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Abstract—This paper presents a framework for visual ser-
voing that guarantees convergence to a visible goal from al-
most every initially visible configuration while maintaining
full view of all the feature points along the way. The method
applies to first and second order fully actuated plant mod-
els. The solution entails three components: a model for
the “occlusion-free” configurations; a change of coordinates
from image to model coordinates; and a navigation function
for the model space. We present three example applications
of the framework, along with experimental validation of its
practical efficacy.

Keywords— Visual servoing, navigation functions, dynam-
ics, vision-based control, obstacle avoidance, occlusions, fi-
nite field-of-view (FOV).

I. Introduction

INCREASINGLY, engineers employ computer vision to
sense the projection of features of a rigid body as it

moves in some scene. Closing a visual servo loop around
image plane measurements requires a reliable machine vi-
sion system — incorporating image processing, feature ex-
traction and feature correspondence — to supply a con-
troller with the image plane coordinates of the features of
the body. Traditionally, visual servoing algorithms impose
motion upon a body’s actuated configuration space vari-
ables so as to align its image-plane features with a previ-
ously stored desired view. When the mapping from config-
uration variables to the image-plane is one-to-one in some
vicinity of the goal image, then traditional visual servoing
generally results in (at least local) closed loop convergence
to the desired position. Hutchinson et. al. [1] provide a
general introduction and extensive bibliography to this ap-
proach.

Visual position regulation leaves few challenges: high
performance, dynamic (albeit local) vision-based con-
trollers which fit into the framework of linear control have
existed for some years [2]. This complete characterization
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is owed primarily to the local nature of such regulation
tasks. However, the creation of a richer set of behaviors
whose global (and hence highly nonlinear) properties are
well characterized has remained a significant challenge to
visual servoing.

The classical approach to visual servoing attempts to
impose straight-line trajectories on image feature points.
To illustrate, suppose a camera observes four feature points
affixed to a rigid body controlled by a 6 degree of freedom
(DOF) all revolute joint robot. The configuration space of
the robot is parameterized by six joint angles, q ∈ R6, and
the image space is defined in terms of the four image plane
pairs, y ∈ R8. Locally, then, the camera’s image may be
modeled by a map c : R6 → R8

y = c(q) =
[
u1 v1 · · · u4 v4

]T
,

where
[
ui

vi

]
, i = 1, . . . , 4,

are the image plane feature locations of the four features
being observed. The traditional (kinematic) visual servoing
law is then

q̇ = −J†(y − y∗), where J† = (JTJ)−1JT ∈ R6×8 (1)

is a pseudo inverse of the Jacobian matrix, [J ]i,j = ∂yi

∂qj
.

Visual servoing systems based on the above approach
have many well established merits, but may be improved
in several key ways. First, they result in a local basin of
attraction whose extent is poorly or not at all character-
ized. For example, the incursion of spurious (attracting)
critical points may arise when y − y∗ aligns with the null
space of J† in (1). Consequently, the local basin of attrac-
tion around q∗ may exclude seemingly reasonable initial
conditions [3]. The second challenge to visual servoing in-
volves the vulnerability to transient loss of features — ei-
ther through self-occlusions or departure from the field of
view (FOV). To the best of our knowledge, no prior work
guarantees that these obstacles will be avoided (while en-
suring convergence). However, as we will show, both of
these challenges — local convergence and transient loss of
features — can be overcome quite readily.

Another major problem is that most visual servoing al-
gorithms do not specifically address dynamics. Of course,
given the multitude of successful inverse dynamics based
control strategies [4], trajectories generated from (1) (or
any other kinematic controller) could be tracked very pre-
cisely with a high performance robot control system. How-
ever, such control techniques require precise parametric
knowledge of the robot’s kinematics and dynamics, the ex-
tra complexity of which seems superfluous given the sim-
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ple end-point convergence objective of most visual servo-
ing algorithms. Moreover, such heavy reliance on robot
kinematic and dynamic parameters may be undesirable, es-
pecially when manipulating objects of imprecisely known
size and weight. In other words, the specific reference tra-
jectories generated by kinematic controllers are merely a
means to an end; tracking those trajectories exactly may
not be necessary. By contrast, our approach generates con-
trollers capable of extremely high performance, which ex-
hibit global convergence to the end-point goal, without the
burden of precisely tracking a (clearly somewhat arbitrary)
reference trajectory. Without prescribing specific reference
trajectories, the proposed methodology nevertheless affords
certain guarantees on the trajectories that result. For ex-
ample, features are guaranteed to remain visible through-
out transients (even in the presence of Newtonian dynam-
ics).

A. Image-based navigation

In a naive attempt to improve (1), note that it may be
conceived as the gradient of the potential function

ϕ̃(y) =
1
2

4∑
i=1

‖yi − y∗i ‖2, (2)

by letting q̇ = −(JTJ)−1DT
q (ϕ̃ ◦ c). Suppose the four fea-

tures are coplanar, e.g. they are all on the same face of
a polyhedral body. A self-occlusion occurs when the plane
containing the features intersects the camera pinhole, caus-
ing the four points to project onto the same line on the
image plane. To avoid this scenario, consider a naive im-
provement of (2) that avoids self-occlusions by “blowing
them up”, namely,

ϕ̃(y) :=
∑4

i=1 ‖yi − y∗i ‖2∏
{i,j,k}∈Γ

∣∣∣∣det
[
yi yj yk

1 1 1

]∣∣∣∣1/2
, (3)

where Γ = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}}. The de-
nominator will go to zero as the projected features become
collinear, and thus the gradient will point away from the
self-occlusion obstacle. However, as can be seen from Fig-
ure 1, even though self-occlusions are avoided, convergence
is not necessarily achieved. Other such naive approaches
may suffer similar peril.

Although the naive potential function approach above
neither adequately addresses occlusions nor guarantees
convergence, one suspects that some appropriately de-
signed potential might overcome these serious limitations
of traditional visual servoing. Indeed, we will show in this
paper that the obstacles presented by self occlusion and a
finite FOV can be obviated by addressing in a methodical
fashion the relationships between the domain and range of
the camera map, c, from which the obstacles arise.

Specifically, we introduce a framework for visual servoing
yielding feedback controllers which are
1. dynamic: applicable to second order (Lagrangian) as
well as first order (kinematic) actuation models;

(a)

y(0) y*

(b)

(c)

(d)

Fig. 1. Simulation results for three different artificial potential func-
tion based visual servo controllers using the same initial position,
y(0) and goal position y∗. (a) Image-plane feature trajectories re-
sulting from the proposed navigation function (NF) in Appendix
A. In this case, all of the features reach their respective goal.
(b,c,d) Snap-shot of the body at five times during the trajec-
tory for three different strategies; (b) based on the proposed NF;
(c) based upon the potential function in equation (2) resulting in
failure due to self occlusion; (d) based upon the potential func-
tion in equation (3) resulting in failure due to a spurious local
minimum.

2. global: guaranteeing a basin of attraction encompassing
almost every1 initial configuration that presents full feature
visibility;
3. visibility-obstacle free: avoiding configurations that lose
features due to either self occlusion or departure from the
camera FOV.

B. Related work

Many implementations in the literature offer strong anec-
dotal evidence that suggests convergence for visual servoing
systems is robust with respect to large parametric uncer-
tainty, though researchers rarely establish formally large
basins of attraction for visual servoing systems (paramet-
ric uncertainty aside). Malis et. al. [5] and Taylor and
Ostrowski [6] introduce visual servo controllers incorporat-
ing partial pose reconstruction to guarantee convergence
even in the presence of large parametric uncertainty. Rizzi
et. al. design a globally convergent nonlinear dynamical ob-
server for a falling point mass viewed by a binocular camera
pair [7], by mapping the observer feedback into the image
plane. Similar machinery applies to binocular quasi-static
visual servoing [8] to yield a controller with a large basin
of attraction.

In addition to our preliminary results [9], [10], [11], there
have been some recent efforts to address the FOV problem.
For 6DOF visual servoing, Malis et. al. [5] guarantee that
a single feature point remains within the FOV while, as
noted above, guaranteeing convergence for a large basin

1That is, all but a set of measure zero.
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of attraction. Morel et. al. [12] extend this idea by de-
coupling the image-plane motion of a cleverly chosen fea-
ture vector — a circle containing all the feature points —
from the rotational motion of the camera; by keeping this
conservative feature vector within the image plane, one is
guaranteed that all feature points remain within the FOV
(though self-occlusion avoidance is not guaranteed). Corke
and Hutchinson [13] present a novel “partitioned” kine-
matic visual servo strategy for which simulations suggest
a large basin of attraction while maintaining all features
within the FOV boundary.

Two recent papers use path planning to address the FOV
problem. Mezouar et. al. [14] adopt the approach of image-
based path planning and local visual servoing along those
paths to avoid mechanical limits and visibility obstacles.
For nonholonomic plants, Zhang and Ostrowski [15] imple-
ment path planning to find kinematic trajectories that keep
features within the FOV.

Zhang and Ostrowski [16] develop a dynamical controller
for an Unpiloted Aerial Vehicle (UAV) with an on-board
camera. Hamel and Mahony [17] present a dynamical vi-
sual servo for stabilizing a scale helicopter over a landing
pad (implemented in simulation) which treats image mea-
surements as unit vectors, thus preserving rotational sym-
metry that a flat image plane appears to break.

Potential field methods are employed for a wide variety of
robot navigation problems (for a survey, see [18], Chapter
7). Traditionally, gradient fields are used to generate ref-
erence trajectories which are then tracked by a lower-level
robot controller. Potential functions often encode obsta-
cles as local maxima, or at least ensure that the gradient
flow runs parallel to obstacles. The refinement to naviga-
tion functions (NF’s), first articulated by Koditschek and
Rimon [19], [20], [21], provides us machinery to “lift” po-
tential functions to second order plants, while still ensur-
ing obstacle avoidance with convergence guarantees, and
no need for intermediate trajectories.

C. Organization

First we review NF-based robot control in Section II and
then introduce our sensor model in Section III. The cen-
tral contribution of the paper is found in Section IV where
we propose a novel framework for dynamic, occlusion-free
global visual servoing. We show how to apply this frame-
work using three illustrative examples that provide insight
into the specific geometries of some prototypical visual ser-
voing systems. In Section V we present our experimental
results for two of the example setups, and in Section VI we
provide some concluding remarks. Refer to Table I for a
list of symbols introduced in subsequent sections.

II. Robot Control via Navigation Functions

For many visual servoing tasks, the objective is to bring
a robot to rest at a desired configuration, q∗, known only
through its image, y∗ = c(q∗). The task of moving to a goal
while avoiding obstacles along the way can be achieved via
a nonlinear generalization of proportional-derivative (PD)
control deriving from Lord Kelvin’s century old observation

TABLE I

List of symbols and sections in which they are introduced.

Description Section
Q configuration space II
q coordinates for Q, q ∈ Rn II
Y image space III
y coordinates for Y III
Fb body frame III
Fc camera frame III
H rigid transformation from Fb to Fc III
d translation effected by H III
R rotation part of H, with columns ri III
π perspective projection, π : E3 → R2 III
J limited image plane, J = [−1, 1]2 ⊂ R2 III
c camera output model, c : Q → Y III
O obstacle set, O ⊂ Q II, IV
V obstacle-free (visible) set, V = Q−O II, IV
D safe configurations, D ⊂ V II, IV
F configurations facing the camera IV
W configurations completely within FOV IV
I camera image of safe domain, I = c(D) IV
Z simple model space, diffeomorphic to D IV
g diffeomorphism to model space IV
ϕ̃ model space navigation function (NF) IV
ϕ configuration space NF, ϕ = ϕ̃ ◦ g ◦ c II,IV

that total energy always decreases in damped mechanical
systems [19]. Formally, this entails the introduction of a
gradient vector field from a navigation function (hereafter,
NF – a refined notion of an artificial potential function [20],
[21]), together with damping to flush out any unwanted ki-
netic energy. As with any controller, tuning the parame-
ters is still required for good performance. However, the
NF method affords certain guarantees of reliability even in
the absence of good tuning, as we will show. Moreover,
a well constructed NF provides ample freedom to provide
extremely high performance.

Of course, if a well-tuned robot control system is already
in place, the NF may be used in the more traditional man-
ner to generate trajectories via the gradient flow (in the
case of a position controller) or field itself (in the case of
a velocity controller). We will refer to this alternative as
the “first-order” approach (i.e., based upon integrating the
gradient dynamics directly) in distinction to the “second-
order” approach.

A. Plant Model

Assume we have a holonomically constrained, fully actu-
ated robot with known kinematics, affording a suitable set
of local coordinates, q ∈ Rn, and denote the n−dimensional
free configuration space as Q. The system dynamics

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ + Fext(q, q̇),

may be found using Lagrange’s equations (see, for example,
[22], [23]) where Fext are external forces (such as friction)
which do not arise from Hamilton’s variational principle
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and τ are the input torques. We assume exact knowledge
of the gravitational term G as well as the external forces
Fext.2 Letting the input torque be τ = u − Fext + G(q),
where u is our control input, the plant equations are

q̈ = M(q)−1(u− C(q, q̇)q̇). (4)

B. Task specification

The state space is constrained by the presence of for-
bidden configurations, the obstacle set O ⊂ Q. The free
space is defined as the obstacle-free configuration space
V = Q − O, and we will be concerned only with a subset
of safe configurations D ⊆ V comprising a smooth compact
connected manifold with boundary.3 The positioning ob-
jective is described in terms of a goal q∗ ∈

◦
D. The task is

to drive q to q∗ asymptotically subject to (4) by an appro-
priate choice of u while avoiding obstacles. Moreover, the
basin of attraction E must include a dense subset of the
zero velocity section of TD, the tangent space of positions
over D, so that we may guarantee convergence from al-
most every initial zero velocity state (q0, 0) whose position
component lies in D. For obstacle avoidance, we require
that the trajectories avoid crossing the boundary ∂D, i.e.
q(t) ∈ D, for all t ≥ 0.

C. First order gradient systems

Let D be an n-dimensional Riemannian manifold. The
gradient in local coordinates is given by the vector of par-
tial derivatives weighted by the inverse of the Riemannian
metric. Suppose q ∈ Rn are local coordinates on Q. Then,
in local coordinates

∇ϕ(q) = M−1(q)DT
q ϕ(q),

where (Dqϕ)i = ∂ϕ
∂qi

, and M is the local representation
of the Riemannian metric. Gradient descent can now be
achieved in local coordinates via

q̇ = −M−1(q)DT
q ϕ(q). (5)

A smooth scalar valued function whose Hessian matrix
is non-singular at every critical point is called a Morse
function [24]. Artificial potential controllers arising from
Morse functions impose global steady state properties that
are particularly easy to characterize, as summarized in the
following proposition.

Proposition 1: (Koditschek, [19]) Let ϕ be a twice con-
tinuously differentiable Morse function on a compact Rie-
mannian manifold, D. Suppose that ∇ϕ is transverse and
directed away from the interior of D on any boundary of
that set. Then the negative gradient flow has the following
properties:

2The generalized PD approach to control, detailed below, will not
require knowledge or computation of the mass-inertia matrix M or
the Coriolis term C. In principle, some of the kinematic and dy-
namic parameters may be required for G and Fext, though in our
experiments we neglected these terms.

3Of course, in the general obstacle avoidance literature, the con-
nectedness of the configuration space is very much at issue, but the
issue does not arise in our present application.

1. D is a positive invariant set;
2. the positive limit set of D consists of the critical points
of ϕ
3. there is a dense open set D̃ ⊂ D whose limit set consists
of the local minima of ϕ.

These first order dynamical convergence results do not
apply for Lagrangian systems. We now briefly review ma-
chinery to “lift” the gradient vector field controller to one
appropriate for second order plants of the kind introduced
in (4).

D. Second order, damped gradient systems

Introducing a linear damping term, yields a nonlinear
“PD” style feedback, in local coordinates,

u = −αDqϕ(q)T −Kd q̇, (6)

that is appropriate for second order plants. Lord Kelvin’s
observation is now relevant and it follows that the total
energy,

η = αϕ+ κ where κ = 1
2 q̇

TM(q)q̇, (7)

is non-increasing.
Note that if the total initial energy exceeds the potential

energy at some point on the boundary ∂D, trajectories may
intersect the boundary. Fortunately, further refining the
class of potential functions will enable us to construct con-
trollers for which the basin of attraction contains a dense
subset of the zero velocity section of TD. The following
definition has been adapted from [25], [19].

Definition 1: Let D be a smooth compact connected
manifold with boundary, and q∗ ∈

◦
D be a point in its in-

terior. A Morse function, ϕ ∈ C2[D, [0, 1]] is called an NF
if
1. ϕ takes its unique minimum at ϕ(q∗) = 0;
2. ϕ achieves its maximum of unity uniformly on the
boundary, i.e. ∂D = ϕ−1(1).

This notion, together with Lord Kelvin’s observation,
now yield the desired convergence result for the Lagrangian
system (4).

Proposition 2: (Koditschek [19]) Given the system de-
scribed by (4) subject to the control (6), almost every ini-
tial condition q0 within the set

E = {(q, q̇) ∈ TD : η(q, q̇) ≤ α} (8)

converges to q∗ asymptotically. Furthermore, transients
remain within D such that q(t) ∈ D for all t ≥ 0.

Proposition 2 generalizes the kinematic global conver-
gence of Proposition 1. Note that for the second order
system, E imposes a “speed limit” as well as a positional
limit, since the total energy must be initially bounded [25].

E. Invariance under diffeomorphism

One last key ingredient in the mix of geometry and dy-
namics underlying the results we present involves the re-
alization that an NF in one coordinate system is an NF
in another, if the two coordinate systems are related by a



COWAN, ET AL.: VISUAL SERVOING VIA NAVIGATION FUNCTIONS 5

diffeomorphism [19]. This affords the introduction of geo-
metrically simple model spaces and their correspondingly
simple model NF’s.

III. Sensor Model

To sense a robot’s configuration with a camera, we seek
a map, c, from the robot configuration space Q to an ap-
propriate output space Y. The exact form of c depends
on several factors, for example the type and number of
features being viewed, the number of cameras, the robot
kinematics, and so forth. The examples presented in this
paper are restricted to a monocular view of a fully actu-
ated rigid body endowed with a set of point or “vector”
features. However, the general methods presented in Sec-
tion IV may in principle be applied to a wide variety of
settings, including other feature types (e.g. conic sections
or area features), so-called “eye-in-hand” servoing where
the camera is moved by the robot relative to a fixed envi-
ronment or systems incorporating binocular vision [26].

A Euclidean point p ∈ E3 is represented in homogeneous
coordinates by the array [p1, p2, p3, 1]T . Assume that there
is a camera fixed coordinate frame, Fc, such that the (x, y)-
plane is parallel to the image plane and coincident with
the optical center or “pinhole.” A robot is assumed to
move a rigid body with distinguishable features and body-
fixed frame Fb. A superscript preceding a point denotes
the frame with respect to which it is written, e.g. bp is
expressed with respect to Fb. We interpret the rigid trans-
formation

H =
[
R d
0T 1

]
∈ SE(3), where

R =
[
r1 r2 r3

]
∈ SO(3) and d ∈ R3,

as a change of coordinates from the body frame to the
camera frame, i.e. cp = H bp. In general, H is a function
of q through the robot kinematics, and so we write H(q).

Because we are interested in potentially large displace-
ments over the camera FOV, we employ a full perspective
camera model. The methods in this paper require that
the camera intrinsic parameters (e.g. focal length, pixel
scale, and so forth) have been calibrated. Fortunately, we
gain some robustness to parametric uncertainty since the
feedback loop is closed around the image-plane measure-
ment.4 As such, we model a perspective projection camera,
π :

{
p ∈ E3 : p3 > 0

}
→ R2, by

π(p) := A
1
p3

[
p1

p2

]
+ b, where A ∈ GL(2), b ∈ R2. (9)

Typically, camera images are rectangular, so we choose A
and b to map the image plane pixel values (for example
[0, 640] × [0, 480]) to the box J = [−1, 1] × [−1, 1]. The
algorithms presented below are designed to keep the feature
projections within J , to account for the finite FOV.

4As mentioned in Section I, prior contributions establish this for-
mally in some settings [27], [6], and we believe (though have not
formally shown) that similar results are possible here.

As an example, suppose we have a set of point features,
{pi}N

i=1. Then the composition of the camera model with
the kinematics as applied to all of the features generates
the camera map c : Q → Y

y = c(q) :=

π(cp1)
...

π(cpN )

 , where
cpi = H(q)bpi,
i = 1, . . . , N. (10)

The map c is parameterized by the (constant) feature loca-
tions in body coordinates, the robot kinematic parameters
and the camera parameters. The output space in this ex-
ample is simply Y = R2N .

IV. Navigation Function Based Visual Servoing

We wish to create visual servoing algorithms that offer
high performance, and enjoy global guarantees respecting
both convergence and the avoidance of FOV boundaries
and self-occlusions. To achieve our objective we compute
the visible set for a particular problem. This is the set of all
configurations V = Q−O in which all features are visible
to the camera and on which c is well defined. We then de-
sign a safe, possibly conservative, subset D ⊆ V to provide
additional safety with respect to visibility obstacles. The
image space is defined I = c(D) ⊂ Y, and the camera map
must be a diffeomorphism c : D ≈ I. For each problem, D
is analyzed to construct a model space Z and a diffeomor-
phism g : I ≈ Z. Given a configuration space goal q∗ ∈

◦
D

we define the goal image y∗ = c(q∗).
We propose a new framework for visual servoing that

incorporates three ingredients:
1. a model space, Z, for the “safe” configurations, D;
2. an NF, ϕ̃ : Z → [0, 1], for the model space;
3. a diffeomorphism, g : I → Z, from the image space to
the model space.

Recalling that NF’s are invariant with respect to diffeo-
morphism, an NF with respect to the configuration vari-
ables is given by ϕ(q) = ϕ̃ ◦ g ◦ c(q) with gradient given
by

DϕT = DcT DgT Dϕ̃T . (11)

Hence, the three ingredients above are assembled with
the feedback control strategy (6). With this approach, al-
most all initial configurations5 within D dynamically con-
verge to the goal while ensuring occlusion-free transients.

By recourse to the general framework outlined above we
develop controllers for several specific configurations of a
robot and monocular camera in the subsections that fol-
low. Section IV-A considers a planar body on which three
collinear feature points project to a planar camera. In Sec-
tion IV-B, we present a solution to the problem of visu-
ally servoing a high performance custom robot. Finally in
Section IV-C we present a solution for visually servoing a
6DOF body. Interestingly, the very different visual servo-
ing problems of Sections IV-B and IV-C share a common

5That is, all but a set of measure zero. Due to topological con-
straints, smooth global visual servos are technically impossible in
some cases [26].
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model space Z = [−1, 1]n× S1 for n = 2 and n = 5 respec-
tively, so Appendix A presents a new, highly tunable NF
for the more general model space Z = [−1, 1]n×Tm for all
n and m in N.

A. Example 1: Planar rigid body servoing

Consider the problem of visually servoing a planar rigid
body, viewed by a planar pinhole camera, as depicted in
Figure 2, first presented in [9]. The intuition for this exam-
ple is very simple: the projection of three collinear feature
points onto the image plane provides a set of generalized
coordinates for the three degrees of rigid body freedom.
To maintain visibility, the three feature point projections
must remain in order left-to-right (so that the body faces
the camera), and must remain within a bounded interval
on the image plane (due to the finite FOV).

Suppose we have a planar rigid body, Q = SE(2), with
three distinguishable collinear feature points, {pi}3i=1. We
use for local coordinates on Q the rigid body position and
orientation q = [d1, d2, θ]T , i.e.

H =
[
R d
0T 1

]
, where R =

[
cos θ − sin θ
sin θ cos θ

]
.

We conveniently collocate the x-axis of the body frame
with the edge containing the feature points so that in body
coordinates

bpi =
[
li 0 1

]T
, where l1 < l2 < l3,

and in camera coordinates

cpi = H bpi =
[
d1 + li cos θ d2 + li sin θ 1

]T
.

The body frame y-axis is oriented “into” the body, as de-
picted in Figure 2.

For this simplified example, we reduce the calibrated
camera of (9) to π :

{
p ∈ E2 : p2 > 0

}
→ R

π(p) :=
p1

p2
(12)

where p is a point expressed with respect to the camera
frame. The bounded image plane reduces to J = [−1, 1].

For all the feature points to be visible, the rigid body
must be facing the camera, and all the features must be in
the FOV. We define the workspace as those configurations
for which all features are within the FOV, namely

W = {H ∈ SE(2) : d2 > 0, π(H bpi) ∈ J , i = 1, 2, 3}.

Those configurations that face the camera are given by

F = {H ∈ SE(2) : v(H) > 0} ,
where v(H) = (d2 cos θ − d1 sin θ) .

and the visible set is the intersection V = F ∩W ⊂ SE(2).
Knowing which configurations can be “seen” allows us

to define the camera output map, c : V → R3, as the
projection of the three feature points on the body, namely

y = c(H) :=
[
π(H bp1) π(H bp2) π(H bp3)

]T
. (13)

(In an abuse of notation, we will write c(q) when using
local coordinates, q = [d1, d2, θ]T .)

The map c is a diffeomorphism from V to its image

I ′ =
{
y ∈ R3 : − 1 ≤ y1 < y2 < y3 ≤ 1

}
,

the proof of which follows from the fact that c is a home-
omorphism from V to I ′, and at each point in V, c is a
local diffeomorphism. To verify the first fact, note that for
H ∈ V, the points (y1, y2, y3) and (l1, l2, l3) are related by
the unique homography,6

αi

[
yi

1

]
=

[
cos θ d1

sin θ d2

] [
li
1

]
, i = 1, 2, 3,

for some αi 6= 0, which can be used to construct the unique
inverse of c for each y ∈ I ′. To show that c is a local diffeo-
morphism, note that the pinhole camera π is differentiable
everywhere in front of the camera, and hence c is differen-
tiable on V. Moreover, direct computation reveals that

|Dc(q)| = (l1 − l2) (l2 − l3) (l3 − l1) (d2 cos θ − d1 sin θ)
(d2 + l1 sin θ)2(d2 + l2 sin θ)2(d2 + l3 sin θ)2

= v(H)
(l1 − l2) (l2 − l3) (l3 − l1)

(d2 + l1 sin θ)2(d2 + l2 sin θ)2(d2 + l3 sin θ)2

which is different from zero at every point in V, and hence
c is a local diffeomorphism at every point in V (inverse
function theorem).

We seek a compact manifold with boundary on which to
impose an NF. Note that V is not a closed set. However it
is practical to impose impose a “collar” around the points
on the image plane by enforcing the requirement that they
maintain a minimum distance from one another, as well
as maintaining their distance from the edge of the image
plane. This will also have the practical benefit of keeping
the body within a certain distance of the camera. Letting
y0 = −1 and y4 = +1 denote the left and right edge of the
image plane, we define the compact set

I =
{
y ∈ R3 : yi+1 − yi ≥ ρ, i = 0, . . . , 3

}
,

where ρ > 0 denotes the (arbitrarily) small “safety” collar
around each feature point. The set I ⊂ I ′ is compact, and
hence we define the “safe” compact domain

D = c−1(I) ⊂ V.

As required by our general framework, the camera map
provides a change of coordinates c : D → I. By choosing
Z = I, the mapping g of our formal methodology is the
identity mapping. For this model space we refine a class of
NF’s designed in a separate context [29]. For k > (2N +
3)/2, the objective function

ϕ(z) =
‖z − z∗‖2k∏N

i=0(zi+1 − zi)2 − ρ2
(14)

6A homography or projective transformation, Z ∈ PL(1) is uniquely
determined by the correspondence of three distinct points [28].
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y1 y2 y3

yb

Out of the FOV Not facing the camera Completely visible features

x b

x b

x byb

yb

y1y2y3 y1 y2 y3

Fig. 2. The setup for a planar pinhole camera and planar rigid body with collinear feature points showing three typical configurations of a
rigid body with respect to the camera, to illustrate the notion of visibility. Left: The features face the camera, but the leftmost point
lies out of view. Center: Although within the camera workspace, the body occludes the features. Right: The features are all visible.

is convex on

Z = {z ∈ RN : zi+1 − zi ≥ ρ, i = 0 . . . , N},

where z0 = −1, zN+1 = +1 are constants. Moreover,

ϕ̃ :=
ϕ1/k

(1 + ϕ)1/k
(15)

is an NF on Z [29].
For planar servoing, N = 3 and so we require k > 9/2

to ensure that ϕ is convex. As such, ϕ̃ is an NF on I and
ϕ := ϕ̃ ◦ g ◦ c is an NF on D.

B. Example 2: Buehgler arm servoing

The Buehgler arm, a direct drive robot built previously
in our laboratory [7], [4], has allowed us to explore exper-
imentally a dynamical implementation of our visual servo-
ing methodology. Moreover, it turns out that the construc-
tion of a good NF for this problem will, with appropriate
generalization (Appendix A), apply to 6DOF visual servo-
ing (Section IV-C).

The Buehgler arm, depicted in Figure 3, has three ac-
tuated revolute degrees of freedom parameterized in local
coordinates by angles q = [ q1, q2, q3 ]T and its configu-
ration space is Q = S1 × S1 × S1 = T3. We affix a body
frame to the “tip” of the paddle, as depicted in Figure 3.
The Buehgler kinematics, detailed in [7], parameterize the
rigid transformation, H, from the body frame to the cam-
era frame.

We affixed a “pointer” to the tip of the arm, which we
model as the position and unit orientation of a vector in
space, namely7 (bp, bw) ∈ T1E3 ≈ E3×S2. The feature point
is centered at the body frame origin, bp = [ 0, 0, 0, 1 ]T ,
and “pointing” along the body y−axis, bw = [ 0, 1, 0 ]T .

7T1X ⊂ TX is the unit tangent bundle of X [24].

q1

q2

(u,v)

θ

(-1,-1) (1,-1)

(-1,1)

Buehgler Robot

Camera

Image Plane

(1,1)

q3

xb
zb

yb

Fig. 3. The Buehgler arm [4], [7] has been modified with an “arrow”
feature on the tip of the arm, which is observed by a perspective
projection camera. The body frame is coincident with the tip of
the arm, and the z-axis is pointing into the arm. The camera im-
age is segmented to extract the position, (u, v), and orientation,
θ, of the arrow. Roughly speaking, the waist motor and shoul-
der motors, (q1, q2), move the image feature left-and-right and
up-and-down, respectively, and the wrist, q3, rotates the image
feature. The camera is positioned so the feature may reach the
entire image plane.

The pointer moves with respect to the camera via h : Q →
T1E3

h(q) :=
[
H(q)bp
R(q)bw

]
=:

[
p(q)
w(q)

]
.

Note that in the camera frame, p(q) = [ d(q)T , 1 ]T .
A camera (9) is positioned to view the robot end effector

as depicted in Figure 3. The workspace is the set of con-
figurations that keep the projected feature point within J ,
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namely

W = {q ∈ Q : d3(q) > 0, π(p(q)) ∈ J } , (16)

which may have two connected components. Considering
only those configurations facing the camera,

F =
{
q ∈ Q : d(q)T r3(q) > 0

}
, (17)

we show in [30] that, for reasonable camera positions, the
visible set V = F ∩W has a single connected component.

The camera map is given by the projection of the feature,
and its orientation on the image plane, namely

y =

uv
θ

 = c(q) =
[

π(p(q))
∠ {[Dpπ(p(q))] w(q)}

]
, (18)

where ∠ normalizes the vector on the image plane. Hence,
the function c yields the position and orientation of our
projected feature on the image plane, i.e. c : V → Y, where
Y = T1R2 ≈ R2 × S1.

For reasonable camera positions relative to the robot, we
show in [30] that c is a diffeomorphism c : V ≈ T1J . In this
case V is compact, so we set D = V and I = T1J , which is
diffeomorphic to Z = [−1, 1]2×S1. (Additional safety may
be added with respect to the FOV quite readily if desired.)
The change of coordinates, g : I ≈ Z is just the natural
identification of the two spaces. Appendix A defines a new
NF, ϕ̃, for this space (see Equations (24) and (25)).

C. Example 3: 6DOF rigid body servoing

In this example, we consider a free convex polyhedral
rigid body, with configuration space Q = SE(3), and let
{pi}N

i=1, pi ∈ E3, be a set of coplanar distinguishable
points on a face of the body. For convenience, we place the
body frame Fb so that the x, y-plane contains our coplanar
features, the z-axis points “into” the body, and the body
origin coincides with the center of the smallest sphere con-
taining all the feature points. Denote the radius of this
sphere ρ. Our camera map, c, is now given by

y =
[
u1 v1 · · · uN vN

]T = c(H),

where
[
ui

vi

]
= π(H bpi), i = 1, . . . , N.

It is now routine to define the visible set, V, as in previ-
ous examples. Denote the set of configurations facing the
camera

F = {H ∈ SE(3) : v(H) > 0} where v(H) = rT
3 d

and denote the workspace

W = {H ∈ SE(3) : d3 > 0, π(H bpi) ∈ J , i = 1, . . . , N}

The visible set, as before, is given by V = W ∩F .
Construction of a suitable image-based coordinate sys-

tem for this problem represents work in progress. There-
fore, we employ 3D or task-space visual servoing for this

scenario, wherein we use feature-point locations on the im-
age plane to estimate H and H∗ from their respective im-
ages. For N ≥ 4, this can be done quite readily by noting
that in body coordinates

bpi =
[
l1i l2i 0 1

]T
,

and hence the feature locations and body coordinates are
related by the homography

αi

ui

vi

1

 =
[
A b

0 0 1

] [
r1 r2 d

] l1i

l2i

1

 , (19)

for some αi 6= 0, i = 1, . . . , N,

where A and b are the camera calibration parameters given
in (9). Note that the matrix [r1, r2, d] is nonsingular if and
only if v(H) > 0, which our visual servoing algorithm will
ensure. Hence, given y, y∗ and {pi}N

i=1, then for H,H∗ ∈
V, one may solve (19) for H and H∗.

Task-based visual servoing presents only a minor twist to
our overall program. As before, we will construct a model
space for visible configurations and define an NF on that
model space. However, in this case, our diffeomorphism g
maps from the configuration space directly to the model
space, without the camera map intervening. To construct
g, we adopt a very specific parameterization of the rigid
body configuration to aid in our construction of the safe
domain. Denote the translation of the rigid body origin
by d and Euler angles by (φ, ψ, θ). The Euler angles have
been selected to parameterize the motion in such a way
that for φ = ψ = 0, the z-axis of the body is parallel to the
translation, i.e.

H(d, φ, ψ, θ) :=H1(d)H2(φ, ψ, θ), where (20)

H1(d) :=

[
e2×d
‖e2×d‖

d×(e2×d)
‖d×(e2×d)‖

d
‖d‖ d

0 0 0 1

]
, (21)

H2(φ, ψ, θ) :=
[
Rx(φ)Ry(ψ)Rz(θ) 0

0T 1

]
, (22)

and where Rx, Ry and Rz are the standard x, y, z Euler
angle rotation matrices (see, for example, Craig [22]).

Consider a “safe” subset of configurations that face the
camera

F ′ = {H ∈ F : − ϑ ≤ φ, ψ ≤ ϑ} ,

where H is parameterized by (20-22) and ϑ < π/2. Also,
consider a “safe” workspace

W ′ = {H ∈ SE(3) : d3 ∈ [δmin, δmax], π(Bρ(d)) ⊂ J } ,

where Bρ(d) denotes a ball of radius ρ around the point
d. In other words W ′ is the set of all configurations which
keep a ball of radius ρ completely within the FOV and
impose upper and lower limits, δmin and δmax, on the dis-
tance of the body from the camera. Recall that the ball
Bρ(d) contains all the feature points, and hence W ′ ⊂ W.
We now define the “safe” domain D = W ′ ∩ F ′ ⊂ V. For
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ρ

δmin
δmax

zc

xc

FOV
Image plane

Fig. 4. In the safe domain, translations are constrained to move in a
trapezoidal box (an orthogographic projection of which is shown
by the thick lines), so that the body may not move too far from or
close to the camera, and so that the smallest sphere containing all
the feature points remains within the FOV. The minimum and
maximum distances, δmin and δmax, from the camera are free
design parameters.

ρ < δmin < δmax the translations are constrained as seen in
Figure 4.

Within D, the body translation is confined to move
within a diffeomorphic copy of [−1, 1]3. Recall that the
body coordinate frame Fb is attached such that the z-axis
is orthogonal to the face (facing into the body) and the
(x, y)-plane contains the feature points. Consider the fact
that SO(3) is an SO(2) bundle over S2, and identify the
orientation of the z-axis with the base point in S2. The re-
quirement that the body faces the camera is a constraint on
the z-axis, namely that it always has a positive projection
of onto the line-of-site. This yields an open hemisphere;
i.e. a diffeomorphic copy of R2. An SO(2) bundle over R2

is diffeomorphic to R2×SO(2). Constraining the Euler an-
gles further −ϑ ≤ φ, ψ ≤ ϑ yields a diffeomorphic copy of
[−1, 1]2 × SO(2). Therefore

D ≈ [−1, 1]2 × SO(2)︸ ︷︷ ︸
rotations

× [−1, 1]3︸ ︷︷ ︸
translations

≈ [−1, 1]5 × S1.

The above coordinates (20-22) may now be used as local
coordinates on D, with no singularities. Hence, construct-
ing g is now straight-forward – for the three translational
DOF’s, simply map the trapezoidal box depicted in Fig-
ure 4 to the box [−1, 1]3, and map the two constrained
Euler angles to [−1, 1]2. Hence, g : D → [−1, 1]5 × S1 (the
details can be found in [31], [30]). As for the Buehgler, we
employ the more general model space and NF described in
Appendix A, and hence ϕ = ϕ̃◦g, where ϕ̃ is given by (25)
for n = 5, m = 1, is an NF for spatial visual servoing.

V. Empirical Validation

To validate the practical efficacy of our proposed frame-
work we constructed two experimental platforms. On the
first system, the custom 3DOF direct drive Buehgler arm
described in Section IV-B, we implemented a fully dynami-
cal controller (6) based on the NF given in Appendix A, for

n = 2 and m = 1. Our second set of experiments employ
an industrial 6DOF RTX robot from Universal Machine
Intelligence on which we tested a kinematic controller (5)
using the NF in Appendix A, for n = 5 and m = 1.

In both experimental setups discussed below, we used
simple linear camera calibration (see, for example, [32]).
For the RTX kinematic parameters, we used the man-
ufacturer specified Denavit-Hartenberg parameters. For
the Buehgler setup we measured the kinematic parameters
roughly by hand. To refine this estimate, we affixed a point
to the tip of the paddle and moved it to a known grid of
joint space locations, and observed the corresponding grid
of image plane points. Using these correspondences, gradi-
ent decent based on a simple pixel disparity cost function
refined our parameter estimates for the thirteen parameters
– two kinematic, six extrinsic, and five intrinsic camera pa-
rameters.

A. Buehgler Arm results

The Buehgler Arm is controlled by a network of two
Pentium II computers running LynxOS, a commercial real-
time operating system. The first captures 8bit 528x512
pixel images at 100Hz using an Epix Pixci D frame grabber
connected to a DALSA CAD6 high-speed digital camera.
The second computer implements servo control at a servo
rate of 1kHz, based on the dynamical controller in (6).

Two sets of experiments were implemented with two dif-
ferent gain settings (i.e., assignments for the gains Kd and
α from (6) and K from (25)) chosen to contrast perfor-
mance resulting from a well tuned critically damped closed
loop using relatively high gains, as against a “detuned”
low gain and underdamped circumstance. Each trial con-
sisted of driving the feature position and orientation to a
model space goal (z∗, ζ∗) from some initial condition in
joint space (q0, q̇0). Initial configurations were chosen by
hand to be near the edge of the FOV, with initial veloc-
ity vectors chosen so as to drive the robot out of the FOV
(i.e to “defeat” the controller). The initial conditions were
prepared with a simple joint-space trajectory planner and
joint-space PD controller that drove the robot to the start-
ing state at which time the control switched to the NF
based controller. In other words, we forced the robot to
literally “fling” itself toward an obstacle before turning on
our visual servoing controller. Both the goal positions and
initial conditions where chosen to span the visible robot
workspace.

For the “tuned” gain experiments, there were eight
goals and forty initial conditions, for a total of 320 trials.
We chose relatively high gains that provided a critically
damped response and settling times on the order of a sec-
ond.8

For the “detuned” gain experiments, a smaller set of
more aggressive initial conditions and goal locations was

8Of course, the allusion to linear notions of damping is merely an
intuitive designer’s convenience. We chose gains K, Kd using stan-
dard PD tuning rules to ensure the local linearized system was nearly
critically damped at the equilibrium state, and then turned up the
“boundary” gain, α (6), to force reasonably snappy descent into the
domain wherein the linearized approximation was dominant.
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Fig. 5. For the dynamical, image-based visual servoing implementation on the Buehgler, we executed two batches of experiments: “tuned”
gains and “detuned” gains, as described in the text. The first portion of motion correspond to joint-space limb motion setting up the
initial condition, at which time (indicated by the vertical line in the error-vs-time plots) the NF based controller was switched on, in
order to bring the paddle back to the desired image-plane position and orientation. Left: The pixel error and corresponding image plane
feature trajectory for a typical ‘well tuned’ trial on the Buehgler robot. 2D level sets of the NF are superimposed on the image plane
trajectory. Middle: A typical ‘detuned’ trial, with a different initial and goal locations. Right: Buehgler convergence results. Top:
The mean steady-state pixel error for each of the eight goal positions. Bottom: Five percent settling time for each of the eight high-gain
goal positions.

used, and the damping gain was reduced to provide “un-
derdamped” performance. There were four goals and eight
initial conditions, for a total of 32 trials.

Figure 5 shows the the error coordinates of a typical run
for both “tuned” and “detuned” gains. With well tuned
gains, the controller drove the feature to the goal location
with a rate of success of 97%. Of the eleven errors one was
due to the robot exceeding a software velocity limit, one
to a software driver error, and one to a feature leaving the
FOV of the camera during initialization. The remaining
eight failures were caused by not allowing enough time for
convergence as each experiment ran for a maximum of six
seconds. These errors generally arose when the robot was
close to a saddle of the NF so the controller was slow to
overcome the robot’s unmodeled friction. However, with
“detuned” gains and high initial velocity the feature left
the FOV 25% of the time. These failures were probably
because the initial kinetic energy caused the arm to escape
the artificial potential well – by using a lower “detuned”
gain on the potential energy feedback term, the potential
barrier is reduced. (It would not be difficult to compute

the invariant domain, as in [25].) These experiments give
some sense of the relatively graceful performance degrada-
tion consequent upon imperfectly tuned gains. Figure 5
shows image-based error plots and the image-plane trajec-
tory for two typical runs.

We designed our controller to have a very rapid and dex-
terous response. The Buehgler arm has a mass in excess of
100Kg making precise, quick and efficient movement quite
challenging. Figure 5 (top right) shows our navigation
based controller produced a one second or less five percent
settling time for seven of the eight primary goal positions.
Figure 5 (bottom right) presents the mean pixel error aver-
aged over the final second of each trial. As can be seen the
errors are in the neighborhood of 1 to 2 pixels over each of
the eight goal positions.

B. RTX Arm results

The RTX is commanded through the serial port of a
single Pentium PC running a Linux 2.0 kernel. The PC is
equipped with a Data Translations DT3155 frame grabber
connected to a standard 30Hz NTSC video camera.
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Fig. 6. For the quasi-static implementation on the RTX arm, one batch of 203 trials were selected. Left: The pixel error and corresponding
image plane feature trajectory for a typical trial. Middle: Another typical trial, with a different initial condition and goal location.
Right: RTX convergence results. Top: The mean pixel error for each of the four goal positions. Bottom: Five percent settling time for
each of the four goal positions.

The theory presented in Section IV-C presumes the con-
figuration space to be Q = SE(3). However, unlike the
Buehgler arm for which the robot joint space was the con-
figuration space, in this case Q is parameterized only lo-
cally by the robot joint angles q ∈ R6 through the forward
kinematics, namely h : R6 → Q. Of course, inevitably,
all such kinematic parameterizations introduce singulari-
ties that may, in turn, inject spurious critical points to
the gradient fields, necessarily actuated in the robot’s joint
space rather than in the task space, as our theory pre-
sumes. Similarly, since our formal theory “knows” only
about visibility bounds, the robot’s unmodeled joint space
angles limits are not in principle protected against.9 How-
ever, the weight of experimental evidence we present below
suggests that these discrepancies between presumed model
and physical reality do not seriously imperil the practica-
bility of this scheme. Regarding the first discrepancy, the
absence of stalled initial conditions suggests that any crit-

9Addressing the further practical realities of kinematic singularities
and robot joint space limitations falls outside the scope of the present
paper (and, indeed, is not even addressed at all in the traditional
visual servoing literature). In principle, the NF framework would be
relevant to these problems as well: joint space limits are analogous
to the FOV obstacles, while the kinematic singularities are akin to
self-occlusion.

ical points so introduced were not attractors. Regarding
the second, we found that choosing initial and goal loca-
tions away from the joint space boundaries was sufficient
to avoid running into the end-stops.

The RTX controller employs first order gradient descent
on the NF presented in Appendix A. Because the RTX arm
accepts only position commands, given goal and current
images with feature points extracted, the gradient update
was implemented iteratively, as follows:

uk ⇐ −DT
q ϕ = −DT

q (g ◦ h)(qk)DT
z ϕ̃z∗(zk),

qk+1 ⇐ qk + βuk (where β is the step size).

To explore our algorithm, we conducted a set experi-
ments in which 58 initial conditions and four goal loca-
tions were chosen randomly from a grid of 4096 points in
model space (configurations near kinematic singularities,
not within the robot workspace, or which resulted in fea-
ture projections outside the FOV were removed, resulting
in a total of 203 trials). Initially, the robot was moved
to each goal location to capture an image of the robot,
respecting which the vision system stored the desired lo-
cation of feature points, y∗. Figure 6 shows the pixel er-
rors feature trajectories of two typical runs. As shown,
we used four coplanar feature points for the camera map,
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c : Q → Y. Of 203 trial runs, 5 were found to have failed.
In each case the failure was due to the robot not converging
within our software imposed limit of thirty iterations (vi-
sual inspection of each such run revealed that convergence
was eminent).

Using the mean over the four feature points, we found an
average final pixel error on the order of 1-2 pixels upon con-
vergence. Figure 6 (upper right) shows the mean pixel error
and standard deviation for each of the four unique goal po-
sitions. The average five percent setting time, shown in
Figure 6 (lower right), was approximately 10-14 iterations
for each of the four goal locations, averaged over all suc-
cessful trials.

VI. Conclusions

This paper addresses the problem of driving image plane
features to some goal constellation while guaranteeing their
visibility at all times along the way. We cast the problem
as an instance of generalized dynamical obstacle avoidance,
thereby affording the use of navigation functions in a non-
linear PD-style feedback controller.

Ideally, one creates an image based coordinate system
using direct feature information as in the two settings of
Section IV-A and IV-B. In those cases the occlusion obsta-
cles manifest themselves in image coordinates, and hence
the NF gradient in model space coordinates will not de-
pend on the specific parameters of our camera or robot.
Moderate calibration uncertainty will lead to errors in our
estimate of the image Jacobian, but we believe that this
will not imperil successful obstacle avoidance. However,
construction of a 6 DOF image-based coordinate system
for 3D rigid body motion represents work in progress, thus
we have resorted to a task-space visual servoing algorithm
in Section IV-C.

The two experimental systems – the custom 3DOF Bue-
hgler Arm and the 6DOF commercial RTX arm – con-
firmed the practicability of the theoretical framework. For
the Buehgler, our experiments suggest that the navigation
function based controller indeed achieves extremely high
performance, though in a few cases we were able to “de-
feat” the controller with deliberately adversarial initial con-
ditions and poor gain tuning. The kinematic experiments
with the RTX validated our 6DOF task-space servo archi-
tecture. In both cases our results show systems with large
basins of attraction that both avoid self occlusion and re-
spect FOV constraints.
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Appendix

I. A navigation function for [−1, 1]n × Tm

Let
Z = [−1, 1]n × Tm (23)

for some m,n ∈ N and let (z∗, ζ∗) ∈
◦
Z denote a goal. Con-

sider the function f : (−1, 1)n → Rn

f(z) =
[

z1−z∗1

(1−z2
1)

1
2

· · · zn−z∗n

(1−z2
n)

1
2

]T

.

Let K ∈ Rn×n be a positive definite symmetric matrix and
κi > 0, i = 1, . . . ,m. Define

ϕ(z, ζ) := 1
2f(z)TKf(z) +

m∑
i=1

κi(1− cos(ζi − ζ∗i )). (24)

Proposition 3: The objective function

ϕ̃ :=
ϕ

1 + ϕ
(25)

is a navigation function on Z, where ϕ is given in (24).
Proof: According to Definition 1, ϕ̃ must be a smooth

Morse function which evaluates uniformly to unity on the
boundary of Z, and has (z∗, ζ∗) as the unique minimum.

The boundary of Z is given by

∂Z = {(z, ζ) ∈ Z : zi = ±1, i ∈ {1, . . . , n}} .

Clearly, ϕ̃ evaluates to 1 on the boundary, i.e. as zi → ±1
then ϕ̃ → 1. Furthermore, ∀(z, ζ) ∈ Z, ϕ >= 0. More-
over, ϕ = 0 iff (z, ζ) = (z∗, ζ∗ +

∑
i∈Γ 2πei) = (z∗, ζ∗), i.e.

(z∗, ζ∗) is the global minimum.
To study the critical points of ϕ̃, we need only study

those of ϕ, because the function σ : [0,∞) → [0, 1) given
by σ(x) = x/(1 + x) has derivative σ′(x) = 1/(1 + x)2,
which does not introduce any spurious critical points. The
critical points of ϕ are found by solving

0 = Dϕ =[
fTKDf, κ1 sin(ζ1 − ζ∗1 ), · · · , κm sin(ζm − ζ∗m)

]
(26)

noting that

Df = diag {f ′} , where f ′i(z) :=
1− ziz

∗
i

(1− z2
i )3/2

,

i = 1, . . . , n.

Since Df is nonsingular on (−1, 1)n, Dϕ = 0 iff f = 0
and sin(ζi − ζ∗i ) = 0, i = 1, . . . , n which is true iff (z, ζ) =
(z∗, ζ∗ +

∑
i∈Γ πei), Γ ∈ powerset{1, . . . ,m}. There are

2m index sets which enumerate all possible critical points.
One readily verifies that the Hessian is nonsingular at every
critical point and (z∗, ζ∗) is the only minimum. Hence ϕ̃
is a Morse function which evaluates uniformly to unity on
the boundary, has 2m−1 saddles and the goal is the unique
minimum.
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