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Introduction
Mechanosensory stimuli from antennae (Staudacher et al.,

2005) mediate a breadth of locomotory behaviors including
escape (Camhi et al., 1978; Comer and Dowd, 1993; Comer et
al., 1994; Comer et al., 2003; Ye et al., 2003), slow-speed
exploration (Okada and Toh, 2000; Okada and Toh, 2004;
Okada et al., 2002; Dürr et al., 2001) and high-speed control
(Camhi and Johnson, 1999). Specialized mechanoreceptors
distributed along a highly segmented, compliant structure, the
flagellum, detect contact and strain to provide tactile feedback
(Schafer and Sanchez, 1973; Schafer, 1971; Seelinger and
Tobin, 1982; Slifer, 1968). Stimuli can also displace the
flagellum with respect to two basal segments, the scape and
pedicel (Toh, 1981; Okada and Toh, 2000). How arthropods
integrate this mechanosensory information depends on input
from other sensory modalities, such as vision (Ye et al., 2003),
and on the behavioral context, such as locomotion speed prior
to or during antennal contact. At the slowest extreme, when a
cockroach is initially standing, antennal contact can elicit an
escape response (Camhi et al., 1978; Comer and Dowd, 1993;
Comer et al., 1994). Basal receptors, as opposed to flagellar
receptors, initiate escape turns, while prior flagellar (Comer et
al., 2003) or visual (Ye et al., 2003) stimuli either directly or
indirectly influence the response. During slow exploratory

behaviors, animals actively sweep their antennae to provide
rich information about their environment for self-orientation
(Okada and Toh, 2000; Okada and Toh, 2004; Okada et al.,
2002) and for slow-speed walking (Dürr et al., 2001). At the
fastest extreme, rapidly running cockroaches use antennal
feedback to follow surfaces with remarkable consistency,
while holding the base of their antenna at nearly fixed angles
relative to their body (Camhi and Johnson, 1999). The
dominant information for task-level control of this behavior
originates from the flagellum, with little-to-no contribution
from the base of the antenna (Camhi and Johnson, 1999),
though antenna base angle regulation likely requires basal
proprioception. The long, passive, unactuated flagellum bends
in response to objects in its environment and transduces contact
and strain stimuli to neural impulses for control. Using this
sensory input, cockroaches can execute extremely high fidelity
maneuvers, reportedly achieving up to 25·turns·s–1 in response
to environmental stimuli (Camhi and Johnson, 1999).

We contend that control of rapid locomotion must be
embedded in both neurosensory circuitry and an animal’s
mechanical system, and that a neuromechanical model of a
sensory mediated behavior can lead to specific, testable
hypotheses regarding afferent neural processing. We tested
task-level control hypotheses using the antennal sensory

The American cockroach, Periplaneta americana, is
reported to follow walls at a rate of up to 25·turns·s–1.
During high-speed wall following, a cockroach holds its
antenna relatively still at the base while the flagellum
bends in response to upcoming protrusions. We present a
simple mechanosensory model for the task-level dynamics
of wall following. In the model a torsional, mass-damper
system describes the cockroach’s turning dynamics, and a
simplified antenna measures distance from the
cockroach’s centerline to a wall. The model predicts that
stabilizing neural feedback requires both proportional
feedback (difference between the actual and desired
distance to wall) and derivative feedback (velocity of wall
convergence) information from the antenna. To test this

prediction, we fit a closed-loop proportional-derivative
control model to trials in which blinded cockroaches
encountered an angled wall (30° or 45°) while running. We
used the average state of the cockroach in each of its first
four strides after first contacting the angled wall to predict
the state in each subsequent stride. Nonlinear statistical
regression provided best-fit model parameters. We
rejected the hypothesis that proportional feedback alone
was sufficient. A derivative (velocity) feedback term in the
control model was necessary for stability.
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system because of its effectiveness at high speeds, the ease of
measuring performance, and the availability of well-developed
mechanical models upon which we can build.

Neuromechanical models
Legged locomotion results from complex, nonlinear,

dynamically coupled interactions between an animal and its
environment. Despite this complexity, simple patterns often
emerge that are consistent with low-dimensional mechanical
models or templates (Full and Koditschek, 1999). Legged
locomotion in the sagittal plane is consistent with a spring
loaded inverted pendulum (SLIP) (Cavagna et al., 1997;
McMahon and Cheng, 1990; Blickhan, 1989; Schwind and
Koditschek, 2000), a result that scales across the number of
legs and three orders of magnitude of body mass (Blickhan and
Full, 1993; Farley et al., 1993). Similarly, horizontal plane
locomotion in sprawled-posture animals is well characterized
by the lateral leg spring template (LLS) (Schmitt and Holmes,
2000a; Schmitt and Holmes, 2000b), because animals also
bounce side-to-side. Surprisingly, both templates exhibit
passive, dynamic stability when perturbed, thus requiring
minimal neural feedback (Full et al., 2002; Schmitt et al., 2002;
Altendorfer et al., 2004; Seyfarth et al., 2002). The LLS
template reveals that horizontal plane dynamics are
asymptotically stable in all states except direction and speed,
which are neutrally stable and thus both require active control
(Schmitt and Holmes, 2000a; Schmitt and Holmes, 2000b).

To build upon prior mechanical locomotor templates, we
incorporate antennal sensing and neural control of running
direction directly into one mechanosensory template of
antenna-based wall following. In contrast to the LLS model,
which aims to capture the within-stride dynamics of cockroach
locomotion (Schmitt et al., 2002; Seipel et al., 2004), our
model focuses on the multi-stride dynamics.

Wall-following dynamic model
Consider a cockroach running on a horizontal flat substrate,

following a straight vertical wall. The inertial frame’s X-axis
points along the wall, and the Y-axis points into the arena, as
shown in Fig.·1. We model the cockroach as a planar rigid
body. Let (x,y) denote the position of a point we call the point
of rotation (POR). Let v denote the forward speed of the POR,
and ! the velocity heading of the body POR, so that
(vsin!,vcos!) is the POR velocity vector. Denote the body
angle by ", and let #=d"/dt denote the rotational velocity of
the body. Cockroaches apply forces with their legs that keep
the two angles " and ! aligned during turning (Jindrich and
Full, 1999), therefore we model the body angle and the heading
as coincident at all times, namely:

! = "·. (1)

Under these modeling assumptions, the rigid body kinematics
are given by

! = #·, x = vcos"·, y = vsin"·, (2)

where the dot is used to indicate the time derivative, e.g.

x=dx/dt. At each instant, the body moves forward in the
heading direction at speed v (assumed constant), while pivoting
about the POR at angular velocity #. The general robotics
literature refers to this kinematic model as a ‘planar unicycle’
(see Bloch, 2003).

Our antenna model estimates the distance, d, from the body
centerline to the wall. The antenna senses ahead of the POR a
fixed distance l, which we call the preview distance (Fig.·1B).
Under these assumptions,

d = ltan" + ysec"·. (3)

The linearized antenna measurement kinematics simplify to

ḋ ! l! + v"·. (4)

Eqn·4 describes how the antenna measurement, d, changes as
a function of the motion of the cockroach. We distinguish the
model’s effective preview distance, l, from the physical
contact distance, L, which denotes the distance ahead of the
animal that the antenna is touching the wall (Fig.·1A). The
preview distance, l, is based on the information available to
the cockroach from a variety of potential mechanosensory
receptors (e.g. campaniform sensilla, hair sensilla and
marginal sensilla). The antenna may encode distance, d, to
the wall via a variety of surrogate signals such as contact
point, strain, antennal forces, contact area, or bend, or some
combination, that are all likely to be highly correlated
with the distance to the wall during wall following. Finally,
neural and muscle activation delays may decrease the
effective preview distance, a possibility explored in the
Discussion.

To turn, a cockroach must generate a net polar moment, u
(Jindrich and Full, 1999). The polar moment of inertia, J,
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Fig.·1. (A) Depiction of a cockroach following a straight wall. L is
the farthest point ahead of the cockroach’s point of rotation (POR),
as measured along the body axis, that the antenna contacts the wall.
The bold arrow at the bottom indicates the leading point on the
antenna that is in contact with the wall. (B) Unicycle model of the
running cockroach. The model parameters are l, the preview distance;
d, the antenna measurement; v, the forward running speed; ", the angle
of the cockroach body relative to the wall [positive is measured
counter clockwise (CCW) for all angles, angular velocities and
moments; note that "<0 in this figure]; #, the angular velocity of the
body; u, the moment applied by the legs about the POR. The preview
distance l may be less than L due to neural and muscle activation
delays. In the model, the angle of the POR velocity, !, is the same as
the body angle, ", so ! is not shown for clarity.
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and damping coefficient, B, parameterize the ‘yaw’
dynamics:

J! + B! = u·. (5)

Damping is used to model stride-to-stride frictional and impact
losses. The animal does not run in a preferred direction, so we
do not include a torsional spring force that would orient the
animal.

Combining the two linear differential equations, Eqn·4
and 5, yields an open-loop dynamical system model of
cockroach wall following. One can express a transfer
function, G(s), between the moment, u, and the antenna
measurement, d, as

The dynamical system model (Eqn·4, 5) summarized by the
linearized transfer function (Eqn·6), has eight parameters,
including the dimensionless angle, ", and seven dimensional
quantities: complex frequency, s; head-to-wall distance, d;
input moment, u; polar moment of inertia, J; damping, B;
preview distance, l; and forward velocity, v. These reduce to
four dimensionless groups: u=ul/Bv, $=Jv/Bl, d=d/l, "; with
s=sl/v, where s is the dimensionless complex frequency. Then,
from Eqn·6 the dimensionless transfer function relating u and
d can be written as:

The dimensionless constant

plays an important role in our model since its value determines
the ease of stabilization via closed-loop feedback (Fig.·2). If
the cockroach uses negative feedback from the antenna-based

(8)
Jv

Bl
$ =

(7)
s + 1

s2 ($s + 1)
G(s) = .

(6)
ls + v

s

1

Js2 + Bs
G(s) = . .

distance measurement d, then $ constrains the control
structures that can stabilize the system.

The simplest possible feedback strategy, ‘proportional
feedback control’ (P-control), assigns an input moment
proportional to the ‘tracking error’, namely

u = –KP(d – d%)·, (9)

where d% is the steady-state distance that the cockroach neural
control system attempts to maintain and KP is the feedback
gain. For stability, the poles (zeros of the denominator) of the
closed-loop system, KPG/(1+KPG), must have negative real
parts. In non-dimensional terms, the closed-loop poles are
given by the solutions of the characteristic equation:

$s3 + s2 + KPs + KP = 0·, (10)

where KP is the dimensionless proportional gain. Routh’s
stability criterion (see Franklin et al., 1994) reveals that the
system is stable (i.e. the roots of Eqn·10 have negative real
parts) if and only if 0<$<1 and KP>0.

We hypothesize (for reasons expanded upon in the
Discussion) that P-control will not be sufficient to guarantee
stability. To test our hypothesis, we fit a ‘closed-loop’ model
to a set of behavioral observations. The closed-loop model
couples the dynamics of Eqn·2–5 with a proportional-
derivative (PD) controller,

u = –KP(d–d%) – KDḋ·, (11)

where KD is the gain of the derivative term, which encodes rate
of approach to the wall. This additional derivative term helps
to stabilize the system, allowing a greater range of allowable
values for $. Note that setting KD=0 reduces the controller to
P-control. The nesting of models enables statistical hypothesis
testing of the P-Hypothesis (null) against the PD-Hypothesis
(alternative). During model fitting, we obtain estimates for l,
as well as the ratios KP/J, KD/J and B/J. The resulting values
enable us to estimate the dimensionless constant, $.

Materials and methods
Animal husbandry

Adult male American cockroaches Periplaneta americana
L. were acquired from Carolina Biological Supply Company
(Burlington, NC, USA) and housed in a ventilated plastic
container. Cockroaches were exposed to a L:D cycle of
12·h:12·h and given fruits, vegetables, dog chow and water ad
libitum.

Wall-following arena
Our arena was similar to that used by Camhi and Johnson

(Camhi and Johnson, 1999). A rectangular arena,
85·cm&45·cm&15·cm (length & width & height), was
enclosed with a galvanized aluminum sheet wall (Fig.·3A). The
upper half of the aluminum wall was coated with petroleum
jelly to prevent the cockroaches from escaping. A long, high-
density fiber (HDF) block, 50·cm&5·cm&5·cm, was used as a
part of the observation wall to view the cockroach’s wall-
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Fig.·2. Block diagram of simplified control model. The ‘mechanics’
box represents the torsional dynamics, and relates the body moment,
u, to the body angle, ". The antenna box is a simplified model of the
antenna sensing kinematics, and it dynamically relates the cockroach
angle, ", to the antenna sensor measurement, d. We fit a simplified
neural controller (in the broken box), in which the error between a
nominal ‘desired’ wall-following distance, d%, and the measured
distance, d, is fed back through a PD-controller. This control model
enabled us to test PD-control (KD!0) against P-control (KD=0).
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following behavior. To induce turning, we placed HDF boards
cut at angles of 30° and 45° in the middle of the first wall.
Depending on where the cockroach started, it ran along either
wall first using its right or left antenna for wall following. We
noted this, but did not distinguish between the two scenarios
for modeling. Henceforth, we refer to the wall that the
cockroach initially tracks, either using their left or right
antenna, as the control wall and refer to the wall that induces
a turning behavior as the angled wall. The two walls
collectively constitute the observation walls.

Two high-speed video cameras (Kodak EktaPro 1000,
Eastman Kodak Company, Rochester, NY, USA) positioned

approximately 1.5·m above the arena (Fig.·3A) captured the
cockroaches’ running behavior. A half-silvered mirror placed
in front of each camera at 45° deflected light shone from a
150·W fiber-optic illuminator onto the running surface. There
was little-to-no ambient lighting during the experiment. The
two camera views of the observation walls overlapped slightly
for camera calibration purposes and to ensure continuity of
data from each trial (Fig.·3B). Each camera’s field of view
covered 35·cm in length of its respective wall, with an average
resolution of 0.8·mm per pixel. The cameras synchronously
captured images at 500·frames·s–1.

We captured video images (Fig.·4) of running cockroaches
under low light using a retroreflective sheet from 3M (St Pauls,
MN, USA) as the running substrate. Proper alignment of the
lighting evenly illuminated the retroreflective running substrate
and markers, simplifying detection and tracking of the
cockroach, because the non-retroreflective walls, cockroach
body and legs appeared as sharp silhouettes.

Animal preparation
We prepared cockroaches inside a 4°C cold room as follows.

After initially cooling the animals for 15–20·min, we
anesthetized them using CO2. While anesthetized, we attached
two small round retroreflective markers to each animal’s
wings, approximately aligned with the body fore–aft axis,
enabling us to estimate the cockroach’s position and body
angle from video images. The markers did not restrict the
wings in any way. To block their visual senses, we covered
their compound eyes and ocelli using a white nail polish, taking
care to avoid the head/scape joint. This preparation process
took less than 40·min per group of five cockroaches. After this
preparation, the cockroaches recovered at room temperature
for at least 24·h before testing.

Kinematics
Prior to a set of trials with a cockroach, we placed it in the

arena for several minutes to acclimate. When the insect walked
into position at the initial part of the control wall, we induced
an escape response by tapping the running substrate with a long
stick near the posterior of the cockroach. Trials were accepted
when the animal ran rapidly along the wall and executed a turn
at the angled wall. Trials were rejected when (1) the
cockroaches stopped or climbed the wall while they were in
view of the cameras, (2) the distance of their POR to the wall
deviated by more than 2.5·cm while running along the angled
wall; this typically occurred when the animal appeared to
voluntarily leave the wall and run into the open space of the
arena, (3) their body (excluding their legs) collided with the
angled wall, or (4) their antenna was not in a ‘bent backward’
posture when the antenna first encountered the angled wall; this
eliminated trials in which the tip was pointing forward, thereby
wedging the antenna in the corner.

After each successful trial a cockroach rested for 2–3·min
while we downloaded the recorded images to our
workstation. When the animal stopped exhibiting the escape
response from our perturbation or did not achieve any
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Fig.·3. Wall-following arena. (A) Two high-speed cameras were
positioned above an enclosed arena. The field-of-view of each camera
was centered on an observation wall. Half-silvered mirrors in front of
each camera reflected light from a fiber-optic illuminator onto the
retroreflective running substrate, providing a stark silhouette of the
cockroach despite very low ambient light (see Fig.·4). (B) The arena
viewed from above showing the two cameras’ overlapping fields of
view.
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acceptable trials for 30·min, we switched to a different
individual. An individual was never used for experiments
twice in the same day.

Before each set of experiments, we captured an image from
both cameras of a three-dimensional, non-coplanar block with
retroreflective markers. The geometry of the markers was
measured with a set of digital calipers. Using these data, we
calibrated the cameras using the direct linear transform.

We extracted four quantities from each trial. First, our
custom scripts (Matlab, The MathWorks, Inc., Natick, MA,
USA) tracked the cockroach’s two body markers to obtain
the body’s POR (see below) and body angle, (x,y,"), for all
frames (Fig.·4). We visually verified the tracking data by
superimposing the predicted marker measurements onto the
raw images. Second, custom Matlab scripts automatically
determined (and visual inspection confirmed) the frame
number for each posterior extreme position (PEP) of the
outside hindleg, contralateral to the observation wall. Third,
we manually determined the time at which the antenna
ipsilateral to the wall first came in contact with the angled
wall. This time is the start time of the perturbation, t=0.
Fourth, we randomly selected 20 frames from which we
manually digitized the antenna-wall contact points, 10
frames from the control wall and 10 frames from the angled
wall. If the antenna was not in contact with the wall in the
selected frame, a new frame was randomly selected. From
these data, we obtained L (see Fig.·1A). The distance L
provides an upper bound on the preview distance, l (see
Fig.·1B).

Finding the point of rotation
Since we modeled the cockroach as a unicycle, the 2-D

position of the running cockroach was represented by its point
of rotation (POR). To estimate the POR, we used the positions
of the two retroreflective markers that were attached on the

fore–aft axis of the cockroach’s wings. Assuming an ideal, no-
slip unicycle, the following equation holds:

'# = v!·, (12)

where ' is the distance between the POR and the rear marker,
# is the instantaneous rotational velocity, and v! is the
instantaneous velocity of the rear marker in the direction that is
perpendicular to the heading (see Fig.·5). After approximating
#i and vi

! using two consecutive image frames, i and i+1, we
performed a least-squares fit to find the best ', i.e.

where n is the total number of frames in a given trial, and thus
found the POR.

(13)' = ,
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Fig.·4. Multiple exposures of a cockroach running along an angled wall from a single trial. Superimposed on the images are plots of the
corresponding POR position (magenta, left axis) and body angle (blue, right axis). The markers (*) indicate the location of the POR (x,y) and
the body angle " at the beginning of each stride (as measured by the PEP of the leg that is contralateral to the wall). The cockroach is shown
every two strides.

Fig.·5. Instantaneous motion of the unicycle model. The two empty
circles correspond to the two retroreflective markers that are used to
locate the position of the POR (denoted as two concentric circles). v
is the forward velocity; # is the rotational velocity; v! is the
component of the velocity of the rear marker perpendicular to the
body’s fore–aft axis; ' is the distance between the rear marker and
the POR.
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Data filtering and normalization
For each trial, we collected a time series of cockroach positions

and angles spaced at 2·ms intervals. We zero-phase forward- and
reverse-filtered the data with a five pole, low-pass Butterworth
filter with a cut-off frequency of 62.5·Hz, nearly three times the
maximum observed frequency of angular motion (Camhi and
Johnson, 1999) during wall following. The origin of the reference
coordinate system coincided with the corner where the control
wall met the angled wall, with X-axis parallel to the angled wall,
pointing in the direction of running, and Y-axis perpendicular to
the angled wall, pointing into the open arena.

Because our model (Fig.·1) does not try to capture the
detailed mechanics within each stride, we averaged the
cockroach motion during each stride to estimate its state. We
used the outer (contralateral to the wall) hind-leg PEP frame to
segment the data into individual strides and averaged the data
over each stride to obtain the values (xk

j,yk
j,"k

j,#k
j,vk

j,tk
j), where

k=1, 2,... indicates the stride number and j=1, …, N indicates
the trial number. The position during the kth stride, (xk

j,yk
j), was

computed as the mean POR location over all frames of a given
stride. Likewise, we computed the mean angle of the body axis,
"k

j, during the kth stride. We calculated the speed, vk
j, as the

change in position of the POR between successive contralateral
hindleg PEPs divided by the stride duration, t j

k+1–tk
j. Similarly

we calculated the angular velocity, #k
j, as the change in angle

divided by the stride period. The first stride (k=1) for each trial
was selected as the stride that began after the antenna first
contacted the angled wall. The steady-state distance, d%, was
approximated for each trial by averaging the last three strides
in view. We observed that most cockroaches had regained
quasi-steady running by this point, which was typically at least
20·cm and at least 5 strides after the perturbation.

To test the model for speed dependent parameters, we
segmented it into two groups, ‘slow’ and ‘fast’. The average
speed was computed for each trial as the mean of the individual
stride speeds, vk

j, for that trial. The fast group was comprised of
trials whose average speed was greater than or equal to the
median speed. The slow group were trials less than the median
average speed. For each trial, the stride frequency was computed
using the average time between successive outer hindleg PEPs.

For visualization purposes, we processed the data as follows.
Each trial was normalized to distance traveled along the angled
wall, with x=0 corresponding to the point where the control
wall meets the angled wall. This corresponds to the start time
of the perturbation, t=0, at x=0. In all trials, x increased
monotonically through the trial. The data were linearly
interpolated and renormalized resulting in a sequence of
normalized observations (yk

j,"k
j), at positions along the wall

x=0, 0.1,..., 30.0·cm. Lastly, we grouped and averaged trials of
similar speed, so that simulated trajectories could be compared
with averaged actual trajectories.

Dynamic model fitting and testing
To fit the parameters of our model we compared model

simulations of each stride with the actual data from each stride,
as follows. First, we combined the equations for the dynamics

(Eqn·5), antenna distance measurement (Eqn·3), and PD-
control input (Eqn·11) into a single third order, nonlinear
differential equation:

where
d = ltan" + ysec"
·d = #lsec2" + vtan" + y#tan"sec"·. (15)

There are four independent parameters p=(l,B/J,KP/J,KD/J).
Note that the position along the wall, x, can be omitted from
the formulation. We assume the parameters p and the speed v
are constant during a trial. Given a set of parameters, p, and
the cockroach state, (yk

j,"k
j,#k

j), at stride k of trial j, the flow, (,
predicts the state of the cockroach during the subsequent stride:

where the ‘hatted’ quantities, (yj
k+1,!

j
k+1,"

j
k+1), are model

estimates for the subsequent stride of the same trial, and
)tk

j=tjk+1–tk
j is the stride duration. We evaluated the flow

(Eqn·16) by simulating the dynamics (Eqn·14) for the full
duration of a stride (using Matlab’s ode45 command) to obtain
the prediction of the state at the next stride of the same trial.
We assumed the residual error, (yj

k+1,!
j
k+1)–(yj

k+1,"
j
k+1), between

the model and the measured cockroach position and angle was
an independent and identically distributed Gaussian noise
process with zero mean and unknown covariance. This
assumption implies that each stride is an independent sample
for nonlinear regression.

We fit the full nonlinear dynamics, rather than the linearized
dynamics, since our perturbations included relatively large
angles (up to 45°). After the antenna had first contacted the
angled wall, only the first four stride-to-stride transitions
(k=1,2,3,4) were considered for each trial, because after that
point, most animals had almost fully recovered from the
perturbation, and including more strides amounted to fitting
small fluctuations that occurred during straight wall following.
To fit the parameters of the controlled mechanosensory system,
we followed the nonlinear statistical modeling framework
described by Gallant (Gallant, 1987)1. We used Gauss–Newton
optimization to minimize the least-squares error between the

(16)
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1Gallant’s approach allows us to find the best fit for the parameters
p=(l,B/J,KP/J,KD/J), while accounting for how random variations in the trials
lead to uncertainty in the parameters. This is analogous to linear regression, e.g.
fitting a line y=mx+b. Here, our ‘x’ data are the states at the start of each stride,
and our ‘y’ data are the states at the end of each stride; the slope and intercept in
linear regression are analogous to our unknown parameters, p. As is well
known in linear regression, random fluctuations in the data affect parameter
variances, and we arrive at similar results here, in a nonlinear setting.
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observed stride states, and the stride-to-stride predictions
thereof, namely:

where N was the number of trials used for fitting (with four
strides per trial), and M is the estimated noise covariance
matrix (Gallant, 1987). For computing confidence intervals
(significance P=0.05), we assumed 4N–4 degrees of freedom
(d.f.; 4N independent state transitions and 4 fitted
parameters). Because our goal was to test the overall model
structure and the importance of derivative feedback for
control, we did not fit the parameters to each individual
animal. Moreover, doing so may be experimentally infeasible
due to the large number of successful trials that are required
for fitting. Thus, we fit all of the data simultaneously, and
then divided the data into two groups by speed to determine
if control system parameters were speed dependent. We also
checked for very large variations between individuals by
rerunning the statistics with data from each individual
omitted.

Because P-control (Eqn·9) results from simply setting KD=0
in Eqn·11, the P-control and PD-control hypotheses can be
written:

HP : KD = 0

HPD : KD ! 0·. (18)

We tested the hypothesis HP against the alternative HPD using
a nonlinear version of the Student’s t-test with 4N-4 d.f. and
P=0.05 significance.

Results
We accepted a total of 59 trials from 11 individual

cockroaches (mass=0.770±0.113·g, body length=3.70±
0.17·cm, antenna length=4.36±0.41·cm, shortest antenna=
3.81·cm, longest antenna=4.91·cm, means ± s.d.). The speeds
ranged from 24.7 to 63.6·cm·s–1 (7–17·strides·s–1), all of which
were above that of metachronal walking (Watson and
Ritzmann, 1998), and below the speeds for which four- and
two-legged running emerges in P. americana (Full and Tu,
1991). Therefore the stepping pattern was consistent for all
speeds in the study: the animals always exhibited an alternating
tripod gait (Delcomyn, 1971).

(17)p = arg min ,M–1"
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Model validation
The planar unicycle assumption requires Eqn·1 to hold,

namely !=". To validate this assumption, we performed a least-
squares fit of the stride-averaged ! and " to the linear model,
!=*1"+*0. The result was *1=1.00±0.01 and *0=2.18±0.30°
(P=0.05), with an R2 of 0.96 (see Fig.·6). The non-zero value
of *0 may have resulted from the inconsistencies in the
placement of the two visual markers along the fore–aft axis of
the cockroach’s body. Alternatively, occasionally, the
cockroaches exhibited a wedging behavior during which they
ran at a slight angle toward the observation wall.

P-Control is insufficient
Table·1 shows the results of model fitting. For both slow

running (35.2±3.8·cm·s–1, 7–13·strides·s–1, 29 trials) and fast
running (48.3±6.0·cm·s–1, 10–17·strides·s–1, 30 trials), the null
hypothesis HP was strongly rejected in favor of HPD (t-test; slow:
P=0.01; fast: P<0.001). Fig.·7 shows the average trajectory of a
cockroach when encountering a 45° angled wall, in addition to
the model prediction. Note that these plots are different than
what was used for fitting. For parameter fitting, we used the
model to predict only from stride to stride, whereas in the
summary data plots, the model generates the entire trajectory.
To verify the importance of the derivative gain, KD, we tested
the model with KD=0. In this scenario, the model predicts large
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Fig.·6. Relationship between stride-averaged ! and ". Each data point
consists of the averaged ! and " values during a stride. We analyzed
1079 strides observed in 59 trials from 11 individuals. The best fit line
(solid line) and the model, !=" (broken line), are both shown.

Table·1. Parametric fit for proportional, derivative (PD)-control models

Speed group Speed (cm·s–1) l (cm) B/J (s–1) KP/J (s–2) KD/J (s–1) Reject P-Control hypothesis?

Slow (N=29) 35.2±3.8 2.71±5.30 12.7±16.4 26.0±13.2 4.33±3.29 Yes (P=0.01)
Fast (N=30) 48.3±6.0 2.55±6.79 10.6±37.7 25.1±14.8 6.18±3.30 Yes (P<0.001)
All (N=59) 41.9±8.3 1.78±3.46 16.1±17.7 27.0±10.1 5.63±2.05 Yes (P<0.001)

A total of 59 trials from 11 individuals were included in the analysis.
Values indicate 95% confidence intervals.
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y (A,B) and body angle " (C,D) as a function
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and Fast (B,D). The actual cockroach data
(black) are compared to predictions from the
PD-control model (red) using the parameters
from Table·1. To show the importance of the
derivative gain, KD, we tested the controller
with the KD=0 (P-control, blue); note that for
P-control, performance degrades with
increasing speed as expected. The derivative
gain significantly improved the fit for the
speeds tested.
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left-half-plane, that is, they must have negative real parts. (A) For $<1/9, all of the poles are in the left-half-plane; the inset shows an over-
damped response of d vs t. (B) For $=1/9, the system would be critically damped with KP=3. (C) For 1/9<$<1, the system would be underdamped
under P-control. (D) For $=1, the system would be oscillatory for all choices in gain, KP. (E) For $>1, the system would be unstable. Since $
approaches or exceeds 1 for behaviorally relevant running speeds (Eqn·22), these graphs preclude the possibility of P-control. Stability can be
greatly improved by adding a derivative feedback term, as in Eqn·11, enabling larger values of $. Imag., imaginary.
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excursions of the cockroach that would cause successive
collisions with the wall interleaved with large departures into the
open space, which is quite atypical. Clearly, the derivative gain
in the model is behaviorally critical. When data from each
individual were in turn omitted, there was no statistically
significant difference in the parameters, so we concluded that
any outlier effects were negligible. It was not possible to fit the
model parameters to a single individual due to the large number
of trials required to perform an accurate fit of the parameters.

There was no statistically significant dependence of the
model parameters on speed, so we also fit all 59 trials
(41.9±8.3·cm·s–1; mean ± s.d.) simultaneously to the model,
which decreased the 95% confidence intervals of the
parameters. The R2 value was 0.75. Again, HP was strongly
rejected in favor of HPD (t-test, P<0.001).

The model’s effective preview distance, l, is based on the
information available to the animal from mechanosensory
receptors along the antenna. Therefore, the contact distance, L,
measured along the body axes from the POR to the farthest
antenna-wall contact point, provides an approximate upper
limit for the antenna preview distance. The preview distance
will likely be shorter than the contact distance due, for
example, to delays. We randomly selected and manually
digitized this contact point for 20 frames from each accepted
trial. The contact distance averaged over all slow trials,
Lslow=4.72±0.65·cm, and fast trials, Lfast=4.40±0.53·cm
(mean ± s.d.), were significantly different (P=0.04, one-way
analysis of variance). As the cockroach ran faster, the antenna
contact distance decreased because the animal ran closer to the
wall (Camhi and Johnson, 1999), and/or experienced increased
drag of the antenna against the wall at higher speeds.

As another test of the P-control hypothesis, we directly fit the
model with only three free parameters p=(l,B/J,KP/J), using the
same approach as before. This pure P-control model proved
inadequate because the best preview distance (l=9.29±2.95·cm)
was significantly longer than the values for L we observed for
fast and slow running, and also significantly longer than the
longest antenna length for any of the individuals we tested.
Therefore we reject the simplistic P-control model in favor of
the PD-control model, which better captures the data, and does
so with physically realistic parameters.

Discussion
Basis of planar unicycle template

Our template for running is most similar to a unicycle viewed
in the horizontal plane (Fig.·1). The planar unicycle takes
advantage of the unique performance of the lateral leg-spring
template (LLS) (Schmitt and Holmes, 2000a; Schmitt and
Holmes, 2000b), allowing for simple control of body angle. The
LLS template has been remarkably effective in modeling the
dynamics of cockroach running (Schmitt et al., 2002; Schmitt
and Holmes, 2003; Lee et al., in press). It consists of a rigid
body that bounces from side-to-side as it moves forward with
a pair of virtual leg-springs representing the summed behavior
of an animal’s legs. The leg-springs are attached at a fixed (or

moving) point called the center of pressure. Six states describe
the LLS: the center-of-mass position (x,y), body angle ",
angular velocity #, forward speed v, and the COM velocity
heading relative to the body axis, +. Schmitt and Holmes’s
analysis (Schmitt and Holmes, 2000a; Schmitt and Holmes,
2000b) shows that for a wide range of center-of-pressure
locations (for example, fixed behind the COM), the discrete
stride-to-stride dynamics partially asymptotically self-stabilize
to an isolated equilibrium point in both angular velocity and
relative heading. In other words, if an external force slightly
perturbs steady-state running, those two variables return to
steady state as a result of mechanical feedback (Full et al.,
2002). Stability results from losses/gains of angular momentum
incurred in leg-to-leg transitions with minimal sensory
feedback. In addition, the forward speed and body angle are
neutrally stable, so that small perturbations might slightly
increase or decrease the speed or send the template off in a
somewhat different direction, but they will asymptotically
acquire the new steady-state after the perturbation.

Our unicycle template captured the overall trajectories of
cockroaches by utilizing the within-stride dynamics
responsible for much of the passive self-stability of the LLS
template (Schmitt and Holmes, 2000a; Schmitt and Holmes,
2000b). Specifically, in our planar unicycle, the stride-
averaged body axis angle remained coincident with the POR’s
velocity vector. We reduced the passively stable relative
heading of the LLS model to an algebraic constraint, +=0, a
simplification supported by our data when averaged over each
stride (Fig.·6). We added rotational damping to cause the
angular velocity to decay to zero after perturbations, enabling
the body angle to reach a new steady direction, much like the
LLS template predicts. Because our objective was to capture
the angular dynamics of antenna-based control, we made one
further simplifying assumption – the animal holds its forward
speed constant. To enable task-level control of the otherwise
neutrally stable body angle, ", we incorporated into our model
an input moment, u, about the POR, and an antenna that
measures distance, d. Finally, we assumed that a PD-controller
linked the measurement, d, to the input moment, u (Fig.·2). We
then fit this control model to data experimentally to determine
the parameters of the model. This enabled us to test whether
velocity feedback information was necessary for control.

Integration of mechanics, sensing, and task-level control
The proposed controller for the planar unicycle demonstrates

the necessary integration of mechanics and sensing during rapid
running (Fig.·2). Stable control requires a consideration of
mechanics, sensing and delay. Our simple PD-controlled
unicycle model provides a mechanism to investigate these three
components, which all contribute to the neuromechanical
performance limitations inherent in wall following.

Our hypothesis that P-control would be insufficient was
motivated by root-locus analysis of the system G(s) in Eqn·7
under P-control (Eqn·9), as shown in Fig.·8. Under P-control, for
$ near 1, two complex conjugate roots will dominate the response,
leading to large oscillations every time the cockroach encounters
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an angled wall. For a given gain KP, the system becomes
increasingly damped as $ decreases. At the critical value $crit=1/9,
the system can be critically damped with KP=3, with a triple root
at s=–3. For any $<$crit and an appropriate choice of KP the
closed-loop system would have one distinct real pole and one
double real pole. This analysis leads to three distinct cases:

(1) $,1. The system cannot be stabilized with P-control.
(2) $crit<$<1, where $crit=1/9. For all choices of the gain KP,

the system will be under-damped and therefore oscillatory.
(3) $-$crit. The system can be stabilized with P-control, and

for an appropriate choice of KP, the system can be either under
damped, over damped, or critically damped.

Eqn·8 indicates that $ increases with speed. If $ remains
bounded below $crit for behaviorally relevant speeds, then we
would hypothesize that P-control will be sufficient. If $
exceeds unity (or even $crit), then we would hypothesize the
need for a more complex compensation mechanism that
includes adding velocity dependent feedback via a
proportional-derivative (PD) controller (Eqn·11).

Unfortunately, we cannot independently measure all of the
parameters that determine $ in Eqn·8, and it would therefore
seem impossible to make a prediction as to whether or not P-
control is sufficient. However, one additional insight leads to
the hypothesis that P-control is insufficient: delay can
destabilize a control system. Two separate calculations below
predict that ethologically observed neural delays of 30·ms or
more preclude P-control for stability. As seen, our
experimental results bear out this prediction.

A delay of T seconds, arising from neural processing and
generation of muscular forces, adds a multiplicative term e–sT

to the open-loop transfer function G(s) in Eqn·6:

The term e–sT adds pure phase lag. This can be seen by

(19)
ls + v

s

1

Js2 + Bs
G(s) = e–sT .. .

     

  

delay

antenna mechanics

evaluating e–sT along the imaginary axis, along which it has
unity gain and negative phase. Recall that lower values for $
make P-control possible, so assume for simplicity that $=0. In
this case, the delayed version of the dimensionless transfer
function (Eqn·7) simplifies to:

where T=Tv/l is the dimensionless delay. We use Camhi and
Johnson’s measured latency of approximately 30·ms for a
cockroach to respond to an outward wall projection during wall
following in P. americana (Camhi and Johnson, 1999). That
result nearly matches the latency of the antennal escape
response for this species (Ye et al., 2003). Since longer preview
distances simplify control, we assume that the preview distance
is l=4.5·cm (which corresponds to the contact distances, L, that
we measured). With these optimistic assumptions, as the
running speed approaches the maximum observed running
speed of P. americana of 1.5·m·s–1 (Full and Tu, 1991), the
dimensionless delay approaches a critical value of T=1, at
which point the cockroach cannot be stabilized with P-control
for any choice of proportional feedback gain, KP. This can be
seen by using the Nyquist stability criterion (Fig.·9). A Nyquist
plot is constructed by evaluating the transfer function (Eqn 20)
along the imaginary axis, namely G(j#), from 0 to %. Residue
theory from complex analysis can be used to show that if this
plot encircles the –1 point, the closed loop transfer function is
unstable. In our case, for T,1, the Nyquist plot always
encircles the –1 point at least twice regardless of the feedback
gain; thus under P-control the closed loop transfer function
must have at least two unstable poles when T,1. For values
of T slightly lower than 1, P-control will be highly oscillatory.
Adding a velocity feedback component can mitigate this
problem by adding phase lead, which can counteract to some
extent the phase lag introduced by the delay.

We also suggest a different perspective on the role of delay

(20)
s + 1

s2G(s) = e–sT ,.

N. J. Cowan, J. Lee and R. J. Full

Im
ag

.

Real
–1–%

A

–1–%

B

–1–%

C
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that $=0. Delay cannot be handled using the root locus method; thus, we resort to Nyquist’s stability criterion (see Franklin et al., 1994). (A) T<1.
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least two right-half-plane poles. Stability can be greatly improved by adding a derivative feedback term, as in Eqn·11, enabling larger values
of T. Imag., imaginary.
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by assuming that the delayed signal simply decreases the
preview distance. As we show here, this alternative explanation
leads us to the same conclusion: that P-control is insufficient.
One might reasonably expect the preview distance to vary
according to 

l ! L – vT·, (21)

where L is the maximum contact distance. In other words, the
faster the cockroach runs, the less the effective preview
distance due to the delay. Recalling that $=Jv/Bl, we expect
that

Again we assume T=30·ms. As P. americana approach their
maximum speed 1.5·m·s–1, $ approaches infinity, regardless of
the specific values of J and B. Of course, for speeds far less
than the maximum, $>1. This supports the notion that P-
control will fail as an adequate explanation for control at
behaviorally relevant running speeds. Moreover, as the animal
increases in speed, the need for a more complex control
mechanism will increase. At a running speed of v=42·cm·s–1

(the average speed of the fast group of cockroaches) a delay of
at least T=30 ms will reduce the preview distance by at least
1.3·cm. Thus, if L=4.4·cm (the average value for fast trials),
the preview distance should be at most 3.1·cm. This is slightly
longer than our experimentally fitted value of l=2.6·cm for fast
trials (Table·1), and therefore the fitted value is feasible.

Because v is measured and l and B/J are fitted (Table·1), we
can calculate the nominal value for $ using the formula
$=(B/J)(l/v) for each speed group. Based on the best-fit PD-
control parameter, at slow speeds, $ is given by

$slow = 1.02·, (23)

while the value for fast running is

$fast = 1.79·. (24)

Fig.·7B,D shows that P-control cannot stabilize the behavior
at high speeds, because $fast>1. PD control is required and we
would predict that neural signals from antennae will show a
distinct phasic response corresponding to velocity feedback. At
the slow speeds tested, however, P-control may be possible,
since $slow!1, but with P-control the cockroach wall-following
dynamics would be very highly oscillatory, no matter what the
choice of gain, KP (Fig.·7A,C). One expects $ to decrease
further at slower speeds, and at the slowest speeds the system
would be easily controlled by simple P-control. While we
suspect that to be the case, we did not test such speeds; for
consistency, we used the escape response behavior to elicit
running, so the slowest trials captured for this study were those
with continuous non-stop running at over 20·cm·s–1. This is
distinct from the more intermittent walk/pause style walking
seen during exploratory locomotion described by Gras et al.
(Gras et al., 1994), and examined (along with fast runs) for wall
following by Camhi and Johnson (Camhi and Johnson, 1999).

(22)
Jv

B(L–vT)
$ ! .

To test whether P-control suffices at these slow speeds one
would need to model the intermittent walking behavior; that is
beyond of the scope of the present study.

As discussed, the data and analyses presented in this paper
refute the P-controlled dynamic unicycle model of wall
following, and support (though do not prove) a simple alternative,
a PD-controlled dynamic unicycle. The PD-controlled model
matches the data and, according to the theoretical analysis,
enables stable wall following. Our experimental and theoretical
observations do not preclude more complex and elaborate
alternatives. For example, acceleration feedback may also play a
critical role in some circumstances (though a more elaborate set
of perturbations may be needed to tease this out). Our controlled
experiments also do not support or refute more complex neural
transfer functions that might be required for following more
complex surfaces or avoiding isolated obstacles.

Multimodal role of antennae in mechanosensory integration
Behaviors mediated by antennal feedback involve a complex

combination of basal and flagellar mechanoreceptors, not to
mention feedback from myriad other sensory stimuli, including
vision (Ye et al., 2003) and olfaction (Schaller, 1978).
Understanding of the neural control strategies underlying
sensorimotor function is further confounded by the need to
identify the behavioral context, such as wall following and
random exploration (Jeanson et al., 2003), wind following
(Bohm, 1995), and tunneling versus climbing (Harley et al.,
2005).

We contend that understanding task-level neural control of
rapid running requires the integration of sensing and
mechanics. A neuromechanical model opens up a wide range
of tools from control theory – such as root locus analysis and
Nyquist’s stability criterion – to make specific predictions
regarding neural function. The neural processing requirements
for stability derived from such a neuromechanical model lead
to novel, testable motor control predictions. In the present
study, we used a simple neuromechanical model of wall
following that predicts the need for neural coding of both
antennal distance (proportional) and velocity (derivative) for
stable wall following. Based on the results in this paper, our
prediction would be to see both a tonic response (position) and
a phasic response (velocity) of antenna perturbations.
Therefore, an important next step would be to test this
hypothesis directly with neural recordings of flagellar receptors
and neurons.

List of abbreviations
CCW counterclockwise
HDF high-density fiber
LLS lateral leg spring
P-control proportional feedback control
PD proportional derivative 
PEP posterior extreme position
POR point of rotation
SLIP spring loaded inverted pendulum
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List of symbols 

Symbol Description Units

Dynamic variables (can change during a trial)
(x,y) location of body position of rotation cm

(POR) on the horizontal plane
v forward speed cm·s–1

" body angle rad
! direction of motion of position of rad

rotation (POR)
# body angular velocity rad·s–1

d antenna measurement distance cm
u input moment applied by the legs g·cm2·s–2

around the POR
t time s
s complex frequency s–1

G(s) open-loop cockroach transfer function s2·g–1·cm–1

G,s,d,u dimensionless version of G,s,d,u

System parameters (assumed constant during a trial)
J body polar moment of inertia g·cm2

B body polar damping constant g·cm2·s–1

l antenna preview distance cm
L antenna contact distance ahead of POR cm
KP proportional feedback gain g·cm2·s–2

KD derivative feedback gain g·cm2·s–1

d% steady-state antenna measurement cm
distance

$ dimensionless time constant for 
sensorimotor control of wall following

$crit critical value of $ below which P-Control 
can provide good performance

T neural delay s
T dimensionless neural delay

Data processing variables (no units, or units derived from above)
N number of trials
j trial index
k stride index
fp vector field of dynamical system
(fp

)tk
j flow of the dynamical system over 

stride-to-stride time interval )tk
j

M,M prediction error covariance matrix, and 
estimate thereof

p,p p=(l, B/J, KP/J, KD/J), vector of fitted 
parameters, and estimate thereof

. summation symbol
HP P-Control hypothesis
HPD PD-Control hypothesis
' distance between POR and rear marker
*0,*1 slope and intercept of linear model

relating ! and "
v! instantaneous velocity of the rear 

retroflective marker projected onto the 
direction that is perpendicular to the
heading

+ COM velocity relative to body axis
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