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Torsional Dynamics of Steerable Needles: Modeling
and Fluoroscopic Guidance
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Abstract—Needle insertions underlie a diversity of medical in-
terventions. Steerable needles provide a means by which to en-
hance existing needle-based interventions and facilitate new ones.
Tip-steerable needles follow a curved path and can be steered by
twisting the needle base during insertion, but this twisting excites
torsional dynamics that introduce a discrepancy between the base
and tip twist angles. Here, we model the torsional dynamics of
a flexible rod—such as a tip-steerable needle—during subsurface
insertion and develop a new controller based on the model. The
torsional model incorporates time-varying mode shapes to capture
the changing boundary conditions inherent during insertion. Nu-
merical simulations and physical experiments using two distinct
setups—stereo camera feedback in semitransparent artificial tis-
sue and feedback control with real-time X-ray imaging in optically
opaque artificial tissue—demonstrate the need to account for tor-
sional dynamics in control of the needle tip.

Index Terms—Continuum robot, medical robot, robot dynamics,
tip-steerable needles.

I. INTRODUCTION

ACCURATE placement of a needle tip is crucial to the suc-
cess of many interventional and diagnostic procedures.

For interventions ranging from the delivery of localized treat-
ment to millimeter-accuracy sampling of tissues, improvement
in the accuracy of needle tip placement has the potential to im-
prove patient outcomes and reliability of diagnosis. Such clinical
needle interventions remain remarkably unchanged in delivery
mechanism since Alexander Wood’s 19th century idea: deliver
therapy subcutaneously through the lumen of sharp, stiff tubes
[1]. Most existing needle insertion procedures are dominated by
two century-old paradigms: 1) insertion is accomplished manu-
ally by a clinician and 2) the needle is a rigid steel tube. However,
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in the last decade, researchers have begun to explore new meth-
ods of needle insertion, needle insertion assistance tools for
clinicians, and fully automated needle insertion robots [2]–[7].

Continuous fluoroscopic imaging provides feedback to the
clinician during manual needle-based interventions such as
biopsies, ablations, and device placement (i.e., stents, drains,
GI/GU tubes, and periradicular therapy). A needle insertion
robot, similar to the one used in this paper for needle inser-
tions, could automate this process, thereby improving target-
ing accuracy while limiting radiation exposure to the clinician.
Targeting accuracy is particularly important in the lymphatic
system, which often require several needle insertions using cur-
rent techniques, as well as in nearly all musculoskeletal section
procedures, such as bone tumor ablations, cyst aspirations, and
periradicular therapy [8]–[10]. Significant benefit could also
be derived in renal procedures, prostate biopsies, and inser-
tion of afterloading catheters [11]–[14]. Targeting accuracy is
also essential for neurosurgical procedures, such as targeting
the ventricles of the brain to drain fluid in patients with ele-
vated intracerebral pressure and spinal procedures [15], [16].
The potential for steerable needle robots to assist in achieving
high accuracy in needle placement leads us to the development
of improved models and associated control techniques for a
specific needle-steering setup as a first step toward this goal.

In this paper, we develop new dynamic models of flexible
needles with associated control algorithms for the automatic
control of tip-steerable needles under fluoroscopic guidance,
and demonstrate system efficacy through simulation and ex-
periments. We derive a model for the torsional dynamics of
a needle in tissue that is “twisted” at its base, and couple the
dynamics with an existing kinematic model of tip-steerable nee-
dles [6], [17]. The primary purpose of the additional modeling
of torsion is to improve the estimation and control of the needle
tip; here, we perform control to a plane during continuous in-
sertion to facilitate comparison with previous work [18]. Most
previous models, motion planners, and control algorithms for
tip-steerable needles assume that the insertion and rotational ve-
locities at the tip of the needle are equivalent to those at the base
of the needle [6], [17]–[20]. However, to achieve the desired
bending inside tissue, tip-steerable needles are typically made
of the superelastic alloy nickel–titanium (Nitinol). These su-
perelastic needles severely violate the assumption that base and
tip torsional velocities are equal: twisting a long slender beam
from the controlled proximal end generally results in “torsional
windup” along the length of the needle [21]. This realization
motivates our development herein of a system model that incor-
porates the torsional dynamics, so that an automatic feedback
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controller can be designed to compensate accordingly. In ad-
dition to simulations, we present experimental results of the
proposed method using both stereo-image feedback and fluo-
roscopy feedback in artificial tissues.

The work of the past decade on nontraditional needle insertion
methods can be classified into several categories including alter-
native needle design, needle control and planning, and modeling
needle/tissue interactions. These works identify the significant
potential that steerable needles have to change the landscape
of percutaneous therapies into a “post Wood era.” DiMaio and
Salcudean [4] investigates the effects of tissue deformation, nee-
dle cutting, and external manipulation on robotically controlled
needles in artificial tissues. Okazawa et al. [5] designed a mech-
anism for affecting needle motion inside tissue by engineering
the needle itself; their design consisted of an outer straight tube
and inner stylet with a preset fixed radius of curvature used to
cause bending during needle insertion. Webster et al. [6] and
Park et al. [17] modeled needles with beveled tips as a nonholo-
nomic kinematic systems and tested this model in surrogate
tissues. Further work shows that this nonholonomic model may
be valid for other types of tip-steerable needles including those
with a precurved section at the tip of the needle [22].

Our goal is to improve modeling and control for tip-steerable
needles that are actuated outside of the body at the proximal end
(or base) of the needle [6], [17]. Combinations of other needle
steering methodologies, such as transverse and “tip/tilt” motion
outside the tissue [23], or manipulation of the tissue itself [24],
might ultimately be used in a single, integrated setup, as pro-
posed in [25] (see Fig. 2 therein). However, this paper focuses on
the torsional dynamics of the needle with only twisting and inser-
tion. In any similar system with high-torsional compliance and
active torsional loading, torsional dynamics—like those consid-
ered in this paper—will play a critical role in tooltip motion. The
models and controllers presented in this paper provide a model
of torsional dynamics that can be used for continuous needle
insertion under real medical imaging modalities to help move
the current state of the art for steerable needles from laboratory
to clinic, a goal that still has yet to be accomplished on any large
scale.

Previous methods of automatic feedback control for tip-
steerable needles by Kallem and Cowan [18] conducted closed-
loop control to a virtual plane inside the tissue via feedback lin-
earization, assuming no torsional dynamics. They showed that
the controlled behavior of the needles deviated from the theo-
retical predictions in a way that suggested torsional dynamics
may be significant. Reed et al. [21] confirmed the significance
of needle torsion on needle dynamics, and developed a model
of torsional dynamics for a fixed length of needle inside the
tissue and performed open-loop torsional compensation dur-
ing large needle tip reorientations. The work presented in this
paper builds on these two results, developing new models for
continuous-insertion, length-varying torsional dynamics inside
and outside the tissue, as well as the feedback control algorithms
necessary to achieve control of the tip to a desired plane within
the tissue during continuous insertion. Several other researchers
have conducted experiments where the needle motion is paused
while imaging [18], [23], [25], [26]; however, any time the nee-

dle motion is stopped, static friction between needle and tissue
becomes a significant and uncertain factor. By continuously in-
serting the needle for lengths longer than a few millimeters to
1 cm, the making and breaking of static friction and its asso-
ciated effect on uncertainty of the position and orientation of
the needle tip can be avoided to a great degree, thus simplify-
ing modeling and control greatly. There are also other ongoing
efforts for steerable needle control and robotically controlled
straight-needle insertions under alternative imaging modalities
such as ultrasound [24], [27] and MRI-compatible robots [28]–
[30]. To date, the majority of needle insertion research has been
conducted in a laboratory with visible light cameras and semi-
transparent tissue surrogates. Herein, we have conducted exper-
iments involving continuous insertion with automatic feedback
from fluoroscopic imaging.

Other work incorporates needle and needle-tissue dynamics,
but these have typically focused on tissue deformation and have
approached the modeling problem using finite-element meth-
ods [4] or simplified “virtual spring” models [23]. Here, we
neglect tissue deformation as it is unlikely to cause a significant
deviation in human tissue [21], and focus our modeling effort
on needle torsional wind-up, including the viscous drag be-
tween needle and tissue. Our approach uses a proper orthogonal
decomposition, coupled with a Galerkin projection [31], [32],
allowing us to side-step finite-element techniques altogether.
This approach gives us an alternative infinite-dimensional rep-
resentation of the hypothesized system dynamics, which can
then be systematically reduced to a manageable form by trun-
cating higher order terms in the infinite-dimensional expansion,
whereby the error between the truncated system and the infinite-
dimensional system can be made arbitrarily small through the
choice of truncation order. Our model—which can be applied
quite generally to flexible, linear-elastic rods being inserted at a
constant velocity into a substrate—is similar to a time-varying
modal approach used for approximating the linear vibrational
dynamics of a spacecraft antenna as it is extended [33].

Initial results related to this study were presented in a con-
ference paper [34], which we expand upon significantly in
the present paper with alternative formulation for torsional
dynamics, dimensional analysis, and experiments under fluo-
roscopy feedback. After reviewing the basic tip-steering kine-
matic model developed by Webster et al. [6], Section II describes
our new time-varying torsional model. We then provide a new
integrated model of needle steering that effectively concatenates
the torsional dynamics with tip-steering kinematics. Section III
describes the strategy used to control the tip of the needle to a
plane by compensating for the torsional dynamics. Section IV
shows simulations and experiments demonstrating the efficacy
of the method, with comparisons between control using models
with and without torsion compensation. Section V concludes
with some comments about the methods, observations about the
experiments, and proposed directions for future research.

II. MODELING

The motion of the needle is composed of two parts: a kine-
matic description of needle tip motion based on body-fixed
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Fig. 1. Model of steering dynamics. (a) Kinematic model used to represent
the insertion of tip-steerable flexible needles, adapted from [6]. As the needle
is inserted at velocity v, a bevel or other tip asymmetry causes a lateral force
that deflects the needle along a curved path of radius 1/κ. Rotations about the
tip with angular velocity ω reorient the bevel tip. (Modified with permission
from [35].) (b) Time-varying modal dynamics formulation for the portion of
the needle inside the tissue and an ideal torsional spring for the portion outside
the tissue. There is a time-varying boundary condition as the needle is inserted,
based on the changing length of the needle inside the tissue. Here, the dashed
line represents an imaginary line inscribed on the surface of the needle with
zero torsion. The gray line indicates the same inscribed line while the needle is
under torsion.

velocity vector fields and a dynamic description of the torsional
motion along the shaft of the needle.

A. Kinematics of Tip-Steerable Needles

Given the body-fixed frame at the tip of the needle, as shown
in Fig. 1(a), the kinematic model developed by Webster et al.
[6] describes the motion of the needle using the bicycle model
with a fixed turning radius; we now review this model and
establish notation. The insertion velocity at the tip of the needle
prescribes the forward velocity of the bicycle, and the rotational
velocity at the tip changes the orientation of the plane in which
the bicycle travels. This model can be succinctly described by
the left-invariant vector field describing the motion of the needle
tip in its body-fixed frame. The rigid body transformation

g =
[

R d
0T 1

]
∈ SE(3) (1)

describes the orientation and position of the needle tip with
respect to an inertial frame, where R ∈ SO(3) and d ∈ R3 are
the rotation matrix and tip position, respectively. The velocities
in the body fixed frame are given as

Ωtip =
(
g−1 ġ

)∨ = V1v + V2ω (2)

where the twists associated with needle insertion velocity and
tip rotational velocity are V1 = κe3 + e4 and V2 = e6 . Most
previous work on tip-steerable needles assumes that the inser-
tion and rotational velocities at base and tip are equal such that
v = u1 and ω = u2 , where (u1 , u2) are the insertional and ro-
tational control inputs to the needle insertion robot. However,

the rotational input, u2 twists the proximal end of a long slen-
der rod embedded in tissue, and the tissue provides significant
frictional torque, so the rotation at the base only couples to the
rotation at the tip through an intervening viscoelastic dynami-
cal system. Reed et al. [21] demonstrate the need for torsional
dynamics compensation, but their solution for torsion compen-
sation assumes that the needle remains a fixed length inside the
tissue, an assumption clearly violated during continuous needle
insertion. We build on Reed et al. result in the next section by
incorporating the time-varying boundary conditions that result
from continuous needle insertion.

B. Torsional Dynamic Model

The dynamic model accounts for torsion both inside and out-
side the tissue as shown in Fig. 1(b). We model the portion
inside the tissue using a partial differential equation (PDE) that
incorporates rotational inertial effects, viscous drag forces be-
tween needle and tissues, and linear elastic shear forces due to
torsional deformation. We model the portion outside the tissue
as an ideal torsional spring whose spring constant is a function
of the polar moment of inertia J , the needle shear modulus G,
and the length outside the tissue L − ℓ(t), where L is the entire
needle length and ℓ(t) is the portion of the needle inside the
tissue.

Using the Newton–Euler formulation for an infinitesimal por-
tion of the needle inside the tissue, Reed et al. [21] derived a
PDE in θ(x, t) a function of space and time

ρJ︸︷︷︸
η

∂2θ

∂t2
+ β

∂θ

∂t
− JG︸︷︷︸

κ

∂2θ

∂x2 = δ(x)τin(t) (3)

where β represents viscous damping (assumed to be uniform
along the needle shaft), η is rotational inertia, κ is the torsional
stiffness, ρ is the density of the needle material, J is the polar
moment of inertia of the needle, and G is the shear modulus of
the needle material. In Reed et al. model, it is assumed that the
external torque on the needle is applied at the point where the
needle enters the tissue, which is incorporated mathematically
via the product of a spatial Dirac impulse function, δ(x), and
the torque at the coupling between motor and the needle, τin(t).

Henceforth, our derivations deviate significantly from the pre-
vious work done by Reed et al. [21] in the following two key
respects: 1) we no longer model the system as a fixed length
inside the tissue and 2) we do not assume torque control at
the point the needle enters the tissue. The primary modeling
task going forward is to transform the formulation of torsional
dynamics given by the PDE given in (3) into a system of or-
dinary differential equations that are amenable to estimation
and control techniques. In what follows, we perform this trans-
formation and put the result into a useful form amenable to
implementation.

First, we note that the torque at the motor–needle interface
is exactly the same as the torque at the tissue boundary, i.e.,
τin = τbase , since we assume an ideal torsional spring for the
portion of the needle outside the tissue. Hence, for the portion of
the needle inside the tissue, we can still adopt the formulation in
(3), where the spatial impulse is taken at x = 0. In other words,
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the torsional angle of the needle at the point of insertion into
the tissue can be different from the angle of the motor shaft, but
the torque is the same all along the portion of the needle outside
the tissue.

Because the needle length inside the tissue is changing,
we cannot make the assumption that the modal solution is
separable in both space and time. Instead, we can only assume
that the mode shapes are functions of both space and time and
the mode coefficients are functions of time

θ(x, t) =
1
2
q0(t) +

∞∑

k=1

ψk (x, t)qk (t) +
∞∑

k=1

φk (x, t)pk (t)

(4)
where

ψj (x, t) = cos(ωj (t)x)

φj (x, t) = sin(ωj (t)x)

}
, and ωj (t) =

jπ

ℓ(t)
. (5)

The basis for the proper orthogonal decomposition includes the
torsional modes along the length of the needle as given in (5).
This system with the time-varying length inside the tissue does
not separate in space and time and we must perform the Galerkin
projection and verify that each projection results in an ODE in
time only; fortunately, the Galerkin projection for this system
indeed results in a time-domain ODE. To perform our Galerkin
projection, we first substitute (4) into (3), and then project onto
each mode shape. This rote computation is not included here
in its entirety and we refer the reader to the accompanying
digital resource for a complete derivation of the model written
for Mathematica (Wolfram Research, Champaign, IL, USA).
The properties of key importance for simplification during the
computations are related to the orthogonality conditions for the
mode shapes of a Fourier series.

The appropriate number of torsional modes to include in the
truncated approximation of the system depends significantly
on the tissue properties, needle properties, and control scheme
employed. In Section IV, we compare and contrast through sim-
ulation and experiments several model order truncations. Reed
et al. analyzed a specific needle and tissue combination with
experimentally computed damping and used Hankel singular
values to determine an appropriate model order. The technique
of Hankel singular values is complicated considerably in our
formulation because the system is now a time-varying system
for which an analytical form of the state transition matrix has not
been obtained. For a general nth order projection, the resulting
ODE takes the form

[
M1 0
0 M2

] [
q̈
p̈

]
+

[
D1 0
0 D2

] [
q̇
ṗ

]

+
[

K1 0
0 K2

] [
q
p

]
=

[
P
0

]
τin (6)

where the vectors q and p are the time-varying coefficients to
the cosine and sine modes, respectively, as given in (4). Here,
Mi are constant diagonal inertia matrices, Di are time-varying
damping matrices, and Ki are the time-varying stiffness matri-
ces. The dynamical (6) is a truncated modal approximation of

the exact torsional dynamics originally in (3); the purpose of
this transformation is to facilitate estimation and control.

We first note that the cosine and sine modes are decoupled,
the sine modes are unforced, and the sine modes are naturally
asymptotically stable. We assume that for any experiment the
sine modes are initially unexcited. Thus, since the sine modes
are uncontrollable they remain at zero, and do not couple to the
cosine modes, and hence, we reduce them out of the model and
refer to the matrices associated with the cosine mode as M , D,
and K throughout the remainder of this paper for simplicity.

After some tedious calculations, the specific structure of these
terms are as follows. The diagonal inertia matrix is given by

M = JρIn×n . (7)

For the matrices for representing the viscous damping and shear
forces, the coefficients of each entry are functions of the row
and column (i, j) within the matrix

d(i, j) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− 4(−1)i−j (j−1)2

(j−i)(i+j−2) , if j > i

sgn(1 − i) + β l(t)
J ρv , if i = j

4(−1)j −i (j−1)2

(i−j )(i+j−2) , if j < i

(8)

[D]ij = d(i, j)
Jρv

ℓ(t)
(9)

k(i, j)=

⎧
⎪⎪⎨

⎪⎪⎩

0, if i = 1 or j = 1
2π 2 G(i−1)2

pv 2 − 1
3 π2(i − 1)2 + 1

2 , if i = j > 1

− 8(i−1)2 (j−1)2 (−1)i−j

(j−i)2 (i+j−2)2 , if i ̸= j

(10)

[K]ij = k(i, j)
Jρv2

ℓ2(t)
. (11)

An accompanying digital resource provides for the rapid con-
struction of these matrices using Matlab (The MathWorks, Inc.,
Natick, Massachusetts, USA). Thus, the model for an arbitrary
number of modal states can be generated without requiring ex-
perience in reducing the associated PDEs.

We model the portion of the needle outside the tissue as an
ideal torsional spring, namely

τin(t) =
JG

L − ℓ(t)
(θbase − θin) . (12)

Here, the rotation at the insertion point of the needle θin is
written in terms of the mode shapes and mode coefficients

θin = θ(x, t)|x=0 ≈ 1
2
q0 +

n∑

k=1

ψ(0, t)qk (t)

=
[

1
2 1 · · · 1

]

︸ ︷︷ ︸
C0

q. (13)

The torque resulting from the rotational position at the base of
the needle and the modal representation of the rotational position
at the insertion, obtained by substituting (13) into (12), is

τin = − JG

L − ℓ(t)
C0q +

JG

L − ℓ(t)
θbase (14)
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TABLE I
PARAMETERS USED IN SIMULATIONS AND EXPERIMENTS

Parameter Value

Density (ρ) 6.453 k g
m 3

Polar moment of inertia (J ) 1.5962−14m4

Shear modulus (G ) 1.841210Pascals
Viscous drag (β ) 4.753−3N · s
Radius of curvature (1/κ) 0.073m

The Parameters ρ and J were taken from manufacturer specifications, while
G , β , and κ were determined experimentally.

where θbase is the control input for subsequent control compu-
tations. The term J G

L−ℓ(t) can be thought of as the time-varying,
lumped-parameter spring constant for the portion of the needle
outside the tissue.

Substituting the torque constraint from (14) into the ODE
representing the torsional dynamics inside the tissue in (6) and
neglecting the sinusoidal modes, the full torsional dynamics
from base to tip is

M q̈ + Dq̇

+
(

K +
JG

L − ℓ(t)
PC0

)
q =

JG

L − ℓ(t)
Pθbase . (15)

We also note that for the needle and tissue parameters during our
experiments (see Table I), a nondimensionalization analysis of
(15) given in Appendix A indicates that the inertial forces asso-
ciated with this system are quite small relative to the damping,
shear, and control forces such that we can simplify the system
to a coupled first order system

q̇ = −D−1
(

K +
JG

L − ℓ(t)
PC0

)

︸ ︷︷ ︸
A(t)

q

+ D−1 JG

L − ℓ(t)
P

︸ ︷︷ ︸
B (t)

θbase . (16)

In the nondimensional analysis, there are three Π-groups but
only one coefficient remains after the process of nondimen-
sionalizing. The nondimensional parameter that remains is the
characteristic length of

xc =
d4

β

( π

32
√

ρG
)
∼ d4

β
(17)

indicating that the dynamic inertial effects will become signifi-
cant as the needle diameter d decreases or the viscous damping
between needle and tissues β increases (assuming the density
and shear modulus of Nitinol remains constant).

The velocity at the tip of the needle in the torsional dynamics
θ̇(x, t) is equal to the body-fixed rotational velocity ω given in
(2). Thus, we compute

θtip = θ(x, t)|x=ℓ(t) ≈
1
2
q0 +

n∑

k=1

ψ(ℓ(t), t)qk (t)

=
[

1
2 −1 1 · · · (−1)n−1

]

︸ ︷︷ ︸
C ℓ

q (18)

and differentiate this to obtain

ω = θ̇tip = Cℓ q̇ = CℓA(t)︸ ︷︷ ︸
C (t)

q + CℓB(t)︸ ︷︷ ︸
D (t)

θbase

such that the final system can be written in a familiar linear,
time-varying (LTV) form

q̇ = A(t)q + B(t)θbase

ω = C(t)q + D(t)θbase . (19)

The system representation given in this torsional dynamical
model allows for two modes of control input: 1) torque control
and 2) base angle control. Because we model the portion of
the needle outside the tissue as an ideal torsional spring, the
torque at the point of insertion is proportional to the difference in
angle between the base and the insertion points. The torque along
the entire length of the needle outside the tissue is equivalent
to the torque at the point of insertion. However, to implement
a controller that closes the loop around torque with this model
including the ideal torsional spring, we would need a torque
sensor at the base of the needle. Thus, we chose to close the loop
around the position, eliminating the extra cost of an accurate
torque sensor.

C. Integration: Full Needle Dynamics

We now couple the torsional dynamics with the existing kine-
matic model. The velocity at the tip of the needle in the torsional
dynamics θ̇(x, t) is equal to the body fixed rotational velocity
ω given in (2). The full coupled form of the system can be
described as

Ωtip = V1v + V2 (C(t)q + D(t)u)

q̇ = A(t)q + B(t)u. (20)

To compare controllers built on our general torsional model with
previous methods, we choose local coordinates for the tip of the
needle, namely Z-Y-X Euler angles (α,β, γ) for orientation and
(x, y, z) for position as in Kallem and Cowan [18]. Following
Kallem and Cowan further, we define the control task to be
controlling the tip of the needle to an arbitrary plane in the
tissue. With this control objective in mind, we can choose the
local coordinates sT = [x y z α β γ ] such that they
are relative to the plane. That is, (y, z) are the position of the
needle tip projected to the plane, x is the orthogonal distance
from the plane, and α is the rotation of the needle about an
axis orthogonal to the plane. The remaining parameters, β and
γ, represent the pitch away from the plane and the rotation
about the tip of the needle, respectively. The velocities in local
coordinates can be related to the velocities in the body-fixed
frame via the appropriate Jacobian

ṡ = J−1(s)Ωtip . (21)
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Coupled with the torsional dynamics, the system can be repre-
sented as

[
ṡ
q̇

]
=

[
J−1(s) (V1v + V2 (C(t)q + D(t)u))

A(t)q + B(t)u

]
. (22)

For the task of controlling to a plane, Kallem and Cowan
showed that (21) can be further reduced by “throwing away” the
states (y, z,α), since they do not couple into the states (x,β, γ),
and that (x,β, γ) = (0, 0, 0) corresponds to the needle tip trav-
eling in the desired plane [18]. Thus, we augment these three
states with the torsional states, i.e., r = [x β γ qT ]T . In
these coordinates, the full needle model with reduced state and
torsional dynamics included is

ṙ =

⎡

⎢⎣

v sin(r2)
κv sin(r3)

−vκ cos(r3) tan(r2) + C(t)r4···n + D(t)u
A(t)r4···n + B(t)u

⎤

⎥⎦

=: f(r, u, t). (23)

Here, we have a nonlinear and time-varying system for which
we investigate common control practices for dealing with these
types of systems. In the following section, we devise a control
strategy with the assumption that the orthogonal distance of the
needle tip from the plane is our only measurement.

III. CONTROL WITH TIME-VARYING TORSIONAL DYNAMICS

Kallem and Cowan used feedback linearization to generate a
system for which LQR/LQG control was implemented. Using
the model in (23), feedback linearization of the complete system
is not possible due to the manner in which the control input u
enters into the system. Any attempt to feedback linearize the
kinematic states necessarily introduces a nonlinearity into the
torsional states.

The approach we take here is to 1) linearize the system about
the origin, 2) define a feedforward control to decouple the kine-
matic state from the torsional states, and 3) compute the infinite
horizon LQR gain to optimally control the decoupled kinematic
states to the plane. A key component in this control strategy is to
show that the final control input ensures that the torsional state
remains bounded for the duration of our insertion.

The linearization about the origin of the system representation
given in (23) is

ṙ =

⎡

⎢⎣

0 v 0 0
0 0 κv 0
0 −κv 0 C(t)
0 0 0 A(t)

⎤

⎥⎦r +

⎡

⎢⎣

0
0

D(t)
B(t)

⎤

⎥⎦u. (24)

Let the control input be defined as

u =
1

D(t)
(−C(t)r4···n + u2(t)) . (25)

The first term decouples the kinematic and torsional states. This
results in

ṙ =

⎡

⎢⎢⎣

0 v 0 0
0 0 κv 0
0 −κv 0 0
0 0 0 A(t) − 1

D (t) B(t)C(t)

⎤

⎥⎥⎦r

+

⎡

⎢⎢⎣

0
0
1

1
D (t) B(t)

⎤

⎥⎥⎦u2(t). (26)

The first three states of the decoupled system are controllable
and we implement a controller of the form

u2(t) = [ k1 k2 k3 0 · · · 0 ] r (27)

where the gain is from the infinite horizon LQR solution to
minimize the cost function

J =
∫ ∞

t0

rT
1···3(τ)Qr1···3(τ) + Ru2

2(τ)dτ. (28)

Heretofore, we have assumed full state feedback, but in prac-
tice we are only able to measure a scalar output, the distance
from the desired plane

y = [ 1 0 · · · 0 ]r

= r1 . (29)

Fortunately, a straightforward calculation can be used to verify
observability of the system analytically by reconstructing the
state from the output and its first n − 1 derivatives. So, in our
simulations and experiments, we use a Kalman filter to estimate
the states of the linearized system (24) with the measurement
model given in (29), and apply state feedback on this estimate,
as is standard practice.

IV. SIMULATION AND EXPERIMENTAL RESULTS

We present three results: 1) simulations with varying number
of states, 2) experimental results using stereo triangulation as
the sensing modality in our testbed environment, and 3) experi-
mental results using C-arm fluoroscopy as the sensing modality.
In all cases, the needle and tissue parameters are based on the
needle parameters given in Table I, with effort to match needle
parameters given in [18] to facilitate performance comparisons,
and semitransparent soft plastisol (M-F Mfg Co, Inc. stock #
2228 LP and 2228 S with plastic to softener ratio of 32:9) as a
tissue surrogate.

Here, we present simulations and experiments to demonstrate
that the modeling and control methods described herein provide
an improvement over existing control methods that do not com-
pensate for torsional dynamics during insertion. In lieu of a
systematic approach for model reduction (e.g., based on the
Hankel singular values) for this LTV system, we compared con-
trol efficacy based on models of different orders. Simulations
were conducted using the same system parameters as the real
system, with simulated process and measurement noise using
limited state measurement and state estimate via a Kalman filter.
The pilot experiments with the needle insertion robot were also
conducted with the model assuming process and measurement
noise and state estimate via a Kalman filter. The measurement
model (29), the orthogonal distance from the desired plane, was
obtained either through stereo triangulation of the needle tip
from stereo cameras or as the orthogonal distance from the cen-
terline of the C-arm imager. A semitransparent plastisol was
used as a tissue surrogate.



SWENSEN et al.: TORSIONAL DYNAMICS OF STEERABLE NEEDLES: MODELING AND FLUOROSCOPIC GUIDANCE 2713

Fig. 2. Convergence plots for simulations, testbed experiments with stereo
camera triangulation of needle tip, and experiments using C-arm fluoroscopy to
track the needle tip. (a) Simulation results for 8-cm insertions at v = 1 mm/s.
The mean measurement of the tip distance from the plane (center line, solid
or dashed) and standard deviation (shaded regions) for 1000 trials: estimation
and control using 1 (red), 5 (blue), and 25 (black) modal states and using the
torsional dynamics model to simulate the real dynamics and using no torsional
information for feedback (turquoise). (b) Physical experiments for 6-cm inser-
tions: estimation and control at v = 1 mm/s using 1 (red), 5 (blue), and 25
(black) modal states shows categorical improvement over previously reported
experimental control results (turquoise, adapted with permission from [18]].
(c) Physical experiments for 8-cm insertions at v = 1 mm/s. These trials were
conducted using only five modal states using C-arm fluoroscopy to track the
needle tip distance from the desired plane. The mean trajectory and standard
deviation for ten trials are shown, with an initial error of 6 mm from the desired
plane.

In all simulations, we used a 25th-order torsional truncation
as the “real” system. That is, the dynamical equations that were
integrated to represent the true evolution of system state were
based on the torsional dynamics that have 25 states. In reality,
the system is infinite dimensional and not amenable to concrete
computations in its complete representation. The choice of 25
states was limited by the amount of time required to integrate the
system dynamics for the simulations. In both simulations and
camera experiments, we show results associated with represent-
ing the torsional dynamics with 1, 5, and 25 truncated states and
show that, for the particular parameters of our system, there is no
difference between the number of modes chosen. This indicates
that there is very little torsional windup inside of the tissue due
to high damping and that the estimate of the first mode shape
(dc mode) is sufficient to estimate the torsional windup outside
the tissue. This is not always the case for different combinations
of needles and tissues, as shown in [21] and [34]. The exact
relationship between needle and tissue parameters that make
torsional windup within the tissue relevant can be determined
through the nondimensional analysis given in Appendix A.

Fig. 3. Three different simulations of a needle insertion using a single torsional
state and different characteristic lengths xc as computed using (17). As the
characteristic length increases, more torsional states are needed to estimate and
decouple the torsional dynamics from the kinematic motion of the needle tip.
The characteristic length used to nondimensionalize the torsional dynamics is
increased by either increasing the diameter of the needle, decreasing the needle-
tissue damping, or combination of the two. An increase in the diameter of the
needle will also increase the needle–tissue damping as viscous drag is a function
of the normal force between the interacting materials.

A. One Modal State is Sufficient for Control in Some Cases

We conducted physical experiments with our needle insertion
robot and artificial tissue (plastisol) in a laboratory environment.
The experimental setup consisted of an industrial PC running
a modified Ubuntu installation with RTAI real-time extensions
(www.linuxcnc.org), stereo cameras for needle tip triangulation,
and our needle insertion robot (the system is similar to that of
Kallem and Cowan [18]). For these experiments, we performed
a single insertion without rotating at the base and fit a circle to
the recorded atip measurements to identify the radius of curva-
ture. Values for viscous drag and shear modulus were obtained
through parameter identification experiments using our needle
diameter of 0.635mm. The viscous drag scales as a function
of needle diameter and the polar moment of inertia scales as a
function of the needle radius. The radius of curvature was deter-
mined experimentally by performing several insertions without
twisting at the base and averaging the radius of curvature of
circles fit to the needle trajectories.

Fig. 2(b) shows the results of five experiments for each model
order. Experiments show very little difference between each of
estimator/controller pairs based on the different model orders.
Based on the nondimensional analysis shown in Appendix, this
can be attributed to the following:

1) for short insertion distances with large portions of the
needle outside the tissue, the dynamics are dominated by
the windup in the portion outside the needle, and

2) for our combination of viscous drag and needle diame-
ter, one modal state was able to capture the majority of
torsional energy.

In our simulations, the total needle length is L = 30 cm and
we are inserting at most 8 cm. For the needle parameters given
in Table I and this short insertion distance, by estimating a
single-mode coefficient we are able to determine the difference
between the angle at the base of the needle and the angle at the
insertion point. According to the nondimensional analysis and
the results of [21] and [34], a change in the needle geometry
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Fig. 4. Experimental setup in the operating room. (a) Experimental setup using the Allura Xper FD20 (Philips Healthcare, Best, The Netherlands) C-Arm
fluoroscopy in the clinical imaging room aligned horizontally with the robot and tissue surrogate. (b) Illustration of the alignment of the C-arm with the tissue
surrogate, where the desired plane of convergence is the center line of the C-arm imager. (c) Image of a single frame from the imager after completing an insertion
using continuous feedback control.

(length or diameter) or a change in tissue parameters (viscous
damping) can necessitate the estimation of more mode shape
coefficients. This is demonstrated by conducting simulations
with the exact same needle parameters as those used for the
physical experiments, as shown in Fig. 2(a). To show the effect
of changing tissue or needle parameters, Fig. 3 shows how the
rate of convergence changes when maintaining controller gains
fixed and affecting a change in the characteristic length given in
(17) either through a decrease in needle diameter, an increase
in needle–tissue damping, or some combination of both. A cor-
responding increase in the magnitude of controller input could
compensate for some of these dynamical effects, but control
becomes fundamentally more difficult with a low number of
modal state as characteristic length decreases.

B. Simulations Using the Torsional Model Capture Behavior
From Prior Experiments That Ignore Torsional Compliance

In Fig. 2(a), results of simulations are shown using 1, 5, and
25 states for torsional compensation. Simulations that do not
compensate for torsional dynamics, using the same controller
presented in [18], are also shown. Our physical experiments
conducted using the 1, 5, and 25 state torsional compensation
and Kallem and Cowan’s physical experiments without torsional
compensation are shown in Fig. 2(b). The most salient observa-
tion is that the inclusion of torsional dynamics in the simulation
model, coupled with a controller that does not compensate for
the torsion, results in needle convergence behavior that closely
matches that of the Kallem and Cowan experiments.

C. C-Arm Fluoroscopy Experiments Indicate That Imaging
Modality has Little Effect on the Efficacy
of the Enhanced Model

We conduct an experiment using a traditional clinical imaging
modality, as opposed to stereo cameras with tip triangulation in
transparent tissue surrogates, to evaluate the advanced torsional
model in a clinical setting. Here, the image plane of the Allura
Xper FD20 (Philips Healthcare, Best, The Netherlands) C-Arm
fluoroscopy was aligned with the tissue surrogate such that the
centerline of the image defined the plane in which we desired
the needle to travel as shown in Fig. 4(a) and (b). The initial
distance of the needle tip from the desire plane of travel was
approximately 6 cm. A typical postinsertion image is shown in
Fig. 4(c), where the surrounding experimental apparatus was

Fig. 5. Three axes imaging of the needle postinsertion using the Allura Xper
FD20 (Philips Healthcare, Best, The Netherlands) C-Arm fluoroscopy for one
of the trials. The images have been thresholded to facilitate tracking of the
needle tip. (a) Side view of the needle after insertion. This is the view used
during continuous insertion to track the needle tip and measure the distance
from the center line of the C-arm imager as the scaled orthogonal distance from
the desired plane of travel. (b) End-on view of the needle after insertion. (c) Top
view of the needle curving inside the tissue. In a and b, the long-dashed line
indicates the needle start position at a distance of 6 mm from the desired plane
and the short-dashed line indicates the plane to which we desire to control.

cropped to facilitate the thresholding of the image for needle
tip tracking. Fig. 5 shows the final result of a typical insertion
along three axes with the desired plane of convergence indi-
cated with the dashed line. Here, the image was thresholded to
facilitate both needle tip tracking and to remove artifacts of the
surrounding tissue from the image.

From Fig. 2(c), we observed that when moving from the stereo
cameras to the fluoroscopy imaging that the convergence results
were nearly identical. The approach of defining the center line
of the imager as a means of defining a desired plane of travel
introduces a new method of set-point control. By reorienting the
plane, either automatically through planning software or man-
ually by a clinician, and ensuring the needle tip is tangent to
the plane both before and after reorientation, needle trajectories
can be defined via consecutive planes, without stereo imaging.
This method of allowing a clinician or computer planner to
define successive planes of travel facilitates continuous inser-
tions, where the needle is only stopped when the plane needs to
be reoriented.

A comprehensive review of dosages for common medical
procedures with radiative imaging can be found in the three part
series [36]–[38] and an earlier study on a broad range of inter-
ventional procedures [39]. The latter determined the radiation
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doses for common procedures to lie mostly between 24.2 and
74.7 Gy · cm2 . Our dosage rate was 338 mGy · cm2 /60 s of
insertion, and each insertion was done at a cautious rate tak-
ing approximately 90 s/insertion. This dosage was based on a
standard clinical protocol provided by the clinical hardware for
peripheral scans of arms or legs for deep vein thrombosis treat-
ments, with an adjustment from 3 to 15 frames/s. This dosage
lies well within the bounds of acceptable dosage limits, even if
used in an area of the body that require higher output power and
multiple insertions.

V. CONCLUSION

We presented a new model for torsional dynamics, which
takes into account time-varying boundary conditions. The pri-
mary conclusion from our experimental results is that the incor-
poration of these time-varying dynamics into a closed-loop con-
trol scheme significantly improves performance over the purely
kinematic control method used previously. Specifically, the ex-
perimental trials reported in Kallem and Cowan [18], which did
not incorporate torsional dynamics, required an insertion dis-
tance of about 8 cm to recover from a 3-mm initial error from
the desired plane. Here, we show experimental convergence to
the plane in approximately 2.5–3.0 cm of insertion despite a
larger initial error from the plane of 6 mm.

The proposed model of torsional dynamic and needle mo-
tion has shown work in simulation, testbed experiments with
stereo camera in semitransparent tissue surrogates, and using
C-arm fluoroscopy imaging. The efficacy of the model in multi-
ple methods of imaging points to the general effectiveness of a
dynamical torsion model as needle steering moves toward clin-
ical use. Herein, our measurement model was the tip position
of the needle. A more rich measurement, e.g., a triangulation
of the entire needle shape via biplane fluoroscopy or MRI or a
magnetic tracker, would provide even more accurate estimates
of torsional states and improve both estimation and control.

Interestingly, the physical experiments showed a faster than
expected convergence for the model with a low number of tor-
sional states. The model order did not seem to have a great
impact on the rate of convergence for the physical experiments.
This was due to the relatively high damping and small needle
size, thus concentrating the torsion of the needle to the portion of
the needle outside the tissue. This presents the need to develop
needle insertion robots for tip-steerable needles that can control
the rotation of the needle at the point of insertion, as opposed
to the insertion robot presented herein requiring a large portion
outside the tissue.

Finally, the use of C-arm fluoroscopy as a feedback con-
trol sensing modality was just as effective as tip triangulation
through stereo feedback. Using the center line of the imager to
define the desired plane of travel suggest a potential method of
defining trajectory setpoint control through reorientation of the
imager, either manually by a clinician or through software plan-
ning methods. Additionally, the radiation dosages used to com-
plete the needle insertions were well within bound of existing
fluoroscopy-based procedures, further validating the feasibility
of using automatic, fluoroscopy-based feedback control.

TABLE II
DIMENSIONAL VARIABLES IN THE PDE DESCRIBING

NEEDLE TORSION

Description Symbol Dimensions

Moment of inertia η (k gm) M L
Damping β

( k m m
s

)
M LT −1

Stiffnesss κ
(

k g m 3

s 2

)
M L3 T −1

Input torque τ
(

k g m 2

s 2

)
M L2 T −1

Time t(s) T
Point along the needle x(m) L
Needle angle θ(unitless radians) 1

APPENDIX

NONDIMENSIONALIZATION OF TORSIONAL DYNAMICS

OF TIP-STEERABLE NEEDLES

By nondimensionalizing the PDE representing the torsional
dynamics of the needle, we can gain insight into the relevant pa-
rameters of the system. It results in three characteristic variables
that give relative importance into the behavior of the system as a
function of the parameters of the system (shear modulus, polar
moment of inertia, density, etc.).

A. Derivation
We begin with the nonseparable form of the PDE describ-

ing the torsion along the needle as a function of time given in
(3), then list all of the relevant dependent and independent vari-
ables of the system in Table II and proceed to determine the
Π-variables that nondimensionalize the system.

We find four Π-groups describing a change of coordinates
that nondimensionalizes the original system state, namely

x = x̄

√
ηκ

β2
︸ ︷︷ ︸

xc

, t = t̄
η

β︸︷︷︸
tc

τ = τ̄

√
β2κ

η
︸ ︷︷ ︸

τc

(30)

with dimensionless variables τ̄ , x̄, and t̄. Then, we derive the
differentials

dt = tcdt̄

dx = xcdx̄. (31)

Using the chain rule and the relationships between differentials,
we then substitute back into the original PDE

η
1
t2c

∂2θ

∂ t̄2
+ β

1
tc

∂θ

∂ t̄
− κ

1
x2

c

∂2θ

∂x̄2 = δ(xcx̄)τc τ̄ . (32)

Divide through by the first coefficient

∂2θ

∂ t̄2
+

β

η
tc

∂θ

∂ t̄
− κ

η

t2c
x2

c

∂2θ

∂x̄2 = δ(xcx̄)
τc t2c
η

τ̄ (33)

then substitute tc , xc , and τc from aforesaid, such that

∂2θ

∂ t̄2
+

∂θ

∂ t̄
− ∂2θ

∂x̄2 = δ (xcx̄) xc τ̄ . (34)
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B. Characteristic Variables

The shear modulus G and the density of Nitinol ρ is fairly
constant across both manufacturers and sizes of the types of
superelastic Nitinol wires we use as needles. The polar moment
of inertia of a needle is related to the diameter of the needle
to the fourth power as J = πd4

32 . We rewrite the characteristic
variables and include the parameters of the system that constitute
the inertia and stiffness

xc =
√

ηκ

β2 =
J

β

√
ρG =

d4

β

( π

32
√

ρG
)
∼ d4

β

tc =
η

β
=

ρJ

β
=

d4

β

ρπ

32
∼ d4

β

τc =

√
β2κ

η
= β

√
JG

ρJ
= β

√
G

ρ
∼ β. (35)

The three characteristic variables each tell us about the be-
havior of the system.

1) The characteristic variable tc tells us that the time period of
oscillations in the system varies proportional to the needle
diameter and inversely proportional to the needle-tissue
damping.

2) The characteristic variable xc tells us that the spatial pe-
riod of oscillations in the system varies proportional to the
needle diameter and inversely proportional to the needle–
tissue damping.

3) The characteristic variable τc tells us that the magnitude of
required torque input increases proportional to the needle–
tissue damping.

These characteristics variables end up showing exactly what
may be intuitive to some, namely that 1) as damping increases
then oscillations increase, 2) as needle diameter decreases (i.e.,
stiffness and inertia decrease) then oscillations increase, and 3)
as damping increases then requisite torque inputs also increases.
Also, an important aspect of needle diameter is that a larger
needle diameter will displace a larger amount of tissue, creating
a larger normal force along the needle, thus creating increases
in the viscous damping coefficient that increases proportional
to the needle diameter.
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