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Neural computation is inescapably closed-loop: the nervous

system processes sensory signals to shape motor output, and

motor output consequently shapes sensory input.

Technological advances have enabled neuroscientists to close,

open, and alter feedback loops in a wide range of experimental

preparations. The experimental capability of manipulating the

topology—that is, how information can flow between

subsystems—provides new opportunities to understand the

mechanisms and computations underlying behavior. These

experiments encompass a spectrum of approaches from fully

open-loop, restrained preparations to the fully closed-loop

character of free behavior. Control theory and system

identification provide a clear computational framework for

relating these experimental approaches. We describe recent

progress and new directions for translating experiments at one

level in this spectrum to predictions at another level. Operating

across this spectrum can reveal new understanding of how

low-level neural mechanisms relate to high-level function

during closed-loop behavior.
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Introduction
In his seminal 1948 book entitled ‘‘Cybernetics,’’ Norbert
Wiener proffered that neural computation is a fundamen-
tally closed-loop process [1]:

The central nervous system no longer appears as a
self-contained organ, receiving inputs from the
senses and discharging into the muscles. On the
contrary, some of its most characteristic activities
are explicable only as circular processes, emerging

from the nervous system into the muscles, and
re-entering the nervous system through the sense
organs. . .

This circular process is closed-loop feedback; sensing
governs action, action changes the state of the animal
in its environment, and these changes are perceived
via sensing. This contrasts with open-loop processes,
where information flows unidirectionally and the
output of the system does not influence the sensory
inputs. Understanding how behavior arises from the
physiological complex of sensory, neural, and motor
subsystems requires an understanding of how infor-
mation flows through this network that is inescapably
closed loop.

Technological limitations have historically required a focus
on open-loop responses of individual mechanisms or sub-
systems within the nervous system. Recent progress has
enabled unprecedented access to physiological signals
across a spectrum of experimental conditions, spanning
open-loop neurophysiology to artificially closed-loop prep-
arations to perturbed free behavior (Figure 1). But, there
remains a gap: the primary mathematical tools in compu-
tational neuroscience are statistics, information theory, and
dynamical systems theory. Largely absent from that list is
feedback control theory. Control theory can be thought of
as a subfield of dynamical systems theory—after all, the
addition of feedback loops merely alters the dynamics of a
system. However, feedback control is a general and flexible
means to achieve goal-directed ends, reject task-
irrelevant disturbances, and govern system-level behavior.
The dynamics of a feedback-controlled system can bear
little resemblance to the open-loop response. Feedback
can render fragile systems robust and unstable systems
stable. For example, in human postural control, the body
acts as an inverted pendulum (which is unstable), but
under the control of the nervous system, the dynamic
response shares the stable character of a hanging
pendulum [2!!].

Control theory furnishes a common language for quantify-
ing and interpreting behavior of the whole animal or its
subsystems in the closed-loop context. In what follows, we
describe approaches to experimentally opening and closing
feedback loops (Figure 1), present a control theoretic
framework for interpreting and interrelating results across
this spectrum of experimental paradigms, and then provide
concrete examples showing how to use empirical results
from one configuration to make quantitative predictions
about system behavior in another.
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A spectrum of experimental topologies. At all levels of the spectrum, we can record a variety of signals, including motor output, u(t), force output, f(t),
and mechanical state, y(t). We can perturb the system to modify behavior via modulations to reference signals ri(t) (red) or disturbances di(t) (blue),
which can be injected to motor commands or added to musculoskeletal forces. Thin lines represent signals with one (or very few) dimensions, while
heavier lines represent potentially high-dimensional signals. (a) Free, intact behavior has multiple closed loops. The animal’s movement (change in its
mechanical state) is fed back via multiple sensory modalities. Only relative motion is measured by the nervous system, so self motion is intrinsically
subtracted from exogenous reference signals r1(t) through rn(t) that represent these different sensory modalities (e.g. vision, olfaction,
mechanoreception). (b) Working down the spectrum, if an individual sensory modality is inhibited, then the topology changes and the corresponding
feedback loop is opened. (d) The bottom of the spectrum includes many fully open-loop conditions from rigidly tethered behavioral experiments (d-i) to
reduced electrophysiological (d-ii) and ex vivo musculoskeletal (d-iii) preparations. (c) Working up the spectrum, we close the loop around these
preparations in an individual modality by simulating the changes in the mechanical state of the body (fictive mechanical state), feeding that signal back,
and subtracting it from the reference signal.
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Experimentally closing and opening loops
Experimental paradigms run the gamut from free beha-
vior (which can involve dozens of closed loops) to open-
loop, feedforward physiological experiments. In Figure 1,
we organize a coarse spectrum of experimental paradigms
by the degree to which they preserve closed loops at the
behavioral level. Block diagrams provide an intuitive
means for depicting mechanistic models at many scales
of resolution. Blocks represent subsystems while arrows
depict signals. Together these define the topology of the
experiment, where ‘‘topology’’ refers to how the com-
ponent subsystems are interconnected.

Perturbed Free Behavior. Figure 1a depicts the block dia-
gram for a freely behaving animal; multiple, parallel
sensory streams are filtered through the nervous system
to govern locomotion. In this paradigm, perturbations
have been largely limited to exogenous sensory stimuli
[3–6] or mechanical disturbances [7–10] and means for
measuring behavior have been similarly noninvasive (e.g.
kinematic data extracted from video or motion capture).
By considering the behavioral output in response to
perturbation signals we can quantify performance of
the closed-loop system in terms of a behavior-level
model. Then, by substituting models for ‘‘known’’
blocks, we can use the empirical model at the behavior
level to infer dynamics of other subsystems [11!].

Suppressed Sensorimotor Loops in Free Behavior. Working
down the spectrum, Figure 1b depicts experiments in
which sensorimotor loops are selectively ‘opened’, but
behavior remains largely intact. This class of experiments
has been the most sparsely investigated.

Traditionally a sensorimotor loop is opened in one of two
ways, by inhibiting or ablating part of the sensory circuit
or by eliminating the stimulus. However, ablation and
inhibition can degrade multiple pathways, seriously limit-
ing or wholly eliminating behavior. In removing or
degrading particular sensory cues [12], animals can
reweight the contributions of other modalities [13!],
and if sensory reweighting is not the phenomenon being
investigated, the change can be confounding. In a less
deleterious approach, the sensory reference can be
actively clamped in real-time by feeding back the
animal’s kinematic states to cancel reafference [3]. In
this way, the selected sensory modality is still intact and
excited, but the animal loses control authority over it.

Open-loop neuroethology. Unlike free behavior, which is
inherently closed-loop, the dominant experimental
paradigm in systems neuroscience is at the other end
of the spectrum. It involves the presentation of stimuli to
elicit downstream responses in partially intact or
restrained preparations. ‘‘Downstream’’ emphasizes the
fact that the system is investigated in a feedforward
manner, devoid of its (closed-loop) behavioral context

(Figure 1d). These preparations afford sophisticated
instrumentation, enabling researchers to relate complex
spatiotemporal stimuli to neural responses. Tethered
preparations where the animal’s response does not impact
sensory stimuli are open-loop (Figure 1d-i), but this
category also includes in vitro electrophysiology of
sensory encoding and neural circuit characterization
(Figure 1d-ii). To explore the open-loop dynamics of
the motor subsystem, we can also isolate the musculo-
skeletal system with a ‘‘work loop’’ preparation and
characterize the response (Figure 1d-iii), namely the
conversion of motor commands into force and power
[14,15!].

Closing feedback loops around reduced/restrained preparations.

Acute electrophysiology in an artificially closed loop (i.e.
virtual reality) is now possible in an increasing variety of
animal systems [16!,17,18!!] (Figure 1c). These systems
are adaptions of behavioral preparations in which a
(mostly) intact animal is tethered in such a way to pre-
serve motor output, for example, a flying insect is glued to
a wire [19,20] or a walking animal is suspended over a
treadmill or trackball [16!,21]. Such preparations enjoy
topological simplicity: low-dimensional fictive motor
output is fed back to a sensory input after being sub-
tracted from a reference. The ‘‘simulated body
dynamics’’ are often taken to be a simple linear gain.
Even though the dynamics of tethered responses often
differ from free behavior, there are benefits of the closed-
loop topology—whether natural or virtual—such as
stability and robustness. In addition, one can directly
relate open-loop mechanism to closed-loop behavior,
while simultaneously performing electrophysiological
and imaging techniques.

A control theoretic framework for traversing
the experimental spectrum
Linear dynamics are often dismissed because the con-
stituent subsystems of animal behaviors are nonlinear
(e.g. sensory tuning curves [22], muscle mechanics
[14,15!,23]). But, many behaviors, such as standing
upright in humans [24], visual scene stabilization in fruit
flies [25!,26,27], and thigmotaxis in cockroaches [28–30],
involve operating near a putative equilibrium—the
domain where linearized models are most faithful to
the underlying dynamics.

A dynamical model can take a variety of forms, including
systems of differential equations, an impulse response
function, or a transfer function in the frequency domain.
System identification techniques fit these models empiri-
cally, using observations of the system output in response
to sufficiently rich perturbations of the stimuli, such as
sums of sinusoids [31!,32!!], band-limited noise [2!!], or
binary m-sequences [33]. Alternatively, models can be
derived from first principles [34,35].
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Feedback is transformative (as compared to feedforward
series or parallel connections) in that it fundamentally
changes the dynamical character of a system. As a result,
often the effects of feedback are not immediately intui-
tive. Stability—e.g. a hawkmoth recovers from sensed
mechanical perturbations by moving its abdomen
[20,32!!]—and robustness—e.g. the moth maintains hover-
ing flight despite asymmetric damage to its wings
[36]—are typical of evolved, biological behaviors and
these properties are afforded by well-tuned feedback
control systems. As such, a principled approach to inter-
preting low-level mechanisms in the context of feedback
is necessary. Control theory provides tools for interpreting
these models in the context of an experimental top-
ology—either synthesizing subsystem models into a
behavioral prediction or decomposing a behavioral model
to infer or constrain functional subsystems.

The central tool for probing the system dynamics and
identifying a model, no matter the topology, is the
application of perturbations and recording of the corre-
sponding responses. Exogenous reference signals—those
that modulate the goal or equilibrium of the behavior—
are perturbations that the organism attempts to track.
Hence, the system tends to propagate reference modu-
lations through to a change in the output. Examples
include moving the visual reference during optomotor
tracking and fixation in flies [3,16!,19,37], or modulating
the position of a refuge during a shelter-seeking behavior
in electric fish [12,31!], and can include the coupling and
decoupling of multiple modalities (e.g. separating the
visual and mechanical contributions to a moth’s turning
response [20]).

Disturbances contrast with reference modulations in that
the system should minimize their impact on system state.
Disturbances frequently take the form of perturbing
forces or torques and can have a variety of temporal
signatures: impulsive like a poke, wind gust, and cannon
blast [7,9,8,38,10]; repeated and broad spectrum such as
with rough terrain [39]; or persistent such as for a lasting
step-change in headwind. On the motor side, experimen-
tal alteration of motor commands during free behavior act
as disturbances that can reveal the role of individual
muscles during closed-loop locomotion [40,41] and can
be directly connected to their open-loop physiological
responses [15!].

Reference modulations and mechanical disturbances pro-
vide an effective means to determine system dynamics
and they are particularly powerful when used in concert
[2!!]. But there are other types of perturbations that can
provide critical insight into closed-loop computation that
are not investigated in this paper. For example, modifi-
cations to system parameters (i.e. changing the dynamics
of a block) can include changing the physical properties of
the animal’s biomechanics (e.g. mass, stiffness, or shape

[36]) and state-dependent changes (neuromodulatory or
behavioral) to sensorimotor processing [42–44].

Examples
In the examples that follow, we review several studies
that have begun to open and close loops to traverse the
experimental spectrum in Figure 1. We focus particular
attention on those studies that explicitly use control
theoretic modeling to translate between two (or more)
experimental topologies.

Translating free behavior into open-loop physiology
Control theory can generate testable hypotheses to guide
the open-loop physiological investigation of neural mech-
anisms based on system identification of the closed-loop
behavior [45]. This is especially powerful in the context of
a biomechanical model. For example, fast-running cock-
roaches use their antennae as tactile probes to track along
surfaces. Mechanoreceptors along the antenna detect
curves, dips, and protrusions of the adjacent surface,
which can be thought of as modulatory perturbations to
the reference signal [28]. A control-theoretic model of the
whole-animal behavior (Figure 1a) predicted that the
nervous system should encode both distance and rate-
of-approach to the wall in order to ensure stability.
Subsequent open-loop electrophysiological recordings
(Figure 1d) not only revealed encoding of both distance
and rate-of-approach in the primary sensory afferents but
also filtering of the sensory signal that matched the time
course of the motor response [29]. This work further
motivated the open-loop characterization of the antennal
mechanics which are themselves tuned to behavior [30].

Predicting behavioral consequences of open-loop
mechanisms
Using a neuromechanical model, one can predict
closed-loop behavioral responses (Figure 1a) from
open-loop measurements  (Figure 1d). Such analysis
provides a mechanistic interpretation  of the open-loop
response. For example, the visuomotor transform of the
abdomen of a tethered, behaving moth was integrated
with a model of free flight [32!!]. This model demon-
strated the feasibility of the abdominal reflex response
to stabilize flight. That work makes a precise behavioral
prediction—in the form of a predicted behavioral trans-
fer function—that can be tested in future studies.
Similarly, wide-field motion sensitive neurons in flies
can be interpreted as instantiating an optimal feedback
control system as is common in engineering design [46].
One could couple this control-theoretic model with a
model of flight to predict responses to perturbations of
the free-flight behavior.

Closing the loop around restrained or reduced
preparations
For systems amenable to artificially closed loops, the
experiment is readily transitioned from closed to open
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loop (or vice versa) by setting the feedback gain to zero,
facilitating interpretation between Figure 1c to and
from Figure 1d-i. However, in open-loop preparations
(Figure 1d-i–iii) there is no guarantee that the neuro-
mechanical subsystems operate near a behaviorally
relevant equilibrium, and thus this hypothesis must
be directly tested. Ejaz et al. validated that cell beha-
vior in closed loop is consistent with prior electro-
physiological descriptions of visual motion sensitive
cells in flies by using a closed-loop fly–robot interface
in which the rotation of a visual scene was modulated
by electrophysiological measurements [47].

Conversely, the local linearization afforded by closed-
loop experimentation (Figure 1c) may mask interesting
mechanistic nonlinearities (e.g. saturation). One approach
to this is the replay paradigm [37], which tests how well a
closed-loop model captures the behavior of the under-
lying feedforward mechanism [26]. The animal is first
presented a stimulus in artificially closed-loop and the
error signal, r(t) " y(t) in Figure 1c, is recorded. This error
signal (optic flow in the case of the fly optomotor beha-
vior) is subsequently replayed in an open-loop prep-
aration, yielding two experiments with identical
sensory percepts.

A completely different category of behaviors are those
such as escape and avoidance which naturally involve
unstable equilibria; prolonged observations of these
responses are difficult in free behavior [18!!]. For
example, in the fruit fly, rapidly looming visual scenes
induce a turning response away from the focus of expan-
sion. Reiser and Dickinson characterized the turning
response to patterns of expansion at different speeds
and emanating from different azimuthal positions, pre-
sented in open loop [48]. The open-loop responses
(Figure 1d-i) generated a prediction for the initiation of
the expansion avoidance response which was in turn
validated in tethered, closed-loop behavior (Figure 1c)
and during free flight (Figure 1a).

Opening closed loops during behavior
Traversing the spectrum of topologies by selectively
opening individual feedback pathways during intact
behavior (a to b in Figure 1) has received much less
attention than the prior three examples. In perhaps the
clearest example, Lockhart and Ting [13!] used an
optimal control model to predict patterns of muscle
activation during responses to postural perturbations.
They then eliminated one type of proprioceptive feed-
back and were able to show that, after an adaptation
period, the resulting changes in muscle activation were
consistent with sensory reweighting prescribed by the
same optimal control framework.

While these previous results rely on an elegant
coupling of experiment and model, experimental

assays on different topologies can generate testable
predictions even without an a priori model of the
system dynamics. The example in Figure 2 depicts
a hypothetical set of three complementary exper-
iments for parsing the contributions of visual and
olfactory processing in a flower-tracking behavior in
the flying moth. It uses the frequency domain tools of
control theory to extract a testable, quantitative pre-
diction. Input–output relationships of block or systems
of blocks are represented here in the frequency domain by
a transfer function, such as, G(s). The argument, s, is the
Laplace complex frequency variable and is dropped for
convenience. In this representation, a composite system
reduces to an algebraic expression of its constituent sub-
systems. The transfer function of two blocks, G1 and G2, in
series becomes a multiplication of their frequency domain
representations, G1G2. The representation of parallel path-
ways is a summation, G1 + G2. If G is in a unity feedback
loop, then the closed-loop transfer function is G/(1 + G).
These simple tools are sufficient to make rejectable hy-
potheses linking low-level mechanisms to intact behavior,
as described in Figure 2.

Challenges and horizons
Our effort now should be to rigorously traverse this range
of experimental systems using control theory to make
specific, testable predictions between the levels. With
this in mind, there are several outstanding challenges to
address at the intersection of control theory and neu-
roethology.

Applying linear methods to complex, nonlinear
biological systems
Linear control theory provides a useful framework for the
quantitive analysis and modeling of behavioral responses
and their underlying mechanisms at many scales. While
nonlinear dynamics are required to capture many neuro-
mechanical phenomena, linear analyses provides an
essential first step. Linearized models provide an excel-
lent initial hypothesis of behavior, precisely because they
are rejectable [31!,32!!]. The linearity assumption can be
supported using a coherence analysis [18!!] or, more
directly, by testing that the superposition and scaling
properties are preserved in the input–output pairs
[31!,32!!]. Even when a system has nonlinear properties,
the failure of linearity can in itself reveal interesting
principles of neural computation [18!!,31!]. Moreover,
many tools exist to characterize nonlinear systems. Poin-
caré maps and Floquet analysis allow us to apply linear
systems identification and control theoretic tools to cap-
ture periodic systems’ behavior [49]. Other nonlinearities
common in biology are context-dependency [44] and
adaptation or learning [31!]. While these phenomena
alter the linear system properties, they frequently occur
over sufficiently long timescales such that for a given
context, a linear model retains its efficacy. For example,
even if the gains or specificity in fly visual processing
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changes between quiescence and flight [42,43], optomo-
tor frequency response functions may be applied in each
context to quantify the performance differences.

Reconciling neural signals with control theory
Our goal in this paper is to identify the parameterization,
topology, and performance of the combined neuromech-
anical system. However, control theoretic approaches can
fall short when we do not know a priori what signals or

variations in signals are necessarily relevant to a con-
trolled behavior. Towards this end, we must be able to
integrate the information theoretic and statistical descrip-
tions typically applied to neural encoding with control-
theoretic models for the locomotor mechanics and feed-
back processes.

Dimensionality reduction approaches for identifying a
feature basis of high-dimensional signals can extract
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Examples of opening loops in free behavior. In free behavior, the animal tracks a moving stimulus that presents both visual and olfactory cues [5]. The
closed-loop behavioral transfer function, F, is experimentally determined from the movement of the flower, r(t), and the moth’s position y(t). We
hypothesize a topology with parallel sensing pathways (a) which puts F in the context of the subsystems S and M (Eqn 1). The S transfer functions
encompass the sensory systems and neural control blocks from Figure 1. The M transfer function includes musculo-skeletal and body dynamics. From
the measurement of the closed-loop transfer function we can calculated the feedforward (open-loop) transform as ðSo þ SvÞM (Eqn 2). This experiment
can be repeated in the dark (if the behavior persists) or with an invisible object, thereby opening the visual feedback loop (b-i). We now identify a
closed-loop transfer function based on closed-loop olfactory-only tracking, Fo, and calculate the feedforward olfactory-only pathway SoM (Eqns 3, 4).
The above two experiments provide a direct, quantitative, and rigorous means to predict responses in a novel topology. Specifically, note that from
these two results, we can predict the feedforward response of visual-only tracking, SvM (Eqn 5) Thus, by simple algebra, we can calculate the
predicted closed-loop behavioral response to a visual-only stimulus, F̂v (Eqn 6). In a final experiment (b-ii), we leave vision intact and inhibit olfaction
(e.g. by ablating the antennae or eliminating the odor source), thereby directly measuring Fv and comparing it to the prediction, F̂v. Disagreement
between the prediction and the experiment can indicate sensory reweighting or reveal unmodeled subsystems and interconnections.
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relevant representations of complex biological signals
[50]. Advances on principal component analysis feature
discrimination have led to efficient representations of
motor cortex activity that is predictive of individual
trial-to-trial variability in motor tasks [51]. Other methods
explicitly maximize the mutual information between two
sets of signals [52,53]. Sets of motor commands can be
reduced to muscle synergies and compared across beha-
viors or individuals [54,55]. As methods move towards
simultaneous reduction of high-dimensional input and
output data, we may pare down the myriad signals across
the nervous system to a number tractable for a controls
analysis, providing a reasonable parameterization of the
signals relevant to system identification.

Discriminating neural and mechanical contributions to
control
Mechanics and neural processing are tuned to interface
with one another for the control of behavior. Recording
only the references and output mechanical states permits
the identification of sensorimotor pathways. Characteriz-
ing the individual contributions of neural and mechanical
transformations further requires measuring and manipu-
lating signals and systems within the block diagram. In
practice, simulating closed-loop dynamics (Figure 1c) and
opening individual sensorimotor loops (Figure 1b)
require access to the intervening neural signals, motor
commands, and internal forces during restrained or free
behavior (e.g. d1(t) and d2(t) in Figure 1). Fortunately, the
emergence of new technologies allow unprecedented
tractability in recording and observing intact, behaving
animals. Miniature backpacks allow electrophysiological
and dynamics measurements from moderate to large sized
insects [56,57], computer vision advances allow for the
rapid analysis of high-speed or long-lasting video record-
ings [58,59], and the modern genetic toolkit enables not
just the elimination of individual genes or sensors, but
their enhancement, reversible silencing, optical control,
and selective expression [60].
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