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Abstract. Given two compact, simply connected manifolds with boundary, and a
navigation function (NF) on each manifold, this paper presents a simple composi-
tion law that yields a new NF on the cross product space. The method provides
tunable “hooks” for shaping the new potential function while still guaranteeing
obstacle avoidance and essentially global convergence. The composition law is as-
sociative, and successive compositions fold into a single, computational simple ex-
pression, enabling the practical construction of NFs on the Cartesian product of
several manifolds.

1 Introduction

The gradient vector field of a properly designed artificial potential function
can steer a robot to a goal, while avoiding obstacles along the way. Adding
a damping term to flush out any unwanted kinetic energy generalizes this
approach to the second-order setting, since total energy always decreases in
damped mechanical systems [14]. Of course, if a well-tuned robot control sys-
tem is already in place, the potential field may be used in a more traditional
first-order manner to generate trajectories via the gradient flow (in the case
of a position controller) or field itself (in the case of a velocity controller).

The problem of spurious minima and safety for second-order plants lead
Rimon and Koditschek to introduce navigation functions (NFs), a refined no-
tion of artificial potential functions [16]. They showed that every smooth com-
pact connected manifold with boundary, M, admits a smooth NF, ϕ : M→
R. Thus, given a fully actuated Lagrangian system evolving on a such a
configuration manifold, the machinery of NFs “solves” the global dynami-
cal control and obstacle avoidance problem [20]. Caveat emptor: constructing
NFs for arbitrary manifolds remains an art: each new model space requires
a handcrafted NF. Example constructions for special model spaces include
“sphere” worlds [16] and “star” worlds [19].

While a general methodology for constructing NFs seems unlikely, an “NF
designers toolbox” for configuration spaces of practical interest seems plausi-
ble. Cartesian product spaces provide a compelling starting point since they
imbue engineering applications: a serial-link robotic manipulator constructed
of lower pairs between links comes to mind. Mathematical abstractions of
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physical phenomena, such as rigid motions (SE(n) = SO(n)×Rn), also high-
light this point. Other application specific examples include the “occlusion-
free configuration space” in visual servoing (see Sec. 4) [7, 8]. In each case,
the systems are topologically decoupled, but mechanically coupled. Thus, a
systematic set of tools for building NFs on Cartesian product spaces adds a
key engineering tool to the toolbox.

1.1 Contribution

This paper presents a mathematically simple method by which to compose
two NFs on two respective manifolds with boundary, to generate a new NF on
the Cartesian product space. The composition law provides a control system
designer with a set of gains to shape the resultant potential function, without
imperiling the formal convergence and obstacle avoidance guarantees afforded
by the NF methodology. Thus if the topology of the free configuration space
can be expressed as the Cartesian product of several lower dimensional man-
ifolds for which known NFs exists, a new NF for the free configuration space
may be easily constructed from the constituent components.1

1.2 Related literature

Potential Fields and Energy Methods. Khatib introduced artificial potential
functions for robot control in his Ph.D. dissertation over 20 years ago [11],
and later employed potentials for dynamical obstacle avoidance [12]. Since
1980, several researchers have tried to repair inadequacies present in the
early application of potential functions to robot control, most notably, the
problem of local minima. In addition to addressing local minima, Koditschek
and Rimon’s NFs “lift” to second order dynamical settings while still en-
suring essentially global convergence and obstacle avoidance [14, 16, 19, 20].
Lopes and Koditschek recently extended the use of NFs to the control of
nonholonomic systems, in the context of perceptual constraints [17].

Other energy methods also round out the toolbox. For example, gyro-
scopic forces between multiple agents, each negotiating the same potential
field, avoids mutual collisions [5], providing an elegant compliment to NFs.
Also, the method of controlled Lagrangians [1,2] shapes the input to a system
so that the closed loop behavior is that of a system with a different, desired
Lagrangian; this is, in a sense, a generalization of potential shaping.

Composition. This paper presents a technique for controller composition:
building up a large, integrated control systems based on relatively simple com-
ponents. Burridge et al. describe a means by which to compose controllers
sequentially [4]; roughly speaking, given a set of controllers, with known at-
tractors and known domains of attraction, the resulting composition yields
1 The constituent manifolds can be arbitrarily complicated, so long as an NF has

been designed for each one.
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a controller whose domain is the union of the constituent controllers. Their
method applies to any dynamical system for which a set of constituent con-
trollers (possessing certain technical requirements) exists. Sequential compo-
sition sits at a level above NFs, so the two may be integrated synergistically.
For example, Conner et al. applied sequential composition to a collection of
NF-like potentials for global robot navigation [6].

Parallel composition aims to allocate a small number of actuated degrees
of freedom to manage the energy of multiple, independent dynamical systems.
Early attempts at parallel composition, applied to robot juggling, succeeded
empirically [3], leading to recent formal methods for parallel and interleaving
composition by Klavins and Koditschek [13]. Their method abstracts each of
n independent dynamical systems to its phase, which evolves on a copy of S1.
The total system evolves on the n-fold Cartesian product of S1, Tn, where
they construct a flow derived in part from a potential field. The systems they
consider are topologically and (at least piecewise) mechanically “decoupled”
(save the mechanical coupling of a shared actuation resource, such as the
paddle in a juggling system [21]). An interesting extension of the current work
would be to consider the parallel control of mechanically coupled systems
evolving on “topologically decoupled” (i.e. cross product) spaces.

2 Control via Navigation Functions

This section summarizes the work on NFs developed by Rimon and Koditschek
[14,16,19,20].

2.1 Plant model

Consider a holonomically constrained, fully actuated mechanical system with
known kinematics and suppose the configuration space is modeled by a com-
pact, connected n-dimensional manifold with boundary, Q. Let (q, q̇) ∈ TQ
denote the generalized positions and velocities on Q. The equations of motion
may be found using Lagrange’s equations (see, for example, [9, 18]), namely

d

dt

∂

∂q̇
L(q, q̇)− ∂

∂q
L(q, q̇) = u (1)

where L(q, q̇) is the Lagrangian, and u is a set of generalized force inputs.
Assume that any external potentials (such as gravity) or non-viscous forces
can be canceled by an appropriate feed-forward control term.

2.2 Task specification

Assume that any obstacles in the workspace are accounted for by the con-
struction of Q, so that for obstacle avoidance, trajectories must avoid crossing
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Fig. 1. An example of a free configuration space, Q. In this case, Q ⊂ R2 is a
“square with three holes”.

the boundary ∂Q, for all t ≥ 0 (see Fig. 1). The positioning objective is de-
scribed in terms of a goal, q∗, in the interior of the domain, Q̊. The task is
to drive q to q∗ asymptotically subject to (1) by an appropriate choice of
u while remaining in Q. Moreover, the basin of attraction E must include
a dense subset of the zero velocity section of TQ; this guarantees conver-
gence from almost every initial zero velocity state (q(0), q̇(0)) = (q0, 0) whose
position component lies in q0 ∈ Q.

2.3 First order gradient systems

Let Q be an n-dimensional manifold with boundary, and consider the kine-
matic control system given by q̇ = u where u ∈ TQ is a generalized velocity
input. One possible control strategy involves following the gradient of a po-
tential function ϕ : Q → R, namely

q̇ = −∇ϕ(q). (2)

A smooth scalar valued function whose Hessian matrix is non-singular at
every critical point is called a Morse function [10]. Potential field controllers
(2) arising from Morse functions impose global steady state properties that
are particularly easy to characterize, as summarized in the following result.

Theorem 1 (Koditschek, [14]). Let ϕ be a twice continuously differen-
tiable Morse function on a compact Riemannian manifold, Q. Suppose that
∇ϕ is transverse and directed away from the interior of Q on any boundary
of that set. Then the negative gradient flow has the following properties:

1. Q is a positive invariant set;
2. the positive limit set of Q consists of the critical points of ϕ
3. there is a dense open set Q̃ ⊂ Q whose limit set consists of the local

minima of ϕ.
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2.4 Second order, damped gradient systems

The first order dynamical convergence results above do not directly apply
to Lagrangian systems. This section reviews machinery to “lift” the gradient
vector field controller (2) to one appropriate for the second order plant (1).
Adding a linear damping term yields a nonlinear “PD” style feedback,2

u = −∇ϕ(q)−Kd q̇, (3)

and it follows that the total energy,

η(q, q̇) = ϕ(q) + κ(q, q̇),

where κ is the kinetic energy functional, is non-increasing [14].
Note that if the total initial energy exceeds the potential energy at some

point on the boundary ∂Q, a trajectory beginning within Q may intersect
∂Q. Fortunately, further refining the class of potential functions will enable
the construction of controllers for which the basin of attraction contains a
dense subset of the zero velocity section of TQ.

Definition 1. Let Q be an n-dimensional compact, simply connected mani-
fold with boundary, and let q∗ ∈ Q be distinct point. Let C ⊂ ∂Q, called the
“corners” of Q, be a nowhere dense subset. A functional ϕ : Q → [0, 1] is a
navigation function, if it

1. is continuous on Q and C2 on Q− C;
2. achieves its unique minimum of 0 at q∗ ∈ Q̊;
3. attains its maximal value of 1 uniformly on ∂Q, the boundary of Q (as-

suming ∂Q 6= ∅);
4. is Morse on Q− C.

This definition was adapted from [14,15,19]. In particular, [19] addresses the
issue of manifolds with smooth interiors but possibly “sharp corners.” For
example, the square, Q = [−1, 1] × [−1, 1], which has four sharp corners,
admits an NF as will be seen in Sec. 4.

This notion of an NF, together with the observation that total energy
decreases in a damped mechanical system, now yields the desired convergence
result for the Lagrangian system (1).

Theorem 2 (Koditschek, [14]). Given the system described by (1) subject
to the control (3), almost every initial condition within the set

E = {(q, q̇) ∈ TQ : η(q, q̇) ≤ 1} (4)

converges to (q∗, 0) asymptotically. Furthermore, transients remain within Q,
namely q(t) ∈ Q for all t ≥ 0.

Theorem 2 generalizes the kinematic global convergence of Theorem 1.
Starting within E imposes a “speed limit” as well as a positional limit, since
the total energy must be initially bounded [15].
2 The allusion to PD control derives from the fact that near a minimum of ϕ, (3)

reduces to u ≈ −Kp(q − q∗)−Kdq̇, where Kp = ∂2ϕ
∂q2 (q∗) is the Hessian of ϕ.
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Fig. 2. An NF should evaluate uniformly at the boundary. In this case, X = [−1, 1],
and ϕ1 does not obtain the same value at x = ±1, whereas ϕ2 does.

2.5 Invariance under diffeomorphism

A key ingredient in the mix of geometry and dynamics involves the realization
that NFs are invariant to diffeomorphism [14]. This affords the introduction
of geometrically simple model spaces and correspondingly simple NFs.

2.6 Why uniformly maximal at the boundary?

The requirement that an NF uniformly evaluate to a constant on the bound-
ary is often overlooked. To illustrate this point, let X = [−1, 1], be the con-
figuration manifold, and let x∗ = 0.6 be the goal. The boundary, ∂X , consists
of two points, −1 and +1. As a candidate NF, one may naively consider

ϕ1(x) = (x− 0.6)2 (5)

and note that ∇ϕ1(x) = 2(x − 0.6), which has no local minima on [−1, 1]
except at the goal of x∗ = 0.6. If the system begins at the left edge of the
configuration manifold, it will have a total initial potential of 1.62 = 2.56,
but the potential barrier on the right edge is only 0.16. If the system is not
highly over-damped, there are no guarantees that the right boundary will be
avoided for all zero-velocity initial conditions within the domain X . Thus,
second order safety requires boundary uniformity. The NF

ϕ2(x) =
(x− 0.6)2

(1− x2) + (x− 0.6)2
, (6)

satisfies this requirement, as illustrated in Fig. 2.

3 Composing NFs on Cross Product Topologies

3.1 Construction

Consider two compact manifolds with boundary, X1 and X2, together with
associated NFs, ϕ1 and ϕ2. Denote the Cartesian product space,Q = X1×X2.
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As a naive attempt construct a navigation function on Q, consider the sum
of NFs, ϕ : Q → [0, 1], given by

ϕ(q) = 1
2 (ϕ1(x1) + ϕ2(x2)),

where q = (x1, x2). Such a function is Morse with unique minimum at q∗ =
(x∗1, x

∗
2) ∈ Q, where x∗1 ∈ X1, x∗2 ∈ X2 are the respective goals of each

NF. However, ϕ is not an NF on Q. The problem arises because ϕ is not
uniformly maximal on the boundary of Q, given by the disjoint union of
three components

∂Q = (∂X1 × ∂X2) ∪ (∂X1 × X̊2) ∪ (X̊1 × ∂X2) .

For example, ϕ(·) < 1 on ∂X1 × X̊2, since ϕ2(·) < 1 on X̊2. Thus, the sum of
two NFs, though possibly adequate for first-order kinematic systems, does not
ensure safety with respect to the boundary when lifted to the second-order
dynamic setting as described in Sec. 2.6.

Note that the function given by q 7→ (ϕ1(x1), ϕ2(x2)), maps the boundary,
∂Q, to the “top and right edges” of [0, 1]× [0, 1], namely {(1, ·)}∪{(·, 1)} and
encodes the goal q∗ at the point (0, 0). This motivates the following definition.

Definition 2. A composition function is a functional ϑ : [0, 1]×[0, 1] → [0, 1]
such that

1. ϑ(0, 0) = 0;
2. ϑ(1, ·) = ϑ(·, 1) = 1;
3. ϑ is C2 everywhere but at the point (1, 1), where it is C0.
4. ϑ is monotone increasing in both variables, i.e. ∂ϑ(z1,z2)

∂zi
> 0, i = 1, 2.

We are now ready to compose two NFs.

Proposition 1 (Navigation Function Product). Consider two compact
manifolds with boundary, X1 and X2, together with associated NFs, ϕ1 and
ϕ2, and a composition function, ϑ. The navigation function product

ϕ = ϕ1 ∨ ϕ2,

given by ϕ(q) = ϑ(ϕ1(x1), ϕ2(x2)), is a navigation function on Q = X1×X2,
with unique global minimum at q∗ = (x∗1, x

∗
2) ∈ Q.

Proof. (Uniformly maximal) Since ϑ is a composition function, ϕ achieves
the value of 1 exactly when either ϕ1 and/or ϕ2 achieve a value of 1, which
comprises the entire boundary ∂Q.

(Corners are nowhere dense) Let Ci ⊂ ∂Xi, i = 1, 2 be the sets of corners
associated with each respective manifold. Consider the set C ⊂ ∂Q, comprised
of three disjoint components

C = J1 ∪ J2 ∪ J3, where

J1 = C1 ×X2

J2 = X1 × C2

J3 = ∂X1 × ∂X2 .
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This set comprises the set of corners of Q, and as we will see, is the exact set
on which ϕ = ϕ1 ∨ ϕ2 is not smooth. Note that even if X1 and X2 are both
corner-free, the Cartesian product X1 ×X2 has corners J3.

By hypothesis, Ci ⊂ ∂Xi, i = 1, 2 are nowhere dense, therefore C1 ×X2 ⊂
∂Q (and vice versa) are nowhere dense. Moreover, ∂X1 × ∂X2 is nowhere
dense on ∂Q. The finite union of nowhere dense sets is nowhere dense.

(Continuity) Note that ϕi is C2 on Xi − Ci, i = 1, 2 and ϑ is C2 on
[0, 1]×[0, 1]−{(1, 1)}. By construction, C comprises exactly the “bad regions”
where these functions are not smooth, and thus ϕ is C2 on Q−C. Moreover,
ϕ is the composition of continuous functions and is therefore continuous (C0)
everywhere on Q.

(Morse) Note that

∇ϕ =

[
∂ϑ(z1,z2)

∂z1
∇ϕ1

∂ϑ(z1,z2)
∂z2

∇ϕ2

] ∣∣∣∣∣
z1=ϕ1,z2=ϕ2

which is well defined everywhere except on C. By Definition 2, ∂ϑ(z1,z2)
∂zi

> 0,
i = 1, 2, so on Q− C we have

∇ϕ(q) = 0 ⇐⇒ ∇ϕ1(x1) = 0 and ∇ϕ2(x2) = 0 .

Thus, the critical points of ϕ are given simply by all combinations of critical
points of ϕ1 and ϕ2. The Hessian at a critical point3 is given by

∂2ϕ

∂q2
=

[
∂ϑ(z1,z2)

∂z1

∂2ϕ1
∂x2

1
0

0 ∂ϑ(z1,z2)
∂z2

∂2ϕ2
∂x2

2

] ∣∣∣∣∣
z1=ϕ1,z2=ϕ2.

(7)

Thus, the Hessian matrix evaluated at a critical point (7) is block diagonal
with the positively scaled Hessians of each constituent NF on the diagonal.
Thus, since the constituent Hessians are nondegenerate at a critical point,
then ϕ is also nondegenerate.

(Unique minimum) The critical point q∗ = (x∗1, x
∗
2) corresponding to a

minimum of both constituent potential functions is also a minimum. More-
over, it is the global minimum since ϕ(q) = 0 iff ϕi(xi) = 0, i = 1, 2, which is
only true at q∗. By inspection of the Hessian, all other others critical points
are saddles and maxima. ut

3.2 Designing composition functions

The composition functions presented below, while by no means exhaustive,
have certain convenient properties, such as associativity, tunability, and suc-
cessive compositions reduce to a single, computationally simple expression.
3 This expression is not valid away from the critical points, since it explicitly uses

the fact that ∇ϕi = 0, i = 1, 2.
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Consider the “squashing diffeomorphism” σ : [0,∞) → [0, 1), defined by

σ(α) :=
α

1 + α
(8)

and the function, χ : [0, 1)× [0, 1) → [0,∞), given by

χ(z1, z2) =
z1

1− z1
+

z2
1− z2

. (9)

Finally, define ϑ : [0, 1]× [0, 1] → [0, 1] by

ϑ(z1, z2) :=
{
σ ◦ χ(z1, z2), when z1 < 1 and z2 < 1
1, otherwise. (10)

To see that this function satisfies Definition 2 note that

ϑ(z1, z2) =
z1 + z2 − 2z1z2

1− z1z2
(11)

everywhere on [0, 1]× [0, 1], except at z1 = z2 = 1 (i.e. the “upper right
corner”). In particular, note that the above expression evaluates to 1 when
either z1 = 1 or z2 = 1 (but the expression is not well defined for z1 = z2 = 1).
Nevertheless, the limit

lim
z1,z2→1

z1 + z2 − 2z1z2
1− z1z2

= 1

and therefore ϑ is continuous, and well defined on its domain [0, 1] × [0, 1].
Furthermore, the Jacobian of ϑ,

∂ϑ(z1, z2)
∂z

=
1

(1− z1z2)2
[
(1− z2)2 (1− z1)2

]
,

is well defined except when z1 = 1 or z2 = 1, and can be easily extended by
taking the limit as z1 → 1 or z2 → 1 (but not both) to yield

lim
z1→1

(
∂ϑ(z1, z2)

∂z

)
=

[
1 0

]
, lim

z2→1

(
∂ϑ(z1, z2)

∂z

)
=

[
0 1

]
.

As can be seen, the Jacobian is discontinuous at the point z = (1, 1). It is
also straight forward to compute the Hessian matrix, which is well defined
everywhere on the domain [0, 1]× [0, 1] except at z = (1, 1).

Remark 1 (Semigroup property). By Proposition 1, if ϕ1 and ϕ2 are, respec-
tively, NFs on compact manifolds with boundary, X1 and X2, then ϕ1 ∨ ϕ2

is an NF on X1 × X2, and thus ∨ is closed. Moreover, Cartesian products of
spaces are associative, i.e.

(X1 ×X2)×X3 = X1 × (X2 ×X3).

Finally, the navigation product is associative because ϑ is associative, namely
ϑ(z1, ϑ(z2, z3)) = ϑ(ϑ(z1, z2), z3). This can be verified by direct algebraic
substitution. Thus, the set NFs on compact manifolds with boundary forms
a semigroup. ut
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Fig. 3. Contour plots for different composition functions. Left: untuned ϑ in (10).
Right: tuned ϑk in (12), with k = (1, 5).

Remark 2 (Fold). Let Xi, i = 1, . . . , n be n manifolds with boundary and let
ϕi be their respective NFs with goals xi, i = 1, . . . , n. Using the composition
function ϑ, let ϕ = ϕ1 ∨ ϕ2 · · · ∨ ϕn, Q = X1 × X2 × · · · Xn, and let q =
(x1, x2, . . . , xn) ∈ Q. Then4

ϕ(q) = σ

( n∑
i=1

ϕi(xi)
1− ϕi(xi)

)
.

(Proof by induction). By definition, this is true for n = 2. Suppose it is true
for n = k, and let ϕk := ϕ1 ∨ ϕ2 · · · ∨ ϕk be the navigation product of the
first k functions. Dropping the explicit dependence on the xi’s, from (11) we
have that

ϕk+1 = ϑ
(
ϕk, ϕk+1

)
=
ϕk+1 + σ

( ∑k
i=1

ϕi

1−ϕi

)
− 2ϕk+1σ

( ∑k
i=1

ϕi

1−ϕi

)
1− ϕk+1σ

( ∑k
i=1

ϕi

1−ϕi

)
which, upon multiplying numerator and denominator by 1+

∑k
i=1

ϕi

1−ϕi
, and

simplifying yields the desired result. ut

Tunable composition function. While the NF framework affords certain
formal guarantees, such as dynamical obstacle avoidance and essentially global
convergence, one of the practical weaknesses of the existing NF literature con-
cerns the tunability of NF-based controllers. In (3), the damping gain, Kd,
comprises a set of a free design parameters, but there are no explicit hooks for

4 One must use care on ∂Q, e.g. when ϕi = 1, but at these points ϕ(q) = 1.
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tuning the potential function, unless the designer builds such hooks directly
into the NF. The composition function formed by replacing χ (9) with

χk(z1, z2) = k1
z1

1− z1
+ k2

z2
1− z2

introduces a set of tunable gains k = (k1, k2). As long as k1, k2 > 0, it is
readily shown that the resulting composition function

ϑk(z1, z2) :=
{
σ ◦ χk(z1, z2), when z1 < 1 and z2 < 1
1, otherwise. (12)

satisfies Definition 2.
With appropriate choice of gains at each stage of composition, the ∨ is

associative as before. For example

ϑ(k1,1)

(
z1, ϑ(k2,k3)(z2, z3)

)
= ϑ(1,k3)

(
ϑ(k1,k2)(z1, z2), z3

)
,

and ϕ = ϕ1 ∨ ϕ2 · · · ∨ ϕn is given by

ϕ(q) = σ

( n∑
i=1

ki
ϕi(xi)

1− ϕi(xi)

)
.

4 Examples

We consider a few simple examples of the navigation product.

4.1 Cross product of a circle and an interval

Note that ϕ1(θ) = (1 − cos θ)/3 is an NF on S1 with a goal at θ = 0.
The maximum value of ϕ1 is chosen to be 2/3, rather 1, since there is no
boundary on S1. The function ϕ2(x) = x2 is an NF on [−1, 1], with a goal at
x = 0. Let Q = S1 × [−1, 1], and let q = (θ, x) ∈ Q. The navigation product
ϕ = ϕ1 ∨ ϕ2 : Q → [0, 1] is given by

ϕ(q) = (ϕ1 ∨ ϕ2)(θ, x) =
1 + x2 +

(
−1 + 2x2

)
cos θ

3− x2 + x2 cos θ
.

A 3D plot is shown in Figure 4.

4.2 Cross product of intervals

Let Xi = [αi, βi], for some αi, βi ∈ R, be two intervals and consider a different
NF, ϕi : Xi → [0, 1], for each

ϕi(x) =
(x− q∗i )2

(βi − x)(x− αi) + (x− q∗i )2
, i = 1, 2, (13)
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Fig. 4. A 3D plot of an NF on S1 × [−1, 1] derived from two simple NFs on S1

and [−1, 1], respectively. The endpoints of the θ axis are identified. There are two
critical points, a saddle and a minimum.

with goals at q∗i , i=1,2. Let Q = X1 ×X2, and let q = (q1, q2) ∈ Q. Consider
the naive NF candidate given by

ϕnaive(y) = 1
2 (ϕ1(q1) + ϕ1(q2)).

As can be seen from Fig. 6, this naive construction is not an NF, whereas
the navigation product ϕ = ϕ1 ∨ ϕ1 is an NF. In the example plot, the
configuration space is Q = [−π

4 ,
π
4 ]2, with the goal location q∗ = (− 3π

20 , 0).
Note that the corners of Q are the four points (−π

4 ,−
π
4 ), (−π

4 ,
π
4 ), (π

4 ,
π
4 ),

(π
4 ,−

π
4 ). Similarly, for the Cartesian product of three intervals, e.g. Q =

[−1, 1]3, the corners are the edges of the cube.

4.3 Double pendulum

We simulated a two link, revolute-revolute mechanical system, as shown in
Fig. 5, to illustrate the consequences of naive artificial potential function
design. We assumed joint limits of ±π

4 , and thus Q = [−π
4 ,

π
4 ]2. We chose

simulated link lengths of `1 = `2 = 1 and masses of m1 = m2 = 1 located at
the end of each respective link. Finally, we chose a diagonal damping matrix
with diagonal elements given by (1.5, 0.5).

For each DOF, we computed the NF, ϕi, i = 1, 2, as given in (13), where
the goals were chosen to be (q∗1 , q

∗
2) = (− 3π

20 , 0). We applied the control law
given by (3) for both the “naive” potential function, ϕnaive = 1

2 (ϕ1 + ϕ2),
and a true NF given by ϕ = ϕ1 ∨ ϕ2.

If the system were kinematic (2), or the links were mechanically uncou-
pled, then control based on, ϕnaive, would guarantee that all zero-velocity
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Fig. 5. A “double pendulum.”

Fig. 6. Contour plots of two candidate NFs on the space Q = [−π
4
, π

4
]2. The config-

uration space trajectories resulting from a zero velocity initial condition,(q(0), 0) ∈
TQ, of the double pendulum system shown in Fig. 5, subject to the “gradient +
damping” feedback in (3) are shown by the bold curves. Left. The potential func-
tion, ϕnaive(q1, q2) = 1

2
(ϕ1(q1) + ϕ2(q2)), is not an NF, because it is not uniformly

maximal on the boundary, and thus the trajectory crosses the boundary. Right. The
navigation product, ϕ = ϕ1∨ϕ2, from Proposition 1 is an NF, thus ensuring safety
with respect to the boundary.

initial conditions within the free configuration space, Q, safely converge.
However, the mechanical coupling between the links renders the behavior
undesirable since the first link violates its joint limit, as shown in Fig. 6.

4.4 Occlusion-Free visual servoing

We turn to a slightly more complex example. Cowan and Chang [7] showed
that the set of all configurations of a perspective projection camera with a
limited field of view, that keeps a specific visual target completely in view, is
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diffeomorphic to the model space

Q = P × [−1, 1]× U (14)

where P := {R ∈ SO(3) : r1 · e1 ≥ cosψ}, U = D2 = {u ∈ R2 : u2
1 + u2

2 ≤ 1}
is a closed, planar unit disk, and ψ ∈ (0, π/2) is a constant.

The basic construction of NFs on each configuration component follows
Rimon and Koditschek [16]. Define two basic building blocks: a goal function,
γ : X → [0,∞), possessing a unique minimum at a goal point, x∗ ∈ X , and an
obstacle function, β : X → [0,∞) that vanishes (only) on the boundary ∂X ,
which is treated as an obstacle set. These two building blocks are assembled
to create a function ϕ : X → [0, 1]:

ϕ :=
γ

γ + β
. (15)

This construction ensures that ϕ is uniformly maximal on ∂X . The critical
point structure must be verified on a case-by-case basis.

1. NF on P. Let R =
[
r1 r2 r3

]
∈ SO(3). Define goal and obstacle functions,

respectively, as

γ1(R) := trace
((
I −RR∗T

)
Λ

)
, β1(R) := rT

1 e1 − cosψ (16)

where Λ is a diagonal matrix with three distinct positive eigen values,
λ1, λ2, λ3. Let ϕ1 := γ1/(γ1 + β1) as described above. As shown in [7],
when R∗ = I, the function ϕ1 : P → R, has a unique global minimum
at R = I, and any other critical points are non-degenerate saddles and
maxima. Therefore, the function ϕ1, for a goal location of R∗ = I, is an
NF.

2. NF on [−1, 1]. Define goal and obstacle functions, respectively, as

γ2(ζ) := (ζ − ζ∗)2, β2(ζ) := 1− ζ2, (17)

where ζ∗ ∈ (−1, 1) is the goal point. One can show that ϕ2, defined in
(15) is an NF. (This is equivalent to (13) with α = −1 and β = 1.)

3. NF on U . The manifold U := {u ∈ R2 : ‖u‖ ≤ 1} is the simplest form of
a “sphere world,” as defined by Koditschek and Rimon [16]. Define goal
and obstacle functions, respectively, as

γ3(u) := ‖u− u∗‖2, β3(u) := 1− u2
1 − u2

2, (18)

where u∗ ∈ D2 (the interior of U). The function ϕ3, as defined in (15), is
an NF [16].

Let q = (R, ζ, u). Given the NFs ϕ1, ϕ2 and ϕ3 defined on their respective
manifolds P, [−1, 1] and U , then the function ϕ = ϕ1 ∨ ϕ2 ∨ ϕ3, given by

ϕ(q) := σ

(
k1

ϕ1(R)
1− ϕ1(R)

+ k2
ϕ2(ζ)

1− ϕ1(ζ)
+ k3

ϕ3(u)
1− ϕ3(u)

)
, (19)

is an NF on the cross product space, Q = P × [−1, 1]× U .
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5 Conclusions

The goal of this paper is to render the machinery of NFs more useful. Typ-
ically, each new space – even if just a simple Cartesian product of other
spaces with known NFs – has required the construction of a new NF. This
paper enables a designer to construct an obstacle avoiding “spring law” for
each separate configuration component, and then the navigation product,
∨, stitches the spring laws together so that dynamical obstacle avoidance
is maintained even for coupled mechanical systems. The technique makes no
extra assumptions on the topology or geometry of the underlying spaces than
those already required for the NF literature. Moreover, the composition law
has the virtue of being associative, tunable, and computational simple even
for large numbers of successive cross products.

For real systems, a significant amount of “hand” design may still be neces-
sary, but the design process is vastly simplified by decomposing the problem
into (topologically) separate pieces, and then combining the results together
with the navigation function product.
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