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Abstract This chapter describes how advances in needle design, mgdplan-
ning, and image guidance make it possible to steer flexit#eles from outside the
body to reach specified anatomical targets not accessibig traditional needle
insertion methods. Steering can be achieved using a varfi@tyechanisms, includ-
ing tip-based steering, lateral manipulation, and appglyorces to the tissue as the
needle is inserted. Models of these steering mechanismpreadlitt needle trajec-
tory based on steering commands, motivating new preopenaéth planning algo-
rithms. These planning algorithms can be integrated withrging needle imaging
technology to achieve intraoperative closed-loop guidaartd control of steerable
needles.
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1 Introduction

From biopsies to brachytherapy, needle-based interventitveady comprise a sub-
stantial fraction of minimally invasive medical procedsir&he small diameter of a
needle enables it to access subsurface targets whileimdlictinimal tissue damage
and, once in place, the needle’s lumen provides a condwititir which to deliver
a wide variety of therapies, such as drugs, radioactivessead thermal ablation.
In addition to therapeutic delivery, needles are also comynosed for diagnostic
procedures, such as biopsy. As biosensors, manipulatdegjamn tools, and other
“end-effector” technologies continue to get smaller, agtions for needle-based
interventions will also expand. This chapter reviews tla¢esbf-the-art in steerable
needle technologies, including device design, modeliath planning, and image-
guided control.

Targeting accuracy is crucial for needle-based procedii@sexample, poor
placement during biopses leads to false negatives. Inatecseed placement during
brachytherapy destroys healthy instead of canceroustisaumetimes with catas-
trophic outcomes [13]. Robotic needle placement under égagdance promises to
improve substantially targeting accuracy — and thereflimécal outcomes — of such
procedures. Toward this end, exciting progress has beee eragineering needle-
placement robots for prostate biopsy and brachytherapgrnendariety of imaging
modalities, including ultrasound [27], magnetic resomaimaging [39, 65], and
multi-imaging scenarios [48] . These robots represent atankial advance for pro-
cedures that require multiple insertions, for example ariial tumor ablation, be-
cause dosimetry and target planning can be updated frormseetion to the next
based on intraoperative images. These general imageebnézlle aiming systems
work in an iterative fashion in which intraoperative imagis used between inser-
tions to update a plan of subsequent insertions (for exatogptimize dosimetry),
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Fig. 1 This chapter focuses on subsurface needle steering, wheremputer-integrated system
can actively modify the trajectory through some combination eéshg mechanisms. A needle
can be steered to a target using several different methods: gegdoaces at the needle tip using
an asymmetric tip [60, 70, 71], lateral manipulation [28], andlpng on the tissue to move the
target into the needle’s path [40]. A steerable cannula carseé to provide dexterity prior to (and
possibly during) insertion (cf. [62] and references therein).
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Fig. 2 A successful robotically controlled needle-steering system musbimprised of a combi-
nation of computational algorithms and physical systems.

leaving the physician in the loop to adjust the plan and/atrod the invasive (in-
sertion) degree of freedom under image feedback.

These image-guided robotic systems are clinically viabte@omise to substan-
tially enhance targeting accuracy in needle-based int¢iores. However, to date
these systems require minimal tissue and needle deformaitial substantial effort
is committed to preventing such deformation [48] becauseadeled deflections of
the needle or tissue during insertion, if not compensatéblead to gross targeting
inaccuracy. Recently, needle steering researchers hgua lbeking the next critical
step of harnessing and amplifying such deformations as amsms for steering a
needle to a subsurface target; in this chapter we specjfifdlis on these recent
efforts to steer needles under image feedback once theypsideithe tissue using
a wide variety of mechanisms, all of which involve deflectthg needle, tissue, or
both as depicted in Figure 1.

This chapter describes needle steering approaches in \whitiles are manip-
ulated from outside the tissue in order to change the patheofieedle tip inside
tissue. Alternatively, active elements could be invoketd¢ad the needle once in-
side tissue, but to our knowledge this approach has not bdensively studied
from a computer-integrated surgery perspective. The ddganof passive needle
steering approaches is that all the electromechanical amézins remain outside
the patient, enabling the use of thinner needles, largelasmts, and a clearer path
to clinical application.

Figure 2 shows the various computational and physical systeeded to achieve
robot-assisted needle steering, and provides a graphitadefor this chapter. Sec-
tion 2 provides a taxonomy of needle-steering mechanismsabots, and Section
3 reviews the models (both phenomenological and mechdvaissd) that describe
these steering mechanisms. Sections 4 and 5 describe arieby\of robotic plan-
ning, imaging, and control literature that has emerged asngeguence of these
new technologies. Finally, concluding remarks are prayigeSection 6.

2 Steering Approaches and Devices

This section reviews several methods for steering needggde tissue (Figure 1),
and describes example robotic devices that have been uaeligve needle steering
(Figure 3). Ultimately, a combination of the needle steg@pproaches described
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here — needle flexibility, bevel asymmetry and shape, pre-&lements, tissue ma-
nipulation, and needle base actuation — will likely lead ystems with superior
steering capability over any one method alone.

2.1 Tip-Steerable Needles

Conventional needles used in percutaneous therapy angybiam be classified as
symmetric (e.g. conical or triangular prismatic) or asyrnmege.g. beveled), as
shown in Figure 4. It has been shown that inserting needlgsagiymmetric tips re-
sults in larger lateral (bending) forces than needles withreetric tips [51]. These
lateral bending forces result in deviation of the needlenfeostraight line path, even
if the tissue does not deform. Physicians often spin asymicrgiped needles by
hand in order to reduce needle bending during insertioneaigtheers have devel-
oped devices to enhance this effect by “drilling” the neddleeduce friction and
cutting forces [75]. The use of symmetric-tip needles oltidg of asymmetric-tip
needles does not guarantee that a target can be reachedh lcalses, needles can
deviate slightly from a straight-line path due to tissueodefation or inhomogene-
ity, with no way to correct for this error after insertion.stl, these methods assume
that there exists a straight-line path between the insepint of the needle and the
target.

In contrast, some needle steering techniques intentipna# the asymmetry of
the needle tip to cause needle bending inside tissue. Thibeaised to enhance
targeting accuracy by redirecting the path of the needlenwheéeviates from a
desired trajectory. In addition, needle steering can allaweedle to go around ob-
stacles or sensitive tissues to acquire targets that aceénaible by straight-line
paths. Physicians who perform targeted needle insertiermily use a number of
ad-hoc methods to approximate steering, such as rotatedpetel tip of a nee-
dle, causing it to deflect slightly as inserted, or extegnadénipulating the tissue to
guide the needle in a desired direction. However, withouotater assistance, these
manual needle steering techniques require the physicihave excellent 3D spa-
tial reasoning, extensive experience, and precise caatidimwith high-resolution
real-time image feedback.

The simplest type of asymmetric tip is a bevel tip. Bevelrgedles are com-
monplace because they are straightforward to manufactut¢hey can be used to
(slightly) direct the flow of therapeutic drugs. Bevel-tipatle steering arises from
a combination of needle insertion, which causes the neetlgrally to follow a
curved path due to asymmetric tip forces (Figure 1), andrépgnthe needle about
its axis, which changes the direction of subsequent berd@g The needle spin
speed can be “duty cycled” to vary the curvature of the nepdth [42], although
the maximum curvature is always limited by the combined raadal properties
of the needle and tissue. In addition, “airfoil” tips can lgeled to increase the area
of a bevel tip and increase the curvature of the needle p&fh IZis important to
note that needles steered in this fashion can only steer wiitimg a new path.
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Fig. 3 Steering methods, example robotic devices, and example rearisieedle steering sys-
tems in the literature, including Webstetral. [70] [70], Reed,et al. [60], Okazawasgt al. [52],
Glozmanet al. [28], and Mallapragadaet al. [40]. All figures reprinted with permission.
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Fig. 4 Needle tips: (a) a symmetric conical tip, (b) an asymmetric beveltjpan asymmetric
pre-bent/curved tip. Tip-based steering relies on an asymnuetsign such as (b) or (c).

When the tissue does not deform, the entire needle will follogvtip path [71].
When a needle is removed (by simply pulling on the needle bésmjlows the
same path as insertion but in the opposite direction. Thelkigyneedle steering
method is most effective when the needle is highly flexibtri¢gurally having low
stiffness) compared to the medium in which it is being steféus, the supere-
lastic (and biocompatible) material Nitinol has been usesdme bevel-tip needle
steering studies. Models for bevel-tip needle steeringles®issed in Section 3.

In order to insert needles for bevel-tip steering, spexgalidevices are required.
Automated flexible needle insertion is challenging becaweslles tend to buckle
if not supported outside the tissue. Humans are not ablestertim needle with a
precise velocity, and they may inadvertently apply latévedes or torque about the
needle axis. Webstet al. [71] developed two different robotic devices for steering
needles using tip asymmetry. Each device is able to comisettion velocity and the
rotation (spin about the needle axis) velocity. The firstickeis based on a friction
drive concept, which has advantages of compactness antiGtypiowever, major
drawbacks to this design include slippage in the insertemreke of freedom (DOF),
a slight spin of the needle during insertion due to imperédignment of the friction
drive, and difficulty in measuring insertion force and sgirque. The second device
involves driving the needle from its base (the distal endjevirsing a telescoping
support sheath to prevent the needle from buckling. A neeatltion module is
attached to the translational stage to spin the needle aataleesteering. Although
this device is larger than the first, it provides more contnegr needle insertion
parameters, and also enables straightforward integratidorce/torque sensing,
making it ideal for laboratory experiments.

A needle with a curve or pre-bend near the tip achieves a snraldlius of cur-
vature than a bevel tip alone [60, 64, 73], but can be cortiiathuch like a bevel-tip
needle [60]. The smaller radius comes from the larger asymnae the tip of a
pre-bent needle, which creates a larger force perpendimuihe insertion direction
during an insertion. Several studies have demonstrat¢thiieadius of curvature of
pre-bent [64] and curved [73] needles varies with the leagtthangle of the asym-
metry. For long pre-curved needles, the radius of curvaapgroaches the radius
of curvature of the needle at the tip [73]. Although using-pest needles allows
greater dexterity, a pre-bent needle might detrimentdfgcaa medical procedure;
for example, a pre-bent needle tip can potentially cut &sshen the needle base
is rotated while not simultaneously being inserted, plg@anstraints on planning
and control algorithms.
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The curvature of a needle as it is inserted into tissue cantesmodulated by
changing the curvature of the needle tip. One method usel wines inside the
needle to pull the tip in the desired direction. Another retkaries the tip curva-
ture by placing a curved needle inside a stiff straight oogemula [52]. Extending
the needle so the curved section protrudes from the cannaéps an asymmetric
surface that causes the needle-cannula system to bend chsertion. The amount
of needle protrusion can be controlled directly and dictélte radius of curvature.
For example, if the needle is entirely inside the cannulaniedle will travel in a
roughly straight line. Once the cannula tip is in positidre heedle can be with-
drawn completely, allowing the lumen of the cannula to belifse a medical pro-
cedure. This method requires control of three DOFs: thetiosedistance of both
needle and cannula, and the rotation of the inner needle.

A generalization of the concentric cannula-needle systeami“active cannula”
or “concentric tube” robot [24,62,63,72], in which any nuenbf concentric flexible
tubes can interact with each other to change the three-diomal (3D) shape of the
device. Rotating and inserting/retracting each of theviddial tubes allows control
of the device tip within a large set of configurations. Theseoentric-tube devices
do not depend directly on needle-tissue interaction, bothm used as steerable
needles.

2.2 Lateral Manipulation

An alternative method of steering the needle involves nmitire base of the needle
perpendicular to the insertion axis [19, 28]. The perpamdicmotions cause the
entire needle shaft to move inside the tissue where the @aeti, much like a beam
resting on a compliant fulcrum. Once the needle is insertdiciently far inside
the tissue, motion of the needle base orthogonal to needl¢ dinection causes
the tip to move in roughly the opposite direction. Howeviere is substantial path
dependence, making it challenging to develop closed-foodats (Section 3.4).

Maneuvering a needle using lateral manipulation may reqDartesian motions
and rotations. The only DOF not required is the rotation ef tleedle around the
insertion axis, which is one of the two required inputs totodlra tip-steered needle,
so lateral manipulation may allow added maneuverability tip-steered needle.

Lateral manipulation can achieve large changes in the agmth near the sur-
face, but the effect decreases as the needle is insertéefunto the tissue. The
needle must transmit all the force from the base to the tip asdhe needle is
inserted further, more tissue can resist the force and thmenbarm increases. To
generate the same change in path throughout the insefifgrce at the base must
increase, but the tissue can only withstand so much foragéedaring. Tip-steered
needles, however, are approximately depth independerne she dominant steer-
ing force is generated at the tip of the needle. Lateral maaijpn and tip-steered
needles can be used together for additional control ovenéleelle throughout the
entire insertion.
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2.3 Tissue Manipulation

In addition to manipulating the needle in order to acquirgets in soft tissue, it
is also possible to manipulate thiesue in order to move targets into the path of
the needle or push obstacles and sensitive tissues out g¢fatheof the needle.
Physicians already perform such tissue manipulation by hamd recent work has
provided insight regarding robotic control to achieve thme effects. Robotic tissue
manipulation systems could improve both the accuracy getacquisition and the
accessibility of targets, and be combined with the othedigesteering approaches
described above.

Mallapragadat al. [40] developed a method for real-time tumor manipulation,
in which a robotic controller takes as input real-time matimages of a tumor and
outputs an appropriate external force to move the tumor &saed position. During
needle insertion (in an approximately straight line path)nt robotic end-effectors
push on the tissue to move the tumor onto the needle pathré&8juln simulations,
Torabiet al. [67] considered a more complex tissue manipulation probienvhich
robots are used to both move obstacles out of the way of tthegbdlhe needle and
the target onto the path of the tissue. A two-dimensionalsasgsing simulation
demonstrated the effectiveness of the planner/controbenbination in reducing
targeting errors and shifting obstacles.

3 Modeling

The design of needle steering planners and most types ofollen requires a
model of needle-tissue interaction that predicts needleeedle-tip motions given
inputs at the needle base. This section describes severabptenological models
that capture needle-tissue behavior sufficient to inforamping and control design,
as well as ongoing efforts to create more accurate mechagsd models.

3.1 Nonholonomic Steering

A bevel-tip needle inserted into homogenous tissue wilbfela stereotyped path.
Websteret al. [70] demonstrated that the kinematics of a bevel tip neediele
modeled as a non-holonomic system with a constant steepimgtraint. According
to this model, the needle tip advances forward in a curveld, ppat cannot translate
when embedded in tissue. The kinematic model is similargatbtion of a unicy-
cle or bicycle with the handlebars locked in one positione Wheels of a bicycle
cannot instantaneously move sideways, yet the bicycle ttamany desired pose
in the plane through a more complex sequence of motions. \&@bdieycle steering
occurs in plane, needle steering occurs in 3D space.
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Websteret al. performed experiments and statistical analysis verifyihat
the nonholonomic model fits a limited battery of insertiomsl dound that the
two-parameter bicycle model described the needle beh&étier than a single-
parameter unicycle model, although the unicycle modetgticity and reasonable
accuracy has made it a good choice for control systems dg5g38]. Many of the
models, planning algorithms, and control systems desgtifi@ughout the remain-
der of this chapter build upon these nonholonomic modelsetife motion.

The kinematic model can be mathematically expressed as®llAttach a refer-
ence frame to the needle tip with the lozadxis denoting the tangent to the needle
shaft andx-axis denoting the axis orthogonal to the direction of inésimal mo-
tion induced by the bevel (i.e. the needle bends in the itst@ous/-z plane). The
nonholonomic kinematic model for the evolution of the fraat¢he needle tip was
developed based on a unicycle model in [54,70] as

E(t) = (g7 (t)a)" = [kv(t) 0 w(t) 00V(t)]", (1)

whereg(t) is the element of the Euclidean motion group(3$Jand¢ is the element
of sg3), which is the Lie algebra associated with(SE Here,g(t) is the 6-DOF
pose of the frame attached to the needle tip in 3D spacé é@nd R® in denotes the
6D translational and rotational velocity of the frame. Thatcol inputs,w(t) and
v(t), are the rotation and insertion velocities, respectivatygk is the curvature of
the needle curve. The frames and parameters for the needédawn in Figure 5.

T+

Fig. 5 The definition of parameters and frames in the nonholonomic leemddel [54, 70]
(Reprinted with permission from [56{¢) 2010 Sage Publications).

Z
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3.2 Stochastic Modeling

Although the kinematic model for needle steering descrtheanotion of the nee-
dle, there is inherently variation between insertionsvérgthing were certain, and
if this model were exact, the motiog(t), could be obtained by simply integrat-
ing the ordinary differential equation in (1). However, eedk that is repeatedly
inserted into a medium, such as a gelatin used to simulateeti 0], will demon-
strate an ensemble of slightly different trajectories.

A simple stochastic model [54, 55] is obtained by adding etdisthe two input
parameters in the ideal model:
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w(t) = wo(t) +A1wi(t) and v(t) = vo(t) + Aaws(t),

whereay(t) andvp(t) are what the inputs would be in the ideal cagg(t) andwa(t)
are uncorrelated unit Gaussian white noises, gnandA, are constants. Thus, the
nonholonomic needle model with noise is

.
(g 1®)a(t)) “dt = [kvo(t) O wn(t) 0 Ovo(t)] " dt + [K?\Z 8)‘01 %%/\(ﬂ [g&v/j :

wheredW =W (t 4 dt) —W(t) = w;(t)dt are the non-differentiable increments of a
Wiener proces®\(t). This noise model is a stochastic differential equationEpD
on SE3). As shorthand, we write this as

(g1 (t)g(t))Ydt = h(t)dt +HdW(t).

3.3 Torsional Modeling

In order to change the direction of curvature of a tip-stéereedle, the base of the
needle must be rotated. As the needle rotates inside theiB&ction opposes the
needle’s rotation and can cause the angle at the tip to lagdbéte angle at the base
(Figure 6). Some artificial tissues exert enough frictioodase over a 3@ifference
between the base and tip angles for an insertion distand@ @hl61]. These large
angle misalignments are thought to account for some of ttiecex performance
in the image-guided controllers discussed in Section 5ltBoMigh the torques ap-
plied during a prostrate brachytherapy are not significaough to cause any tor-
sion windup in the typical steel needles used for percutas@oocedures [58], the
torques are likely to cause a significant discrepancy in theldfle needles required
for needle steering [61]. Unfortunately, there is a tratigadt arises due to the flex-
ibility of the needle; increased flexibility enhances sitegrbut also increases the
amount of torsion windup when rotating the needle.

Jbase —

Fig. 6 Schematic of a bevel-tip needle interacting with a soft elastic medium: Models have
incorporated tip forces generated by rupture, tissue priegdtbughnesssc, nonlinear elasticity:
Ci0), needle properties (bevel angteand flexural rigidity:El), and the torque generated from the
needle-tissue interaction when the needle is rotated.
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State-of-the-art imaging is unable to accurately measrép angle of the small
needles used in percutaneous procedures, but the anglettagtp of the needle
can be estimated using a force sensor at the base of a hevaddle [1,59]. One
method to overcome torsion estimates the angle lag from #esuared torque and
rotates the needle several times in alternating directiormient the entire needle
shaft to the desired orientation [59]. However, this metbaty works when the
needle is not being inserted during rotation.

When the needle is being simultaneously rotated and inséntedgh the tis-
sue, the effects of stiction are not present since the neégdientinuously sliding
past the tissue. In this case, the needle-tissue intenacdio be modeled as viscous
damping and a modal analysis can determine the dynamice afgédle tip, and a
parsimoneous finite-dimensional model can be obtainedjusimdal analysis [61].
The estimated tip position and measured base angle can¢heseld in a controller
to increase the base-tip convergence time and decreasestti@ping error.

3.4 “Tissue Jacobian” Approaches

Changing the insertion direction of a needle by manipugatite base of the needle
outside the tissue requires an understanding of how théoleerieedle will interact
with soft tissue. Two models relate the motions at the baskeheedle to motions
at the tip of the needle. In one method, the inverse kinemafithe needle are used
to determine the path [28]. The kinematics are derived fravdeling the soft tissue
as springs with stiffness coefficients that vary along tmgtle of the needle. The
needle is modeled as a linear beam.

Another model involves numerically calculating the Jaeobfior the tissue de-
formation and needle deflection [19]. Given the velocity lné base, this model
determines the tip velocities. A needle path is computeedyas potential fields:
a repulsive field drives the needle away from obstacles aratteactor field drives
the needle toward the desired target.

3.5 Toward Fundamental Mechanics-Based Models

Several research groups have developed physics-baselé aeedsoft tissue inter-
action models [7, 16, 18, 31, 32, 49]. A general survey of isatgool and tissue
interaction models, which describes both physics- andptoyrsics-based interac-
tion models, is provided in [43]. As described in Section, 3\ebsteret al. [70]
presented a phenomenological nonholonomic model foriatedexible needles
with bevel tips. The parameters for their model were fit ugrgerimental data, but
this model is not informed by the fundamental mechanicaradtion of a needle
with an elastic medium. For improved planning and contrelweell as the opti-
mization of needle design for particular medical applimasi, an ideal model would
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relate needle tip forces to the amount of needle deflectisadan the fundamental
principles of continuum and fracture mechanics.

Mechanics-based needle-tissue interaction models aieldterthe needle’s ra-
dius of curvature to the material and geometric propertidhetissue and needle.
The radius of curvature of a bevel-tipped needle is a funatitseveral parameters
(Figure 6): the needle’s Young’s modul(g), second moment of inertid ), and
bevel-tip angle(a); the tissue’s nonlinear (hyperelastic) material propé@yp),
rupture toughnes&s.), and coefficient of frictior(ut); and the input insertion force
from the robot controlle(Pmput).

Misra et al. [44] investigated the sensitivity of the tip forces to thestie rup-
ture toughness, linear and nonlinear tissue elasticity,remedle bevel-tip angle. In
order to find the forces acting at the needle tip, they medstine rupture tough-
ness and nonlinear material elasticity parameters of akseft tissue simulant gels
and chicken tissue. These physical parameters were in@tgabinto a finite ele-
ment model that included both contact and cohesive zone Isitamisimulate tissue
cleavage. The model showed that the tip forces were semsitithe rupture tough-
ness.

In addition, Misraet al. [45—-47] developed an energy-based formulation incor-
porating tissue-specific parameters such as rupture t@sghmonlinear material
elasticity, interaction stiffness, and needle geometnid material properties. This
mechanics-based model was guided by microscopic and ntagicsexperiments.
The functional form for the deflection of the needle in an #damedium was ini-
tially assumed and the Rayleigh-Ritz approach was useddloae the coefficients
of the deflection equation. The Rayleigh-Ritz method is aati@anal method in
which the minimum of a potential defined by the sum of the tetargy and work
done by the system are calculated. The system potentjalf a needle interacting
with an elastic medium, is given by

A = (Ne+S)+ (—Wo —We —WR) + Phpudli 2
—_— Y—— N~
energy work inputwork

whereNg andS: are the energies associated with needle bending and niesslle-
interaction, respectively, antlp andWe are the work due to transverse and axial
bevel tip loads, respectively, aifék is the work done to rupture the tissue. Explicit
expressions for each of the terms in (2) are provided in [&@hulation results
follow similar trends (deflection and radius of curvaturetiose observed in ex-
perimental studies of a robot-driven needle interactinigp @ifferent kinds of gels.
These results contribute to a mechanics-based model oficaieedle steering, ex-
tending previous work on kinematic models.
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4 Needle Path and Motion Planning

Directing steerable needles to specific targets while @wgidnatomical obstacles
requires planning paths through the patient’s anatomy.skemrable needles, this
planning is often beyond the capabilities of human intuitdtue to the complex
kinematics discussed in Section 3 and the effects of tisefmrmation, tissue in-
homogeneities, and other causes of motion uncertaintyrdardo harness the full
potential of steerable needles, efficient computationahods can help physicians
plan paths and actions.

When steerable needles are used with image guidance, theighysan spec-
ify the target to be reached, feasible needle insertiortilmes, and the locations of
anatomical obstacles, including those that cannot be gdakseugh such as bones
as well as sensitive anatomical structures that ought tedided such as blood ves-
sels or nerves. Using patient-specific information aboahsnatomical structures,
a motion planning algorithm determines a sequence of a{jsich as insertions
and bevel direction changes for bevel-tip needles) so tiraneedle tip reaches the
specified target while avoiding the clinician-specified tabkes. Planning can be
used purely preoperatively to generate a plan that is thiowfed by the robot or
physician during the procedure. Planning can be also usejperatively by updat-
ing the plan in real time based on intraoperative images #mer gensor feedback.

4.1 3D Path Planning with Obstacles

Motion planning algorithms have been developed to compptenal trajectories
for bevel-tip steerable needles in 3D environments withasies. Using the model
of Websteret al. [70], Duindamet al. [22] computed piece-wise helical motions of
the needle tip. The method optimizes a cost function thaterigally quantifies the
planning objective, including penalties for deviationrfréhe target location, large
control actions, and obstacle penetration. The algoriteesa suitable discretiza-
tion of the control space to quickly compute a needle path @ically) minimal
cost. In a second algorithm, Duindaghal. rely on an explicit expression of the
inverse kinematics of the needle to generate a range of naéidle paths from start
to target, from which the best solution can be selected R#ough this algorithm
generally does not compute a (locally) optimal solutiodgoiés not require iteration
to converge to a solution and is hence much faster than thalgsrithm. Depend-
ing on the required balance between speed and optimalibgrealgorithm can be

advantageous. Xet al. present a sampling-based motion planning technique based

on the Rapidly-exploring Random Trees (RRTs) method [74E Planner quickly
builds a tree to search the configuration space using randomlig of the control
space. Recently, Hausetral. explored the use of a model predictive control strategy
that chooses a needle twist rate such that the predictechh&hjectory minimizes
the distance to the target, which can be used both for pratpemlanning and
intraoperative control [30].
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Fig. 7 A needle steering planner that considers 2D tissue deformatip((@6 2005 IEEE),
reprinted with permission. The magnetic resonance images show a target (cross) in the
prostate with obstacles that preclude a straight-line trajgct he images show (a) the initial con-
figuration and (b) a planned path for a bevel-tip steerabldlrekeployed from a transrectal probe.
This locally optimal plan compensates for tissue deformationsdawvabstacles, and minimizes
insertion distance.

4.2 Planning for Deformable Tissues

Inserting needles into soft tissues causes the surroundisiges to displace and
deform. Ignoring these deformations can result in subistaplacement error. For
example, while performing prostate brachytherapy cameatrnent, an experienced
physician implanting radioactive seeds in 20 patientseed an average placement
error of 0.63 cm, a substantial error of over 15% of averagstpte diameter [66].

Computer simulations that model soft tissue deformati@msassist in preoper-
ative planning by enabling clinicians a priori to optimizatips for needle insertion
procedures [5]. Building on their prior work on simulatiohrigid needles into de-
formable tissue [8,10,11], Alterovi&t al. developed a simulation of bevel-tip steer-
able needles in 2D [6] and Chentaretal. developed a 3D simulation [14]. These
simulations model the coupling between a steerable neadlaleformable tissue
using the finite element method (FEM) — a mathematical mebasgd on contin-
uum mechanics for modeling the deformations and motionlids and fluids.
The simulations model patient-specific anatomy using a roestposed of triangu-
lar (2D) or tetrahedral (3D) elements. As the needle movessimulations model
needle friction and cutting forces, as described in the nsadeSection 3. The sim-
ulations use novel re-meshing to ensure conformity of thehme the curvilinear
needle path. Achieving a computationally efficient simolatis challenging; the
FEM computation in [14] is parallelized over multiple corgsan 8-core 3.0 GHz
PC and achieve a 25 Hz frame rate for a prostate mesh compb$8(Ba@5 tetrahe-
dra.

To help physicians anticipate and correct for the effectssstie deformations,
Alterovitz et al. developed a planner for bevel tip steerable needles thatthse
simulation to compensate for predicted tissue deformatéomd to minimize place-
ment error [6]. To compute the optimal initial insertion &ion and orientation, the
planner formulates the planning problem as an optimizgtimblem. The planner
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(a) Shortest path (b) Maximizing probability of success

Fig. 8 The motion planner computes a sequence of insertions (cunes) lmd direction changes
(dots) to steer the needle from a start region at the left to tiyetécircle) while avoiding obstacles
(grey outlines) [4] (© 2008 Sage Publication), reprinted with permission. The planomputes
(a) the shortest path, which passes close to obstacles, and (beagstt generated by explic-
itly considering uncertainty in the planning stage, whichréases the probability of successfully
avoiding obstacles while reaching the target.

minimizes the distance the needle is inserted subject todhstraints that the nee-
dle tip reaches the target, the needle path does not intemsgobstacles, and the
control inputs are within feasible ranges. The planner tisesimulation to pre-

dict the path of the needle when evaluating the objectivetfan and constraints,
and it employs a penalty method to convert the nonlinearsttaimed optimization

problem into a sequence of unconstrained problems thateaolised quickly. The

method computes a solution in just a couple of minutes onralata processor.

As discussed in Section 2, some needle steering approaslerade tissue de-
formation in order to generate curved paths through tisBidaio and Salcudean
introduced simulation and planning for flexible symmeticneedles in 2D de-
formable tissue by controlling motion of the needle basé.[IBeir Jacobian-based
planner relied on a quasi-static FEM simulation to estinta¢eneedle and tissue de-
formations. This simulation was designed for offline plaxgnand does not achieve
frame rates needed for interactive simulation or globainogation. Glozman and
Shoham accelerate this approach by approximating theetissng springs to com-
pute local, but not global, deformations, enabling a faahping algorithm based
on inverse kinematics [28].

4.3 Planning under Motion Uncertainty

Although detailed models are available for predicting thation of steerable nee-
dles, a steerable needle may deflect from its expected pathodtissue inhomo-
geneities, transitions between tissue layers, localgis@iormations, patient vari-
ability, and uncertainty in needle/tissue parameters.ibétdmaging can be used



16 N. J. Cowaret al.

to measure the needle’s current position and orientationthHis measurement by
itself provides no information about the effect of futureleetions on procedure
outcome.

Alterovitz et al. have developed planners that explicitly consider unasstan
needle motion in order to maximize the probability of avoglcollisions and suc-
cessfully reaching the target [3, 4, 12]. The StochasticidoRoadmap (SMR)
framework efficiently samples the state space, builds adh@” through the tis-
sues that encodes the system’s motion uncertainty, fotesithe planning problem
as a Markov Decision Process (MDP), and determines a splusing dynamic
programming to maximize the probability of successfullgaieing the target. This
framework was applied to compute steerable needle patlhmamabstacles to tar-
gets in tissues imaged using 2D slices. Explicitly accawnfor uncertainty can
lead to significantly different motion plans compared tdiianal shortest paths,
such as longer paths with greater clearance from obstatlesler to increase the
probability of success.

Reedet al. integrated this planner into an image-guided robotic reestéering
system that includes a robotic device that can control theglleein artificial tis-
sue and a low-level image-guided feedback controller tantaai the needle on a
2D plane [59]. The needle successfully reached targetdificed tissues and the
system experimentally demonstrated that the planner isstdb initial positioning
errors of 2cm.

The SMR framework described above transforms the contimuawkspace into
a discrete roadmap that encodes actions, motions, andtaimtgr An alternative
approach considers the ensemble of needle trajectoriameldtby repeated inser-
tion with the same control inputs. The trajectories will bightly different from
each other due to uncertainty that may exist in the contrahaeism and the inter-
action between the needle and the tissue. Baak [54, 55] developed such a path
planning method for needle steering that actively utilides stochastic behavior of
the flexible needles. This algorithm is an adapted versidhepath-of-probability
(POP) algorithm in [25]. A similar trajectory planning methcan also be found
in [41].

In the POP algorithm, the whole trajectory is obtained byadigrpasting to-
gether several intermediate paths. Based on the stochtavior of the flexible
needle, the probability density function of the needle tiggcan be estimated and
evaluated. The intermediate steps are determined so asximina the probability
that the needle tip hits the target pose.

Figure 9 shows the concept of the POP algorithm. The plangaag is to find
a needle path that starts@f € SE(3) and ends aflgoa € SE(3) usingM interme-
diate steps. The homogeneous transformation mairig,SE(3) (i = 1,2,...,M),
represents the position and rotation of tHeérame with respect t¢i — 1) frame.
Suppose that thé — 1) intermediate step{,d2,--- ,0i—1 € SE(3)) have already
been determined. The intermediate stgpis determined to maximize the probabil-
ity that the remaining needle insertion reaches the goa.shtaded ellipses depict
the probability density function that represents the pbdliig of the needle tip pose
after the remainingM — i) steps. In other words, after the remainiihd — i) steps,
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the final pose will be placed in the dark area with higher pbilig than the bright
area. Comparing the two simplified cases in Figure 9, if tlevipus intermediate
steps §1,02,- -+ ,0—1) are the same for both casgsshown in Figure 9(b) is a bet-
ter choice, because it guarantees with higher probabiiday the final pose reaches
the goal pose.

Computing the probability density function plays a cruc@eé in the POP algo-
rithm. The probability density function can be obtainechgsihe stochastic model
for the flexible needle stochastic differential equatioBBE) as reviewed in Sec-
tion 3.2. The Fokker-Planck equation corresponding to th& 8efines a function
representing the probability density of the needle tip p&apid evaluation of the
probability function is required for fast path planning.e8fically, the probabil-
ity density is estimated by a Gaussian function [55, 57], #tiedmean and covari-
ance are estimated using error propagation techniquedopedtfor the motion
groups [68, 69].
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Fig. 9 The path-of-probability algorithm at th#h step [56] (©) 2010 Sage Publications), reprinted
with permission. (a) An intermediate step, resulting in low probability of reaching the goal. (b)
An intermediate stem;, resulting in high probability of reaching the goal.

5 Image Guidance

5.1 Needle Localization in Medical Images

The problem of needle localization in images might seenigdtteorward, yet prac-
tical implementations have seldom appeared. Usually, eaciesof basic image fil-
ters (such as thresholding, edge detection, image smapdnid noise removal fil-
ters) are combined with more sophisticated feature detestioutines, such as a
variant of Hough transform. Significant literature existstbe theory, use, and ex-
tension of Hough transform; a succinct summary and backgroeading are given
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in [20]. Many localization methods entail two steps: firstimgs or fragments of the
needle are extracted from the images and then a 3D geometdelr(straight line,
polynomial, etc.) is fit to the fragments, typically in a leaguares optimization
scheme. The two steps can be combined in a probabilisticsfrenmk, where points
of high probability of belonging to the needle are fitted orDag&ometrical model.
This approach is especially suitable when the quality ofjesa(resolution, dynamic
range, etc.) is poor, such as in ultrasound images. In thtgose we survey the most
popular needle localization methods used with various intagodalities, namely
fluoroscopy, computed tomography (CT), magnetic resonanaging (MRI), and
ultrasound (US).

Fluoroscopy. Metal needles, being of high density, tend to be visible ina}-
images such as those obtained from CT and fluoroscopy. InoBaopy, a single
projection image is insufficient for reconstruction of treedle in 3D. Two images
are sufficient to reconstruct a straight needle, while tlore®ore images and some
amount of prior knowledge about the curve are necessarydae8onstruction of
a curved needle. For needles that lie in a plane, polynomialets are preferable
because polynomials are invariant to perspective prajeckor example, Jaiet al.
used a combination of Oth-, 1st-, and 2nd-degree polyneniafit image points
on a 3D model with sub-millimeter and sub-degree accura8y. [®hen a needle
is driven out of plane, spatial reconstruction becomes rdeneanding and requires
more images and/or a more elaborate 3D model for the needleeingly innocu-
ous and often underrated problem in fluoroscopy is that thieeenust be precisely
calibrated, including the relative pose of the fluoroscapgges [33].

CT. Although CT can produce a 3D volume, needle insertion isgerformed
in a single 2D plane, with the CT gantry tilted in order to shibv@ needle in the
2D image. Newer CT scanners provide short acquisition tiritle kgasonably low
dose, convenient for intermittent observation of the neddlany CT scanners also
provide continuous beam mode, yielding a single CT imageowaf lesolution at
high frame rate£10 fps). There is a trade-off between image quality (resmut
and dynamic range), frame rate, and X-ray dose. Modern Ciingca can also
produce multiple slices (i.e. thin 3D volume) and high-endrsers even provide
multiple slices in continuous beam mode.

A universal problem of any X-ray imaging modality (fluoropgoand CT in-
cluded) is that for safety reasons image acquisition cabedtiggered by the sur-
gical navigation software and images are acquired undezdhenand of a human
operator. This process is time consuming, cumbersome aodm@one. The avail-
able alternative is using continuous X-ray, exposing thigepgaand physician to
excessive radiation.

MRI. For needle localization, the one major advantage of MRI dveay imag-
ing is the absence of harmful radiation. In practice, theitgpically a compromise
on both spatial resolution and acquisition time: MR imaggsduin surgical guid-
ance tend to be of much lower resolution than diagnostic @aaand the acquisition
is usually not real-time. A further disadvantage of MR iattinetal needles create
a large signal void in the image. Further, the signal voidsduoa coincide with the
true position of the needle, and the displacement betweztwb depends on the
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configuration of the needle, the BO field and the gradient fiefd. It is not uncom-
mon for a 1 mm diameter needle to leave a 5mm signal void inrtfage; hiding
both the needle and the surrounding anatomy.

Ultrasound. Ultrasound (US) is an attractive needle guidance modadliitg,to its
low cost, widespread availability, and safety. US imagmam operator-dependent
manual process. It also causes some degree of tissue déforraad dislocation as
the transducer makes contact with the tissue scanned. Uggviand to be noisy,
due to reflections, reverberations, shadows, air pockeis,béological speckle,
which makes needle localization challenging. Some neextialization methods
use 2D images [15, 20, 53], while others compound a 3D volumm fa tracked
sweep of 2D images [2, 21]. For completeness, we note thattaaurrent limita-
tions on voxel resolution and transfer speed, 3D US probes hat been practical
for image-based needle guidance. Novanal. tracked laparascopy instruments
(which are larger than needles), but this requires a reseapeement with the ven-
dor of the ultrasound machine [50].

To localize straight needles in 2D ultrasound, Dat@l. introduced a sophisti-
cated derivative of the Hough transform [20]. Chewh@!. proposed an enhance-
ment algorithm that maximizes the received reflections bering the ultrasound
beam to be precisely perpendicular to the needle [15]. Bewtaated needles are
available commercially, to enhance ultrasonic visibitifithe needle, which in turn
increases friction during insertion and thus may not be @meite for needle steer-
ing. Okazawat al. localized bent needles in a 2D image plane by warping aralniti
guess straight line into a 2D parametric curve fitting on piaé needle points [53].
This method works well for conventional needles, but it keaander excessive cur-
vature often observed with elastic needles and catheteng, € al. constructed
a 3D volume from a sweep of tracked 2D images, cropped themmlsensibly
and created several orthogonal projection images. Theyesetgd the needle in the
projections with the Hough transform and then reconstduttte needle from its 2D
projections as a straight line. Aboofazefial. recently localized curved non-planar
needles in 3D space [2]. They pre-filtered a compounded 3D dli$ne and pro-
duced series of 2D images by ray casting. In the projectedaesiathe needle was
segmented with the Hough transform and fitted onto a polyabmaodel. From the
series of 2D polynomial curves, they reconstructed a serflaat contains the nee-
dle. This 3D surface was smoothed and the needle was detacthd surface using
the Hough transform followed by a polynomial curve fittindielend result was a
continuous 3D curve consisting of polynomial patches.

Localization of the needle tip has been a major challengeeaally in 2D US,
where it is difficult to determine whether the needle tip Ede or outside the plane
of imaging. The non-uniform thickness of the US beam add&éurto the localiza-
tion error. When using bevel-tip needles, the physiciannoftgates the needle to
create a visible, fluctuating artifact at the needle tip.rifatret al. created mechan-
ical vibrations on the needle tip and measured the resuliogpler effects [29].
Their prototype robustly detected the needle tip, but itrddtlseem to provide suf-
ficient accuracy for localizing the needle tip for contrdliesertion.
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5.2 State Estimation of Unmeasured Degrees of Freedom

As described above, except in MR images, researchers havechaonable suc-
cess in localizing needles, but estimating the full 6-DOBgof the needle tip
directly from medical images, including rotation about theedle axis, remains
elusive. However, this rotation information is necessamydontrol and planning
purposes. To overcome this, Kalleatral. designed dynamical observers (analogous
to a Kalman filter) based on kinematic models of needle stgdahat can be used
to estimate full 6-DOF needle tip pose from a sequence of 3§tipa measure-
ments [34]. They showed that the rotation of the needle tig bwinferred from
the measurements of the needle tip position over time anelalged model-based
asymptotic observers that exploit the task-induced redlitd estimate the full nee-
dle pose.

Needle steering is highly nonlinear, which makes the estomaand control
problem coupled, unlike in linear systems. Building on tleemlonomic model
of Websteret al. (see Section 3.1), Kallem and Cowan [37, 38] exploit the tiaat,
to drive the needle to a desired 2D plagezplane without any loss of generality),
only three of the six degrees of freedom need to be considgseag this reduction,
they first developed an observer to estimatexipesition, the pitch of the needle
tip, and the roll of the needle from jugtposition measurements. In [34] a linear
model to represent the dynamics of the other three stgtepsitions and yaw of
the needle) is created by state immersion into a finite highmensional manifold;
based on this, Luenberger observers for this smaller syaterdesigned. This two-
stage coupled observer estimates the complete needlgatidenand also filtered
the noisy position measurements. For other tasks, sinilatraller-observer pairs
need to be developed to estimate needle orientation.

5.3 Image-Guided Control of Needle Steering

As described in Section 3, considerable progress has beda dexeloping “plant
models” for manipulating a needle from outside the pati€éhese models enable
development of model-based feedback controllers to sheen¢edle inside the tis-
sue. Glozman and Shoham [28] developed an image-guidarategst for flexible
needles without a bevel tip. First they plan a needle pathatiwds obstacles in the
workspace. Then at every time step they invert a virtuahgpmodel to obtain the
translation and orientation of the needle base (the inputsder to drive the needle
back to the planned path in one step.

Kallem and Cowan [37, 38] took a systems-theoretic persmetd develop
feedback-based controller-observer pairs for tip-stderaeedles. A tip-steerable
needle has been modeled as a 6-DOF nonholonomic systemtliliwei inputs and
nonholonomy degree four. Furthermore, when the needldlisdout of the tissue,
no cutting forces are generated and thus the needle folloevsame path as dur-
ing insertion into the tissue. These constraints imply #sytmptotic controllers do
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Fig. 10 Nine experimental trials were used to validate an image-guidedoller [38] () 2009
IEEE), reprinted with permission. The mean distance of the ndgafeom the desired plane of
all trials is plotted against the insertion distance of the teeedo the tissue (solid blue line; gray
region indicates meatt standard deviation). All trials control approach the des#&Bdplane and
stay within the noise levels of the position measurements of apped&ly 1 mm.

not exist for certain tasks, such as driving the needle tigézh a desired pose in
6 DOF or following a circular path whose radius is the natuaalius of curvature
of the needle inside the tissue. To overcome these chaBetige approach taken
in [37,38] is to develop low-level, asymptotic controllghat only control a sub-
set of the degrees of freedom. These controllers are dekigrmpoperate with the
higher-level 2D planners from Alterovig al. [9, 12]. These planners, which rely
on the needle staying within a specified 2D plane, constrgetqaence of circular
arcs of the natural radius of the needle that can be achiesedtgrnating insertions
and 180 rotations of the needle shaft. In effect, the low-level 2@ng@-following
controller designed by Kallerat al., described below, ensures that the needle re-
mains close to a desired 2D plane, on top of which Alterogital.’s planner can
operate.

Kallem and Cowan [37,38] developed a feedback-based dstiroantroller pair
to drive the needle to a desired plane, and subsquently glerest this to other sub-
space trackers [36]. The feedback signal used is the néipdiesition. For this task,
they showed that considering a three-state system is suffjavhich simplified the
estimation and control design needed to achieve the task.cbntroller has been
successfully tested in simulations and in artificial tisgtigure 10 shows successful
experimental results of a needle being driven to a desiradeplvhen inserted into
artificial tissue.

Reedet al. [60] integrated the full 6-DOF asymptotic observer and tkenar
controller with the 2D planner of Alterovit al. [12] and the torsional compensator
of Reed [59]. Figure &econd Row, Right Column shows the path taken by the uni-
fied system to reach a target inside the tissue. The goal é&atthrthe circular target
while avoiding the polygon obstacles in the workspace. Tlaegr controllers act
every 1 mm of needle insertion into the tissue to drive thellee® the desired 2D
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plane and the the planner acts at 1 cm insertion intervalgh Wiegrated planning
and control, the needle successfully reaches the targshtasn in the pre-curved
tip example in Figure 3 [60]).

6 Conclusions

This chapter provides an overview of the technological dgdraghmic state-of-
the-art in needle steering. As can be seen from this chaptererous components
are required to enable needle steering. Ultimately, thaical success of needle
steering depends on uniting these pieces and reducing thpradtice in a driving
application to create a fully integrated clinical needkesing system. As shown in
Figure 2, such a system includes a set of computational ayslqath components —
including the robotic device and steering mechanism, niogigblanning, imaging,
and control — each of which is addressed in Sections 2-5.

A potential first driving application for needle steeringriansperineal prostate
brachytherapy, a treatment that involves implantatiomdioactive seeds by needles
into the prostate in order to kill cancer with radiation.dréture shows that reducing
surgical trauma of the prostate reduces the severity of adémareby improving im-
plant dosimetry and reducing toxicity. Current manual nepthcement can involve
multiple reinsertions and adjustments of the needle béfoeaches a target, caus-
ing excessive trauma to the prostate. We hypothesize whegdle steering will
eliminate needle reinsertions and adjustments, and tlagsttereduction of surgi-
cal trauma. Efforts are underway by some of the authors efdhapter to create a
clinically viable needle steering system for prostate by#tterapy. Along the way,
we expect there to be continued advances in devices, m@dkeiging, sensing, and
control that will lead to advances in needle steering, asagalobotics in general.
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