The
stimulus duration was 1000 s.

Chirps
The chirp stimulus was a sinusoid of increasing frequency, from
0.01 to 1 Hz over 1000 s. The increase of frequency was exponential,
ensuring sufficient stimulus power across all frequencies. Several
weakly electric fish also exhibit EOD frequency changes termed
‘chirps’, not to be confused with the chirp stimulus used in this
paper.

Long chirps
The long-chirp stimulus was similar to the chirp stimulus except
that the frequency increased from 0.001 to 1 Hz. Consequently, the
stimulus duration was increased to 10,000 s.

Band-limited pseudo-random noise
Band-limited noise stimuli consisted of non-overlapping, 2 Hz wide
frequency bins from 0 to 20 Hz. For each bin, a stimulus was
generated by summing together sinusoids associated with all
uniformly spaced frequencies as dictated by the sampling rate. This
ensured that the stimulus has uniform power over all the frequencies
analyzed within each bin. Each component had randomized phase
and was scaled equally so that the sum would have a maximum
magnitude of 1 Hz. The trial duration was 300 s, except for the lowest
frequency band of 0–2 Hz, which was 1000 s long.

Trial types
Closed-loop reference-tracking trials

For closed-loop reference-tracking trials, we provided a reference
signal r(t) and applied the controller as described in Eqn 2. At the
start of each trial, the fish’s baseline was measured. Subsequently,
there was a ‘balancing’ period of 100 s wherein the controller
aimed to keep the fish at the initial EOD frequency [r(t)=0]. To
avoid startling the fish, the amplitude of the stimulus signal was
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ramped up linearly from 0 to 100 μV cm–1 (unless noted) over the
first 50 s of the balancing period. After the balancing period, a
stimulus (single sine, noise, etc.) was introduced as the reference.
Trials were pseudo-randomized. All stimuli were pre-generated at
1 kHz and input to the sequencer at the start of the trial. A sample
interval of a closed-loop trial with a single-sine stimulus is shown
in Fig. 2.

Each fish (N=5) completed closed-loop reference-tracking trials
(n=49) in a randomized order within a single testing session. The
trials consisted of the following: (i) single sine stimuli (n=8), the
four frequencies of which were replicated for magnitudes of 1 and
2 Hz; (ii) sum-of-sines stimuli (n=4), with two different component
magnitudes (0.2 and 0.3 Hz), with two different sets of randomized
component phases each; thus, the maximum stimulus magnitude
was 2 or 3 Hz; (iii) chirps (n=2), with magnitudes of 1 and 2 Hz;
(iv) white noise stimuli (n=30), with three identical replicates of
each of the 10 frequency bands; (v) chirp (n=2) stimuli with signal
amplitude 50 and 200 μV cm–1 (typical value=100 μV cm–1); these
were to examine sensitivity of the identified system to signal
amplitude; and (vi) chirp (n=3) stimuli with controller gains 1.5,
2.5 and 3 (typical value=2); these stimuli were, similarly, to
examine sensitivity to the feedback gain. Sample responses to four
stimulus types are shown in Fig. 3.

In addition, a subset of three individual fish were presented with
long chirp stimuli at two magnitudes (1 Hz, 2 Hz). After each trial,
the stimulus was turned off and the EOD frequency was allowed
to stabilize over a period of 300 s before the next trial began.

Closed-loop clamp trials
Instead of driving the fish frequency towards a goal, the clamp trials
applied a stimulus such that d(t) was maintained at a desired value.
Two types of clamp trials were run: (i) static clamps, where the
clamp was a constant value d=ds for 300 s; and (ii) dynamic clamps,
where the clamp was kept at a particular value d=ds for 100 s and
then oscillated around the value according to a reference trajectory
r(t), such that d(t)=ds+r(t).

Static- and dynamic-clamp experiments were performed on N=2
individuals that did not complete the reference-tracking trials. These
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Fig. 2. Sample closed-loop trial and verification of applied signals via post
hoc analysis of measured signals. The fish’s baseline-subtracted output
frequency y(t) from the F2V converter (pink) was used during the
experiment and its value was verified with a post hoc estimate of frequency
(blue) based on a spectrogram of the measured EOD signal. The reference
signal r(t) for the trial (black) is predetermined. The baseline-subtracted
input frequency u(t)=α[y(t)–r(t)] (green) was verified against a post hoc
estimate of the applied frequency (orange) based on a spectrogram of the
measured input signal.
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included n=39 static clamps with ds from –50 to 50 at higher
resolution closer to 0. The dynamic clamp trials had single sine,
sum-of-sines and chirp stimuli as the reference trajectories.

Open-loop trials
The objective of these trials was to observe the response of the fish
to a stimulus whose frequency trajectory u(t) was predetermined,
and not tied to y(t). Two types of open-loop trials were performed.
(i) Step inputs: initially, the fish was driven towards 0 Hz in closed
loop for the balancing period of 100 s. The amplitude was linearly
ramped up to 100 μV cm–1 for 50 s as described previously. At 100 s,
the stimulus switched to open loop, and u(t) was commanded to a
fixed value for a further 100 s. We performed trials at steps with
magnitudes from –5 to +5 Hz. (ii) Ramp inputs: the magnitude of
u was ramped down from +30 to –30 Hz or up from –30 to +30 Hz
in 300 s at a constant rate of change of 0.2 Hz s–1. The stimulus
amplitude was ramped to 100 μV cm–1 in the first 10 s. The initial
difference frequency was large, |df|≈30 Hz, well outside the typical
range of the JAR.

Data analysis
All data analysis was carried out using scripts custom-written in
MATLAB (The MathWorks Inc., Natick, MA, USA). For each trial,
we recorded the reference, EOD, F2V output, and output waveform,
sampled at 10 kHz. The voltage signal from the F2V was scaled
and offset to convert it into frequency. Extremely rapid, transient
changes in frequency (commonly caused by fish movement) were
eliminated. The known baseline frequency of the fish was subtracted
from all signals, so that a frequency of 0 Hz represents the fish’s
pre-stimulus (baseline) signal. The processed F2V signal was then
subsampled to 100 Hz, and used as the output signal y(t). The input
for analysis depended on the type of trial: r(t) was used for reference-
tracking trials, d(t) was used for the dynamic clamp trials, and u(t)
was used for the open-loop trials. These inputs were pre-generated
trajectories, as mentioned previously.

Estimating FRFs for sinusoidal inputs
The frequency domain representations of the input and output signals
were calculated using a fast Fourier transform (FFT) and peaks
corresponding to the known number of frequency components in
the input were determined (1 for single sines, 10 for sums of sines).
The frequency response at a particular frequency was calculated as
the ratio of the Fourier transform of the output to the input of the
signal at that particular frequency. Thus, we measured eight data
points from eight single-sine trials and 40 points from four sums-
of-sines trials. Each data point was represented as a phasor, namely
a number in the complex plane. The gain (distance of the phasor to
the origin) and phase (angle of the phasor from the positive real
axis) for all data were computed.

Estimating FRFs for chirp inputs
The input and output signals were filtered, subsampled and
transformed via FFT as described above. The data points in this
case were the input–output ratios of all the frequency components
in the chirp frequency range. Thus, with a single trial, we obtained
many data points, but each individual data point is somewhat more
susceptible to noise. The data points were binned and averaged at
10 bins per decade of frequency, giving us 20 data points per chirp
trial and 30 data points per long chirp trial.

White noise
White noise stimuli were used to evaluate the range over which the
behavior is linear. This was done by evaluating the difference of
the square root of the response–response coherence [√(RR)] and the
stimulus–response coherence (SR) (Roddey et al., 2000). SR is the
coherence between each stimulus and its corresponding response.
√(RR) is the square root of the coherence between two responses
to the repeated presentation of the same stimulus. In our experiment,
as there were three replicates of each frequency band, we obtained
three data points per frequency per individual for SR as well as
√(RR).
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Steps and ramps
These trials were open loop and were used to compare the fish
response with the model response in the time domain. Hence, no
frequency domain analysis was done on these trials.

RESULTS
The JAR is approximately linear around the unstable

equilibrium
The FRF for single sine, sum of sines, chirp and long chirp closed-
loop tracking trials were plotted in a Bode diagram as shown in
Fig. 4A. The data were converted to open loop according to Eqn 4
as shown in Fig. 4B. The agreement between single sine, sum of
sines and chirp data indicates that the behavior can be modeled
approximately as a linear system in the neighborhood of the
equilibrium, i.e. near the baseline frequency f1(0). There are small
differences in the closed-loop data among different trial types,
particularly between long chirps and the others. Sensitivities of
opening the loop tend to amplify these, creating significant
differences in the open-loop data. The modest difference in closed-
loop responses could come from a variety of sources, including non-
linearities and time dependencies in the behavior.

SR and √(RR) coherences from white noise trials are shown in
Fig. 5A. √(RR) represents the maximum theoretically possible
coherence for a linear system in the presence of additive noise. The
difference:

is an indicator of the nonlinearity of the system (Roddey et al., 2000).
This difference (Eqn 6, Fig. 5B) does not exceed 0.4 over the white
noise stimulation range of 0 to 20 Hz. However, past approximately
6 Hz, √(RR) drops to around 0.4. In that range and beyond, even
the best nonlinear model will only be able to capture a fraction of
the behavior. However, the frequency range over which we
performed frequency response analysis and modeling (0.01–1 Hz)
is far below this, and would likely encompass most naturally
occurring frequency modulations among conspecifics.

e RR SR= , (6)−

As an important control, we investigated the sensitivity of the
open-loop dynamics to experimental parameters. Amplitudes were
compared at both half and twice the value of 100 μV cm–1 used in
all of the other experiments described in this paper. Gains were tested
at values of 1.5, 2.5, 3 and 4 compared with the value of 2 used in
all other experiments. There was little-to-no effect of changing either
the amplitude of the signal (Fig. 6A) or the feedback gain (Fig. 6B)
on the open-loop frequency response. The amplitude insensitivity
results in an experimental advantage, as the size of the fish or the
specific placement of the fish between the stimulus electrodes would
have little effect on the dynamics.
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Determining the local linear model
To fit a model to the JAR behavior at the equilibrium, each of the
closed-loop data points was transformed, in the complex plane, to
the corresponding open-loop data point using Eqn 4 (see Fig. 4B).
A model was fitted to the open-loop response; various model
structures were tested and the best fit (see Appendix, Table A1) was
obtained from a simple first-order model with delay:

where k=0.38 Hz, p=–0.24 Hz and T=57 ms. Recall that G(s)
represents the transfer function from the df, d(t), to the fish’s EOD
frequency, y(t) (both signals were baseline subtracted). The negative
real pole (p<0) confirms that this is a stable system. The delay for
the JAR behavior has not been previously reported, but our estimated
value of T=57 ms lies within the range of sensorimotor delays reported
for other animals, sensory modalities and motor behaviors (Franklin
and Wolpert, 2011). The transfer function is plotted as the black curve
in Fig. 4B. The behavior transfer function J(s) (computed via Eqn 4)
is unstable if there are zeros of the denominator G(s)–1 in the open
right-half plane. Similarly, the closed-loop transfer function H(s)
(computed via Eqn 3) is stable if there are no zeros of 1–αJ(s) in the
open right-half plane. Based on the Nyquist stability criterion (Astrom
and Murray, 2008), it is easy to confirm that J(s) is unstable (there
is exactly one pole in the right-half plane). Furthermore, it is trivial
to show that H(s) is stable so long as α is larger than αmin:

For the model parameters in Eqn 7, the minimum stable gain is
αmin=0.35. The experimental value of α=2 is much higher than this
threshold, thus robustly stabilizing the closed-loop system.

Determining the global nonlinear model
The model fit using the closed-loop experiment is, effectively, a
local linearization of the behavior about the unstable equilibrium
y=0 (corresponding to the fish’s pre-stimulus baseline frequency).

p
k

= 1. (8)minα +

G s
k

s p
e( ) = , (7)sT

−
−

Thus, the transfer function described in Eqn 7 is unable to reproduce
the full extent of a naturalistic response, which, in addition to
avoiding a jamming frequency, involves achieving a steady-state
frequency at a higher final df magnitude. Using the linear model as
a starting point, and known features of the JAR neural circuit, we
fitted a nonlinear model as described below.

The model structure we propose parses JARs into competing
sensory and motor components. The sensory component captures
the primary functional computation in the JAR circuit, namely an
‘escape’ term, e(d), that depends on the df, d=y–u. The delay in the
linear model fit is lumped into the computation of the df, d=(t–T),
which is in turn passed into the escape term, namely e[d(t–T)]. The
motor component captures the known tendency of the pacemaker
nucleus to ‘return’ to the pre-stimulus (baseline) EOD frequency
upon removing a transiently applied jamming stimulus. The
combination can be thought of as a leaky nonlinear integrator. When
stimulated by a jamming signal, this model settles down to an
equilibrium frequency where the sensory and motor components
are equal but opposite. By further assuming that the strength of the
motor return depends linearly on the deviation from baseline, we
arrive at the following model structure:

In this equation, τ is the characteristic time constant of the return
to baseline, –y(t) represents the return to baseline, and e[d(t–T)]
represents the repulsive escape. In the time domain, Eqn 7 is
expressed as the following differential equation:

with p=–0.24 Hz and k=0.38 Hz. Upon linearizing the nonlinear
dynamics in Eqn 9 around the baseline, d=0, y=0, we compare terms
with the linear model in Eqn 10 and obtain the following parameters
for the nonlinear model:

y t py t kd t T( ) = ( ) ( ) , (10)+ −

y t y t e d t T( ) = ( ) ( ) . (9)( )τ − + −
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Fig. 6. Sensitivity to experimental
parameters. (A) Open-loop frequency
responses to chirp stimuli, for stimulus
amplitudes of 50 and 200 μV cm–1 along
with the usual experimental value of
100 μV cm–1. The stimulus amplitudes were
measured across a 1 cm dipole placed
adjacent to the head of the fish. (B) Open-
loop responses to the feedback gain α
being set to 1.5, 2.5 and 3 as opposed to
the usual experimental value of 2.
Changing the feedback gain causes
divergence in the closed-loop response as
expected; however, the computed open-
loop responses do not appear to be
sensitive to stimulus amplitude or feedback
gain. In both Bode plots, the top plot is the
gain response and the bottom plot is the
phase response.
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The value of the time constant τ is in the range of JAR return time
constants (approximately 3–12 s) previously reported (Hitschfeld et
al., 2009). To recover the function e(d), note that if d is kept constant
at ds, Eqn 9 predicts that y should settle down to the equilibrium
corresponding to y=0, which is ys=e(ds). Hence, the steady-state
values of the clamp trials determine the escape function. We can
use both the final values of the static clamp trials and values from
the dynamic clamp trials at the end of the static clamp period, before
the reference trajectory begins.

Fig. 7A,B shows the steady-state values of both static and
dynamic clamp trials as a function of the clamp d, for two
individuals. For the purpose of generating theoretical predictions
from our model, we characterized the details of each of these two
individuals’ escape curves using the a sum of three Gaussians
(Matlab curve-fitting toolbox):

The units for all numerical values in the above expression are s–1.
While the Gaussian mixture approximation provided a good fit for
e(d), no mechanistic insights can be drawn from its specific form,
which is somewhat arbitrary.

The (dimensionless) slopes at the origin for the two curves are
remarkably similar (1.68 and 1.73) . Both slopes agree well with
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d d d11.39

5.12

2 3.26
2.40

2 9.05
5.68

2

+ −
− −⎛

⎝⎜
⎞
⎠⎟

− −⎛
⎝⎜

⎞
⎠⎟

− +⎛
⎝⎜

⎞
⎠⎟

e d e e e( ) = 2.55 8.70 11.18 .   (13)
d d d10.43

4.98

2 1.08
4.53

2 6.91
11.23

2

+ −
− −⎛

⎝⎜
⎞
⎠⎟

− −⎛
⎝⎜

⎞
⎠⎟

− +⎛
⎝⎜

⎞
⎠⎟

the predicted value of 1.58 (Fig. 7, orange line), particularly given
that the linear system identification data used to predict the escape
function slope of 1.58 was categorically different from the clamp
experiments, fitting and analytical differentiation used to determine
each individual’s slope. Note that three trials (Fig. 7, green points),
for which the responses were qualitatively different from the other
responses, were removed from fitting; including those trials biased
the curve toward these outliers, and away from the typical behavior.

As shown in Fig. 7A,B and Eqns 12,13, the escape curves reflect
variability between individuals despite the fact that the linearization
at baseline is consistent.

Dynamic clamps validate nonlinear model
As a first validation of the nonlinear model, we examined the
dynamic clamp trials, whose FRF should, in theory, match the
prediction of the linearization of Eqn 9 at (ds,ys). We examined this
prediction for two fish (see Fig. 7).

For our prediction, we approximated the nonlinear function e(d)
as a straight line through the origin, namely ys=τkds. With this
approximation, the FRFs should match the prediction from Eqn 10.
The FRFs in Fig. 7Aii,iii and Bii,iii show the frequency responses
to dynamic clamps at two points along e(d), marked in Fig. 7Ai and
Bi. The response of the linearized model is shown in all four plots
and is in good agreement with the frequency responses from the
clamp trials. The data shown in Fig. 7 were selected to most clearly
illustrate the prediction, but among the experimental paradigms we
used, clamp trials were the least robust and repeatable.
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Fig. 7. Static and dynamic clamps. (Ai,Bi)
The steady-state frequency, ys (black
dots), of two individuals vary nonlinearly as
a function of clamped frequency
difference, ds. These data were used to fit
distinct escape functions, e(d) (blue curve),
for each of the two distinct fish: (A) see
Eqn 12 and (B) see Eqn 13. Green dots
represent trials in which the fish frequency
shifted in the direction of the input; these
data points were removed from fitting. The
linearization at origin obtained from
reference-tracking trials y=1.58d is shown
(orange line) to compare with the slope of
e(d) at the origin. (Aii,iii, Bii,iii) Bode plots
for the dynamic clamp trials for the
selected clamp values d=–2.0 (Aii) and
d=2.0 (Aiii) for the first individual, and
d=–5.0 (Bii) and d=–2.0 (Biii) for the
second individual. On each Bode plot, the
response of the linearized model (Eqn 10)
is also shown (pink curve). The dynamic
clamps were not very robust, so we show
the best pair of frequency data that we
were able to obtain for each individual.
This is evident e.g. in Bii, where the sum-
of-sines response is well predicted by the
model but the chirp responses have a
lower gain response.
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Open-loop steps validate nonlinear model
For the same two individuals for which the escape functions were
fitted, we simulated the model in Eqn 9 in response to (open-loop)
step inputs. The simulated step responses matched the data from
the open-loop step trials remarkably well, particularly given the
qualitatively different nature of open-loop step experiments
compared with the experiments used to furnish the nonlinear model.
Two examples, showing all the data from one individual for steps
u=+4 Hz and u=–3 Hz, along with the model response, are shown
in Fig. 8.

Snap-through bifurcation predicted for ramp stimuli
The model predicts that if the external stimulus frequency were
slowly increased or decreased from outside the frequency range
typically thought to elicit the JAR, then it should drive the fish’s
frequency up or down, respectively, until the fish frequency ‘snaps
over’ to the other side of the stimulus and then moves away from
the stimulus in the opposite direction. Using the open-loop ramp

trials (see Materials and methods), we tested this prediction of the
model.

We now describe the model’s snap-through prediction in more
detail. Assuming u(t)=constant, the solution(s) to y(t)=e[u–y(t)] are
the equilibria of the system, i.e. the intersections of functions y and
e(u–y). The stability of the equilibrium depends on the derivative
of the vector field on the right-hand side of Eqn 9 with respect to
y: if the derivative is negative, positive or zero, the equilibrium is
stable, unstable or a saddle–node, respectively. The subplots along
the top in Fig. 9 decompose the vector field at different values of
u that produce qualitatively different nonlinear dynamics in the sense
that the number and type of equilibria change. Assuming u changes
sufficiently slowly, the dynamics should track the nearest stable
equilibrium.

The number and type of equilibria depend explicitly on the
structure of the escape function e(d) (where, recall, d=u–y). For the
specific fit of e(d) in Fig. 7A we tested the predictions of the non-
linear model. For this escape function the dynamics are punctuated
by two bifurcation points at critical levels of the stimulus input,
namely u≈–2.21 and u≈3.71. For constant stimuli below –2.21 there
is one equilibrium (Fig. 9A). The single equilibrium (green dashed
line) here is stable, as y crosses from positive to negative at the
equilibrium. At the critical level u≈–2.21, an additional equilibrium
is introduced, namely a saddle–node (Fig. 9B). For –2.21<u<3.71,
one stable and one unstable equilibrium branch out of the
saddle–node, while the original stable equilibrium persists; thus, in
this region there are three equilibria (Fig. 9C). But, at u=+3.71 the
unstable branch intersects with the original stable branch creating
a saddle–node (Fig. 9D), which vanishes for u>3.71, leaving just
one lower stable equilibrium (Fig. 9E). The locus of equilibria at
each u is shown in Fig. 9F (green curve); note that the middle branch
of this inverted S-shaped curve is the unstable branch.

We simulated the dynamics for increasing and decreasing ramps
between –30 and +30 Hz. We started the simulation with an initial
condition of y(0)=0, which was near the only equilibrium for the
initial values of u=±30 Hz. The red curve in Fig. 9 shows that,
indeed, at each time t, y(t) remains near the closest stable equilibrium
point until the output y(t) snaps through to the other branch. This
occurs when the input u(t) reaches a saddle–node bifurcation. In
the case of the increasing ramp from –30, both the simulated (red)
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Fig. 8. Step responses. (A) Responses of one individual to open loop steps
of u=4 Hz (gray) with the model response to the same stimulus (red).
(B) Responses of the same individual to steps of u=–3 Hz (gray) with the
model response to the same stimulus (red).
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Fig. 9. Snap-through bifurcation of the
dynamics y(t)=τ–1{e[y(t–T)–u(t–T)]–y(t)}.
(A–E) The right-hand side of the dynamics
(blue, right axis) is the scaled difference
between two components, e(y–u) (pink, left
axis) and y (orange, left axis). The
intersection points of y and e(y–u) comprise
the equilibrium frequencies (green dashed
lines), corresponding to dy/dt=0. The graphs
in A–E correspond to five distinct values of
u, indicated by the black dashed lines
originating in F. (F) As the stimulus u(t) was
ramped up or down from ±30 Hz, the fish
response (gray curves) initially followed the
nearest stable equilibrium. For frequencies
between approximately –2.21 and 3.71
there are three possible equilibria (green
curve); the center branch is unstable. When
the input reached a bifurcation frequency,
the output snapped through to the only
remaining equilibrium, as predicted by the
model output (red curve). The general
hysteretic structure of the responses is well
captured by the model.
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and actual (gray, multiple trials) y(t) track the stable equilibrium on
the upper branch of the green curve in Fig. 9F, even as the two
additional equilibria are introduced at the bifurcation point of
u≈–2.21. Eventually, the unstable equilibrium combines with the
stable equilibrium that y(t) is tracking, causing both of them to vanish
after forming a saddle–node. At that point, the closest (and only)
stable equilibrium is the continuation of the lower branch, which
causes y(t) to snap through, ultimately converging to the remaining
equilibrium. Note that the sign of the df for a given stimulus
frequency depends on whether the EOD frequency was initially
above or below the stimulus frequency. The fact that the JAR
circuitry is driven by the df (including its sign), not merely the
stimulus frequency, manifests itself as the hysteresis loop shown in
Fig. 9. Additionally, for the decreasing ramps, the snap-through for
the actual data are delayed relative to the model. The overshoot of
the model is indicative that either e(d) was underestimated in d>0
or there is a velocity dependence on d not captured by our model.

DISCUSSION
The JAR is a behavior in several species of weakly electric fish that
allows an individual to shift its EOD frequency away from an
interfering conspecific, whose frequency differs from its own by a
low (but non-zero) value. The neural computation of the JAR is
conceptually simple yet mechanistically complex: the fish achieve
the JAR without an internal reference to their own EOD frequency
(Heiligenberg et al., 1978; Bullock et al., 1972) and instead integrate
information from receptive fields across the body surface, ultimately
evaluating the single parameter df to raise or lower the EOD frequency
so as to increase the magnitude of df (Heiligenberg, 1991).

Despite the mechanistic complexity of the JAR, our goal was to
capture its conceptual simplicity and express it as a low-order
dynamical system. To achieve this goal, we stabilized the JAR using
a computer-controlled feedback system. This stabilization allowed
us to reduce the complete computational algorithm of the JAR into
a simple parsimonious model comprising a delay, a sensory escape
function and a motor return (see Fig. 10).

Given the structure of the model described above, comparatively
simple experimental measurements can now be used inform the
parameters of a model that in turn predicts the responses to novel
naturalistic or artificial stimuli. For example, this model captures a
snap-through bifurcation that was not previously appreciated. Further,
this model can be used to simulate social interactions between multiple
individuals, without considering the mechanistic details of the internal
dynamics underlying each individual’s response.

Local and global modeling
A stimulus whose frequency perfectly matches that of the fish’s
own steady-state EOD would not elicit a JAR response; there would
be no amplitude modulations or changes in the timings of zero
crossings, as is necessary to drive the JAR circuit. This situation is
an unstable equilibrium, because any deviations of either the
stimulus or response frequency would cause the fish to shift its
frequency away from it. The EOD frequency does not escape
indefinitely, however, as it settles down into a new equilibrium that
is a function of the applied stimulus frequency. The existence of
additional stable equilibria reveals the inherent nonlinear nature of
the behavior.

Further, it is known that there are two parallel motor pathways,
one that shifts the EOD frequency up and the other down (Metzner,
1993). This implies that there could well be a significant non-
linearities or even non-smoothness of the dynamics at the switching
point between the two circuits, i.e. the baseline. Thus, it is imperative
that we understand the local dynamics at baseline, in addition to
capturing the nonlinear escape dynamics. Indeed, it is the global
asymmetric shape of the nonlinear escape curve e(d) – and not a
local discontinuity – that captures the asymmetry that was described
previously by Metzner. The local linear model implies that the
acceleration and deceleration of the pacemaker signal initiated by
these two parallel pathways are similar in magnitude around
baseline, causing a ‘smooth’ transition between the circuits. The
mechanism of the JAR is based on spatial integration and voting,
and not all units agree on the direction of the df (Heiligenberg et
al., 1978). Thus, as the stimulus transitions from negative to
positive df (or vice versa), the balance in the differential recruitment
of the ‘up versus down’ JAR circuits tips, in a manner that is,
evidently, graded and linear.

Closed-loop stabilization of unstable behavior
The JAR is an escape response, which makes the examination of
the behavior around the baseline challenging. It is the instability of
the equilibrium at baseline that underlies this difficulty. However,
the stabilization of an unstable system using feedback is a classical
application of control theory. In the case of the fish, we stabilized
the unstable equilibrium by setting up a closed-loop feedback system
that used the error signal between the fish’s own frequency and a
predefined reference frequency trajectory as the basis for the
feedback. This system allows us to ‘dictate’ the frequency of the
fish. We showed experimentally (Fig. 2) and confirmed analytically
after modeling (Eqn 8) that this feedback did indeed stabilize the
open-loop system.

This artificially closed-loop system was systematically perturbed
(Fig. 3), and the resulting FRF data were numerically transformed to
open loop using the known feedback transformation (Eqn 4, Fig. 4B).
This allowed us to identify a model structure and verify it on the
experimentally obtained closed-loop FRF data (Fig. 4A). In this
manner, by knowing the feedback parameters and the closed-loop
response, we were able to fit a frequency domain model to an unstable
behavior. This procedure is relevant and applicable to a wide range
of unstable biological behaviors, especially robust escape behaviors.

Evaluating the JAR in relation to the model
In each of the fish that we tested (five for reference tracking and
two for clamp), the linearization at baseline was found to be identical.
This was an unexpected result, as jamming avoidance is possible
with different slopes for e(d) at the origin, as long as the slopes are
negative. Assuming similar motor dynamics, this suggests that small
excursions around baseline will be similar across individuals.

Sensory
‘escape’

Lumped
delay

Motor
‘return’

d(t)
e–sT

y(t)

u(t)

τs

1

Fig. 10. A parsimonious nonlinear model for the JAR. The motor output of
the EOD is represented in terms of the frequency of the pacemaker, y(t).
As is well known, the nervous system extracts the df, d(t)=y(t)–u(t), where
u(t) is the frequency of an external stimulus (e.g. from a nearby
conspecific). The sensorimotor transform includes a delay T, an sensory
escape function e(d) and autogenous motor return with time constant τ.
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Further, the linearizations were also found to be independent of
stimulus amplitude. Previous work on the JAR (Bullock et al., 1972)
has clearly shown that stimulus amplitude affects the ‘strength’ of
the JAR in the sense that the magnitude of the frequency excursion
is positively correlated with the depth of modulation. This would
suggest that, in view of our model, the effect of stimulus amplitude
would manifest as a change in the ‘height’ of the escape curve (e.g.
see Fig. 7) but that the slope at the origin remains unchanged. The
consistency of the slope at the origin also means that the escape
curve, which can be identified by clamped-df experiments, serves
as a possible ‘signature’ for the JAR behavior. By quantifying the
escape curve for two individuals, jamming interactions between them
can be modeled and predicted.

Reducing the JAR to this curve also allows us to examine social
aspects of the JAR without considering the mechanistic details
underlying its dynamics. For instance, previous research, interpreted
in the context of our model, suggests that the escape curves may
vary across development and be dependent on sex (Kramer, 1987).
This means that the distribution of frequencies in a social group
might be tailored by the individuals over time by modification of
their escape curves. Future work might include identifying a general
model structure that works across individuals and across stimulus
amplitudes so that a complete interaction between freely swimming
individuals in the wild can be modeled.

Finally, the snap-through response shown in Fig. 9 was first
reported as part of the work that led to the discovery of the JAR
(Watanabe and Takeda, 1963) (Fig. 5), and was described as the
“effect of ‘chasing’ the discharge frequency by changing the
stimulus frequency towards the discharge frequency”. This sudden
reversal of the direction of df can now be understood as a bifurcation
in the dynamics of the nonlinear model described in this paper.

Refining and extending the model
The effect of stimulus amplitude on the dynamics has not been fully
explored in this work. While we found no significant dependence
on constant amplitude (see Fig. 6), the JAR certainly depends on
changing amplitude as a changing amplitude is simply an AM. In
a natural environment, the amplitude of EOD signals from nearby
conspecifics will depend on the time-varying distance and orientation
between the animals. If the goal is to model the interaction of groups
of fish, it becomes necessary to quantify the effect of stimulus
amplitude dynamics on the JAR.

In addition, the escape function may depend on higher order time
derivatives of d, taking the form e(d,d,d,…). An asymmetry in this
kind of velocity dependence may explain the difference between
the model response and data in the case of the decreasing ramps.
Experiments similar to the dynamic clamp trials described in this
paper are required to fully understand the contribution of these higher
order terms.

The ‘return’ term was chosen to be linear based on the fact that,
after a temporary JAR stimulus is removed (that is, there is no longer
an exogenous stimulus), the EOD frequency exhibits nearly
exponential returns (Hitschfeld et al., 2009). The fact that
exponential decays are exhibited by linear dynamics suggests that
a linear model for the unstimulated return to baseline is a good
approximation. That said, this paper makes no systematic attempt
to discover nonlinearities in the return and upon more detailed
studies, one may find that nonlinearities of the return are important
and may vary between individuals much like the escape. If this were
the case, the model would be as follows:

y y e d= ( ) ( ) , (14)−ρ +

with ρ(y) and e(d) denoting return and escape, respectively. This
would imply that the steady state frequencies are ys= ρ–1[e(ds)].
Further behavioral or neural experiments will then be required to
tease apart ρ and e, as this cannot be done with input–output behavior
alone.

In their natural habitat, weakly electric fish are often found in
groups of two or more individuals (Stamper et al., 2010; Tan et al.,
2005). In these groups, the complex interaction of electric fields
can give rise to modulations called envelopes (Stamper et al., 2013),
through the relative movement between individuals (Yu et al., 2012),
or the higher order interaction of their EODs (Stamper et al., 2012).
Evidence of envelope processing has been revealed in the
electrosensory system in weakly electric fish (Middleton et al., 2006;
Longtin et al., 2008; McGillivray et al., 2012; Savard et al., 2011).
In addition, Eigenmannia have a behavioral response to low-
frequency ‘social envelopes’ (Stamper et al., 2012). Extending our
JAR model not only to incorporate pair-wise differences between
individuals but also to capture envelope responses would ultimately
provide a powerful tool to predict and interpret complex social
behavior in these fish.

This analysis can also be used to further explore the neural circuitry
that controls the JAR. These behavioral dynamics are, of course,
manifest in CNS circuits. Specifically, our model parses escape as a
sensory-driven phenomenon. Based on this, we might expect to
discover neural correlates of the escape component in electrosensory
areas, such as the electrosensory lateral line lobe, midbrain torus
semicircularis, and perhaps the nucleus electrosensorius. Indeed, it is
well known that these areas encode and perform the necessary
computations for the control of the JAR (Heiligenberg, 1991). In
contrast, our model suggests that the return is mediated by motor
processes. If so, then we would expect to discover neural correlates
of the return in the properties of neurons in the pre-pacemaker nucleus
or pacemaker nucleus. This is consistant with previous work in
Apteronotus which examined how the baseline EOD frequency is
controlled and modulated through activity in the pacemaker (Oestreich
and Zakon, 2002). Indeed, our approach could be extended to
examine longer term modulation of the motor system by introducing
biases or offsets into the feedback controller. 

APPENDIX
This section describes the modeling approach for the closed-loop
reference tracking trials. Three of the four fish used in the reference
frequency tracking trials were tested using long chirp stimuli whose
reference frequency started at 0.001 Hz and increased to 1 Hz; the
resulting FRF data binned into 30 frequency bands (see Materials
and methods). Two chirp magnitudes (1 and 2 Hz) were tested for
each individual for a total of six trials that were used for fitting.

The FRF of the closed-loop system was determined as described
in Materials and methods. These data were converted to open loop
as per Eqn 5. In open loop, each trial was represented by complex
numbers for each frequency bin. At a given frequency ω, the ratio
of output Y(jω) to its corresponding input D(jω) can be represented
by its gain and phase components:

The logarithm of this complex number is:

which is also a complex number, but weights gains logarithmically
and phases linearly. This is important as we are interested in the
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ratio of magnitudes and the difference of phases. This is also
analogous to computing error directly in the Bode plot, e.g. Figs 4,
6. Distances in this ‘log-complex plane’ thus provide a good measure
of error for model fitting, as previously used by Roth and colleagues
(Roth et al., 2012).

We also have to account for the fact that the open-loop response
will have increased sensitivity to noise at some frequencies,
corresponding to the equation for opening the loop (Eqn 4). The
sensitivity of opening the loop can be computed in log-complex
plane coordinates:

We use the inverse of this sensitivity to weight the error. The
error between model response M(ω) and the system response G(ω)
at a given frequency ω is then defined as follows:

The total error between model M and response G is the sum of this
error over all frequencies.

Determining model structure
The next step was to determine the model structure. A model-fitting
criterion such as reduced χ2, or information criteria such as Akaike
information criterion (AIC) or Bayesian information criterion (BIC)
can be generally minimized to determine the model order. However,
these criteria assume independent data points. As the chirp is a time-
varying frequency stimulus, the response data are clearly covariant,
and the relatively small number of trials (six) is insufficient to
determine the covariance structure between 30 bins. So, we
implemented a selection criterion decision technique that takes into
account two factors: model fit and model consistency.

Model fit
Leave-one-out cross-validation was used as the technique to fit a
model while penalizing over-fitting. This technique is asymptotically
equivalent to AIC (Stone, 1977). For each model, the Matlab non-
linear optimization function fminsearch was run with the error
function (Eqn A4) to fit parameters to data from five trials, leaving
the sixth trial out. This optimization was initialized 100 times (using
Matlab to generate pseudo-random initial parameter values), and
the set of parameters with the lowest fit error among them was then
compared with the left-out trial, using the same error function. The
leave-one-out error determined for one trial was averaged over all
six trials being left out, providing a combined leave-one-out error
for the model structure (see Fig. A1, y-axis).

Model consistency
Even though a certain model might have low leave-one-out error,
the parameters fitted during each of the six leave-one-out
minimizations may vary significantly. This variance, which is a
measure of the uncertainty of the parameters based on our data,
needs to be penalized, as we desire to have a consistent model fit
with all six trials. To measure model consistency, we calculate
the maximum singular value of the K×6 matrix where each of the
six columns contains an estimate of all K parameters, with one
column for each fit (one for each of the six trials left out). The
poles and zeros of each fit are sorted, and the mean of each
parameter across trials is subtracted, before finding the maximum
singular value.
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Altogether, 72 transfer function models of up to seventh order
were tested. This includes all combinations nz≤np≤7 where nz is the
number of zeros and np is the number of poles. The delay was turned
on (nd=1) or off (nd=0). The models are referred to as (nz,np,nd),
and correspond to the transfer function:

In this equation, the nz zeros are the roots of the numerator
polynomial, and the np poles are the roots of the denominator
polynomial. The total number of parameters for a model is
K=nz+np+nd+1, where the extra parameter is due to the gain. The
maximum K tested is then 7+7+1+1=16. Fig. A1 shows leave-one-
out error versus maximum singular value. For clarity, only models
with maximum singular values below 105 are shown. It is clear from
the figure that the two initial models (0,0,0), namely a pure gain,
and (0,0,1), namely a gain with delay, both have unacceptably high
errors. The next two models, both containing a gain and pole, provide
low-error consistent fits, either without (0,1,0) or with (0,1,1) a delay.

The higher order models have lower error in some instances, but
are much less consistent. As shown in the inset of Fig. A1, among
the two ‘good’ models, we chose the model closest to the origin,
(0,1,1), corresponding to a delayed first-order system.

Model fitting
After determining the model structure, the parameters for each model
were ultimately estimated without cross-validation (i.e. using all
available data). Optimization was performed 100 times for each
model structure with random initial parameter guesses. The lowest
error fit among these was designated the fit error, the parameters
associated with which were used. For the two ‘good’ models (see
Table A1), we inspected the histogram of all 100 final parameters
and found that most initial parameter guesses converged to the same
final parameter values. This suggests that, given the wide set of
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Fig. A1. Model fit versus model consistency. Each data point (black dot)
represents a particular model structure (nz,np,nd). The average leave-one-
out error for a particular model structure is on the y-axis. The maximum
singular value of the K×6 parameter matrix for each model structure is
shown on the x-axis. The first four models are labeled for clarity, and the
region containing the two best models is magnified (inset). The model order
(0,1,1) was ultimately chosen as the best compromise between fit and
consistency (inset; green dot).
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initial guesses, our final estimate was not trapped in a local
minimum. For clarity, we present the best parameters and errors of
only the 10 lowest order models shown in Fig. A1 and Table A1.
Fig. A2 compares experimental FRFs with the four lowest order

models. The (0,0,0) and (0,0,1) models are obviously poor fits to
the data, whereas the two-parameter model (0,1,0) fits the data well
except at the highest frequencies. The (0,1,1) model compensates
for this by introducing a phase lag due to the delay. There is no
discernible improvement in the frequency responses of models of
higher order than (0,1,1), so they are not shown. The best-fit
parameters for the (0,1,1) model are reported in Results (see Eqn 7).

LIST OF SYMBOLS AND ABBREVIATIONS
AIC Akaike information criterion 
AM amplitude modulation
BIC Bayesian information criterion 
D(s) Laplace transform of difference signal
d(t) difference signal (Hz)
df difference frequency (Hz)
e(d) escape function
EOD electric organ discharge
f1 EOD frequency (Hz)
f2 stimulus frequency (Hz)
FRF frequency response function 
G(s) behavior transfer function
H(s) closed-loop transfer function
J(s) open-loop transfer function
JAR Jamming Avoidance Response 
K number of parameters in candidate model
k transfer function gain (Hz)
M(s) model transfer function 
N number of fish 
n number of trials 
nd existence of delay (0/1) in candidate model
np number of poles in candidate model
nz number of zeros in candidate model
p pole of transfer function (Hz)
R(s) Laplace transform of reference signal
r(t) reference signal (Hz)
RR response–response coherence 
s Laplace complex frequency variable
SR stimulus–response coherence 
T delay of transfer function (s)
t time (s)
U(s) Laplace transform of input signal 
u(t) input signal (Hz)
Y(s) Laplace transform of output signal 
y(t) output signal (Hz)
α feedback gain 
ρ(y) return function
τ time constant (s)
ω frequency (rad s–1)

Table A1. Fit parameters, fit error, leave-one-out error and maximum singular value for the first 12 model structures

Leave-one-out Maximum 
Model K Gain Zeros Poles Delay Fit error error singular value

(0,0,0) 1 0.45 295.17 49.73 0.258
(0,0,1) 2 0.45 0.49 172.34 29.30 0.058
(0,1,0) 2 0.37 –0.23 28.77 5.81 0.071
(0,1,1)* 3 0.38 –0.24 0.057 27.12 5.59 0.077
(1,1,0) 3 –0.021 16.14 –0.24 26.97 5.56 5.23
(1,1,1) 4 0.085 –3.65 –0.19 0.25 25.42 5.32 0.92
(0,2,0) 3 7.52 –0.25, –19.90 27.33 5.61 6.30
(0,2,1) 4 2.52×104 –0.24, –6.72×104 0.057 27.12 5.59 8.12×104

(1,2,0) 4 0.39 –0.08 –0.04, –0.38 25.67 5.86 28.32
(1,2,1) 5 0.41 –0.16 –0.06, –0.54 0.08 23.03 5.22 1.90
(2,2,0) 5 –0.03 –0.13, 13.18 –0.06, –0.48 23.02 5.19 4.37
(2,2,1) 6 0.06 –0.09, –5.78 –0.04, –0.37 0.21 22.75 5.12 383.72

Poles correspond to the roots of the denominator polynomial, and zeros correspond to the roots of the numerator polynomial of Eqn A5. The ‘best’ models
(0,1,0) and (0,1,1) are highlighted in bold. The (0,1,1) model (starred) and its parameters were used in Eqn 7.
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Fig. A2. Candidate model fits to open-loop data. The FRF data from six
long-chirp trials transformed to open loop using Eqn 5 are shown, along
with the best parameter fits for model structures (0,0,0), (0,0,1), (0,1,0) and
(0,1,1). Models (0,0,0) and (0,0,1) have identical gains and thus the black
curve is occluded by the blue curve in the gain plot. Models (0,1,0) and
(0,1,1) differ slightly at the highest frequencies tested. Frequency
responses of higher order models were not substantively different from the
(0,1,1) model within this frequency range, and thus are not shown.
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