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Abstract—The flexibility of computer vision is attractive
when designing manipulation systems which must interact
with otherwise unsensed objects. However, occlusions intro-
duce significant challenges to the construction of practical
vision-based control systems. This paper provides empiri-
cal validation of a vision based control strategy that affords
guaranteed convergence to a visible goal from essentially
any “safe” initial position while maintaining full view of all
the feature points along the way. The method applies to
first (quasi-static, or “kinematic”) and second (Lagrangian
or “mechanical”) order plants that incorporate an indepen-
dent actuator for each degree of freedom.

I. Introduction

For many types of manipulation, sensing plays a cru-
cial role. Computer vision provides flexible sensing for ma-
nipulation systems, and consequently has been used for
many experimental platforms involving robotic dexterity.
Because problems of manipulation are themselves quite
challenging, little formal attention has been paid to the
computer-vision side of manipulation. In visual servoing
systems by contrast, the literature focuses on the geome-
try of computer vision, in the context of a somewhat triv-
ial manipulation task: move a fully actuated rigid body
kinematically from an initial condition to a goal location.
To endow manipulation systems with more sensory intelli-
gence, we seek to apply realistic sensor models in the con-
text of dextrous manipulation tasks.

Increasingly, researchers employ computer vision sys-
tems as sensors that measure the projection, y, of features
from a rigid body at each configuration, q, as it moves
in some scene. Such an approach presupposes the avail-
ability of a reliable machine vision system that supplies a
controller with the image plane coordinates, y = c(q), of
features of a rigid body being observed in the scene. The
machine vision system must incorporate image processing,
feature extraction and correspondence algorithms suitable
to the scene in view [6], [7]. For visual servoing, these fea-
tures are then used to close a control loop around some
desired visual image.

Hutchinson et. al. [9] provide a general introduction and
extensive bibliography to the large literature on visual ser-
voing. Briefly, a vision-based controller imposes motion
upon the actuated configuration space variables, q, so as
to align the imaged features, y with a previously stored
reference image, y∗. When the sensor map, c, is injective
in some vicinity of the goal then this generally results in a
closed loop system with an asymptotically stable equilib-
rium state at the unique pre-image q∗ = c−1(y∗). Many
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algorithms of this nature have been proposed and imple-
mented with the result of large basins of attraction around
the equilibrium in the presence of large errors in sensor and
robot calibration.

Typically visual servoing algorithms employ a simple,
fully actuated, kinematic plant model, q̇ = u, the input to
which is generally

u = −J(q)†(y∗ − y) where J† :=
(
JTJ

)−1
JT , (1)

and J(q) := Dqc (q), is the Jacobian matrix. This control
attempts to impose thereby straight-line motion of the fea-
ture points on the image plane. The main advantage to
this approach, many argue, is that convergence is robust
to the model parameters of the camera and the rigid body
being servoed.

Despite their benefits, traditional visual servoing algo-
rithms suffer from some or all of the following failings.
First, they are generally quasi-static. Ignoring the me-
chanical system dynamics precludes the possibility of high
performance control and hence imposes restrictions on the
speed of operation. Second, their basin of attraction is lo-
cal. For example the alignment of (y∗ − y) with the null
space of J† in (1) may incur spurious (attracting) criti-
cal points, and hence, not uncommonly, the local basin of
attraction around q∗ excludes seemingly reasonable initial
conditions. Third, and perhaps most importantly, all of
the visual servoing algorithms proposed to date are vul-
nerable to transient loss of features — either through self-
occlusions or departure from the field of view (FOV). To
the best of our knowledge, no prior work guarantees that
these obstacles will be avoided. Usually these problems are
ignored in analysis, and when encountered in practice sim-
ply cause the system to move into an emergency stop state,
necessitating human intervention.

We have shown that, for some important special cases [2]
[3] [4], the obstacles presented by self occlusion and finite
FOV can be obviated by addressing in a methodical fashion
the relationships between the domain and range of c from
which they arise. Recently [2], we introduced a general
framework for visual servoing yielding feedback controllers
which are
1. dynamic: applicable to second order (Lagrangian) as
well as first order (kinematic) actuation models;
2. global: guaranteeing a basin of attraction encompass-
ing, essentially, the entire set of initial configurations that
maintain feature visibility;
3. visibility-obstacle free: avoiding configurations that lose
features due to either self occlusion or departure from the
FOV.

In visual servoing, a few researchers have recently incor-
porated Lagrangian dynamics into the visual servo loop.
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For example, Zhang and Ostrowski [17] developed a con-
troller for an Unpiloted Aerial Vehicle (UAV) equipped
with a camera. Also, some researches have demonstrated
provably large domains of attraction for kinematic servo
systems (without accounting for occlusions) [13] [16]. Fi-
nally, there have been recent efforts to address the FOV
problem [13] [1], albeit in a quasi-static setting.

II. Robot Control via Navigation Functions

We assume a holonomically constrained, fully actuated
robot and denote the n−dimensional free configuration
space as Q. Lagrange’s equations (see, for example, [5])
yield

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ

where τ is the vector of input torques. The camera plays
the role of sensor, c : Q → Y. Letting the input torque
be τ = u + G(q), where u is our control input, the plant
equations are, in state-space form,

[
ẋ1
ẋ2

]
=

[
x2

M(x1)
−1 (u− C(x1, x2)x2)

]
,

y = c(x1), (2)

where x = [qT , q̇T ]T . Notice that our “generalized PD”
approach to control, below, will not require the precise form
of M or C.

A. Task specification

The state space is constrained by the presence of for-
bidden configurations, the obstacle set O ⊂ Q. The free

space is defined as the obstacle-free configuration space
V = Q−O, and safe configurations D ⊆ V form a compact
connected differentiable manifold with boundary. The po-

sitioning objective is described in terms of a goal set G ⊂
◦

D.
The task is to drive q to G asymptotically subject to (2)
by an appropriate choice of u while avoiding obstacles. We
restrict our attention to point attractors, G = {q∗}. More-
over, the basin of attraction E ⊂ TD must include a dense
subset of the zero velocity section of TD, so that we may
guarantee convergence from the entire configuration space.
Obstacle avoidance requires that the trajectories avoid the
boundary set B = ∂D, i.e. q(t ≥ 0) ⊂ D.

B. Navigation functions

The task of moving to a goal while avoiding obstacles
along the way can be achieved via a nonlinear generaliza-
tion of proportional-derivative (PD) control deriving from
Lord Kelvin’s century old observation that total energy
always decreases in damped mechanical systems [19]. For-
mally, this entails the introduction of a gradient vector field
from a “navigation function,” a refined notion of an artifi-
cial potential function, together with damping to flush out
unwanted kinetic energy [11], [12], [14].

B.1 Second order, damped gradient systems

Let D be a compact manifold with boundary, and
ϕ : D → R be a C2 functional, which encodes a goal,

q∗, as a unique minimum. Combining a potential function
gradient with a linear damping term, yields a simple “PD”
style feedback, in local coordinates,

u = −Dqϕ(q)
T −Kd q̇, (3)

that is appropriate for second order plants. From Lord
Kelvin’s observation it follows that the total energy,

η = ϕ+ κ where κ = 1
2 q̇

TM(q)q̇, (4)

is non-increasing. A refined the class of potential functions
will enable us to construct controllers for which the basin
of attraction contains a dense subset of the zero velocity
section of D. The following definition has been adapted
from [11].
Definition 1: Let D be a smooth compact connected

manifold with boundary, and q∗ ∈
◦

D be a point in its inte-
rior. A Morse function (A smooth scalar valued function
whose Hessian matrix is non-singular at every critical point
[8]), ϕ ∈ C2[D, [0, 1]] is called a navigation function (NF)
if

1. ϕ takes its unique minimum at ϕ(q∗) = 0;
2. ϕ achieves its maximum of unity uniformly on the
boundary, i.e. ∂D = ϕ−1(1).

This notion, together with Lord Kelvin’s observation, now
yield the desired convergence result for the Lagrangian sys-
tem (2).
Proposition 1: (Koditschek [11]) Given the system de-

scribed by (2) subject to the control (3), almost every ini-
tial condition q0 within the set

E = {(q, q̇) ∈ TD : η(q, q̇) ≤ 1} (5)

converges to q∗ asymptotically. Furthermore, transients
remain within D such that q(t) ⊂ D for all t ≥ 0.
Note that E imposes a “speed limit” as well as a positional
limit, since the total energy must be initially bounded.

B.2 First order gradient systems

If we assume our plant is given by q̇ = u, we may use a
purely kinematic, or quasi-static, version of (3), namely

q̇ = −M−1(q)DT
q ϕ(q) (6)

where M is an arbitrary Riemannian metric. Under the
same assumptions on ϕ, essentially all initial conditions
with D converge to q∗ [11].

B.3 Invariance under diffeomorphism

One last key ingredient in the mix of geometry and dy-
namics underlying the results we present revolves around
the realization that a navigation function in one coordinate
system is a navigation function in another coordinate sys-
tem, if the two coordinate systems are diffeomorphic [11].
This affords the introduction of geometrically simple model
spaces and their correspondingly simple model navigation
functions.
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Fig. 1. The Buehgler arm has been modified with an “arrow” feature
on the end of the paddle, which is observed by a perspective
projection camera. The camera image is segmented to extract
the arrow, as depicted.

III. Navigation Function Based Visual Servoing

We have created visual servoing algorithms that are high
performance, global and yet safe with respect to occlusion
obstacles O that arise due to the finite FOV and self-
occlusions [2]. To achieve our objective we compute the
visible set for a particular problem. This is the set of all
configurations V := Q − O in which all features are vis-
ible to the camera and on which c is well defined. We
then design a safe, possibly conservative, compact subset
D ⊆ V in which the body is permitted to move. The set
D provides additional safety with respect to obstacles and
possibly simplifies the topology. We then define the image
space I = c(D) ⊂ Y. The camera map must be a diffeo-
morphism c : D ≈ I. For each problem, D is analyzed to
construct a model space Z and a diffeomorphism g : I ≈ Z.
The camera measures the goal image y∗ = c(q∗).

This paper proposes a new framework for visual servoing
that incorporates three ingredients:
1. a model space, Z, for the “safe” configurations, D;
2. a navigation function ϕ̃ : Z → [0, 1], for the model
space;
3. a diffeomorphism, g : I → Z, from the image space to
the model space.
These three ingredients are assembled with the feedback
control strategy (3), which guarantees that all initial con-
figurations within D converge to the goal while ensuring
occlusion-free transients.

By recourse to the general framework outlined above we
have developed controllers for some specific configurations
of a robot and monocular camera [2], two of which are
reviewed in the subsections that follow. These two con-
figurations are empirically validated in Section IV on two
distinct experimental platforms.

A. Example 1: Buehgler arm, spatial camera

The Buehgler arm, depicted in Figure 1, has three ac-
tuated degrees of freedom denoted in local coordinates by
angles q = [ q1, q2, q3 ]T and its configuration space is
Q = T3. Denote the homogeneous transformation from
the paddle frame to the world base frame, given in [15],

as wHb(q). The transformation from the world frame to
camera frame is cHw, and hence H = cHb = cHw

wHb. For
a feature bp = (br, bv) ∈ T1E3 ≈ E3 × S2 = FS, the total
forward kinematic map is then defined h : Q×FS → FS

h(q) :=

[
H(q)br
R(q)bv

]
=:

[
r(q)
v(q)

]

where (r, v) are in the camera frame. We consider a fea-
ture point at the end of the paddle (which has length %),
and orientation in the y-direction of the paddle, namely
(bp, bv) = ([ 0, 0, %, 1 ]T , [ 0, 1, 0 ]T ) ∈ FS.

A perspective projection camera is positioned to view the
robot end effector as depicted in Figure 1. The transfor-
mation from the world frame to camera frame is cHw, and
the kinematics expressed the camera frame are r = cHw

wr
and v = cHw

wv.
The camera map is given by the projection of the feature,

and its orientation on the image plane, namely

c(q) :=

[
π ◦ r(q)

N
(
Dπ|r(q) v(q)

)
]

(7)

where N normalizes the vector on the image plane, and π
is a perspective projection camera, π : E3 → E2, π(p) =
[ p1/p3, p2/p3, 1 ]T .

The details of the visible set, V, are given in [2], but
intuitively it is the set of joint angles q, which keep the
paddle facing the camera and in the field of view. Hence,
the function c yields position and orientation on the image
plane, i.e. c : V → Y = T1E2. Using the symbolic algebra
package Mathematica, we have a relatively simple closed-
form expression for c, and its Jacobian Dqc(q).

The edge of the image plane is defined in terms of the
“upper right corner” y+ ∈ R2 and the “lower left corner”
y− ∈ R2. The image space is defined

J :=
{
(y, θ) ∈ T1E2 : y+i < yi < y−i , i = 1, 2

}
.

Following [2], under the right assumptions the map c (7) is
shown to be a diffeomorphism c : V ≈ J .

A compact manifold with boundary this is found by tak-
ing the inverse image under c of a compact subset of the
image plane, namely

D = c−1(Iρ) ⊂ V (8)

which is a compact manifold with boundary.
By letting g be a simple affine scale and shift of the

coordinates, the set Iρ is diffeomorphic to Z = [−1, 1]2×S1.
Let (z, ζ) denote coordinates on Z. The function

ϕ̃ :=
ϕ

1 + ϕ
, where

ϕ(z, ζ) := 1
2f(z)

TKf(z) + κ(1− cos(ζ − ζ∗)), (9)

and f(z) =
[

z1−z∗
1

(1−z2
1
)
1
2

· · ·
zn−z∗n

(1−z2
n)

1
2

]T
.

for n = 2 is a navigation function on Iρ. Hence ϕ = ϕ̃ ◦ c
is a navigation function on D.
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B. Example 2: Spatial body, spatial camera

In this example, we consider a convex polygonal rigid
body, with a coplanar array of features on one face. A
model space for the unoccluded scene is Z = [−1, 1]5 × S1

(the details of the camera map and coordinate construc-
tions are given in [2]). The navigation function for this
case, is the same as that given in the previous example,
with n = 5. Unlike the first example, the control law is
performed directly in the task space – the only distinction
being that the change of coordinates for this case includes
a copy of the inverse camera map. In the other two cases,
c−1 was unnecessary, because the image plane was a simple
change of coordinates away from the model space. In this
case, as outlined in [2], the transformation is more cumber-
some (though straight forward).

IV. Empirical Validation

In order to test the framework proposed in Section III
we experimented with two robotic systems that implement
the latter two imaging models introduced in the previous
section. The first system is the custom 3DOF direct drive
Buehgler Arm described in Section III-A to test a fully
dynamical controller (3) based on the NF given by (9).
Our second set of experiments employ an industrial 6DOF
RTX robot from Universal Machine Intelligence to test a
kinematic controller (6) using the spatial 6DOF NF (9).

A. Calibration

Although the visual servoing methodolgy confers robust-
ness against parameter mismatch in practice, all such meth-
ods, including the one presented in the paper, require at
least coarse calibration of the robot and the camera. For
the RTX, we used the manufacturer specified Denavit-
Hartenberg parameters and a linear method ([6], Section 3)
that requires a set of point correspondences between points
in space and their respective image to simultaneously esti-
mate both intrinsic and extrinsic camera parameters. To
obtain the correspondences, a feature affixed to the robot
end effector was moved to a grid of positions in view of
the vision system which extracted an image plane location
for each feature position in space. For the Buehgler setup
we measured the paddle length % and the shoulder offset δ
by hand and proceeded as for the RTX to obtain a rough
estimate of the camera parameters. A gradient algorithm
based on a simple pixel disparity cost function refined our
parameter estimates for the 11 camera and two robot pa-
rameters.

B. The Buehgler Arm

The Buehgler Arm is controlled by a network of two
Pentium II class PCs running LynxOS (http://www.lynx.-
com/), a commercial real-time operating system. The two
nodes communicate on a private ethernet using the User
Datagram Protocol (UDP). The first captures 8bit 528x512
pixel images at 100Hz using an Epix (http://www.epixinc.-
com/) Pixci D frame grabber connected to a DALSA
(http://www.dalsa.com/) CAD6 high-speed digital cam-

era. The images are processed to extract the location (po-
sition and orientation) of the feature point at the end of the
paddle. The second node implements servo control using
the Trellis (http://www.trellissoftware.com/) motion con-
troller with a servo rate of 1kHz, based on the dynamical
controller in (3), wherein the damping term is computed
from encoder data using finite differencing to estimate the
joint velocities.

Two sets of experiments were conducted using the appro-
priate NF (9), implemented with two different gain settings
(i.e., assignments for the parameter array K in (9) and Kd

in (3)) chosen to contrast performance resulting from a
locally well tuned critically damped closed loop using rel-
atively high gains, as against a “detuned” low gain and
underdamped circumstance. Each trial consisted of driv-
ing the feature position and orientation to a goal (z∗, ζ∗)
from some initial condition in joint space (q0, q̇0). For the
“tuned” gain experiments, a set of 8 goal locations with
and 40 initial conditions were chosen in an effort to “de-
feat” the controller. In particular, initial configurations
were chosen near the edge of the FOV, with initial velocity
vectors chosen so as to drive the robot out of the FOV. The
initial conditions were prepared with a simple joint-space
trajectory planner and joint-space PD controller that drove
the robot to the starting state at which time the control
switched to the NF based controller. In other words, we
forced the robot to literally “fling” itself toward an obsta-
cle before turning on our visual servoing controller. Both
the goal positions and initial conditions where chosen to
span the visible robot workspace. The control law gains
were hand-tuned to provide nearly critically damped per-
formance, and settling times on the order of a second.∗ For
the “detuned” gain experiments, a smaller set of more ag-
gressive initial conditions and goal locations was used, and
the damping gain was reduced to provide “underdamped”
performance. There were 4 goals and 8 initial conditions.
Figure 2 shows the the error coordinates of a typical run
for both “tuned” and “detuned” gains.

To quantify the results we examine similar measures as
for the RTX. Table I summarizes the results of the our
experiments. With well tuned gains the controller consis-
tently drove the feature to the goal location with a rate of
success of 97%. Of the 11 errors one was due to exceeding
the robot’s maximum velocity, one to a software driver er-
ror, and one to a feature leaving the FOV of the camera
during initialization. The remaining 8 failures were caused
by not allowing enough time for convergence as each ex-
periment lasted 6 seconds. These errors generally arose
when the robot was close to a saddle of the NF so the con-
troller was slow to overcome the robot’s unmodeled fric-
tion. However, with “detuned” gains and high initial ve-
locity the feature left the FOV 25% of the time. These
failures are due to the fact that the initial energy of the

∗Of course, the allusion to linear notions of damping is merely an
intuitive designer’s convenience. We chose gains to ensure the lo-
cal linearized system was critically damped at the eight equilibrium
states, and then tuned up the “boundary” gains to force reasonably
snappy descent into the domain wherein the linearized approximation
was dominant.
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Fig. 2. Left: The pixel error and corresponding image plane feature trajectory for a typical high gain trial on the Buehgler robot. Middle:
A typical low gain trial, with a different initial and goal locations. A two-dimensional cross section (with θ = θ∗) of the levels sets of the
NF is superimposed on the image plane trajectory. Right: Buehgler convergence results. Top: Five percent settling time for each of the
eight high-gain goal positions. Bottom: The mean pixel error for each of the eight goal positions.

TABLE I

Summary of results for Buehgler arm.

Normalized Path Length
Goal Succ. Jnt. Space Pix. Space Gains
# Rate Mean (dev) Mean (dev) Tuned?
1 40/40 1.75 (0.12) 1.63 (0.19) Yes
2 40/40 2.38 (0.34) 1.85 (0.35) Yes
3 36/40 2.02 (0.87) 1.65 (0.22) Yes
4 40/40 2.07 (0.36) 1.94 (0.50) Yes
5 40/40 1.79 (0.36) 1.64 (0.23) Yes
6 37/40 2.15 (0.41) 2.00 (0.62) Yes
7 36/40 1.96 (0.85) 1.63 (0.19) Yes
8 40/40 2.05 (0.65) 2.02 (0.75) Yes
1 6/8 3.01 (1.93) 3.59 (1.94) No
2 6/8 1.64 (0.40) 2.41 (0.53) No
3 5/8 2.54 (1.86) 3.91 (2.40) No
4 7/8 2.97 (0.46) 3.30 (0.65) No

robot arm caused the arm to escape the potential well –
by using a lower “detuned” gain on the potential energy
feedback term, the potential barrier is reduced. (It would
not be difficult to compute the invariant domain, as in [10]
- these experiments give some sense of the relatively grace-
ful performance degradation consequent upon imperfectly

tuned gains.) Figure 2 shows image-based error plots and
the image-plane trajectory for two typical runs.

To determine the accuracy with which the feature
reached the goal, the mean pixel error is given by

256
√

(zfinal − z∗)T (zfinal − z∗) + ( 1
π
)2(ζfinal − ζ∗)2

so the model coordinates are scaled to be commensurate
with pixel error. As can by seen in Figure 2 (bottom right)
the mean errors are in the neighborhood of 1 to 2 pixels
over each of the eight goal positions.

Table I shows the path length taken by the robot com-
pared to the straight line path length in both joint and
pixel space. The results indicate that in joint space our
navigation function produced results within a factor of 2.5
of the straight line distance. We attribute a large portion
of this additional path length to the fact that the large
initial velocities caused “curviness” to the trajectories.

Finally, we designed our controller to have a very rapid
and dextrous response. The Buehgler arm has a mass in
excess of 100Kg making precise, quick and efficient move-
ment quite challenging. Figure 2 (top right) shows our
navigation based controller produced a one second or less
five percent settle time for seven of the eight primary goal
positions.
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Fig. 3. Left: The pixel error and corresponding image plane feature trajectory for a typical trial. Middle: Another typical trial, with
a different initial condition and goal location. Right: RTX convergence results. Top: The mean pixel error for each of the four goal
positions. Bottom: Five percent settling time for each of the four goal positions.

C. The RTX Arm

The RTX is commanded through the serial port of a
single Pentium PC running a Linux 2.0 kernel (hard real-
time is not required, hence the standard Linux kernel was
adequate). The PC is equipped with a Data Transla-
tions† DT3155 frame grabber connected to a standard 30Hz
NTSC video camera. Using MATLAB’s C-language API,
we created a simple interface to the camera and robot ac-
cessible from within the MATLAB programming language.

The theory presented in Section III-B presumes the con-
figuration space to be Q = SE(3). However, Q is pa-
rameterized (locally) by the robot joint angles q ∈ R6

through the forward kinematics, namely h : R6 → Q. Of
course, inevitably, all such kinematic parameterizations in-
troduce singularities that may, in turn, inject spurious crit-
ical points to the gradient fields, necessarily actuated in
the robot’s joint space rather than in the task space, as
our theory presumes. Similarly, since our formal theory
“knows” only about visibility bounds, the robot’s unmod-
eled joint space angles limits are not in principle protected
against.‡ However, the weight of experimental evidence we

†http://www.datax.com/
‡Addressing the further practical realities of kinematic singularities

and robot joint space limitations falls outside the scope of the present
paper (and, indeed, is not even addressed at all in the traditional
visual servoing literature). In principle, the NF framework would be

present below suggests that these discrepancies between
presumed model and physical reality do not seriously im-
peril the practicability of this scheme. Regarding the first
discrepancy, the absence of stalled initial conditions sug-
gests that any critical points so introduced were not at-
tractors. Regarding the second, we found that choosing
initial and goal locations away from the joint space bound-
aries was sufficient to avoid running into the end-stops.

The RTX controller employs first order gradient descent
on the navigation function in (9). Because the RTX arm
accepts only position commands, given goal and current
images with feature points extracted, the gradient update
was implemented iteratively, as follows:

uk ⇐ −DT
q ϕ = −DT

q (g ◦ h)(qk)D
T
z ϕ̃z∗(zk),

qk+1 ⇐ qk + αuk (where α is the step size).

Note that the Jacobian matrix Dq(g◦h) can be decomposed
into the product of Dg, which maps from the body screw
axis to the model space, and the manipulator Jacobian Dh,
which maps from the robot joint space to the body screw
axis. Indeed, such a decomposition implies the extrinsic
parameters are not needed and hence one may move the
camera without recalibrating.

relevant to these problems as well: joint space limits are analogous
to the FOV obstacles, while the kinematic singularities are akin to
self-occlusion. Again, we stress that a careful treatment of these ideas
lies far beyond the scope of the present paper.
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To explore our algorithm, we conducted a set of exper-
iments in which 58 initial conditions were tested for four
goal locations, giving 232 candidate experiments. Both
the initial conditions and goal locations were chosen ran-
domly from a grid of 4096 points in model space (configura-
tions near kinematic singularities and not within the robot
workspace were removed). We chose many initial and goal
configurations near the boundaries of the workspace, hence
of the 232 candidate experiments, an additional 29 experi-
ments where removed as the features began outside of the
robot’s workspace due to “sloppiness” in the joints of the
robot i.e. there is a lot of play in the joints so a specific
initial condition in the joint space may not be the same
place in SE(3) in subsequent trials, and therefore some ini-
tial conditions were out of the visible workspace at the
start. Initially, the robot was moved to each goal location
to capture an image of the robot, respecting which the vi-
sion system stored the desired location of feature points,
y∗. Figure 3 shows the pixel errors feature trajectories of
two typical runs. As shown, we used four coplanar feature
points for the camera map, c : Q → Y.

TABLE II

Summary of results for RTX arm

Normalized Path Length
Goal Success Jnt. Space Pix. Space
# Rate Mean (dev) Mean (dev)
1 49/51 1.35 (0.39) 1.33 (0.49)
2 47/47 1.36 (0.29) 1.27 (0.37)
3 55/57 1.32 (0.23) 1.27 (0.32)
4 47/48 1.42 (0.36) 1.32 (0.25)

To ascertain the performance of our controller, we em-
ployed several metrics described below: success and fail-
ures, efficiency of motion, mean pixel error and setting
time.

Table II shows the success rate of the various goal posi-
tions. Of 203 trial runs, 5 were found to have failed. All
5 failures are due to the robot not converging in our limit
of 30 iterations (though after inspecting the data by hand,
it appears that the robot would have converged if given a
few more iterations).

We also measured the “efficiency” of motion relative to
the straight line distance in both image and cartesian space.
The metric used for measuring distances in the configura-
tion space was the sum of the angular displacement, scaled
by body length, and the translational displacements. For
all of the runs, both image and cartesian measures indi-
cated that the path length was around 1.4 times that of
straight line distance. See Table II.

Using the root mean squared average pixel error mea-

surement given by
√

1
4

∑4
i=1(yi − y∗i )

2 we found an average

final pixel error on the order of 1-2 pixels upon convergence.
Figure 3 (upper right) shows the mean pixel error and stan-
dard deviation for each of the four unique goal positions.

The average five percent setting time, shown in Figure 3
(lower right), was approximately 10-14 iterations for each

of the four goal locations, averaged over all successful runs.

V. Conclusions

Using two different experimental platforms, we demon-
strate the applicability of a new framework for visual ser-
voing [2] designed to drive image plane features to some
goal constellation while guaranteeing their visibility dur-
ing transients. Both systems confirmed the practicability
of theoretical framework: the custom 3DOF Buehgler Arm
and the 6DOF commercial RTX arm. For the Buehgler,
our experiments suggest that the navigation function based
controller indeed drives the feature to within a few pixels
of the goal in all cases where the initial energy did not
overwhelm the potential energy well. The kinematic ex-
periments with the RTX validated our 6DOF task-space
servo architecture. In both cases our results show systems
with large basins of attraction that both avoid self occlu-
sion and respect FOV constraints.
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