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Geometric Visual Servoing
Noah J. Cowan, Member, IEEE, and Dong Eui Chang

Abstract—This paper presents a global diffeomorphism from
a visible set of rigid-body configurations, a subset of SE(3), to an
image space. Using the diffeomorphism, we develop an image-
based, essentially global, dynamic visual servoing algorithm that
keeps features in the field of view and avoids self-occlusions.
The approach is geometric in the sense that the visible set and
its corresponding image are differentiable manifolds, and the
diffeomorphism is global. The mapping to image space and the
resulting Jacobian rely on a specific target geometry, a sphere with
a known radius marked with an “arrow” feature point. The paper
presents simulation experiments for a more typical visual target
comprised of a collection of isolated feature points. In this setting,
the diffeomorphism to image space is approximate, nevertheless,
the simulations converge for a wide variety of target geometries
and initial conditions.

Index Terms—Geometric control, vision-based control, visual
servoing (VS).

I. INTRODUCTION

FOR a specially designed target viewed by a perspective
camera, we construct a diffeomorphism, a smooth and

smoothly invertible transformation, from a visible subset of
SE(3) to an image space. We also compute the resulting Jacobian
matrix, which does not explicitly depend on feature depths.

The image Jacobian, which relates rigid body motion to the
motion of image features, usually involves a mixture of image
and Cartesian variables [1]. Were it possible, constructing the
Jacobian without Cartesian variables would enable true visual
servoing (VS), closing feedback loops completely in the image
plane. The diffeomorphism in this paper enables the next best
thing: a model-based Jacobian expressed in terms of image vari-
ables, at the expense of requiring an engineered visual target
with one known parameter. That parameter is used explicitly in
the computation of the Jacobian matrix, though the controller
we present is (empirically) robust to substantial error in that pa-
rameter, as well as the model structure.

Building on the framework in [2], we characterize a so-called
visible set, a subset of the rigid transformations of a body rela-
tive to a camera that keep all features visible, and then calculate
its image under the camera diffeomorphism. In this paper, we
present the image Jacobian in a coordinate-free manner, without
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resorting to local coordinates. Finally, we apply the machinery
of navigation functions (NFs) [3], a special class of artificial
potential functions, to create global, dynamic VS systems that
keep features fully visible.

VS requires representing rigid motions in terms of visually
measured quantities. We review three candidate approaches:
“2-D,” “3-D,” and “2 1/2-D.” For an experimental comparison
that highlights some of the respective advantages, see Gans et
al. [4].

Classical 2-D VS algorithms attempt to drive the projection
of an arbitrary set of rigidly constrained feature points in straight
lines to their visual goals, by projecting the image error through
a pseudoinverse of the image Jacobian matrix [1]. However,
the underlying rigid motion constrains the movement of pro-
jected features, rendering image-based control and motion plan-
ning in image space, challenging for large deviations from the
goal. To overcome these challenges, Corke and Hutchinson [5]
created a 2-D kinematic algorithm for six-degree-of-freedom
(DOF) VS that (empirically) has a very large basin of attrac-
tion, while keeping features in the field of view (FOV). They
classify their algorithm as partitioned, since it controls some
DOFs directly on the basis of abstracted features, such as the
total projected area and the orientation of two distinguished fea-
tures. Their choice of features helped motivate the choice of
features used in this paper, and we show that a formal diffeo-
morphism to the abstracted image features enables the compu-
tation of an image-based Jacobian matrix. Path planning [6], [7]
together with local image-based feedback [7] provides another
avenue to avoid local minima.

One may recover the complete pose of a camera with re-
spect to a target by exploiting a model of the target [8]. Vision-
based controllers using full pose reconstruction are referred to
as 3-D VS algorithms. Pose reconstruction on the current and
desired views of a scene produces two pose estimates of the
camera. Since parametric uncertainties affect both the current
and desired pose estimates in the same way, 3-D servo laws are
known to be robust to camera and target calibration uncertain-
ties (though, to the best of our knowledge, there are no formal
bounds on the uncertainties that can be tolerated). One of the
challenges to 3-D methods involves representing visibility ob-
stacles, such as self-occlusions or a finite FOV [2].

Given a sufficient number of feature points, the relative pose,
up to a scale in translation, between two views may be deter-
mined without exploiting a geometrical model of the points, and
such approaches have been dubbed 2 1/2-D VS [9]. Researchers
developed 6-DOF kinematic 2 1/2-D VS algorithms robust to
calibration uncertainty [9]–[12], with large basins of attraction.
Malis and Chaumette also incorporated image FOV constraints
for a single base point of interest [9], without requiring an ex-
plicit model of the visual target or depth estimates. Recently,
Chesi and Vicino [13] proposed a method to control eye-in-hand
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servoing that causes the camera to follow nearly circular arcs,
while maintaining the features within the FOV, and Zanne et al.
describe a global planner and control system that maintains fea-
ture visibility for kinematic eye-in-hand VS [12].

This paper uses an explicit target model to compute an image
Jacobian, without the need to directly recover the depth of each
feature in the scene. Zhang and Ostrowski [6], [14] designed
a similar model-based VS strategy to control a blimp in three
DOFs. When applicable, the model-based, geometric VS frame-
work presented in this paper provides several enhancements
over existing methods:

1) application of NFs enables control of dynamic (as well
as kinematic) plants;

2) eye-in-hand and fixed-camera VS setups fall within the
same mathematical framework;

3) essentially global1 dynamical convergence is guaranteed,
while maintaining feature visibility.

While we suspect at least some robustness to parametric error
(a suspicion supported by numerical experiments), significant
work remains to show this formally, and to characterize how
much parametric error can be tolerated.

II. SIX-DOF DIFFEOMORPHISM TO IMAGE SPACE

We posit a specific visual target, designed as follows.

1) A spherical body, of radius . As the body moves away
from the camera, its projection gets smaller. Roughly
speaking, the position and size of the body’s image en-
codes the position of the center of the body relative to the
camera.

2) A single point on the body. Adding a visible point to
the body breaks the visual symmetry, allowing us to re-
solve two rotational DOFs from the location of the fea-
ture point on the image.

3) A unit vector tangent to the body. The final DOF is
resolved by considering the orientation on the image of
a projected vector attached to our feature point on the
body.

Such a target might be useful for factories, spacecraft docking
stations, and helicopter landing beacons. For unstructured set-
tings, Section V demonstrates how to apply the results to a visual
target consisting of a “cloud of points.”

Zhang and Ostrowski [6], [14] developed the idea of pro-
jecting a spherical body to an image plane for 3-DOF VS of a
blimp relative to a large ball. This paper builds on that work by
incorporating additional markings on the body to encode rota-
tional information. The features used in this paper are also moti-
vated by the partitioned features used by Corke and Hutchinson
[5].

A. Notation and Definitions

The notation for this paper is summarized in Table I.
Consider a perspective (“pinhole”) camera with right-handed

rigid frame such that its origin is located at the pinhole (or
optical center), and the camera frame’s axis is aligned with

1All initial conditions but a set of measure zero converge. Note that for dy-
namical systems evolving on certain manifolds, such as SE(3), global conver-
gence via smooth feedback is impossible [15].

TABLE I
LIST OF SYMBOLS

the optical axis. The camera observes features of a rigid body,
affixed with rigid frame . Let

SE where SO

denote the rigid transformation of relative to . A point
expressed with respect to the body frame as appears as

with respect to the camera frame. Similarly, if
is a vector in the body frame, then is the same

vector with respect to the camera frame. In an abuse of notation,
we will often write , implicitly using homogeneous
coordinates. One last notational abuse entails the conflation of
a point with the vector from the origin of a frame to that
point. We will write both point and vector as .

Let denote a point expressed in
the camera frame. Assuming a fully calibrated camera, re-
call that the image-plane projection is given by

. This can be normalized to define a
unit vector , and thus, for
simplicity, we consider a panoramic pinhole model given by

(1)

where . To keep features
within a finite FOV, one may introduce an appropriate image-
space obstacle into the controller design (see Section IV).

Given a manifold , then is the tangent space to the
manifold at the point and is the
tangent bundle. Consider a point , together with a vector

, located at . Together, the pair define a point in the
tangent bundle of , namely, . One can show that
the tangent mapping is given by

(2)

where

(3)
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is the Jacobian matrix of the mapping at . It will be useful
later to define the unit tangent map , where

denotes the unit tangent bundle of , given by
, where

(4)

Note that this mapping has a singularity when points along the
ray defined by and the camera origin.

Two distinct points, say , , might be modeled as a
base point and a vector . One can show
that , where

(5)

and thus can be easily constructed from measured
features.

B. Diffeomorphism to Image Space

Attach the body frame to the center of the sphere, so that the
location of the body relative to the camera origin is given by the
rigid translation . If , i.e., the body of radius remains
bounded away from the camera origin, then the surface of the
body double covers a topological disc on via the map . The
edge of the disc, a planar slice of the image sphere, is a perfect
circle of radius2

(The circle radius appears dimensionless, because the image
sphere was normalized to unit radius). The center of the circle
on the image sphere is given by

Let denote the body positions
bounded away from the camera origin. We now have a diffeo-
morphism from locations of the body to
image measurements, given by

(6)

The inverse of is given by

(7)

Attach a visible feature point to the body’s surface. For con-
venience, align the body frame so that its origin coincides with
the center of the body, and assume that the point lies on the nega-
tive body frame axis. Hence, in the body frame,

.
As we will show (see Fig. 1), the projection of to the image

sphere, , encodes two rotational DOFs. We encode
the final DOF by projecting a unit vector or “arrow” tangent
to the body at the point . In practice, any two distinguishable
points on the surface of the sphere can be used to approximate
the vector (this is discussed further in Section V). Again, for
convenience, we assume the vector’s body-fixed representation
is simply . Let denote the location of the body point

2To compute �, draw a 2-D cross-section that contains both the camera and
body origins, and note from “similar triangles” that � : 1 = % : kdk.

Fig. 1. Projection of a spherical body with a feature point on it to the image
sphere. The image-plane measurement is given by y = (Q; �; s) = c(H).

in the camera frame, and represent the arrow vector in the
camera frame. Recalling that the rotation matrix has columns

, then with respect to the camera frame, we have

and

Note that .
Some configurations cause the body to occlude the feature

point ; in particular, we can see the point only if .
So we define a visibility function [2], [16], , and an associated
visible set of rigid transformations, by

SE (8)

Note that , i.e.,
.

The projection of to the image sphere is mod-
eled by

We are not concerned with the length of the projection of , only
the direction. Hence, consider the unit tangent map in (4),
given by

(9)

where

(10)

and . Geometrically, is a unit vector tangent
to the image sphere at the point . The unit vectors and

are mutually orthogonal. Consider the plane containing the
camera origin , the point , and the vector . The unit vector
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is normal to that plane. Thus, we define a function
SO

(11)

Proposition I: The function , defined by

(12)

where

SO

(13)

is a diffeomorphism, i.e., .
The proof is given in Appendix I.

III. IMAGE JACOBIAN

To be applicable to VS, we present a representation of the tan-
gent map , its inverse , and the cotangent
map , with the following commutative dia-
gram in mind:

We identify the tangent space SE of the Lie group SE(3)
with

SE SE SE (14)

where is the Lie algebra of SE(3) with Lie
bracket

for all . More detail can be found in
[17], for example. The identification occurs via right translation,
i.e.,

(15)

where

and

and the “wedge/hat” isomorphism is defined by

where is the Lie algebra of SO(3).

Similarly, for each SO ,
we have the following identification:

SO

(16)

where we identify SO with , again via right
translation

where (17)

Hence, to compute the tangent map we find the mapping
relating the tangent space identifications made above in (14) and
(16), namely

where and

(18)

where

and

The construction of is given in Appendix II.
Some explanation may help clarify why we do not have a

Jacobian matrix. Since SE(3) is a Lie group, its tangent bundle
has a trivial cross-product structure. Thus, rigid velocity vectors
are written in , resulting in six columns to . However, we
have embedded into as follows:

With this embedding, we express (and thus, ) globally,
but this leads to an extra row in .

A set of local coordinates on yields a Jacobian matrix,
as follows. Let be some local
chart, for example, might be the “azimuth and
elevation.” Then, in local coordinates

where , given in (18), is a full-rank Jacobian matrix
, locally representing . Using these coordinates,

and can be computed locally as and , respectively.
We take a similar approach in Section IV-D.

For a coordinate-free computation of the inverse and cotan-
gent maps, see [18].
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IV. CONTROLLER DESIGN

A. Plant Model: Eye-in-Hand or Fixed Camera Servoing

We consider both eye-in-hand VS, wherein the camera moves
relative to a stationary body, and fixed-camera VS, for which a
stationary camera observes an actuated moving body. Let

denote the transformation of the camera frame relative
to the inertial body frame . Let denote the body-frame
velocity of the camera, moving relative to the inertial target
frame, and note that

(19)

mapping the identification of SE given by the right trans-
lation of in (14) and (15) to the left translation of

. Note that this relationship clarifies the kinematic
distinction between eye-in-hand and fixed-camera servoing.

For simplicity, we posit a fully actuated purely kinematic
plant model

or (20)

where we treat as control inputs.

B. Servoing via Navigation Functions

The diffeomorphism , the visible set , and its relatively
simple image provide substantial leverage into the VS
problem. Given a desired configuration , measured through
its image , there are many possible
image-based control strategies we can employ to achieve our
objective of driving .

One possible open-loop control strategy involves planning a
path that moves from the initial configuration to the
goal state and following the path via

(21)

where ( , , ) is the desired velocity , expressed using the
tangent space identification in (16). The minus sign in the above
expression arises due to the relation in (19).

An open-loop strategy, such as the one above, may be unde-
sirable. However, the generation of can also be conceived as
a feedback law, for example, by using the method of NFs [3],
[15], [19]. A substantial benefit of using NFs is that they allow
us to address second-order settings with little additional effort,
while maintaining similar convergence guarantees [19]. More-
over, these methods have already proven practicable for dy-
namic VS [2]. The following definition gives a set of conditions
that guarantee essentially global convergence of an NF-based
controller.

Definition I [19]: Let be a smooth compact connected

manifold with boundary, and be a point in its interior.
A Morse function is called an NF if:

1) takes its unique minimum at ;
2) achieves its maximum of unity uniformly on the

boundary, i.e., .

For any function satisfying the above definition, the controller
given by will ensure convergence from
essentially all initial conditions in [19].

Before defining an NF, we first construct a compact domain
, as well as its preimage SE .

Then, we introduce a geometrically simple model space that
is diffeomorphic to , and construct the NF
on this model space, with the following diagram in mind:

(22)

where denotes function composition. Since
the dynamical convergence properties of NFs are invariant under
diffeomorphisms, we may use the changes of coordinates and

to “pull the NF back” to the workspace. This can be done by
either pulling back the gradient vector field through the inverse
tangent map

(23)

or by pulling back the covector through the cotangent map

(24)

In local coordinates, (23) corresponds to using the “inverse Ja-
cobian matrix” and (24) is the “transposed Jacobian matrix” of
the function .

Now, given , with unique minimum at ,
and some other technical properties discussed below, by letting

(25)

the control law given by (25) drives to , ensuring
that converges to for all initial conditions, except for a
measure-zero set. Using an appropriate damping term and the
covector , similar convergence results are readily obtained
for second-order Lagrangian plant models [2], [3], [15], [19].

C. Computing a Safe Domain

The next step is to compute a compact domain that
is “safe” with respect to the FOV of our camera system in the
sense that if , then all the necessary features are
visible. To illustrate, we treat the FOV as a cone originating at
the camera origin, with center along , as shown in Fig. 2.

We assume that as long as the center of the sphere is within
a (conservative) cone, that the entire body is fully visible.3 This
can be codified by the inequality constraint ,
where is the angle from to the edge of a conservative cone
within the FOV. Additionally, we constrain

, where the parameters and bound the camera

3It is straightforward, albeit tedious, to find coordinates on SE(3) for the vis-
ible domain that results from a rectangular image plane [2]. Such a parame-
terization in image coordinates y represents work in progress, so we resort at
present to a somewhat conservative subset of visible configurations.
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Fig. 2. 2-D cross section of a simplified FOV cone.  is the true FOV angle,
� conservatively limits the angle of s relative to the optical axis, 0 < � <

� � sin( � �) prevent the body from being “too close to” or “too far
from” the camera.

displacement from being “too far from” or “too close to”
the camera, respectively. Finally, we keep from being too
close to the edge of the projected circle, namely,

, where is a small positive
constant safety margin. Putting these constraints together yields
the compact manifold

SO

(26)

where , , and .

D. Model Space for Occlusion-Free Servoing

Because is somewhat complicated geometrically, the
next step involves designing a model space for , and a
diffeomorphism . Consider the model space

(27)

where is a closed, planar unit disk.
We define the diffeomorphism as follows. Let

, where4

SO

and

4The indexes for the elements of Q, e.g., q = (q ; q ; q ) , are not the
usual matrix indexing convention. It is helpful to think of q as the ith element
of the vector q .

We construct the map

as follows:

(28)

where , , and

(29)

is an orthonormal basis for . Note that
, namely, if and only if .

Similarly, , and since
is a unit vector, we have

, namely, if and only
if . Finally, by construction,
if and only if . Summarizing, we have

i.e., if and only if .
Let be the orthogonal matrix whose

columns are the basis vectors , . Then the inverse,
, is given by

(30)

The auxiliary vector is introduced for readability, to divide
the construction of into two steps.

We compute by using the tangent-space identification for
given by (16), and is identified with in

the obvious way, namely, let so
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that . Let
denote the Jacobian. Then, by direct computation

(31)

where the ’s are given in (29) and .
Remark: Note that is a matrix. As explained

in Section III, this arises from the representation of . It is
worth noting that

(32)

full-rank matrix everywhere on , since and are both dif-
feomorphisms.

E. Navigation Function Construction

There are no mutual constraints between the variables , , ,
and . In other words, the model space is the simple Cartesian
product of four simpler spaces: [ ], , and two copies of

. Thus, we construct an NF on each space separately, and then
compose the functions using the NF product defined in [20] to
generate an NF on .

The basic construction of NFs followed below follows
Rimon and Koditschek [15]. For a given compact manifold
with boundary , we define two basic building blocks: a goal
function, , possessing a unique minimum at a
goal point, , and an obstacle function,
that vanishes (only) on the boundary , which is treated as an
obstacle set. These two building blocks are assembled to create
a function as follows:

(33)

This construction ensures that is uniformly maximal on .
Each NF candidate must be examined on a case-by-case basis.

1) NF on : The manifold is the
simplest form of a “sphere world,” as defined by Koditschek and
Rimon [15]. We define goal and obstacle functions, respectively,
as

(34)

where (the interior of ). The function
, as defined in (33), is an NF [15].

2) NF on : It is easy to show that

(35)

is an NF on .
3) NF on [ ]: Let . Define goal and obstacle

functions, respectively, as

(36)

where is the goal point. One can easily show that
, as in (33), is an NF.

4) Navigation Function Composition: Let , , and be
the NFs defined above, on the respective manifolds , , and
[ ], and let be the diffeomorphism .
Then, according to [20], the function

(37)

is an NF on the cross-product space .
The constants , are free design gains, and
can be used to tune system performance.

V. 6-DOF SIMULATION EXPERIMENTS

We simulated a VS system in which a camera views a rigid
collection of isolated feature points, and the image-plane dif-
feomorphism of Section II serves as an approximate diffeo-
morphism. In other words, we interpret the projection of a set
of feature points as if it were a “sphere with arrow.”

Let denote a set of features ex-
pressed in the body frame as , and in the camera frame as

, . To approximate , we
take half the distance between the two most mutually distant
projected points, namely

(38)

where is given in (1). To approximate , we take the mean
projected unit vector

(39)

To approximate the matrix , we approximate (9) with two
features, say , , together treated as the feature with arrow.
Specifically, we let

(40)

and therefore

(41)
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Fig. 3. Two typical experimental trials (Section V). The initial and desired views of the body are shown, together with the image-plane feature trajectories (left).
In these trials, the initial and goal configurations differ by 135 –180 of rotation around the camera optical axis. The normalized feature errors in Z (center) and
the Cartesian error (right) are shown.

which generates the matrix SO . The com-
plete image measurement is given by , and the
image-based control law (25) is approximated with

(42)

Using Mathematica, we generated 250 trials with random vis-
ible initial and goal conditions, making a deliberate effort to test
initial conditions near visibility boundaries. Also, each simula-
tion used a set of six features, structured as follows:

(43)

This structure of was chosen to enable a systemic study of
body geometries. We varied the feature parameters between
0.2 and 1 to test different body aspect ratios, and tested be-
tween 0 (corresponding to a planar object) and 1. Most choices
of and were random, but we also hand-selected “bad”
choices, such as and , so that the object was
not at all spherical. We approximated as the smallest radius
sphere containing the points (which changes for each matrix ,
as a function of and ). Note that for our control law, we only
need to know , not . We set the gains ,
in the NF (37). We stopped each after 25 (simulated) seconds.5

Fig. 3 depicts several simulations.
All simulations converged, even for planar objects. We also

observed anecdotally that varying our estimate of used in (42)
by up to a factor of two did not impair convergence, though we
leave more careful experimental and formal parametric robust-
ness analyses as future work.

5Note that convergence rates can be “sped up” or “slowed down” by tuning
the gains � , and by scaling the overall gradient in (42)

VI. CONCLUSION

We presented a global diffeomorphism from a large subset of
configurations in SE(3), those that are visible, to an appropri-
ately defined image space. Such constructions shed light on the
geometry of occlusion-free servoing as well as provide a clear
pathway to construct global, dynamical VS systems by using,
for example, NFs, as done in this paper. Sensor-based represen-
tations of the configuration space also enables the control of un-
deractuated and kinematically nonholonomic systems in sensor
space [21], [22].

There are three important directions for future work: 1) de-
signing diffeomorphisms on more natural feature constellations,
for example, by formalizing the approximation made in Sec-
tion V; 2) demonstrating, at least empirically, the robustness of
this approach to camera intrinsic parameters; and 3) increasing
the safe domain to be less conservative.

APPENDIX I
PROOF OF PROPOSITION 1

(Proof that is a diffeomorphism.) The proof pro-
ceeds in four parts. First, we show that is smooth on . Next,
we show that . Third, we show that is bijective by
explicitly computing its inverse on . Finally, we show that

is smooth on .

A. The Function is Smooth

The function is composed of smooth functions away from
the set where the arguments of become zero. But those
arguments are nonzero on .

1) Equation (6) depends on . However, im-
plies .
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2) Equation (9) depends on . Visibility implies
, which, in turn, implies

.
3) Equation (9) depends on . This blows up if

and only if , i.e.,

and hence, from (8)

The contradiction implies for . Hence,
is smooth on .

B. The Image of is Contained in

To see that , let . By construction
of , we have that SO . To show that

, note from (9) that

where . From (8), to ensure . Since
the right-hand side reaches its minimum of for ,
we have that .

C. The Function is Bijective

Consider any , with rotation and
translation as usual. Let , where

. Given , recovering the translation from (7) is
trivial, namely, . Recovering the rotation
from requires a bit more care.

Consider the triangle defined by the camera and body origins,
and , and the point on the surface of the sphere, . Relative

to the camera frame, the points and are known,
but is unknown. However, since is the projec-
tion of to the image sphere, then

for some unknown

Moreover, lies on the surface of the spherical body of radius
centered at . Let denote the known angle between and

, given in the camera frame by

From the above, we know the lengths of two sides of the triangle
, namely and , one angle, . From the law

of cosines

where

Since , then , and thus there are
two distinct, real solutions for . Note that , and
thus

It is easy to show that for either choice of , hence,
visibility implies , allowing us to uniquely compute

, where

(44)

Thus, , where and are in terms of .
From (9), span , namely

(45)

for some and . Note from (9) that . Moreover,
, hence

To show that has a full rank, we show that has no
left null space. Suppose satisfies

. Then we have . So, for some
number . Hence, we have . Note that and
are not collinear, because

, and therefore, . Hence, , so
has a full rank. Since is full rank, it has a 1-D right null
space. Hence, there are two possible solutions to for

, , subject to ; the ambiguity is eliminated,
since .

Combining the above computations yields the unique inverse
to

where

and (46)
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D. The Function is Smooth

Finally, we need to show that is smooth. However, is
composed of smooth functions. There are two caveats.

1) Equations involving . This is fine, since .
2) Equation for . First, note that

. Also, since and are linearly in-
dependent, the denominator can never be zero, so this
equation is smooth on .

Hence, is smooth, and is a diffeomorphism .

APPENDIX II
IMAGE JACOBIAN

To compute the image Jacobian matrix given by (18), we
compute , , and , in terms of and

.

A. Computation of

Recall

(47)

where . Since , we have

(48)

B. Computation of

Recall . Equation (47) implies

(49)

C. Computation of

For simplicity, we will first compute , and then use the
property

to compute

(50)

Proceeding in this manner, we have

which implies

(51)

It follows that we need to compute the three quantities ,
, in terms of and in order to get an expression

of in terms of and . We remark that we chose , ,
rather than the other possible three quantities, because the

involved computation is relatively simple.
Let us first compute . Recall

where . From (47) and , it follows:

(52)

where . From (52), it follows:

(53)

(54)

We now compute . Recall

(55)

This implies

(56)

which will be used later in computations. From (55), we have
. It follows:

(57)

where . Hence

(58)

where in the second equality, we used the fact that
from (55) implies .

Using (52), we have

(59)

where we used , which comes from
(55) and (56).

From (57), and , we get

(60)

where we used (55) in the second equality, and (56) in the third
equality.

Plugging (59), (60), and (56) into (58), we get

(61)

Authorized licensed use limited to: Johns Hopkins University. Downloaded on May 21, 2009 at 14:36 from IEEE Xplore.  Restrictions apply.



1138 IEEE TRANSACTIONS ON ROBOTICS, VOL. 21, NO. 6, DECEMBER 2005

where can be expressed in terms of as

(62)

We are now in a position to compute in (50). From (50) and
(51), together with (53), (54), and (61), we get

(63)

where is given by (62) or (55), and can be expressed in
terms of , as in (44).
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