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Abstract

Structural controllability has been proposed as an analytical framework for making predictions regarding the control of
complex networks across myriad disciplines in the physical and life sciences (Liu et al., Nature:473(7346):167–173, 2011).
Although the integration of control theory and network analysis is important, we argue that the application of the structural
controllability framework to most if not all real-world networks leads to the conclusion that a single control input, applied to
the power dominating set, is all that is needed for structural controllability. This result is consistent with the well-known fact
that controllability and its dual observability are generic properties of systems. We argue that more important than issues of
structural controllability are the questions of whether a system is almost uncontrollable, whether it is almost unobservable,
and whether it possesses almost pole-zero cancellations.
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Introduction

How can we control complex networks of dynamical systems

[1–9]? Is it sufficient to control a few nodes, or are inputs needed

at a large fraction of the nodes in the network? Which nodes need

to be controlled? A recent paper [10] suggests that we can address

these problems using the concept of structural controllability [11],

and in doing so we may be able to forge new connections between

control theory and complex networks. The two main results from

this analysis are (1) that the number of driver nodes, ND, necessary

to control a network is determined by the network’s degree

distribution and (2) that ND tends to comprise a substantial

fraction of the nodes in inhomogeneous networks such as the real-

world examples considered therein.

However, both conclusions hinge on a critical assumption of the

model in [10]: the results (implicitly) require that the ‘‘default’’

structures of the dynamical systems at the nodes of the network

have infinite time constants. This modeling assumption implies

that, unless otherwise specified by a self-link in the network, a

node’s state never changes absent influence from inbound

connections. However, the real networks considered in [10]–

including food webs, power grids, electronic circuits, regulatory

networks, and neuronal networks–typically manifest more general

dynamics at each node, i.e. they typically have finite time constants

[12–14].

With this assumption, the minimum number of independent

control inputs required to ensure a technical property known as

structural controllability [11] can be calculated for the network, as

described in [10]. The main problem with the argument set forth

in [10] is not a technical one: indeed the assumptions therein are

clear and the mathematical results are correct. Then, why are the

results tenuous? Critically, structural controllability [11] is

premised on the idea that if the nonzero parameters in the

mathematical model can be selected so that the system is

controllable (an elementary concept in control theory; see for

example [15]), then the system will be controllable for all

parameters except a set of zero measure. That is, if the system is

controllable for one set of (initially nonzero) parameters, then

controllability is guaranteed generically for that system. The results

presented in [10] require that a critical assumption be made before

applying the structural controllability approach. Specifically, it is

assumed that each node has an infinite time constant. As we shall

see in the next section, the assumption of an infinite time constant

implies that a certain parameter in the mathematical model of the

system is equal to zero, and therefore that term is off-limits as far

as structural controllability is concerned. As one can imagine, any

approach to system analysis that only allows the modification of

nonzero terms, makes the results potentially quite sensitive to

which terms are set to zero in the first place. Indeed, if the infinite-

time-constant assumption is relaxed, and generic linear dynamics

are ascribed to each node, one obtains a categorically different

result. Indeed, we show in this paper that all networks with finite-

dimensional linear dynamics (save a special set of parameters of

zero measure) are controllable with a single input. While

mathematically true, such a conclusion is neither reasonable nor

practical for real-world networks, and thus calls into question the

general approach of applying structural controllability in this way.
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Assuming arbitrary (up to a set of measure zero) linear

dynamics, we show here that (1) a single time-dependent input is

all that is needed for structural controllability, and (2) that this

input should be applied to the power dominating set (PDS) [16] of

the network. Thus for many if not all naturally occurring network

systems, structural controllability does not depend on degree

distribution and can always be conferred with a single control

input.

Results

Modeling Networks for Control
Large interconnected systems are commonly represented as

complex networks [17,18]. For many biological and physical

networks, each node in the network corresponds to a dynamical

system. Often, the dynamics of these nodes can be modeled by a

system of ordinary differential equations [19,20]:

_xxi~{pixiz
XN

k~1

aikxk(t)z
XP

j~1

bijuj(t), ð1Þ

where xi is a state at node i, N is the number of nodes, P is the

number of inputs, and the n2 elements aik populate the adjacency

matrix. Here, the term {pixi represents the intrinsic dynamics at

the node, absent external influences. The external inputs, uj(t),

enter the system through the coupling matrix fbijg. For analyzing

controllability, it is reasonable as a first step to consider purely

linear dynamics as shown in Eq. (1)—an approach clearly

articulated and well motivated by [10].

Note that Eq. (1) includes two terms in dynamics for xi, one

related to the linearization of the intrinsic nodal dynamics, namely

{pixi, and one related to a potential self link in the model, namely

aiixi, related to the network topology. Although both terms are

identical mathematically, they arise from categorically different

sources, and thus are not interchangeable.

The term {pi is the pole of the linear dynamical system at each

node, and ti~1=pi is the associated time constant. Rewriting in

terms of transfer functions, we have.

Xi(s)~Gi(s)
XN

k~1

aikXk(s)z
XP

j~1

bijUj(s)

" #
, ð2Þ

where Xi(s) and Uj(s) are the Laplace transforms of state xi(t) and

input uj(t) respectively, and

Gi(s)~
1

szpi

,

is the transfer function of node i. This formulation is useful

because it suggests inclusion of more general linear dynamics: the

transfer function, Gi(s), can be replaced by any transfer function,

of arbitrary order.

The dynamics proposed in [10] (see the supplemental material

therein) are identical to (2), except that pi:0 for all i, namely

Gi(s)~1=(sz0)–a pure integrator. Written this way the simpli-

fying assumption of the model in [10] becomes clear: all

subsystems by default have an infinite time constants (that is, the

term pi~0) unless such dynamics are explicitly included in the

network data set through nonzero diagonal terms, aii=0, in the

adjacency matrix.

However, infinite time constants at each node do not generally

reflect the dynamics of the physical and biological systems in Table

1 of [10]. Reproduction and mortality schedules imply species-

specific time constants in trophic networks. Molecular products

spontaneously degrade at different rates in protein interaction

networks and gene regulatory networks. Absent synaptic input,

neuronal activity returns to baseline at cell-specific rates. Indeed,

most if not all systems in physics, biology, chemistry, ecology, and

engineering will have a linearization with a finite time constant.

Thus while the model in [10] does not proscribe self-links, this

approach does place the onus on the modeler to ensure that any

network representation includes such self-links where appropriate

to compensate for the omission of the intrinsic nodal dynamics that

arise due to physical, biological, or other processes that, generally

speaking, have nothing to do with network topology.

To see the consequences of including generic nodal dynamics

on a network’s structural controllability, we first rewrite the

network dynamics in (2) in state space form:

_xx(t) ~ÂAx(t)zBu(t),

ÂA ~ A{diag(p1, p2, p3, . . . , pN )½ �,
ð3Þ

where A [ RN|N is the adjacency matrix, and B [ RN|P is the

input matrix. The vector x(t) [ RN is the vector of node states,

and u(t) [ RP is the input vector.

The system in Eq. (3) is controllable if and only if the matrix.

B, ÂAB, � � � ÂAN{1B
� �

ð4Þ

is full rank, a standard result in control theory [15]. The system is

said to be structurally controllable if the nonzero weights in ÂA and B

can be adjusted such that the matrix in Eq. (4) is full rank [11].

In [10], the minimum number of driver nodes, ND, is defined as

the minimum number of inputs—i.e., independent, user defined,

time-varying functions—such that when injected into the network

guarantee structural controllability. This formulation explicitly

allows each independent input to be connected to multiple (and

possibly all) nodes in the network [10,21].

The paper [10] solves this minimum input problem using an

application of graph-theoretic concepts; their basic approach is to

identify the number of ‘‘unmatched nodes’’ after finding a so-

called maximum matching of the graph. Details are provided in

the supplemental material of [10]; note also the prior analysis

wherein the maximum matching theorem seems first to have been

proved [22]. We observe that one can recast the poles at {pi as

(nonzero) self-links. But the set of all self-links (i?i) is itself a

maximum matching; all nodes in the network are then matched

nodes. This implies that the network can be controlled with a

single input, i.e. ND~1, which follows directly from the maximum

matching proof in [10].

Structural Controllability of Networks with General Linear
Dynamics

The following proposition provides a simple non-graph-

theoretic proof that a ‘‘control hub’’ – a single driver node

attached to all nodes – guarantees structural controllability with a

single input.

Proposition 1 For any directed network with nodal dynamics

in Eq. 2 (or equivalently Eq. 3), with pi=0 and/or aii=0,

i~1, . . . ,N, then ND~1.

Controllability of Complex Networks Revisited
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Proof. Select B~½1,1, . . . ,1�T (that is, connect a single input to

all nodes). Lin’s structural controllability theorem [11] states that if

the system is controllable for one choice of the nonzero system

parameters, then it will be controllable for all parameters except a

set of measure zero. So, we explicitly construct a parameter set

that makes the system controllable. Keep B as all ones, and choose

p1,p2, . . . ,pN to be nonzero and distinct. Zero out all the network

edges (i.e. nullify the adjacency matrix, A~0). The system matrix

ÂA is now a diagonal matrix with distinct eigenvalues. Controlla-

bility of (ÂA,B) follows by inspection. Thus, the system is

structurally controllable and ND~1.

By contrast the paper [10] reported that for real-world

networks, the minimum number of driver nodes ND is strongly

influenced by the sparseness and homogeneity of the network, as

measured by the degree distribution, P(kin,kout) (see [10] for more

details). Why did [10] arrive at such different conclusions?

Critically, the application of structural controllability does not

consider variations in system parameters that are a priori zero [11].

So, for example, if a link i?j is absent, then aij:0. The original

paper [10] allows for self-links but by default does not include

them. Further, the framework set forth in [10] assumes pi~0
(infinite time constant), and the network datasets in Table 1 of [10]

do not include self-links to correct for this. Therefore, upon

inclusion of first-order self dynamics, essentially all real networks

are structurally controllable with ND~1, irrespective of network

topology.

In the case that the network topology does not explicitly contain

self links, the consequence of ascribing pure integrator dynamics

(pi~0) to each node is categorical: the system is necessarily

unstable. This is because the sum of the eigenvalues is given by the

trace of the system matrix, which, in this case, would be

trace(ÂA)~0, since there are zeros on the entire diagonal. This

would imply that it is impossible to have any stable eigenvalues

(negative real parts) without also having unstable ones (positive real

parts), so that their sum is zero. Therefore, such a network of

integrators must be purely oscillatory or unstable, and cannot be

asymptotically stable. Therefore, assuming pure integrators at

each node, and no explicit self-links in the adjacency matrix,

precludes passive stability which many natural systems enjoy.

Have we taken the point about generic nodal dynamics too far?

It may be desirable to model and control a network on a timescale

that is faster than the dynamics of the intrinsic nodal dynamics.

We concede that in such cases, it may be reasonable to treat the

nodal dynamics as pure integrators (systems with infinite time

constants). However, we argue that structural controllability may

not be appropriate for addressing these nuanced modeling issues.

An essential feature of structural controllability is that no

importance is assigned to specific values for the non-zero terms in

the dynamics. Values are treated as either zero or not zero; there is

no in-between. Thus, the choice of whether to zero out the self-

loop terms a priori is a subtle modeling issue that should take into

account the emergent timescales of the entire network. Therefore, we

contend that model reduction [23]–which is essential for controller

design–should be treated at the level of the entire network

dynamics rather that at the level of individual nodes: indeed the

timescales relevant for control are an emergent property of the

system dynamics, and not strictly a feature of one node or another.

With this in mind, we find that the tool of structural controlla-

bility–which is premised on a notion of generic parameters–is best

suited to generic modeling assumptions. In this case this means

assuming pi=0, i~1, . . . N.

Above, we argue that structural controllability of complex

networks depends on the dynamics at each node, and that only a

single time varying input is required. Two questions remain: (1)

How sensitive is structural controllability to the dimension of the

state space for each node? (2) Where should we inject the ND

independent time inputs into the network, i.e. what is the

minimum number of nodes of the network to which the input

must be connected? Proposition 1 explicitly depends on treating

first order nodal dynamics as ‘‘self loops’’ in the network. Below we

offer a more general treatment for arbitrary (linear) nodal

dynamics that addresses both questions above. See Figure 1.

Given a directed graph, a PDS is, by definition, the smallest set

of nodes such that all other nodes are downstream of at least one

node in the PDS. Obviously, controllability requires connecting

the input(s) at least to this set; below we show that structural

controllability is generically achieved by connecting a single input

to the PDS. Before doing this, we need one definition:

Definition 1 Suppose that there are K nodes in the PDS.

Attach a single control input, u, to this set via a control node.

Augment the graph with this control node and add the K edges

that connect it to the PDS. Then, all nodes are downstream of the

input u (i.e. the control node is now the PDS of the augmented

graph). Define the structural control network as an acyclic

directed graph given by a directed spanning tree that starts at u

and visits all nodes.

We now state the main result.

Proposition 2 Consider the nodal dynamics in (2), with Gi(s)
an arbitrary, proper, rational transfer function [15] of the form.

Gi(s)~
ni(s)

di(s)
,

where, ni(s) and di(s) are assumed to be generic polynomials (all

coefficients up to the order of the polynomial are assumed to be

nonzero) of finite but arbitrary order in s. Then, the network is

structurally controllable with one (ND~1) independent input,

connected to the PDS.

Proof. Using the structural controllability argument, we are free

to modify any nonzero parameters; if the system is controllable for

one set of parameters, it will be generically controllable.

So, zero out all edges that are not in the structural control

network and set all those in the structural control network to 1; if

this process results in a controllable system, as we now show it

does, then the system will be controllable generically.

Figure 1. Given a network, the PDS (large white circles) is the
smallest set of nodes such that all other nodes (smaller grey
circles) are downstream of them. Any network, with arbitrary (and
possibly different) order finite-dimensional linear dynamics at each
node is structurally controllable from a single driver node (black square)
tied to the PDS as shown. See Proposition 2. The edges in the structural
control network are part of a minimum spanning tree (black edges,
although this choice of edges, and indeed the PDS, is not necessarily
unique).
doi:10.1371/journal.pone.0038398.g001
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All nodes in this structural control network are still downstream

of u, but now there are no cycles. Since the structural control

network is a minimum spanning tree, there is exactly one path

between u and any specific node, i. Let J i denote the set of nodes

along the path from u to node i in the structural control network.

Then transfer function from u to any given node is simply the

product of the transfer functions along the path from u to the

node:

Hj(s)~
Xj(s)

U(s)
~ P

k[J i

Gk(s), j~1,2, . . . N: ð5Þ

Since we may freely adjust the polynomial coefficients in the

denominator terms, we do so to ensure there are no repeated poles

in the entire network and similarly adjust the numerator

coefficients to ensure no pole-zero cancellations along any path

in the structural control network. Since there are no pole-zero

cancellations, and all poles in the network are unique, a minimal

realization of the N|1 transfer function ½H1(s),H2(s), . . . HN (s)�T
must contain exactly one eigenvalue for each pole of the network.

It is obvious that the minimal realization requires no more

eigenvalues than that. The number of eigenvalues in the minimal

realization is equivalent to the number of eigenvalues that are both

controllable and observable. Thus all states are controllable for

this parameter set and, by the structural controllability theorem

[11], the network is structurally controllable.

For first-order nodal dynamics, our main result is not

substantively different from those presented for discrete time and

finite state systems in [24,25]. They show that networks with

nontrivial nodal dynamics are structurally observable with a single

output node and structurally controllable with a single input node.

Our modest generalization to arbitrary-order nodal dynamics is at

best incremental over their work. Indeed, the main contribution of

our paper lies not so much in any technical advance as it does in

providing a timely clarification of [10].

Simple Example: A Food Web
To illustrate the ideas of this paper, consider a simple food web

comprising one predator and one prey species. Let H denote the

number of herbivores (prey) and C denote the carnivores

(predators). We begin by noting that historically, the classic

models of predator–prey dynamics [26] take the form.

_CC ~{cCz CH

_HH ~aH{bHC

_CC ~C({cz H)

_HH ~H(a{bC),
ð6Þ

where a,b,c,w0. Linearizing these dynamics about the nontrivial

equilibrium (C�,H�)~(
a

b
,
c

) this model has the following local

dynamics:

_xx~

0
a

b

{
bc

0

2
64

3
75x

where x~(dC,dH) is the vector of small displacements relative to

the equilibrium (C�,H�). Note that the linearized food web is fully

connected (whereas [10] include a nonzero edge for ‘‘C eats H ’’

but not for ‘‘C is eaten by H ’’ in their treatment of a trophic

networks). Also, note that this linearized system has infinite time

constants at the nodes, i.e.,zero values along the diagonal. Thus

these early models do not include the finite time constants that we

argue are so important to system dynamics. Later work remedied

this omission; the early models such as Eq. (6) did not include

terms that researchers subsequently found to be essential for

modeling real biological systems, such as saturation effects arising

from resource limitations [14]. Including these additional terms

leads to a 2|2 system matrix that is fully populated with

(generically) nonzero terms on and off the diagonal. This implies

that the resulting linearization features finite time constants at each

of the nodes, and the network is fully connected. That is, where

structural controllability is concerned, taking into account the full

dynamics of a food web leads inescapably to the conclusion this

system should be controllable with a single input.

Discussion

Recently, it was reported that sparse inhomogenous networks

require distinct controllers for a large fraction of the nodes to

attain structural controllability [10]. We argue that these results

are a consequence of assuming a special structure for the dynamics

at each node: each node is treated as a pure integrator. In the

application of the model set forth in [10] to the real networks

considered therein, each node is assumed to have an infinite time

constant. In this paper, we show that (1) for generic, arbitrary-

order nodal dynamics, structural controllability can be achieved

with a single time-varying input, and (2) that input should be

attached to a PDS.

The property of a system being controllable has two significant

interpretations in control theory. First, if a system is controllable

then it is possible to find an input to transfer any initial state to any

final state in finite time. Second, if a system is controllable then it is

possible to apply a control signal consisting of a linear combination

of the states that changes the dynamics arbitrarily. In particular, it

is possible to stabilize an unstable system, a necessary design goal

in engineering problems. Such a control signal is termed state

feedback.

It is important to note what the first definition of controllability

leaves out. For example, unless the final state is an equilibrium, the

state will not remain there, but will move away. In many

engineering applications, it is important to find an input that will

both stabilize a system and hold a specified linear combination (or

set of linear combinations) of states at desired constant values. This

is referred to as the problem of setpoint tracking, and requires that

the system be controllable (so that a stabilizing control input may

be found) and that there are at least as many independent control

inputs as there are linear combinations of states to be held at

desired setpoints [27]. Hence we see that although one input may

suffice to achieve controllability of an arbitrary number of state

variables, in fact the number of inputs limits the number of

setpoints that may be specified.

The property of controllability is generically present in a system,

and thus in practice it is more important to know not whether a

system is controllable, but whether it is almost uncontrollable. In

the latter case, the control input used to drive the state to its

desired value, or to achieve the desired dynamics, may be

excessively large. Hence there is a need for tests–such as those

based on the control Gramian [15]–to determine what states are

almost uncontrollable. In practice these are then treated as though

they were indeed uncontrollable to avoid the excessively large

inputs required to control them.

A more subtle problem arises with the second use of the

controllability property. In practice, it is rarely possible to measure

all the states of the system required for the control signal used to

Controllability of Complex Networks Revisited
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alter the dynamics of the system. Instead, the control signal is

based on estimates of the states obtained by processing those states

(or linear combinations of states) that are measurable. A system is

said to be observable if it is possible to estimate the states using

only the available outputs [15]. As is the case with controllability,

the property of observability is generically present, and it is

necessary to determine whether states are almost unobservable.

States that are either uncontrollable or unobservable do not

influence the input–output relation of a system, and cannot

themselves be influenced by a control input signal based on output

measurements. Such systems are characterized by a pole (an

eigenvalue of the matrix ÂA) that does not appear in the transfer

function due to being canceled by a zero of the transfer function

having the same value. If the system is almost uncontrollable or

almost unobservable, then the transfer function will have a zero

very near to a pole. In this case, it is possible to design a control

signal based on state estimates. However, it may be shown using

the theory of fundamental design limitations [28,29] that the

resulting feedback control system will necessarily have a very small

stability margin, and be sensitive to disturbances and parameter

variations. Often, the solution to this problem requires the

introduction of additional control inputs or additional measure-

ments.

In conclusion, the property of controllability, although impor-

tant, is by no means sufficient to assure a well behaved control

problem. One might expect this to be true since the property is

generically present, as is the property of observability. The more

relevant questions are thus whether the system is almost

uncontrollable, almost unobservable, or possesses almost pole–

zero cancellations.
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