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Synopsis Control theory arose from a need to control synthetic systems. From regulating steam engines to tuning radios

to devices capable of autonomous movement, it provided a formal mathematical basis for understanding the role of

feedback in the stability (or change) of dynamical systems. It provides a framework for understanding any system with

regulation via feedback, including biological ones such as regulatory gene networks, cellular metabolic systems, sensori-

motor dynamics of moving animals, and even ecological or evolutionary dynamics of organisms and populations. Here,

we focus on four case studies of the sensorimotor dynamics of animals, each of which involves the application of

principles from control theory to probe stability and feedback in an organism’s response to perturbations. We use

examples from aquatic (two behaviors performed by electric fish), terrestrial (following of walls by cockroaches), and

aerial environments (flight control by moths) to highlight how one can use control theory to understand the way

feedback mechanisms interact with the physical dynamics of animals to determine their stability and response to sensory

inputs and perturbations. Each case study is cast as a control problem with sensory input, neural processing, and motor

dynamics, the output of which feeds back to the sensory inputs. Collectively, the interaction of these systems in a closed

loop determines the behavior of the entire system.

Introduction

The idea that organisms can be understood as a hi-

erarchy of organizational levels—from molecules to

behavior—seems intuitive. Indeed, a dominant para-

digm in biological science involves a reductionist ap-

proach in which a phenomenon at a particular level

of organization is described as a consequence of the

mechanisms at a lower level. For example, the mech-

anisms underlying behavior might be described in

terms of the activity of a set of neurons, or the be-

havior of a single neuron might be understood in

terms of its the properties of its membrane.

However, each level of organization exhibits emer-

gent properties that are not readily resolved into

components (Anderson 1972), suggesting the need

for an integrative approach. The case for taking an

integrative view is strengthened by considering a fun-

damental organizational feature inherent to biologi-

cal systems: feedback regulation. Living systems

ubiquitously exploit regulatory mechanisms for

maintaining, controlling, and adjusting parameters

across all scales, from single molecules to popula-

tions of organisms, from microseconds to years.

These regulatory networks can form functional con-

nections within and across multiple levels

(Egiazaryan and Sudakov 2007). This feedback

often radically alters the dynamic character of the

subsystems that comprise a closed-loop system, ren-

dering unstable systems stable, fragile systems robust,

or slow systems fast. Consequently, the properties of

individual components (e.g., biomolecules, cells, and

organs), the communication channels that link them
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(e.g., chemical, electrical, and mechanical), and the

signals carried by those channels (e.g., phosphoryla-

tion, action potentials, and forces), can only be

understood in terms of the performance of the com-

plete feedback control system. Understanding the

role of individual components in the context of a

complete feedback system is the purview of control

systems theory (Astrom and Murray 2008). Control

theory provides a suite of tools and language for

describing biological feedback control systems

(Roth et al. 2014).

An organism comprises a complex patchwork of

feedback control systems that cut across traditional

levels of biological organization. Thus, understanding

biological systems requires an understanding of what

feedback can (and cannot) do. Feedback can be used

to dramatically enhance robustness and performance

of a system. However, its benefits are not endless:

there are inherent, often inescapable, tradeoffs in

feedback systems, and control theory provides precise

quantitative language to address such tradeoffs

(Freudenberg and Looze 1985; Middleton 1991;

Looze et al. 2010).

Perhaps nowhere are feedback control tradeoffs—

such as the intricate balance between stability and

change—more immediately relevant than in the con-

trolled movement of animals. Although measures of

performance, such as speed and efficiency, are essen-

tial to some behaviors, some measure of stability

almost invariably plays a role, as the fastest animal

would have poor locomotor performance if the smal-

lest irregularity in the surrounding environment was

sufficient to cause it to crash, fall, break, or fail

(Dickinson et al. 2000). Yet, animals do not seem

to adopt the most stable, conservative designs—e.g.,

aggressively regulating the rate of convergence and

bringing the animal to rest as quickly as possible

may be inefficient from a different perspective

(Ankarali et al. 2014).

There is no single definition of ‘‘stability’’ or

‘‘change’’ that is ideally suited for all biological sys-

tems. In neuromechanical terms, however, ‘‘change’’

can be defined in terms of the responsiveness or

maneuverability of the motor system (Sefati et al.

2013) to a sensory stimulus—i.e., the ‘‘bandwidth’’

of the system. ‘‘Stability’’ on the other hand, refers

most generally to the ability of a system to reject

external perturbations, but can also refer to the ‘‘per-

sistance’’ of a system (Byl and Tedrake 2009;

Ankarali et al. 2014).

After providing a short historical perspective on

feedback control and biology, we review a diversity

of sensorimotor feedback control systems. The meth-

ods reviewed in this article are remarkably conserved,

despite categorical differences in species (vertebrates

and invertebrates) and locomotor modalities (terres-

trial, aquatic, and aerial). Indeed, one of the senso-

rimotor behaviors, a social behavior termed the

jamming avoidance response (JAR) in the weakly

electric fish, requires no movement, but yet enjoys

the same basic modeling tools and approaches as

used for sensorimotor feedback systems based on

movement.

A brief history of feedback control and
living systems

In the latter part of the 18th century, James Watt

and Matthew Boulton invented an ingenious device

that provided feedback control for the steam engine.

In this device, modeled after similar mechanisms

used in windmills and millstones (Hills 1996), the

passage of steam was controlled by a governor

(Fig. 1) in which the rotational velocity of the en-

gine’s output was ‘‘sensed’’ by two masses suspended

from an articulating lever system. As the rotation

rate of the engine increased, the centripetal acceler-

ation raised the masses closing the throttle to the

engine. Thus, the output of the engine was sensed

by a physical mechanism that influenced the input of

steam into the engine. The governor is an elegant

physical instantiation of a closed-loop feedback

system: the spin-rate of the mass depends on, and

controls, the flow of steam through the system.

That concept of a governor—a closed-loop feed-

back system—has its tendrils in evolution and ecol-

ogy. Indeed, the idea that feedback plays a central

role in evolution owes its origins to Alfred (Darwin

and Wallace 1858):

The action of this principle is exactly like that of

the centrifugal governor of the steam engine,

which checks and corrects any irregularities

almost before they become evident; and in like

manner no unbalanced deficiency in the animal

kingdom can ever reach any conspicuous magni-

tude, because it would make itself felt at the very

first step, by rendering existence difficult and ex-

tinction almost sure soon to follow.

At about the same time that Darwin and Wallace

were forging the principles of evolution, the concept

of the governor in feedback control extended deeply

into dynamical systems theory with James Maxwell’s

early contribution ‘‘On Governors’’ (1867) in which

he laid out the mathematical formulation for the

equations of motion of a governor and a speed-

dependent term throttling down the rate of spin.

The major contribution of this work was his gener-

alization to a broad class of closed-loop feedback

2 N. J. Cowan et al.
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systems, with the novel idea that the input and

output of such systems are inextricably linked (as

they are in living systems). Maxwell is, in many

ways, one of the founding contributors to the theory

of control systems.

Following Maxwell, the theory of systems and con-

trols takes on a rich history with a focus on quanti-

fying the stability and performance of dynamical

systems with the seminal contributions of

Aleksandr Lyapunov, Harry Nyquist, and Hendrik

Bode (among many others) in the late 19th and

early 20th centuries. These and subsequent historic

contributions of control theory to engineering do-

mains—from tuning radios to aircraft controllers,

and much more—are summarized in a short history

of the field by Bennett (1996).

The ideas of Wallace and Maxwell can be traced to

living systems in a host of contributions. For exam-

ple, at the time of Maxwell, the French physiologist

Claude Bernard developed the idea (later termed

‘‘homeostasis’’) and suggested that physiological sys-

tems maintain a constant internal environment (‘‘la

milieu interieur’’) via physiological feedback.

Interestingly, glucose control and its consequences

to diabetes was a key example of feedback developed

by Bernard. Indeed, this concept of feedback and

control is a hallmark of the sort of biological systems

we study and teach.

In the latter part of the 19th century and early

20th century, the contributions of dynamical-systems

theory to living systems began to form with an initial

focus on neural systems and cybernetics. The Russian

physiologist Pyotr Anokhin for example, developed

the idea of ‘‘back afferentiation’’ (feedback) in the

neural control of sensorimotor systems and reflexes

[for a review, see Egiazaryan and Sudakov (2007)].

Anokhin’s ‘‘functional systems theory’’ has all the

hallmarks of dynamical-systems and control theory

we use in cybernetics and in systems biology today.

While Anokhin was delving into neural systems,

reflexes, and control, Norbert Wiener, a pioneer in

mathematics and engineering, had begun to focus

much of his attention on the control laws associated

with animals and machines, essentially founding the

domain of cybernetics (Wiener 1948). Along with the

contributions of Ludwig von Bertalanffy (1968),

whose mathematical models of the growth of animals

are still used today, the fields of cybernetics and von

Bertalanffy’s ‘‘general systems theory’’ gave rise to

the burgeoning fields of systems neuroscience, sys-

tems biology, and robotics. Indeed, the sort of inte-

grative biology we outline in this article is in every

sense ‘‘systems biology’’ without the restriction of

attention solely to genetic and molecular scales, but

with all the requisite mathematical underpinnings

that began with Watt and Maxwell.

Four systems that walk the proverbial

tightrope

We turn our focus to the dynamics and control of

motor behavior in animal systems (neuromechanics)

to illustrate basic conceptual issues surrounding the

application of control theory that address the appar-

ent dichotomy between stability and change.

Specifically, we provide four examples of control-the-

oretic analyses of neuromechanical systems. For each

example, we describe the most important features of

the control system at hand, point out any task-rele-

vant tradeoffs, and discuss how the organism walks

the proverbial tightrope.

A second, but equally important, goal is to review

the application of control-theoretic analyses in inter-

preting the roles of constituent components of a bio-

logical feedback control system. The specific physical

details of individual components of the system are

most meaningfully described in the context of the

intact control circuit. With this goal in mind, we

review rapid thigmotaxis (i.e., ‘‘wall-following’’) by

cockroaches, tracking of refuges by weakly electric

fish, the abdominal reflex in hawk moths, and the

JAR, again in weakly electric fish.

Thigmotaxis (wall-following) in cockroaches

Central to understanding how animals manage sta-

bility and change is evaluating performance in

Fig. 1 (A) Schematic of the Watt–Boulton centrifugal ‘‘flyable’’

governor (copyright expired; see http://copyright.cornell.edu/

resources/publicdomain.cfm) and (B) a simplified feedback

diagram.

Feedback control and tradeoffs in biology 3
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challenging contexts (Dickinson et al. 2000).

Crucially, this involves creating significant deviations

from steady-state behavior. Moreover, it encourages

us to consider organisms and behaviors that have

evolved in environments in which the pressures,

and potential tradeoffs, between stability and

change may be finely balanced. Locomotion is parti-

cularly challenging when it is difficult to move (sur-

faces can be irregular and deformable) (Daley and

Biewener 2006; Sponberg and Full 2008; Li et al.

2009, 2013), the surrounding fluid can be turbulent

and cluttered, or difficult to sense (some highly

visual animals navigate in very low light (Warrant

and Dacke 2011), and others behave in complex au-

ditory (Stamper et al. 2008) or olfactory landscapes.

Behaving in such environments can be advantageous

for avoiding competition and predation, and en-

abling intraspecific interactions.

Despite significant neural resources dedicated to

vision, many species of cockroach navigate cluttered

environments in low intensities of light (Bell et al.

2007). Rapid locomotion through rough, cluttered,

or deformable terrain can render vision unreliable,

particularly given its longer latencies compared

with other senses (Franklin and Wolpert 2011).

Sensor latency can pose fundamental limits on

neural control, and delays are an inevitable part of

processing information in biological wetware (Cowan

et al. 2006; Sponberg and Full 2008; Elzinga et al.

2012; Ristroph et al. 2013; Fuller et al. 2014). One

strategy that cockroaches use is to probe their envi-

ronment using their antennae as tactile sensors, me-

chanically detecting and following vertical surfaces

(or ‘‘walls’’) during rapid running (Fig. 2A)

(Camhi and Johnson 1999; Cowan et al. 2006; Lee

et al. 2008). Thousands of mechanoreceptive hairs

lining the cockroach’s antennae are activated on con-

tact and bending (Schafer and Sanchez 1973; Schaller

1978; Camhi and Johnson 1999; Cowan et al. 2006).

The mechanics of the antenna itself passively main-

tains the orientation of the antenna in a ‘‘J’’ shape

against the wall (Fig. 2A) (Mongeau et al. 2013). The

cockroach runs while maintaining close proximity to

the wall and tracks turns and irregularities in the

surface. This behavior enables remarkably high-band-

width maneuvers, necessary for maintaining the

high-speed performance associated with escape and

navigation; cockroaches reportedly respond to corru-

gations in a wall with up to 25 turns per second

(Camhi and Johnson 1999). Blinding the animals

does not significantly impair performance and they

do not require contact from their body or legs to

follow walls (Camhi and Johnson 1999).

Following walls (hereafter ‘‘wall-following’’) by

cockroaches provides an excellent example of a

smooth-pursuit or tracking task (Cowan et al. 2006;

Lee et al. 2008). An external reference signal, in this

case the wall’s position, is detected by a sensor—the

antenna—and the animal’s brain and body cooperate

to regulate the distance from the wall (Fig. 2). A simple

ethological description of wall-following is that the

animal ‘‘tries’’ to maintain a certain distance from a

surface. This qualitative description of the behavior is

unfulfilling because it is neither mechanistic—how the

animal ‘‘tries’’ is not well understood—nor predic-

tive—we cannot predict how the animal will recover

from perturbations or when its performance will de-

grade. A classic approach in neuroethology would be to

identify neurons potentially involved in the behavior

and determine what their responses are to a variety of

mechanical disturbances. However, the challenge is

that many models may explain observed patterns of

encoding but the relevant mechanisms may be difficult

to identify without rejectable hypotheses derived from

quantification of the animal’s dynamics. For example, a

mechanoreceptive neuron may appear to respond to

deflections of the antenna, but its time constants may

be too long (or too short) to play a role in the wall-

following behavior. Control-theoretic approaches to

understanding the dynamics of both the neural pro-

cessing and the body’s movement enable testable pre-

dictions that inform behavioral, neurophysiological,

and biomechanical experiments.

The control-theoretic approach characterizes wall-

following as a feedback-regulated behavior (Fig. 2B).

Using biomechanical models for the dynamics of the

body—either stride-averaged (Cowan et al. 2006) or

continuous (Lee et al. 2008)—we can implement dif-

ferent hypothesized models for how the nervous

system processes the error signal (i.e., the mechanical

bending of the antenna) and compare the resulting

dynamics of the whole feedback system to kinematics

of cockroaches following turns in walls. This has led

to the discovery that the animal must encode more

than just the position of the wall. The simplest con-

trol model that matches behavior requires the posi-

tion and rate of approach of the wall (i.e., the lateral

velocity of the wall relative to the cockroach)

(Cowan et al. 2006). Such a proportional-and-deriv-

ative (PD) controller is ubiquitous in controlled en-

gineering systems. However, while the latency of the

initial turn is low, the turning response persists for

much longer than the stimulus (Lee et al., 2008). The

dynamics of the system filters the sensory input in

time. Electrophysiology of the antennal nerve re-

vealed that the population of mechanoreceptors in

the antennal nerve could encode both position and

4 N. J. Cowan et al.
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velocity and that the neural response even at this first

stage of processing is already temporally matched to

the turning response rather than to the stimulus (Lee

et al. 2008). In other words, the mechanosensory

processing seems to be tuned to the demands im-

posed on the control system by the mechanics and

the delay in neural processing. A hallmark of a high-

performance control system is the ability to achieve

large responses over a wide range of frequencies in

response to stimuli (change) without skirting too

close to the instabilities that can result from high-

gain, large-latency feedback (stability).

Multisensory tracking of a moving refuge in weakly

electric fish

The glass knifefish, Eigenmannia virescens, is like an

‘‘aquatic hummingbird’’: it hovers in place with ex-

traordinary precision, making rapid and nuanced ad-

justments to its position in response to moving

stimuli (Rose and Canfield 1993a, 1993b; Cowan

and Fortune 2007; Roth et al. 2011); see Fig. 3A.

Here, we investigate the integration of locomotor

biomechanics (Sefati et al. 2013) (Fig. 3B), multisen-

sory integration (Stamper et al. 2012b), and adaptive

control (Roth et al. 2011) that enable this animal to

balance stability and change (Fig. 3).

As a model organism, weakly electric knifefish are

most widely studied for their namesake, an active

electrosensory system. An electric organ (EO) in

the tail emits a weak electric field. Electroreceptors

distributed over the surface of the body (most den-

sely about the head) detect objects in the near field

as small disturbances in transdermal potential. Using

this electrosense in conjunction with vision, fish per-

form a wide variety of localization and tracking

behaviors. As in the analyses presented for the

wall-following behavior in cockroaches, we again

demonstrate how a control-theoretic approach can

be used to quantify and model behavior. For the

fish, we further extend the modeling tool to

quantitatively probe the categorical shifts in behavior

and the interplay between visual and electrosensory

modalities (Fig. 3C).

Weakly electric knifefish hunt nocturnally, their

specialized electrosensory system allowing them to

navigate their environment and localize small prey

items in low light (MacIver et al. 2001). During

the day, they hide from predators, finding refuge

among the roots of trees or other natural shelter.

In the laboratory, these fish exhibit a similar

refuge-seeking behavior, hiding in short lengths of

pipe, filter fixtures, or any other refuge provided

for them. More impressively, fish smoothly and ro-

bustly track their refuge as it is moved (Fig. 3A).

How do sensorimotor control strategies differ

across this repertoire, in response to different cate-

gories of exogenous motion, and how do visual and

electrosensory cues contribute to these behaviors?

Knifefish are agile. An undulating ribbon-fin runs

along the underside of the body, enabling knifefish

to rapidly alternate between forward and backward

swimming without changing body orientation. In ex-

periments, this remarkable ability is often leveraged

to constrain the behavior to a line of motion, reduc-

ing the spatial dimension of the task to a single

degree of freedom. Fish were first observed swim-

ming side-to-side in response to laterally moving

plates and rods, termed the ‘‘following’’ response

(Heiligenberg 1973b; Matsubara and Heiligenberg

1978; Bastian 1987a, 1987b) and later experiments

explored similar behavior in response to refuges

that were moving longitudinally (fore–aft) (Rose

and Canfield 1991, 1993a; Cowan and Fortune

2007; Roth et al. 2011; Stamper et al. 2012b). In

the case of longitudinal tracking of refuges, the fish

maintains a ‘‘goal’’ position within the refuge, per-

ceiving the error between its position and that of the

refuge and swimming forward or backward, thereby

minimizing this positional error (Fig. 3A and C).

Linear control-theoretic tools were used to charac-

terize the (frequency-dependent) relationship between

Fig. 2 (A) Schematic depicting a cockroach following a wall and (B) a simplified block-diagram representation of wall-following behavior

in cockroaches. The reference signal is the position of the wall in some global reference, r(t). The difference between the wall and the

cockroach’s position, y(t), is the error signal, e(t). The error is encoded in antennal mechanoreceptors and transformed by the nervous

system, ultimately causing changes in motor commands that act through the animal’s body dynamics to alter its own position, thereby

regulating this feedback error to a desired reference point.

Feedback control and tradeoffs in biology 5
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sensing and swimming in this smooth-pursuit behav-

ior (Cowan and Fortune 2007). Interestingly, however,

subsequent investigations revealed important devia-

tions from the linear model proposed (Cowan and

Fortune 2007). When comparing the responses to com-

plex motion (in this case, sums of sinusoidal trajecto-

ries across a broad band of frequencies) and pure

sinusoidal stimuli, fish exhibited performance suggest-

ing qualitatively different underlying models (Roth

et al. 2011). This failure of the so-called superposition

property of linear systems, revealed an interesting non-

linearity: fish tune their control policy to improve be-

havior with respect to the spectral content of the

stimulus. Although this adaptive tuning improves the

response to a limited class of stimuli (and these may

well be of greater ethological relevance), performance

suffers in response to signals that contain a broader

range of frequencies.

Another tradeoff is manifest as a nonlinearity in

the context of active sensing. When visual cues are

limited in the environment (e.g., under low illumi-

nation or in murky waters), fish rely predominantly

on electrosensation. Under such circumstances, a

conflict arises between the goal of the task of track-

ing—to remain stationary within the tube—and the

needs of the electrosensory system—which requires

active movements to prevent adapting to a constant

sensory stimulus. In low light, the animal performs a

rapid back-and-forth shimmy superimposed on the

tracking response. These volitional motions are not

correlated with the refuge’s motion and can be dis-

criminated from the tracking response by their fre-

quency. While these active oscillations are significant,

tracking performance with respect to the motion of

the stimulus remains nearly constant (Stamper et al.

2012b). It is posited that these oscillations serve to

enhance electrosensory acuity and permit a high level

of performance in the absence of salient visual stim-

uli. Fish employ a strategy in which tracking error

and expended energy are compromised for improved

sensing and tracking of the stimulus.

While we present the tracking behavior as a model

system for the study of smooth pursuit and sensory

integration, the locomotor strategy also illustrates a

behavioral tradeoff. Knifefish routinely partition the

ribbon-fin into two counter-propagating waves

(Sefati et al. 2010; Ruiz-Torres et al. 2013), recruiting

the frontal portion of the fin to generate forward

thrust (a wave traveling from head-to-tail) with the

rear section (tail-to-head wave) generating an oppos-

ing force. In stationary hovering, these opposing

forces cancel each other. These waves meet at the

‘‘nodal point’’ (Fig. 3B); simulations on a biomi-

metic robot reveal that the net fore-aft thrust is lin-

early dependent on this kinematic parameter (Curet

et al. 2011; Sefati et al. 2013). Moreover, when com-

pared with simpler strategies (e.g., recruiting the

whole fin and modulating the speed of a single trav-

eling wave), the use of counter-propagating waves

significantly improves the fore–aft maneuverability

(by decreasing the effort expended in control) and

concurrently enhances the passive stability (stabiliza-

tion without active feedback control) by providing a

damping-like force to reject perturbations, thus sim-

plifying the neural control.

Stabilizing pitch via visuomotor abdominal reflex in

hawk moths

Here, we examine the problem of active pitch control

of pitch by the hawk moth, Manduca sexta, as a

platform to explore the relationship between open-

loop experiments and closed-loop stability and

(cm)
refuge position

(cm)
fish position

CA

B

vision

electro-
sense

neural
controller

ribbon fin &
fluid dynamics

Fig. 3 (A) The knifefish (Eigenmannia virescens) in a moving shuttle. Positions are measured from a fixed reference frame to tracking

points on the refuge and on the animal’s body. (B) A schematic depicting the counter-propagating wave kinematics of the knifefish’s

ribbon fin. As ambient flow velocity, u, increases, fish recruit a larger portion of the fin for Lhead, the wave component responsible for

forward thrust. (C) A block diagram depicting the knifefish’s reference-tracking behavior. The moving shuttle provides the reference

signal, r(t), with the output, y(t) being the position of the swimming fish. Parallel visual and electrosensory modalities measure the

relative position of the shuttle [the sensory slip, e(t)]. The neural controller (CNS) weights and filters signals from the sensory blocks

and outputs commensurate with motor commands. Subsequently, these motor commands generate movement as dictated by the

biomechanics of the fish body and the interaction of the body and ambient fluid.
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maneuverability. The inherent instability of flapping

flight requires active, feedback-based strategies for

control (Wu and Sun 2012; Liang and Sun 2013).

This has led to the evolution of numerous sensory

specializations, most notably in the form of visual

and mechanical senses (Pringle 1948; O’Carroll

et al. 1996; Sane et al. 2007; Taylor and Krapp

2007), that collectively inform the animal about its

state in the environment. This information, in turn,

is used to coordinate motor systems to direct move-

ment (Fig. 4).

The bulk of research on flight control has focused

on how the wings are used to generate and modulate

aerodynamic forces. Much less attention has been

paid to the role of deformations of the body—or

‘‘airframe’’— for flight control. The hawk moth dis-

plays strong abdominal movements in response to

open-loop visual rotations during tethered flight.

Control theory can provide key insights about the

importance, and possible advantages, of such move-

ments for controlling flight.

Numerous experimental preparations have been

developed for investigating sensory and motor re-

sponses that involve restraining or confining animals

to access physiological signals and to allow for better

experimental control of the sensory inputs available

to the animal. For hawk moths, these include an

arena for tethered, virtual flight for performing

behavioral experiments (Fig. 4A) to immobilized

and dissected preparations for electrophysiological

recordings (Hinterwirth and Daniel 2010; Theobald

et al. 2010). However, these types of manipulations

dramatically change the dynamic context of the

animal. The difficulty then is linking physiological

signals and behavioral responses from restrained

preparations to free-flight movements, such that

causal links can be made between changes in sensing,

movement, and flight path.

It is here that the analytic techniques of control

theory provide unique affordances for understanding

how animals control flight. Control theory provides a

framework for interpreting data from restrained ex-

perimental preparations in the context of the free-

flight dynamics via mathematically explicit dynamical

models derived from the basic physics and mechanics

of flight. In turn, these studies provide predictions

about movements that can be compared with natural

flight behaviors.

Hawk moths are accomplished fliers and spend

much of their time during flight hovering in front

of flowers while feeding. Hovering flight is an equi-

librium mode of flght that makes the modeling par-

ticularly tractable for control-theoretic analyses. Dyhr

et al. (2013) took advantage of these simplified dy-

namics to test the utility of abdominal responses for

stabilization of pitch. Previous studies had suggested

Fig. 4 (A) Experimental setup for measuring responses to visual perturbations of pitch in M. sexta. The moth is attached to a rigid

tether and placed in a cylindrical LED arena. During bouts of flight the moth is presented with either an isolated visual stimulus, r1(t), by

rotating a green and black striped pattern on the visual display, an isolated mechanical stimulus, r2(t) by physically rotating the moth and

the arena, or a coupled visual and mechanical rotation. The moth responds to the rotations by moving its abdomen [yellow, y1(t)],

wings [red, y2(t)] and head [blue, y3(t)]. (B) Block diagram of the different sensory and motor systems known to be engaged during

open-loop tethered flight. Error signals, ei(t), represent perceived visual (eyes) and mechanical (antennae) sensory information relative

to environmental reference signals, ri(t). Sensory systems independently encode the modality-specific signals and are then fused and

processed by the nervous system. Neural commands are relayed to different motor systems to achieve new kinematic states. (C) Block

diagram combining open-loop experimental data (visual-abdominal transfer function) and dynamics models (mechanical model) to

estimate the behavior of the closed-loop system (Dyhr et al. 2013).

Feedback control and tradeoffs in biology 7
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that abdominal movements were of minor impor-

tance for the control of flight (Hedrick and Daniel

2006; Cheng et al. 2011), but without a control-

theoretic analysis of free flight, it is difficult to

exclude a crucial role for the deformation of the

airframe (redistribution of mass).

Free flight is a closed-loop behavior such that the

animal’s movements influence subsequent stimuli.

Restraining an animal so that open-loop re-

sponses—in which animal’s movements no longer

influence the sensory input—can be measured and

often generate stronger responses and more data,

simplifying the quantification of the sensorimotor

transform. However, these data can only be inter-

preted in their closed-loop context (Roth et al.

2014). Dyhr et al. (2013) combined behavioral ex-

periments, in the form of open-loop responses

during tethered flight, with a model of the flight

dynamics of hovering to generate a control-theoretic

model of closed-loop visual-abdominal control

(Fig. 4). Using this model, they were able to show

that visually evoked abdominal movements were suf-

ficient for stabilization of pitch during hovering

flight, independent of any modulation or redirection

of the wing forces.

Although this work demonstrated the importance

of deformation of the airframe for flight control,

other actuator systems are clearly involved. The

wings are certainly the most important structures

for controlling flight, but head movements have an

established role in modulating both visual and

mechanosensory information (Hinterwirth and

Daniel 2010; Dyhr et al. 2013). Understanding how

movements of the wings, body, and head are coor-

dinated is a promising future direction for research.

Future work in this area will require integrating re-

alistic aerodynamic models with the dynamics of

rigid bodies to understand how multi-input control

is achieved. This problem is also exciting from the

standpoint of multisensory integration, as hawk

moths use multiple sensory modalities (e.g., visual

and antennal mechanosensory) (Sane et al. 2007;

Hinterwirth and Daniel 2010) for flight control.

Furthermore, investigations into the coordinating,

multiple motor pathways may highlight the impor-

tance of proprioceptive feedback mechanisms for

flight control, an area that has been relatively unex-

plored. The tractability of M. sexta as an experimen-

tal organism both for behavioral and for

physiological studies, coupled with the relatively

simple dynamics of hovering flight, make it a prom-

ising model organism for understanding the sensori-

motor processes underlying locomotor control.

Jamming avoidance in weakly electric fish

As the previous examples show, control theory is a

useful tool for understanding sensorimotor systems,

especially during behaviors that are robust and re-

peatable. However, escape responses represent a be-

havioral category in which the animal actively tries to

avoid a particular sensory condition. From a control-

systems perspective, the behavior is transient; it

‘‘escapes’’ to the nearest stable equilibrium. The re-

sponse is not amenable to perturbation analyses that

we have used so far, and modeling such a response

requires a different approach, such as experimentally

‘‘closing’’ the loop. Here, we re-examine weakly elec-

tric fish in the context of just such an unstable sen-

sorimotor escape behavior.

In addition to sensing the environment for behav-

iors such as tracking, described above, the electric

organ’s discharge (EOD) is used for social commu-

nication. In wave-type fish, each individual produces

a continuous, pseudo-sinusoidal EOD whose fre-

quency and amplitude can remain remarkably con-

stant for many hours, and even days (Bullock et al.

1972). However, if two nearby fish have frequencies

F1 and F2, their electric fields interact to produce a

‘‘beat’’ at the difference-frequency jdFj ¼ jF1-F2j.

When the two frequencies are within a few Hertz

of each other, the emergent low-frequency beat det-

rimentally interferes with electroreception, thereby

‘‘jamming’’ the ability of the fish to detect obstacles

and prey (Heiligenberg 1973a; Bastian 1987a). Some

species of these fish, particularly those that form

social groups (Stamper et al. 2010), can rapidly

change their frequencies to avoid such interference.

This behavior is termed the JAR.

The neural computation that underlies the JAR in

the glass knifefish, E. virescens, has been elucidated

via a half-century of research (Heiligenberg 1991;

Fortune 2006). The JAR can be predicted on the

basis of a single parameter, the dF which can be

used to predict the structure of electrosensory

beats. Using parallel receptor systems, the fish en-

codes modulations of amplitude and of the relative

phase of zero crossings in the beats to drive a motor

response that serves to increase the magnitude of

the dF.

This is not the whole story, however. Each indi-

vidual tends to return to its own internal EOD set

point of frequency in the absence of a low jdFj. The

set point can drift over long periods of time, but

over the timescales of the JAR (seconds to minutes)

the EOD’s set point remains constant. This return to

baseline likely serves to maintain the EOD within the

range of frequencies that match the tuning properties

8 N. J. Cowan et al.
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of each individual’s own electrosensory receptors.

For example, if a fish were producing a 400 Hz

EOD, its receptors would be most responsive to

EOD frequencies within a range of �300–500 Hz

(Scheich et al. 1973).

How do individuals balance the need for main-

taining electrosensory stability while still being able

to rapidly change the frequency of the EOD during

the JAR? To address this question, Madhav et al.

(2013) modeled the JAR in terms of a low-order

feedback control system that includes both the

return to baseline (stability) and the stimulus-

driven escape (change). Parsing this feedback control

diagram (Fig. 5) requires understanding that the JAR

operates on frequencies of signals. Specifically, the

system computes the instantaneous difference be-

tween an exogenous input (conspecific frequency)

and the autogenous output (self frequency) as

shown in Fig. 5. This difference is dynamically pro-

cessed by the CNS which in turn modulates the

output, creating a closed feedback loop.

The challenge in identifying the dynamics of the

JAR was two-fold. First, the tendency of the output

to diverge from the input renders the system locally

unstable. Effective techniques for identifying a sys-

tem’s dynamics rely on analyzing persistent responses

to perturbations; however, in this case, these pertur-

bations destabilize the system, making it impossible

to apply such techniques. This challenge was

overcome by stabilizing the behavior, using an exper-

imentally closed loop (Fig. 5). This stable closed-loop

system was systematically perturbed and the re-

sponses were used to identify a linear model, which

describes the unstable open-loop behavior in the

local neighborhood of the baseline frequency of the

fish. Second, predictions of responses in real-world

scenarios requires understanding the global nonlinear

nature of the behavior. A different category of

closed-loop experiments was used to identify a char-

acteristic ‘‘escape curve’’, which serves as the non-

linear signature for the JAR for each individual.

Identifying this curve for each individual allows us

to populate all the parameters of the global model.

In the global model, the computational algorithm

of the JAR was expressed as a competition between

the stable motor dynamics (return to baseline) and

the need to adapt to changing social settings (sensory

escape). Comparatively simple behavioral experi-

ments can now be used to fit parameters of this

model, which can, in turn, predict responses to nat-

uralistic or novel artificial stimuli. For example, this

model captures the asymmetry between rises and falls

in EOD frequency, for which a neural correlate was

described previously (Metzner 1993). This model

could also be used to predict social interactions be-

tween two individuals without considering the details

of each individual’s behavioral characteristics. This

model also forms a basis for future work investigat-

ing complex social interactions of three or more in-

dividuals, in which higher-order electrosensory

envelopes can drive behavior (Stamper et al. 2012a).

Discussion

We have seen from the above examples that control-

theory and system-identification tools give us a

quantitative framework in which to interpret

comparative organismal studies of locomotion. In

wall-following behavior in cockroaches, we tested

hypotheses about neural encoding derived from the

sufficiency of simple control laws and mechanical

models. In the examples of swimming fish and

flying moths, we understood the contributions of

multiple sensory signals and multiple actuators

Fig. 5 (A) Experimental setup to identify the JAR in E. virescens. The fish is placed in a tube in the experimental tank, and recording

electrodes (red) aligned with the body axis are used to measure the EOD. The EOD is amplified and its frequency is extracted. This

frequency is fed to the controller, which generates the appropriate input frequency based on a control law. A signal generator outputs a

sinusoid at the input frequency, which is then played into the tank through the stimulus electrodes (black), through a stimulus isolation

unit (SIU). (B) Block diagram representation of the same experimental paradigm. The reference, r(t), output, y(t), input, u(t), and dF, d(t),

are all frequency signals relative to the baseline frequency of the fish. We seek to identify the unstable open loop (green dashed box)

using the stabilized closed loop (orange dashed box). The dF computation is modeled to have a lumped delay. The delayed difference

initiates the sensory escape, which competes with the motor return to produce the output EOD frequency.

Feedback control and tradeoffs in biology 9
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(a.k.a. multiple-input, multiple-output, or MIMO)

to the production of movement. Along the way we

discovered new principles about how animals are dy-

namically tuned to their environment. This perspec-

tive allows us to relate the results of closed- and

open-loop experiments and test hypotheses about

stability and maneuverability. With the JAR, we

saw how control theory applies to behaviors that

move not in physical space, but in the realm of the

EOD frequencies that these animals use for infraspe-

cific signaling and communication. These questions

of stability, change, sensing, and movement are

fundamental to the emerging field of systems neuro-

mechanics. We can use the language of control

theory to translate between open- and closed-loop

experimental preparations (Roth et al.2014), allow-

ing us to relate the functional mechanisms of

individual components to the integrated performance

of the intact, behaving animal, just as the early pio-

neers, such as Bernard, Anokhin, and Wiener,

envisioned.

Closing the loop from biology to control theory

Just as control theory affords rich insight into the

role of stability and change in living systems, there

is a feedback loop that couples research on living

systems back to the tools we need from control

theory. It is crucial to realize that while control-the-

oretic tools can enable biologists to tackle challeng-

ing problems of great significance (biomedical,

evolutionary, and environmental) the same can be

said of the impact of biology on the development

of tools in engineering and control theory. We

recall that in fields such as physics and fluid dynam-

ics, the need for models and mathematical formal-

isms continues to spur the development of powerful

computational and analytic methods.

As biological phenomena are much more com-

plex—chemically, physically, and organizationally—

than inorganic phenomena, a cause-and-effect

understanding of such complex systems will inevita-

bly foster innovative analytic, computational, and

technological advances. Some key examples emerging

today include the need for new analytic methods for

estimating the dynamics of freely behaving animals

(Revzen and Guckenheimer 2012) and new engineer-

ing approaches to synthetic biology (Kang et al.

2013).

Integrating empirical and physics-based models

The nervous system processes the sensory informa-

tion for closed-loop control of task-level locomotion,

such as tracking behavior (Rose and Canfield, 1993b;

Cowan and Fortune 2007). In control-systems termi-

nology, the mechanical ‘‘plant’’ defines the way

motor signals are transformed into forces and move-

ments, and so discovering the neural controller

(Ekeberg 1993; Frye and Dickinson 2001;

Nishikawa et al. 2007; Roth et al. 2011; Miller

et al. 2012) of a biological system greatly benefits

from a task-specific mechanical model of the under-

lying locomotor dynamics (Cowan and Fortune

2007; Cowan et al. 2006; Sefati et al. 2013). Low-

dimensional, task-specific models for the locomotor

mechanics enable the application of control-systems

analysis to understand the neural mechanisms for

sensorimotor processing (Blickhan and Full 1993;

Holmes et al. 2006; Cowan et al. 2006; Hedrick

and Robinson 2010; Tytell et al. 2011; Ding et al.

2013). These simple descriptive mechanical models,

sometimes termed ‘‘templates’’ (Full and Koditschek

1999; Holmes et al. 2006), are essential for under-

standing stability and control in biological systems

(Blickhan and Full, 1993; Schmitt and Holmes,

2000; Sefati et al., 2013).

More elaborate models, sometimes termed ‘‘an-

chors’’ (Full and Koditschek 1999; Holmes et al.

2006) can facilitate the exploration of more detailed

questions about closed-loop control. Multidisciplin-

ary approaches integrate computational models and

experiments with biomimetic robots to study the lo-

comotor mechanics in more detail and with higher

accuracy (Miller et al. 2012). With advances in com-

puting, high-fidelity simulations have categorically

improved our understanding of various locomotor

strategies in different species (Mittal 2004; Wang

et al. 2004; Luo et al. 2008; Shirgaonkar et al.

2008; Tytell et al. 2010). On the other hand, biomi-

metic robots enable us to experimentally validate the

mechanical models (Wang et al. 2004; Lauder et al.

2007; Sefati et al. 2012, 2013), and to explore the

effect of parameters beyond their biological ranges,

providing insight as to where the biological perfor-

mance lies within reach of the wider range of possi-

ble mechanical solutions (Curet et al. 2011; Sefati

et al. 2013).

Neurophysiology

How can the insights concerning the role of feedback

in the maintenance of stability and the control of

change at the organismal level be used to decode

neurophysiological mechanisms used in the brains

of animals? First we need to determine what we

want to learn from, and about, the nervous system.

In terms of whole-animal control, the nervous

system is simply one part of the closed-loop

10 N. J. Cowan et al.
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system. In this context, understanding the inputs and

outputs of the nervous system under behaviorally

relevant conditions might be sufficient. The nervous

system can remain a black box that is used to better

understand the behavior at the organismal level in its

native closed-loop state. Alternatively, we may use

insights from behavior as a tool for understanding

the properties of the nervous system as a functional

unit. Indeed, studying the nervous system within a

closed-loop behavioral task is perhaps the best route

for understanding the functional structure and orga-

nization of the nervous system. In this case, behavior

is used to understand the sets of computations

within the black box.

The central challenge in decoding neurophysiolog-

ical mechanisms is that brains are typically composed

of millions of independent neurons, each of which

may have unique structure and function. Organism-

relevant computations both for maintaining stability

and for controlling change often are distributed over

thousands to millions of neurons that act in parallel.

Presently, we do not understand the nature of the

coding systems that are used in single neurons, and it

is unclear what sorts of dimensional reduction are

possible across populations and networks of neurons.

In other words, there appears to be no simple or

obvious set of a priori constraints that control

theory can contribute to decoding the neurophysio-

logical activity of neurons in the brain. This problem

is familiar to neuroscientists, as one of the long-

standing challenges in the study of neural mecha-

nisms is discovering strategies that effectively trans-

late behavioral observations into feasible

neurophysiological experiments.

This challenge stems in part from the fact that

neurons are in the order of microns to tens of mi-

crons in diameter and use tiny electrical signals. As a

result, the vast majority of neurophysiological exper-

iments have relied on the placement of microelec-

trodes into anesthetized and/or immobilized

animals or into neural tissues that have been re-

moved from the animal. Obviously, the critical or-

ganism-level feedback systems that are essential for

the control of behavior are disrupted in these sorts of

experimental preparations. In other words, studies

have been conducted in neural tissues in which the

closed-loop control system has been opened by the

elimination of feedback. This is important because it

is almost certainly not possible to extrapolate the

neural signals from data obtained in immobilized

animals to make predictions about control in the

intact behaving animal; a notable exception is electric

fish, in which certain electrosensory behaviors

remain intact in immobilized individuals (Fortune

2006). These studies in open-loop preparations

cannot capture the dynamics of the closed-loop

system, and further, are likely to be misleading

(Szwed et al. 2003; Cowan and Fortune 2007; Roth

et al. 2014).

Thankfully, improvements in neurophysiological

techniques are now permitting the widespread re-

cording of neurophysiological activity in the central

nervous systems of awake, behaving animals

(Nicolelis 2008) and with stunningly compact wire-

less and battery-less technologies coming to play a

greater role (Thomas et al. 2012). Similarly, recently

developed genetic and optogenetic manipulations

(Boyden et al. 2005; Zhang et al. 2007) can be

used in animals in which the behavioral control

loop remains intact.

Characterizing and manipulating internal signals

during movement

One of the strengths of control-theoretic approaches

is that we can characterize the relationship between

any two signals (e.g., neural, muscular, and mechan-

ical) with the organism as a function of the under-

lying neuromechanical system. When we do gain

physiological access we can use the same techniques

to relate neural spiking to movement and sensory

feedback to the activation of muscles. Although the

examples in this article emphasized monitoring

motor output while manipulating a single sensory

reference, these signals do not need to be in the

form of an external input leading to a kinematic

output. Direct alteration of feedback, either through

dynamic manipulation of sensory feedback or by ap-

plying perturbations directly to the constituent

neural and mechanical systems during closed-loop

or open-loop behavior, is the hallmark of the con-

trol-systems approach, but is among the least ex-

plored experimental approaches at present (Roth

et al. 2014). The ability both to inject noise and to

alter neural processing during behavior affords sep-

aration of the contributions of sensors, controllers,

and body dynamics to behavior.

One example in which this approach has been

used is the identification of the role of individual

muscles in the control of movement during posture

control, running, flight, and propulsion (Sponberg

et al. 2011c; Sponberg and Daniel 2012; Ding et al.

2013). During restrained or free behaviors, these ex-

periments precisely altered or ‘‘rewrote’’ the activa-

tion patterns of individual muscles and identified

their role in shaping motor output. In systems in

which the time constant of the dynamic response to

perturbed motor commands is faster than the inherent

Feedback control and tradeoffs in biology 11
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sensory feedback that transmits delays, this also enables

the characterization of open-loop plant dynamics

during free behavior (Sponberg et al. 2011b).

Alternatively, one can use an open-loop characteriza-

tion of the mechanics portion of the system’s dynamics.

By replicating the same patterns of input to the muscle

but in an isolated open-loop preparation we can mea-

sure the muscle’s output of work (a ‘‘workloop’’)

(Sponberg et al. 2011a). Other approaches are begin-

ning to couple environmental forces to in vitro muscle

function via artificially closing a feedback loop between

a robotic model and a physiological preparation

(Richards 2011; Richards and Clemente 2012). From

a control-theoretic perspective the classic in vitro ex-

perimental approaches of neuroscience, muscle physi-

ology, and biomechanics are simply ways to

characterize subsystems of the animal (its neurons,

muscles, and internal environment, respectively) and

each result can be synthesized, in explicitly quantitative

and mechanistic way, back into an understanding of

the dynamics of behavior.

Feedback control in biological systems

Several of the articles in this issue highlight the role of

feedback-regulation in the apparent dichotomy be-

tween stability and change across levels of biological

organization, from molecular to ecological. For exam-

ple, Grünbaum and Padilla (this issue) show how eco-

logical demands can trigger phenotypic changes with

complex temporal dynamics. Variations in the trophic

environment triggers a switch between two phenotypes

of radula (‘‘teeth’’), ultimately creating a history-de-

pendent pipeline of radulae. From the perspective of

control theory, these temporal dynamics may create a

temporal filter—much like a ‘‘moving average’’—al-

lowing the animal to be sensitive to newly available

resources (i.e., facilitating change) while maintaining

a memory of recently available resources (stability).

At the cellular level, feedback-regulation of ATP/

ADP is thought to maintain energy homeostasis, but

these homeostatic metabolic systems may also regu-

late the development of the respiratory structures

and metabolic pathways that supply oxygen and

carbon substrates for energy metabolism. Greenlee

et al. (this issue) discussed how the development of

larval insects’ tracheal and metabolic systems appear

to sustain both metabolic performance and plasticity

in the dynamic developmental environment. Such

regulation must not, of course, imperil the longer-

term developmental outcomes of organisms (Hale,

this issue): if developmental processes are too re-

sponsive to the environment, they could potentially

have deleterious effects on adults’ structure and

performance.

One way to resolve this compromise between

stable outcomes and responsiveness to changing re-

sources may be to incorporate a combination of

feedback and feedforward control. Indeed, this may

help mitigate the tradeoff between preprogrammed

developmental cascades—which may be able to pro-

duce consistent outcomes, but are unresponsive to

environmental demands—and tight feedback regula-

tion—which, while responsive to the environment,

may introduce long-term inefficiencies. While toler-

ance of fault is a hallmark of feedback control, even

complex feedback control systems are sensitive to

certain categories of failure (Csete and Doyle 2002);

such failures in regulatory networks manifest them-

selves as disease (Nijhout and Reed, this issue). In

this way, understanding the mechanisms for feed-

back-regulation in the context of control theory

may be a critical step in the treatment of certain

diseases. This approach will require the development

of new quantitative tools, such as network inference

of gene regulatory processes (Ciaccio et al. this

issue). When such feedback systems are analyzed

using control theory, it may enable us to formalize

our understanding of the processes that allow bio-

logical systems to walk the tightrope between stabil-

ity and change.
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