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Abstract This chapter describes how advances in needle design, modeling, plan-
ning, and image guidance make it possible to steer flexible needles from outside the
body to reach specified anatomical targets not accessible using traditional needle
insertion methods. Steering can be achieved using a varietyof mechanisms, includ-
ing tip-based steering, lateral manipulation, and applying forces to the tissue as the
needle is inserted. Models of these steering mechanisms canpredict needle trajec-
tory based on steering commands, motivating new preoperative path planning algo-
rithms. These planning algorithms can be integrated with emerging needle imaging
technology to achieve intraoperative closed-loop guidance and control of steerable
needles.
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1 Introduction

From biopsies to brachytherapy, needle-based interventions already comprise a sub-
stantial fraction of minimally invasive medical procedures. The small diameter of a
needle enables it to access subsurface targets while inflicting minimal tissue damage
and, once in place, the needle’s lumen provides a conduit through which to deliver
a wide variety of therapies, such as drugs, radioactive seeds, and thermal ablation.
In addition to therapeutic delivery, needles are also commonly used for diagnostic
procedures, such as biopsy. As biosensors, manipulators, ablation tools, and other
“end-effector” technologies continue to get smaller, applications for needle-based
interventions will also expand. This chapter reviews the state-of-the-art in steerable
needle technologies, including device design, modeling, path planning, and image-
guided control.

Targeting accuracy is crucial for needle-based procedures. For example, poor
placement during biopses leads to false negatives. Inaccurate seed placement during
brachytherapy destroys healthy instead of cancerous tissue, sometimes with catas-
trophic outcomes [13]. Robotic needle placement under image guidance promises to
improve substantially targeting accuracy – and therefore clinical outcomes – of such
procedures. Toward this end, exciting progress has been made engineering needle-
placement robots for prostate biopsy and brachytherapy under a variety of imaging
modalities, including ultrasound [27], magnetic resonance imaging [39, 65], and
multi-imaging scenarios [48] . These robots represent a substantial advance for pro-
cedures that require multiple insertions, for example in thermal tumor ablation, be-
cause dosimetry and target planning can be updated from one insertion to the next
based on intraoperative images. These general image-guided needle aiming systems
work in an iterative fashion in which intraoperative imaging is used between inser-
tions to update a plan of subsequent insertions (for exampleto optimize dosimetry),

Fig. 1 This chapter focuses on subsurface needle steering, wherein a computer-integrated system
can actively modify the trajectory through some combination of steering mechanisms. A needle
can be steered to a target using several different methods: generating forces at the needle tip using
an asymmetric tip [60, 70, 71], lateral manipulation [28], and pushing on the tissue to move the
target into the needle’s path [40]. A steerable cannula can beused to provide dexterity prior to (and
possibly during) insertion (cf. [62] and references therein).
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Fig. 2 A successful robotically controlled needle-steering system must becomprised of a combi-
nation of computational algorithms and physical systems.

leaving the physician in the loop to adjust the plan and/or control the invasive (in-
sertion) degree of freedom under image feedback.

These image-guided robotic systems are clinically viable and promise to substan-
tially enhance targeting accuracy in needle-based interventions. However, to date
these systems require minimal tissue and needle deformation, and substantial effort
is committed to preventing such deformation [48] because unmodeled deflections of
the needle or tissue during insertion, if not compensated, will lead to gross targeting
inaccuracy. Recently, needle steering researchers have begun taking the next critical
step of harnessing and amplifying such deformations as mechanisms for steering a
needle to a subsurface target; in this chapter we specifically focus on these recent
efforts to steer needles under image feedback once they are inside the tissue using
a wide variety of mechanisms, all of which involve deflectingthe needle, tissue, or
both as depicted in Figure 1.

This chapter describes needle steering approaches in whichneedles are manip-
ulated from outside the tissue in order to change the path of the needle tip inside
tissue. Alternatively, active elements could be invoked tobend the needle once in-
side tissue, but to our knowledge this approach has not been extensively studied
from a computer-integrated surgery perspective. The advantage of passive needle
steering approaches is that all the electromechanical mechanisms remain outside
the patient, enabling the use of thinner needles, larger actuators, and a clearer path
to clinical application.

Figure 2 shows the various computational and physical systems needed to achieve
robot-assisted needle steering, and provides a graphical outline for this chapter. Sec-
tion 2 provides a taxonomy of needle-steering mechanisms and robots, and Section
3 reviews the models (both phenomenological and mechanics-based) that describe
these steering mechanisms. Sections 4 and 5 describe a rich variety of robotic plan-
ning, imaging, and control literature that has emerged as a consequence of these
new technologies. Finally, concluding remarks are provided in Section 6.

2 Steering Approaches and Devices

This section reviews several methods for steering needles inside tissue (Figure 1),
and describes example robotic devices that have been used toachieve needle steering
(Figure 3). Ultimately, a combination of the needle steering approaches described
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here – needle flexibility, bevel asymmetry and shape, pre-bent elements, tissue ma-
nipulation, and needle base actuation – will likely lead to systems with superior
steering capability over any one method alone.

2.1 Tip-Steerable Needles

Conventional needles used in percutaneous therapy and biopsy can be classified as
symmetric (e.g. conical or triangular prismatic) or asymmetric (e.g. beveled), as
shown in Figure 4. It has been shown that inserting needles with asymmetric tips re-
sults in larger lateral (bending) forces than needles with symmetric tips [51]. These
lateral bending forces result in deviation of the needle from a straight line path, even
if the tissue does not deform. Physicians often spin asymmetric-tipped needles by
hand in order to reduce needle bending during insertion, andengineers have devel-
oped devices to enhance this effect by “drilling” the needleto reduce friction and
cutting forces [75]. The use of symmetric-tip needles or drilling of asymmetric-tip
needles does not guarantee that a target can be reached. In both cases, needles can
deviate slightly from a straight-line path due to tissue deformation or inhomogene-
ity, with no way to correct for this error after insertion. Also, these methods assume
that there exists a straight-line path between the insertion point of the needle and the
target.

In contrast, some needle steering techniques intentionally use the asymmetry of
the needle tip to cause needle bending inside tissue. This can be used to enhance
targeting accuracy by redirecting the path of the needle when it deviates from a
desired trajectory. In addition, needle steering can allowa needle to go around ob-
stacles or sensitive tissues to acquire targets that are inaccessible by straight-line
paths. Physicians who perform targeted needle insertion currently use a number of
ad-hoc methods to approximate steering, such as rotating the bevel tip of a nee-
dle, causing it to deflect slightly as inserted, or externally manipulating the tissue to
guide the needle in a desired direction. However, without computer assistance, these
manual needle steering techniques require the physician tohave excellent 3D spa-
tial reasoning, extensive experience, and precise coordination with high-resolution
real-time image feedback.

The simplest type of asymmetric tip is a bevel tip. Bevel-tipneedles are com-
monplace because they are straightforward to manufacture and they can be used to
(slightly) direct the flow of therapeutic drugs. Bevel-tip needle steering arises from
a combination of needle insertion, which causes the needle naturally to follow a
curved path due to asymmetric tip forces (Figure 1), and spinning the needle about
its axis, which changes the direction of subsequent bending[70]. The needle spin
speed can be “duty cycled” to vary the curvature of the needlepath [42], although
the maximum curvature is always limited by the combined mechanical properties
of the needle and tissue. In addition, “airfoil” tips can be added to increase the area
of a bevel tip and increase the curvature of the needle path [26]. It is important to
note that needles steered in this fashion can only steer whencutting a new path.
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Fig. 3 Steering methods, example robotic devices, and example results from needle steering sys-
tems in the literature, including Websteret al. [70] [70], Reed,et al. [60], Okazawa,et al. [52],
Glozman,et al. [28], and Mallapragada,et al. [40]. All figures reprinted with permission.
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Fig. 4 Needle tips: (a) a symmetric conical tip, (b) an asymmetric bevel tip, (c) an asymmetric
pre-bent/curved tip. Tip-based steering relies on an asymmetricdesign such as (b) or (c).

When the tissue does not deform, the entire needle will followthe tip path [71].
When a needle is removed (by simply pulling on the needle base), it follows the
same path as insertion but in the opposite direction. The bevel-tip needle steering
method is most effective when the needle is highly flexible (structurally having low
stiffness) compared to the medium in which it is being steered. Thus, the supere-
lastic (and biocompatible) material Nitinol has been used in some bevel-tip needle
steering studies. Models for bevel-tip needle steering arediscussed in Section 3.

In order to insert needles for bevel-tip steering, specialized devices are required.
Automated flexible needle insertion is challenging becauseneedles tend to buckle
if not supported outside the tissue. Humans are not able to insert a needle with a
precise velocity, and they may inadvertently apply lateralforces or torque about the
needle axis. Websteret al. [71] developed two different robotic devices for steering
needles using tip asymmetry. Each device is able to control insertion velocity and the
rotation (spin about the needle axis) velocity. The first device is based on a friction
drive concept, which has advantages of compactness and simplicity. However, major
drawbacks to this design include slippage in the insertion degree of freedom (DOF),
a slight spin of the needle during insertion due to imperfectalignment of the friction
drive, and difficulty in measuring insertion force and spin torque. The second device
involves driving the needle from its base (the distal end) while using a telescoping
support sheath to prevent the needle from buckling. A needlerotation module is
attached to the translational stage to spin the needle and enable steering. Although
this device is larger than the first, it provides more controlover needle insertion
parameters, and also enables straightforward integrationof force/torque sensing,
making it ideal for laboratory experiments.

A needle with a curve or pre-bend near the tip achieves a smaller radius of cur-
vature than a bevel tip alone [60,64,73], but can be controlled much like a bevel-tip
needle [60]. The smaller radius comes from the larger asymmetry at the tip of a
pre-bent needle, which creates a larger force perpendicular to the insertion direction
during an insertion. Several studies have demonstrated that the radius of curvature of
pre-bent [64] and curved [73] needles varies with the lengthand angle of the asym-
metry. For long pre-curved needles, the radius of curvatureapproaches the radius
of curvature of the needle at the tip [73]. Although using pre-bent needles allows
greater dexterity, a pre-bent needle might detrimentally affect a medical procedure;
for example, a pre-bent needle tip can potentially cut tissue when the needle base
is rotated while not simultaneously being inserted, placing constraints on planning
and control algorithms.
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The curvature of a needle as it is inserted into tissue can also be modulated by
changing the curvature of the needle tip. One method uses small wires inside the
needle to pull the tip in the desired direction. Another method varies the tip curva-
ture by placing a curved needle inside a stiff straight outercannula [52]. Extending
the needle so the curved section protrudes from the cannula provides an asymmetric
surface that causes the needle-cannula system to bend during insertion. The amount
of needle protrusion can be controlled directly and dictates the radius of curvature.
For example, if the needle is entirely inside the cannula, the needle will travel in a
roughly straight line. Once the cannula tip is in position, the needle can be with-
drawn completely, allowing the lumen of the cannula to be used for a medical pro-
cedure. This method requires control of three DOFs: the insertion distance of both
needle and cannula, and the rotation of the inner needle.

A generalization of the concentric cannula-needle system is an “active cannula”
or “concentric tube” robot [24,62,63,72], in which any number of concentric flexible
tubes can interact with each other to change the three-dimensional (3D) shape of the
device. Rotating and inserting/retracting each of the individual tubes allows control
of the device tip within a large set of configurations. These concentric-tube devices
do not depend directly on needle-tissue interaction, but can be used as steerable
needles.

2.2 Lateral Manipulation

An alternative method of steering the needle involves moving the base of the needle
perpendicular to the insertion axis [19, 28]. The perpendicular motions cause the
entire needle shaft to move inside the tissue where the needle acts, much like a beam
resting on a compliant fulcrum. Once the needle is inserted sufficiently far inside
the tissue, motion of the needle base orthogonal to needle shaft direction causes
the tip to move in roughly the opposite direction. However, there is substantial path
dependence, making it challenging to develop closed-form models (Section 3.4).

Maneuvering a needle using lateral manipulation may require Cartesian motions
and rotations. The only DOF not required is the rotation of the needle around the
insertion axis, which is one of the two required inputs to control a tip-steered needle,
so lateral manipulation may allow added maneuverability toa tip-steered needle.

Lateral manipulation can achieve large changes in the needle path near the sur-
face, but the effect decreases as the needle is inserted further into the tissue. The
needle must transmit all the force from the base to the tip and, as the needle is
inserted further, more tissue can resist the force and the moment arm increases. To
generate the same change in path throughout the insertion, the force at the base must
increase, but the tissue can only withstand so much force before tearing. Tip-steered
needles, however, are approximately depth independent, since the dominant steer-
ing force is generated at the tip of the needle. Lateral manipulation and tip-steered
needles can be used together for additional control over theneedle throughout the
entire insertion.
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2.3 Tissue Manipulation

In addition to manipulating the needle in order to acquire targets in soft tissue, it
is also possible to manipulate thetissue in order to move targets into the path of
the needle or push obstacles and sensitive tissues out of thepath of the needle.
Physicians already perform such tissue manipulation by hand, and recent work has
provided insight regarding robotic control to achieve the same effects. Robotic tissue
manipulation systems could improve both the accuracy of target acquisition and the
accessibility of targets, and be combined with the other needle steering approaches
described above.

Mallapragadaet al. [40] developed a method for real-time tumor manipulation,
in which a robotic controller takes as input real-time medical images of a tumor and
outputs an appropriate external force to move the tumor to a desired position. During
needle insertion (in an approximately straight line path),blunt robotic end-effectors
push on the tissue to move the tumor onto the needle path (Figure 3). In simulations,
Torabiet al. [67] considered a more complex tissue manipulation problem, in which
robots are used to both move obstacles out of the way of the path of the needle and
the target onto the path of the tissue. A two-dimensional mass-spring simulation
demonstrated the effectiveness of the planner/controllercombination in reducing
targeting errors and shifting obstacles.

3 Modeling

The design of needle steering planners and most types of controllers requires a
model of needle-tissue interaction that predicts needle orneedle-tip motions given
inputs at the needle base. This section describes several phenomenological models
that capture needle-tissue behavior sufficient to inform planning and control design,
as well as ongoing efforts to create more accurate mechanics-based models.

3.1 Nonholonomic Steering

A bevel-tip needle inserted into homogenous tissue will follow a stereotyped path.
Websteret al. [70] demonstrated that the kinematics of a bevel tip needle can be
modeled as a non-holonomic system with a constant steering constraint. According
to this model, the needle tip advances forward in a curved path, but cannot translate
when embedded in tissue. The kinematic model is similar to the motion of a unicy-
cle or bicycle with the handlebars locked in one position. The wheels of a bicycle
cannot instantaneously move sideways, yet the bicycle can attain any desired pose
in the plane through a more complex sequence of motions. Whereas bicycle steering
occurs in plane, needle steering occurs in 3D space.
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Websteret al. performed experiments and statistical analysis verifyingthat
the nonholonomic model fits a limited battery of insertions and found that the
two-parameter bicycle model described the needle behaviorbetter than a single-
parameter unicycle model, although the unicycle model’s simplicity and reasonable
accuracy has made it a good choice for control systems design[35–38]. Many of the
models, planning algorithms, and control systems described throughout the remain-
der of this chapter build upon these nonholonomic models of needle motion.

The kinematic model can be mathematically expressed as follows. Attach a refer-
ence frame to the needle tip with the localz-axis denoting the tangent to the needle
shaft andx-axis denoting the axis orthogonal to the direction of infinitesimal mo-
tion induced by the bevel (i.e. the needle bends in the instantaneousy-z plane). The
nonholonomic kinematic model for the evolution of the frameat the needle tip was
developed based on a unicycle model in [54,70] as

ξ (t) =
(
g−1(t)ġ(t)

)∨
=
[

κv(t) 0 ω(t) 0 0 v(t)
]T

, (1)

whereg(t) is the element of the Euclidean motion group, SE(3) andξ is the element
of se(3), which is the Lie algebra associated with SE(3). Here,g(t) is the 6-DOF
pose of the frame attached to the needle tip in 3D space andξ (t)∈R

6 in denotes the
6D translational and rotational velocity of the frame. The control inputs,ω(t) and
v(t), are the rotation and insertion velocities, respectively,andκ is the curvature of
the needle curve. The frames and parameters for the needle are shown in Figure 5.

Fig. 5 The definition of parameters and frames in the nonholonomic needle model [54, 70]
(Reprinted with permission from [56],c© 2010 Sage Publications).

3.2 Stochastic Modeling

Although the kinematic model for needle steering describesthe motion of the nee-
dle, there is inherently variation between insertions. If everything were certain, and
if this model were exact, the motion,g(t), could be obtained by simply integrat-
ing the ordinary differential equation in (1). However, a needle that is repeatedly
inserted into a medium, such as a gelatin used to simulate tissue [70], will demon-
strate an ensemble of slightly different trajectories.

A simple stochastic model [54, 55] is obtained by adding noise to the two input
parameters in the ideal model:
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ω(t) = ω0(t)+λ1w1(t) and v(t) = v0(t)+λ2w2(t),

whereω0(t) andv0(t) are what the inputs would be in the ideal case,w1(t) andw2(t)
are uncorrelated unit Gaussian white noises, andλ1 andλ2 are constants. Thus, the
nonholonomic needle model with noise is

(
g−1(t)ġ(t)

)∨
dt =

[
κv0(t) 0 ω0(t) 0 0 v0(t)

]T
dt +

[
0 0 λ1 0 0 0

κλ2 0 0 0 0λ2

]T [
dW1

dW2

]

,

wheredWi =Wi(t +dt)−Wi(t) = wi(t)dt are the non-differentiable increments of a
Wiener processWi(t). This noise model is a stochastic differential equation (SDE)
on SE(3). As shorthand, we write this as

(g−1(t)ġ(t))∨dt = h(t)dt +HdW(t).

3.3 Torsional Modeling

In order to change the direction of curvature of a tip-steered needle, the base of the
needle must be rotated. As the needle rotates inside the tissue, friction opposes the
needle’s rotation and can cause the angle at the tip to lag behind the angle at the base
(Figure 6). Some artificial tissues exert enough friction tocause over a 30◦ difference
between the base and tip angles for an insertion distance of 10 cm [61]. These large
angle misalignments are thought to account for some of the reduced performance
in the image-guided controllers discussed in Section 5.3. Although the torques ap-
plied during a prostrate brachytherapy are not significant enough to cause any tor-
sion windup in the typical steel needles used for percutaneous procedures [58], the
torques are likely to cause a significant discrepancy in the flexible needles required
for needle steering [61]. Unfortunately, there is a tradeoff that arises due to the flex-
ibility of the needle; increased flexibility enhances steering, but also increases the
amount of torsion windup when rotating the needle.

Fig. 6 Schematic of a bevel-tip needle interacting with a soft elastic medium: Models have
incorporated tip forces generated by rupture, tissue properties (toughness:GC, nonlinear elasticity:
C10), needle properties (bevel angle:α and flexural rigidity:EI), and the torque generated from the
needle-tissue interaction when the needle is rotated.
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State-of-the-art imaging is unable to accurately measure the tip angle of the small
needles used in percutaneous procedures, but the angle lag at the tip of the needle
can be estimated using a force sensor at the base of a bevel-tip needle [1, 59]. One
method to overcome torsion estimates the angle lag from the measured torque and
rotates the needle several times in alternating directionsto orient the entire needle
shaft to the desired orientation [59]. However, this methodonly works when the
needle is not being inserted during rotation.

When the needle is being simultaneously rotated and insertedthrough the tis-
sue, the effects of stiction are not present since the needleis continuously sliding
past the tissue. In this case, the needle-tissue interaction can be modeled as viscous
damping and a modal analysis can determine the dynamics of the needle tip, and a
parsimoneous finite-dimensional model can be obtained using modal analysis [61].
The estimated tip position and measured base angle can then be used in a controller
to increase the base-tip convergence time and decrease the positioning error.

3.4 “Tissue Jacobian” Approaches

Changing the insertion direction of a needle by manipulating the base of the needle
outside the tissue requires an understanding of how the flexible needle will interact
with soft tissue. Two models relate the motions at the base ofthe needle to motions
at the tip of the needle. In one method, the inverse kinematics of the needle are used
to determine the path [28]. The kinematics are derived from modeling the soft tissue
as springs with stiffness coefficients that vary along the length of the needle. The
needle is modeled as a linear beam.

Another model involves numerically calculating the Jacobian for the tissue de-
formation and needle deflection [19]. Given the velocity of the base, this model
determines the tip velocities. A needle path is computed based on potential fields:
a repulsive field drives the needle away from obstacles and anattractor field drives
the needle toward the desired target.

3.5 Toward Fundamental Mechanics-Based Models

Several research groups have developed physics-based needle and soft tissue inter-
action models [7, 16, 18, 31, 32, 49]. A general survey of surgical tool and tissue
interaction models, which describes both physics- and non-physics-based interac-
tion models, is provided in [43]. As described in Section 3.1, Websteret al. [70]
presented a phenomenological nonholonomic model for steering flexible needles
with bevel tips. The parameters for their model were fit usingexperimental data, but
this model is not informed by the fundamental mechanical interaction of a needle
with an elastic medium. For improved planning and control, as well as the opti-
mization of needle design for particular medical applications, an ideal model would



12 N. J. Cowanet al.

relate needle tip forces to the amount of needle deflection based on the fundamental
principles of continuum and fracture mechanics.

Mechanics-based needle-tissue interaction models aim to relate the needle’s ra-
dius of curvature to the material and geometric properties of the tissue and needle.
The radius of curvature of a bevel-tipped needle is a function of several parameters
(Figure 6): the needle’s Young’s modulus(E), second moment of inertia(I), and
bevel-tip angle(α); the tissue’s nonlinear (hyperelastic) material property(C10),
rupture toughness(Gc), and coefficient of friction(µ); and the input insertion force
from the robot controller

(
Pinput

)
.

Misra et al. [44] investigated the sensitivity of the tip forces to the tissue rup-
ture toughness, linear and nonlinear tissue elasticity, and needle bevel-tip angle. In
order to find the forces acting at the needle tip, they measured the rupture tough-
ness and nonlinear material elasticity parameters of several soft tissue simulant gels
and chicken tissue. These physical parameters were incorporated into a finite ele-
ment model that included both contact and cohesive zone models to simulate tissue
cleavage. The model showed that the tip forces were sensitive to the rupture tough-
ness.

In addition, Misraet al. [45–47] developed an energy-based formulation incor-
porating tissue-specific parameters such as rupture toughness, nonlinear material
elasticity, interaction stiffness, and needle geometric and material properties. This
mechanics-based model was guided by microscopic and macroscopic experiments.
The functional form for the deflection of the needle in an elastic medium was ini-
tially assumed and the Rayleigh-Ritz approach was used to evaluate the coefficients
of the deflection equation. The Rayleigh-Ritz method is a variational method in
which the minimum of a potential defined by the sum of the totalenergy and work
done by the system are calculated. The system potential,Λ , of a needle interacting
with an elastic medium, is given by

Λ = (NE +SE)
︸ ︷︷ ︸

energy

+(−WQ −WP −WR)
︸ ︷︷ ︸

work

+ Pinputli
︸ ︷︷ ︸

inputwork

, (2)

whereNE andSE are the energies associated with needle bending and needle-tissue
interaction, respectively, andWQ andWP are the work due to transverse and axial
bevel tip loads, respectively, andWR is the work done to rupture the tissue. Explicit
expressions for each of the terms in (2) are provided in [46].Simulation results
follow similar trends (deflection and radius of curvature) to those observed in ex-
perimental studies of a robot-driven needle interacting with different kinds of gels.
These results contribute to a mechanics-based model of robotic needle steering, ex-
tending previous work on kinematic models.
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4 Needle Path and Motion Planning

Directing steerable needles to specific targets while avoiding anatomical obstacles
requires planning paths through the patient’s anatomy. Forsteerable needles, this
planning is often beyond the capabilities of human intuition due to the complex
kinematics discussed in Section 3 and the effects of tissue deformation, tissue in-
homogeneities, and other causes of motion uncertainty. In order to harness the full
potential of steerable needles, efficient computational methods can help physicians
plan paths and actions.

When steerable needles are used with image guidance, the physician can spec-
ify the target to be reached, feasible needle insertion locations, and the locations of
anatomical obstacles, including those that cannot be passed through such as bones
as well as sensitive anatomical structures that ought to be avoided such as blood ves-
sels or nerves. Using patient-specific information about such anatomical structures,
a motion planning algorithm determines a sequence of actions (such as insertions
and bevel direction changes for bevel-tip needles) so that the needle tip reaches the
specified target while avoiding the clinician-specified obstacles. Planning can be
used purely preoperatively to generate a plan that is then followed by the robot or
physician during the procedure. Planning can be also used intraoperatively by updat-
ing the plan in real time based on intraoperative images and other sensor feedback.

4.1 3D Path Planning with Obstacles

Motion planning algorithms have been developed to compute optimal trajectories
for bevel-tip steerable needles in 3D environments with obstacles. Using the model
of Websteret al. [70], Duindamet al. [22] computed piece-wise helical motions of
the needle tip. The method optimizes a cost function that numerically quantifies the
planning objective, including penalties for deviation from the target location, large
control actions, and obstacle penetration. The algorithm uses a suitable discretiza-
tion of the control space to quickly compute a needle path with (locally) minimal
cost. In a second algorithm, Duindamet al. rely on an explicit expression of the
inverse kinematics of the needle to generate a range of validneedle paths from start
to target, from which the best solution can be selected [23].Although this algorithm
generally does not compute a (locally) optimal solution, itdoes not require iteration
to converge to a solution and is hence much faster than the first algorithm. Depend-
ing on the required balance between speed and optimality, either algorithm can be
advantageous. Xuet al. present a sampling-based motion planning technique based
on the Rapidly-exploring Random Trees (RRTs) method [74]. The planner quickly
builds a tree to search the configuration space using random sampling of the control
space. Recently, Hauseret al. explored the use of a model predictive control strategy
that chooses a needle twist rate such that the predicted helical trajectory minimizes
the distance to the target, which can be used both for preoperative planning and
intraoperative control [30].
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Fig. 7 A needle steering planner that considers 2D tissue deformation [6] ( c© 2005 IEEE),
reprinted with permission. The magnetic resonance images show a tumor target (cross) in the
prostate with obstacles that preclude a straight-line trajectory. The images show (a) the initial con-
figuration and (b) a planned path for a bevel-tip steerable needle deployed from a transrectal probe.
This locally optimal plan compensates for tissue deformations, avoids obstacles, and minimizes
insertion distance.

4.2 Planning for Deformable Tissues

Inserting needles into soft tissues causes the surroundingtissues to displace and
deform. Ignoring these deformations can result in substantial placement error. For
example, while performing prostate brachytherapy cancer treatment, an experienced
physician implanting radioactive seeds in 20 patients achieved an average placement
error of 0.63 cm, a substantial error of over 15% of average prostate diameter [66].

Computer simulations that model soft tissue deformations can assist in preoper-
ative planning by enabling clinicians a priori to optimize paths for needle insertion
procedures [5]. Building on their prior work on simulation of rigid needles into de-
formable tissue [8,10,11], Alterovitzet al. developed a simulation of bevel-tip steer-
able needles in 2D [6] and Chentanezet al. developed a 3D simulation [14]. These
simulations model the coupling between a steerable needle and deformable tissue
using the finite element method (FEM) – a mathematical methodbased on contin-
uum mechanics for modeling the deformations and motions of solids and fluids.
The simulations model patient-specific anatomy using a meshcomposed of triangu-
lar (2D) or tetrahedral (3D) elements. As the needle moves, the simulations model
needle friction and cutting forces, as described in the models in Section 3. The sim-
ulations use novel re-meshing to ensure conformity of the mesh to the curvilinear
needle path. Achieving a computationally efficient simulation is challenging; the
FEM computation in [14] is parallelized over multiple coresof an 8-core 3.0 GHz
PC and achieve a 25 Hz frame rate for a prostate mesh composed of 13,375 tetrahe-
dra.

To help physicians anticipate and correct for the effects oftissue deformations,
Alterovitz et al. developed a planner for bevel tip steerable needles that uses the
simulation to compensate for predicted tissue deformations and to minimize place-
ment error [6]. To compute the optimal initial insertion location and orientation, the
planner formulates the planning problem as an optimizationproblem. The planner
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Fig. 8 The motion planner computes a sequence of insertions (curved lines) and direction changes
(dots) to steer the needle from a start region at the left to the target (circle) while avoiding obstacles
(grey outlines) [4] (c© 2008 Sage Publication), reprinted with permission. The planner computes
(a) the shortest path, which passes close to obstacles, and (b) a better path generated by explic-
itly considering uncertainty in the planning stage, which increases the probability of successfully
avoiding obstacles while reaching the target.

minimizes the distance the needle is inserted subject to theconstraints that the nee-
dle tip reaches the target, the needle path does not intersect any obstacles, and the
control inputs are within feasible ranges. The planner usesthe simulation to pre-
dict the path of the needle when evaluating the objective function and constraints,
and it employs a penalty method to convert the nonlinear, constrained optimization
problem into a sequence of unconstrained problems that can be solved quickly. The
method computes a solution in just a couple of minutes on a standard processor.

As discussed in Section 2, some needle steering approaches leverage tissue de-
formation in order to generate curved paths through tissue.DiMaio and Salcudean
introduced simulation and planning for flexible symmetric-tip needles in 2D de-
formable tissue by controlling motion of the needle base [19]. Their Jacobian-based
planner relied on a quasi-static FEM simulation to estimatethe needle and tissue de-
formations. This simulation was designed for offline planning and does not achieve
frame rates needed for interactive simulation or global optimization. Glozman and
Shoham accelerate this approach by approximating the tissue using springs to com-
pute local, but not global, deformations, enabling a fast planning algorithm based
on inverse kinematics [28].

4.3 Planning under Motion Uncertainty

Although detailed models are available for predicting the motion of steerable nee-
dles, a steerable needle may deflect from its expected path due to tissue inhomo-
geneities, transitions between tissue layers, local tissue deformations, patient vari-
ability, and uncertainty in needle/tissue parameters. Medical imaging can be used
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to measure the needle’s current position and orientation, but this measurement by
itself provides no information about the effect of future deflections on procedure
outcome.

Alterovitz et al. have developed planners that explicitly consider uncertainty in
needle motion in order to maximize the probability of avoiding collisions and suc-
cessfully reaching the target [3, 4, 12]. The Stochastic Motion Roadmap (SMR)
framework efficiently samples the state space, builds a “roadmap” through the tis-
sues that encodes the system’s motion uncertainty, formulates the planning problem
as a Markov Decision Process (MDP), and determines a solution using dynamic
programming to maximize the probability of successfully reaching the target. This
framework was applied to compute steerable needle paths around obstacles to tar-
gets in tissues imaged using 2D slices. Explicitly accounting for uncertainty can
lead to significantly different motion plans compared to traditional shortest paths,
such as longer paths with greater clearance from obstacles in order to increase the
probability of success.

Reedet al. integrated this planner into an image-guided robotic needle steering
system that includes a robotic device that can control the needle in artificial tis-
sue and a low-level image-guided feedback controller to maintain the needle on a
2D plane [59]. The needle successfully reached targets in artificial tissues and the
system experimentally demonstrated that the planner is robust to initial positioning
errors of 2 cm.

The SMR framework described above transforms the continuous workspace into
a discrete roadmap that encodes actions, motions, and uncertainty. An alternative
approach considers the ensemble of needle trajectories obtained by repeated inser-
tion with the same control inputs. The trajectories will be slightly different from
each other due to uncertainty that may exist in the control mechanism and the inter-
action between the needle and the tissue. Parket al. [54, 55] developed such a path
planning method for needle steering that actively utilizesthis stochastic behavior of
the flexible needles. This algorithm is an adapted version ofthe path-of-probability
(POP) algorithm in [25]. A similar trajectory planning method can also be found
in [41].

In the POP algorithm, the whole trajectory is obtained by serially pasting to-
gether several intermediate paths. Based on the stochasticbehavior of the flexible
needle, the probability density function of the needle tip pose can be estimated and
evaluated. The intermediate steps are determined so as to maximize the probability
that the needle tip hits the target pose.

Figure 9 shows the concept of the POP algorithm. The planninggoal is to find
a needle path that starts atg0 ∈ SE(3) and ends atggoal ∈ SE(3) usingM interme-
diate steps. The homogeneous transformation matrix,gi ∈ SE(3) (i = 1,2, ...,M),
represents the position and rotation of theith frame with respect to(i−1)th frame.
Suppose that the(i−1) intermediate steps (g1,g2, · · · ,gi−1 ∈ SE(3)) have already
been determined. The intermediate step,gi, is determined to maximize the probabil-
ity that the remaining needle insertion reaches the goal. The shaded ellipses depict
the probability density function that represents the probability of the needle tip pose
after the remaining(M− i) steps. In other words, after the remaining(M− i) steps,



Robotic Needle Steering 17

the final pose will be placed in the dark area with higher probability than the bright
area. Comparing the two simplified cases in Figure 9, if the previous intermediate
steps (g1,g2, · · · ,gi−1) are the same for both cases,gi shown in Figure 9(b) is a bet-
ter choice, because it guarantees with higher probability that the final pose reaches
the goal pose.

Computing the probability density function plays a crucialrole in the POP algo-
rithm. The probability density function can be obtained using the stochastic model
for the flexible needle stochastic differential equations (SDE) as reviewed in Sec-
tion 3.2. The Fokker-Planck equation corresponding to the SDE defines a function
representing the probability density of the needle tip pose. Rapid evaluation of the
probability function is required for fast path planning. Specifically, the probabil-
ity density is estimated by a Gaussian function [55, 57], andthe mean and covari-
ance are estimated using error propagation techniques developed for the motion
groups [68,69].

Fig. 9 The path-of-probability algorithm at theith step [56] (c© 2010 Sage Publications), reprinted
with permission. (a) An intermediate step,gi, resulting in low probability of reaching the goal. (b)
An intermediate step,gi, resulting in high probability of reaching the goal.

5 Image Guidance

5.1 Needle Localization in Medical Images

The problem of needle localization in images might seem straightforward, yet prac-
tical implementations have seldom appeared. Usually, a cascade of basic image fil-
ters (such as thresholding, edge detection, image smoothing and noise removal fil-
ters) are combined with more sophisticated feature detections routines, such as a
variant of Hough transform. Significant literature exists on the theory, use, and ex-
tension of Hough transform; a succinct summary and background reading are given
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in [20]. Many localization methods entail two steps: first, points or fragments of the
needle are extracted from the images and then a 3D geometric model (straight line,
polynomial, etc.) is fit to the fragments, typically in a least-squares optimization
scheme. The two steps can be combined in a probabilistic framework, where points
of high probability of belonging to the needle are fitted on a 3D geometrical model.
This approach is especially suitable when the quality of images (resolution, dynamic
range, etc.) is poor, such as in ultrasound images. In this section, we survey the most
popular needle localization methods used with various imaging modalities, namely
fluoroscopy, computed tomography (CT), magnetic resonanceimaging (MRI), and
ultrasound (US).

Fluoroscopy. Metal needles, being of high density, tend to be visible in X-ray
images such as those obtained from CT and fluoroscopy. In fluoroscopy, a single
projection image is insufficient for reconstruction of the needle in 3D. Two images
are sufficient to reconstruct a straight needle, while threeor more images and some
amount of prior knowledge about the curve are necessary for 3D reconstruction of
a curved needle. For needles that lie in a plane, polynomial models are preferable
because polynomials are invariant to perspective projection. For example, Jainet al.
used a combination of 0th-, 1st-, and 2nd-degree polynomials to fit image points
on a 3D model with sub-millimeter and sub-degree accuracy [33]. When a needle
is driven out of plane, spatial reconstruction becomes moredemanding and requires
more images and/or a more elaborate 3D model for the needle. Aseemingly innocu-
ous and often underrated problem in fluoroscopy is that the device must be precisely
calibrated, including the relative pose of the fluoroscopy images [33].

CT. Although CT can produce a 3D volume, needle insertion is often performed
in a single 2D plane, with the CT gantry tilted in order to showthe needle in the
2D image. Newer CT scanners provide short acquisition time with reasonably low
dose, convenient for intermittent observation of the needle. Many CT scanners also
provide continuous beam mode, yielding a single CT image of low resolution at
high frame rate (≈10 fps). There is a trade-off between image quality (resolution
and dynamic range), frame rate, and X-ray dose. Modern CT scanners can also
produce multiple slices (i.e. thin 3D volume) and high-end scanners even provide
multiple slices in continuous beam mode.

A universal problem of any X-ray imaging modality (fluoroscopy and CT in-
cluded) is that for safety reasons image acquisition cannotbe triggered by the sur-
gical navigation software and images are acquired under thecommand of a human
operator. This process is time consuming, cumbersome and error prone. The avail-
able alternative is using continuous X-ray, exposing the patient and physician to
excessive radiation.

MRI. For needle localization, the one major advantage of MRI overX-ray imag-
ing is the absence of harmful radiation. In practice, there is typically a compromise
on both spatial resolution and acquisition time: MR images used in surgical guid-
ance tend to be of much lower resolution than diagnostic images, and the acquisition
is usually not real-time. A further disadvantage of MRI is that metal needles create
a large signal void in the image. Further, the signal void does not coincide with the
true position of the needle, and the displacement between the two depends on the
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configuration of the needle, the B0 field and the gradient field[17]. It is not uncom-
mon for a 1 mm diameter needle to leave a 5 mm signal void in the image; hiding
both the needle and the surrounding anatomy.

Ultrasound. Ultrasound (US) is an attractive needle guidance modality,due to its
low cost, widespread availability, and safety. US imaging is an operator-dependent
manual process. It also causes some degree of tissue deformation and dislocation as
the transducer makes contact with the tissue scanned. US images tend to be noisy,
due to reflections, reverberations, shadows, air pockets, and biological speckle,
which makes needle localization challenging. Some needle localization methods
use 2D images [15, 20, 53], while others compound a 3D volume from a tracked
sweep of 2D images [2, 21]. For completeness, we note that, due to current limita-
tions on voxel resolution and transfer speed, 3D US probes have not been practical
for image-based needle guidance. Novotniet al. tracked laparascopy instruments
(which are larger than needles), but this requires a research agreement with the ven-
dor of the ultrasound machine [50].

To localize straight needles in 2D ultrasound, Dinget al. introduced a sophisti-
cated derivative of the Hough transform [20]. Cheunget al. proposed an enhance-
ment algorithm that maximizes the received reflections by steering the ultrasound
beam to be precisely perpendicular to the needle [15]. Surface-coated needles are
available commercially, to enhance ultrasonic visibilityof the needle, which in turn
increases friction during insertion and thus may not be appropriate for needle steer-
ing. Okazawaet al. localized bent needles in a 2D image plane by warping an initial
guess straight line into a 2D parametric curve fitting on probable needle points [53].
This method works well for conventional needles, but it breaks under excessive cur-
vature often observed with elastic needles and catheters. Ding et al. constructed
a 3D volume from a sweep of tracked 2D images, cropped the volume sensibly
and created several orthogonal projection images. They segmented the needle in the
projections with the Hough transform and then reconstructed the needle from its 2D
projections as a straight line. Aboofazeliet al. recently localized curved non-planar
needles in 3D space [2]. They pre-filtered a compounded 3D US volume and pro-
duced series of 2D images by ray casting. In the projected images, the needle was
segmented with the Hough transform and fitted onto a polynomial model. From the
series of 2D polynomial curves, they reconstructed a surface that contains the nee-
dle. This 3D surface was smoothed and the needle was detectedon the surface using
the Hough transform followed by a polynomial curve fitting. The end result was a
continuous 3D curve consisting of polynomial patches.

Localization of the needle tip has been a major challenge, especially in 2D US,
where it is difficult to determine whether the needle tip is inside or outside the plane
of imaging. The non-uniform thickness of the US beam adds further to the localiza-
tion error. When using bevel-tip needles, the physician often rotates the needle to
create a visible, fluctuating artifact at the needle tip. Harmatet al. created mechan-
ical vibrations on the needle tip and measured the resultingDoppler effects [29].
Their prototype robustly detected the needle tip, but it didnot seem to provide suf-
ficient accuracy for localizing the needle tip for controlled insertion.
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5.2 State Estimation of Unmeasured Degrees of Freedom

As described above, except in MR images, researchers have had reasonable suc-
cess in localizing needles, but estimating the full 6-DOF pose of the needle tip
directly from medical images, including rotation about theneedle axis, remains
elusive. However, this rotation information is necessary for control and planning
purposes. To overcome this, Kallemet al. designed dynamical observers (analogous
to a Kalman filter) based on kinematic models of needle steering that can be used
to estimate full 6-DOF needle tip pose from a sequence of 3D position measure-
ments [34]. They showed that the rotation of the needle tip may be inferred from
the measurements of the needle tip position over time and developed model-based
asymptotic observers that exploit the task-induced reduction to estimate the full nee-
dle pose.

Needle steering is highly nonlinear, which makes the estimation and control
problem coupled, unlike in linear systems. Building on the nonholonomic model
of Websteret al. (see Section 3.1), Kallem and Cowan [37,38] exploit the factthat,
to drive the needle to a desired 2D plane (y-z plane without any loss of generality),
only three of the six degrees of freedom need to be considered. Using this reduction,
they first developed an observer to estimate thex position, the pitch of the needle
tip, and the roll of the needle from justx position measurements. In [34] a linear
model to represent the dynamics of the other three states (y, z positions and yaw of
the needle) is created by state immersion into a finite higherdimensional manifold;
based on this, Luenberger observers for this smaller systemare designed. This two-
stage coupled observer estimates the complete needle orientation and also filtered
the noisy position measurements. For other tasks, similar controller-observer pairs
need to be developed to estimate needle orientation.

5.3 Image-Guided Control of Needle Steering

As described in Section 3, considerable progress has been made developing “plant
models” for manipulating a needle from outside the patient.These models enable
development of model-based feedback controllers to steer the needle inside the tis-
sue. Glozman and Shoham [28] developed an image-guidance strategy for flexible
needles without a bevel tip. First they plan a needle path that avoids obstacles in the
workspace. Then at every time step they invert a virtual spring model to obtain the
translation and orientation of the needle base (the inputs)in order to drive the needle
back to the planned path in one step.

Kallem and Cowan [37, 38] took a systems-theoretic perspective to develop
feedback-based controller-observer pairs for tip-steerable needles. A tip-steerable
needle has been modeled as a 6-DOF nonholonomic system (1) with two inputs and
nonholonomy degree four. Furthermore, when the needle is pulled out of the tissue,
no cutting forces are generated and thus the needle follows the same path as dur-
ing insertion into the tissue. These constraints imply thatasymptotic controllers do
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Fig. 10 Nine experimental trials were used to validate an image-guidedcontroller [38] (c© 2009
IEEE), reprinted with permission. The mean distance of the needle-tip from the desired plane of
all trials is plotted against the insertion distance of the needle into the tissue (solid blue line; gray
region indicates mean± standard deviation). All trials control approach the desired2D plane and
stay within the noise levels of the position measurements of approximately 1 mm.

not exist for certain tasks, such as driving the needle tip toreach a desired pose in
6 DOF or following a circular path whose radius is the naturalradius of curvature
of the needle inside the tissue. To overcome these challenges, the approach taken
in [37, 38] is to develop low-level, asymptotic controllersthat only control a sub-
set of the degrees of freedom. These controllers are designed to cooperate with the
higher-level 2D planners from Alterovitzet al. [9, 12]. These planners, which rely
on the needle staying within a specified 2D plane, construct asequence of circular
arcs of the natural radius of the needle that can be achieved via alternating insertions
and 180◦ rotations of the needle shaft. In effect, the low-level 2D plane-following
controller designed by Kallemet al., described below, ensures that the needle re-
mains close to a desired 2D plane, on top of which Alterovitzet al.’s planner can
operate.

Kallem and Cowan [37,38] developed a feedback-based estimator-controller pair
to drive the needle to a desired plane, and subsquently generalized this to other sub-
space trackers [36]. The feedback signal used is the needle-tip position. For this task,
they showed that considering a three-state system is sufficient, which simplified the
estimation and control design needed to achieve the task. This controller has been
successfully tested in simulations and in artificial tissue. Figure 10 shows successful
experimental results of a needle being driven to a desired plane when inserted into
artificial tissue.

Reedet al. [60] integrated the full 6-DOF asymptotic observer and the planar
controller with the 2D planner of Alterovitzet al. [12] and the torsional compensator
of Reed [59]. Figure 3Second Row, Right Column shows the path taken by the uni-
fied system to reach a target inside the tissue. The goal is to reach the circular target
while avoiding the polygon obstacles in the workspace. The planar controllers act
every 1 mm of needle insertion into the tissue to drive the needle to the desired 2D
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plane and the the planner acts at 1 cm insertion intervals. With integrated planning
and control, the needle successfully reaches the target (asshown in the pre-curved
tip example in Figure 3 [60]).

6 Conclusions

This chapter provides an overview of the technological and algorithmic state-of-
the-art in needle steering. As can be seen from this chapter,numerous components
are required to enable needle steering. Ultimately, the clinical success of needle
steering depends on uniting these pieces and reducing them to practice in a driving
application to create a fully integrated clinical needle steering system. As shown in
Figure 2, such a system includes a set of computational and physical components –
including the robotic device and steering mechanism, modeling, planning, imaging,
and control – each of which is addressed in Sections 2–5.

A potential first driving application for needle steering istransperineal prostate
brachytherapy, a treatment that involves implantation of radioactive seeds by needles
into the prostate in order to kill cancer with radiation. Literature shows that reducing
surgical trauma of the prostate reduces the severity of edema, thereby improving im-
plant dosimetry and reducing toxicity. Current manual needle placement can involve
multiple reinsertions and adjustments of the needle beforeit reaches a target, caus-
ing excessive trauma to the prostate. We hypothesize robotic needle steering will
eliminate needle reinsertions and adjustments, and thus lead to reduction of surgi-
cal trauma. Efforts are underway by some of the authors of this chapter to create a
clinically viable needle steering system for prostate brachytherapy. Along the way,
we expect there to be continued advances in devices, models,planning, sensing, and
control that will lead to advances in needle steering, as well as robotics in general.
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