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Abstract— According to the internal model principle from
control engineering, error feedback together with a controller
containing an internal model that generates an expected dis-
turbance signal can achieve perfect delay-tolerant disturbance
rejection using only modest loop gains. While internal models of
plant dynamics have been central to the study of human motor
control, internal models of reference or disturbance signal
generators have received very little attention. In this paper we
show how the internal model principle suggests a certain control
strategy for achieving steady oscillatory motion in a virtual
spring-mass. The strategy relies on haptic feedback in its dual
roles of carrying power and information and this dual reliance
may be used to derive numerous testable hypotheses. We present
results from an initial study involving N=5 human subjects in
which high time-correlation between surface electromyography
and commanded torque signals suggests the adoption of a
control strategy based on the internal model principle.

I. INTRODUCTION

When haptic feedback is denied, performance in most

manipulation tasks degrades significantly, often failing alto-

gether. Thus we know that haptic feedback informs control

strategies used to assess mechanical properties, to identify

and sort objects, to guide manipulation processes, and to tune

motor control strategies. But how exactly does the human

motor system make use of haptic sensory feedback? Natu-

rally, haptic feedback across a mechanical contact carries

not only sensory information but also mechanical power.

How does the motor control system make sense of these

intertwined roles? These questions are of high interest for sci-

entific reasons and to inform the design of control algorithms

for autonomous robots, for robots that work cooperatively

with humans, and for robots designed to train or rehabilitate

human motor skill.

Juggling is a manipulation skill that has garnered signif-

icant study from the perspective of robotics, control, and

neuroscience [1]–[5]. It has been found that haptic feedback

is critical to stabilize and maintain a steady juggling height

[1], [5]. A continuous system counterpart to juggling without

discrete contacts is eliciting and maintaining oscillation in

a mechanical oscillator. Examples of mechanical oscillators

include a torsional spring-inertia system as shown in Fig. 1.

The value of haptic feedback for eliciting oscillations in
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a spring-mass has been studied from an empirical stand-

point [6]. Huegel and O’Malley used the challenge of main-

taining oscillations at a specified amplitude as a task to be

trained with haptic guidance [7]. Dingwell et al. [8] observed

sophisticated model-based strategies for moving a mass from

an initial to final rest position through a spring.

Fig. 1. When rendered through a haptic device, a virtual torsional spring
of stiffness K and inertia JM can be used to study manipulation tasks akin
to juggling.

The internal model principle, a tenet in control engineering

since the early 1970s [9], states that a feedback controller

containing a model of the signal to be tracked or rejected

(exogenous signals) can achieve, using only modest loop

gains, perfect reference tracking or disturbance rejection.

A model in the controller acts to generate the signal that

precisely zeros out the error between desired and actual

system response. The internal model principle generalizes

the manner in which integral control eliminates static steady-

state error (the zero response of an integrator with a non-

zero initial condition). Thus, to track a persistent sinusoidal

reference at frequency ω0, the internal model principle posits

that the controller should contain poles at s = ±jω0. In

steady state, this controller will generate the excitation that

produces perfect reference tracking.

The internal model principle has its adherents in engineer-

ing practice, most notably in the disk drive industry [10].

However, as a hypothesis for biological control, the internal

model principle has found very little exploration to date with

the exception of [11]. Contrast this unexplored territory to

the use of internal models of plant dynamics (endogenous

system), which has produced a very large literature [12]–

[14]. Also not that the internal model principle does not

propose an inverse model in a feedforward controller (where

it would be useful for cancelling plant dynamics). Instead,

the internal model principle proposes that a model of the

expected reference or disturbance signal generator be placed

in the control loop.

In this paper we use the internal model principle to

generate hypotheses about human control strategies for driv-

ing oscillations in an undamped spring-mass system. We
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account for the dual roles of haptic feedback for power

and information exchange in our system models (section

II) and undertake a human participant study to test the

predictions produced by hypothesizing a neural controller

based on the internal model principle (sections III and IV).

We conclude by observing that the internal model principle

gives a parsimonious explanation of how humans use haptic

feedback to perform cyclic manipulation tasks.

II. MODEL DEVELOPMENT

Due to compliance in muscle, the body’s dynamics are

liable to become coupled to the dynamics of objects being

manipulated, especially when the impedance of the body and

object are approximately matched. In such case the nervous

system is faced not with the control of the object dynamics,

but with the control of the coupled dynamics of body and

object. Even in producing desired motions in a simple mass,

it is necessary to devise a strategy that will arrest both the

kinetic and potential energy in the coupled dynamics of body

and mass. In essence the human motor system solves the

crane operator’s problem even when moving a rigid object, so

long as the inertia forces produce extensions in muscle [15].

All the while it may not “feel” like a sophisticated strategy,

given that proprioception and force sensing is available at the

hand, that distal attribution is likely at play [16], and that the

brain’s schemes may not be available for introspection.
Note that driving-point impedance can be modulated by

co-contracting muscles or changing posture. Thus one might

choose to eliminate compliance from the manipulation chal-

lenge by co-contracting muscles. However, such a strategy

is generally reserved for the early stages of motor learning

[17]. Studies have shown that humans prefer to adopt a

modest compliance and a more sophisticated control strategy

in the latter stages of learning [8] to save energy and increase

performance.
�

� �

� � �

Fig. 2. The compliance of muscle encapsulated in stiffness k1, along
with damping b and mass m1 that describe the backdrive impedance of
the body, are driven by a motion source θr(t) to produce displacements
θz(t) at the hand. The dynamics of an oscillator comprising stiffness k2
and mass m2, when rendered through the haptic device with force Fm,
become coupled to the dynamics (biomechanics) of the body. By linearity,
a persistent sinusoidal excitation r(t) at frequency ω0 =

√
k2/m2 will

produce, at steady-state, a sinusoid at ω0 =
√

k2/m2 in θw(t) and
θz(t) → 0. Note: transitional diagram is standing in for what might be
a rotational system

A. Open Loop Strategies For Driving Oscillations
Consider now the manipulation of a non-rigid object like

a spring-mass (without damping). And suppose the manipu-

Fig. 3. Without coupling, or if the haptic device motor is disabled, the
dynamics of the virtual spring-mass system is driven by the motion source
θz(t), the displacement of the haptic device handle.

lation challenge is to maintain sustained oscillations in this

mechanical oscillator. Given that a distal mass is part of the

model for the driving point impedance of the hand [18]–[20],

when the dynamics of a spring-mass are coupled to the body,

a system with fourth-order dynamics results. Figure 2 shows

a mass m1 with displacement θz(t) along with stiffness k1
and damping b that describes the driving point impedance

at the hand. This second order driving point impedance is

elaborated with a motion source θr(t) to describe volitional

muscle action [20]. Figure 2 also shows the same model in

the form of a block diagram, where the role of the force Fm

carried in the spring k2 becomes apparent as a feedback path

coupling the dynamics of the undamped oscillator with the

dynamics of the body. The response of hand displacement

θz(t) and oscillator displacement θw(t) to an excitation θr(t)
may be obtained directly from the block diagram:

θZ(s)

θR(s)
=

G(s)

1 + m2

k2
s2G(s)H(s)

(1)

θW (s)

θR(s)
=

G(s)H(s)

1 + m2

k2
s2G(s)H(S)

, (2)

where G(s) = k1

m1s2+bs+k1
and H(s) = k2

m2s2+k2
.

To make the poles and zeros of these transfer functions

explicit, let us express G(s) as a ratio of polynomials
NG(s)
DG(s)

and H(s) as
ω2

0

(s2+ω2
0)

(highlighting the undamped oscillator

dynamics with natural frequency ω0 =
√
k2/m2). Then the

transfer functions in Eqs. 1 and 2 can be re-written:

θZ(s)

θR(s)
=

NG(s)(s
2 + ω2

0)

DG(s)(s2 + ω2
0) +

m2ω
2
0

k2
s2NG(s)

(3)

θW (s)

θR(s)
=

ω2
0NG(s)

DG(s)(s2 + ω2
0) +

m2ω
2
0

k2
s2NG(s)

. (4)

Note that the poles of H(s) appear as zeros in the

transfer function
θZ(s)
θR(s) . See also the Bode plot in Fig. 4(A).

These are called transmission zeros, and they suggest the

following control strategy to achieve sustained oscillations

in the oscillator: Simply excite the coupled dynamics with

a sinusoid at frequency ω0. Given that
θW (s)
θR(s) is stable and

linear, the steady-state response θw(t) to θr(t) = sinω0t will

be a sinusoid at ω0 with possibly a different amplitude and
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phase. At the same time θz(t) → 0, precisely because of the

presence of the transmission zeros in
θZ(s)
θR(s) .

Note that the discussion so far also pertains to the

manipulation of a virtual spring-mass rendered through a

haptic device. The mass m1 and damping b modeling human

impedance may alternatively be lumped with the physical

dynamics of a haptic device. Also, whether the damper b
links mass m1 to ground or to the motion source r(t) is

immaterial to the arguments that follow.

What would be the behavior of the spring-mass oscillator

without haptic rendering (if the haptic device motor were

turned off)? When Fm(t) = 0, the user and spring-mass are

no longer mechanically coupled, as shown schematically in

Fig. 3. Information flows, in that the motion source θz(t)
driving the virtual spring-mass is derived from the instru-

mented haptic wheel. But mechanical power is no longer

exchanged across the haptic device. In this case the response

θz(t) to a persistent sinusoidal excitation θr(t) = sinω0t
is given by θZ(s) = G(s)θR(s) from which we see that

the steady-state response θz(t) is a sinusoid at frequency

ω0 (see Fig. 4B). In turn, the spring-mass responds with an

oscillation whose amplitude grows without bound.

Fig. 4. (A) The coupled system displays a null response in the response
of θz and a steady response in θw to sinusoidal excitation in θr at ω0 =
0.6 rad/s. (B) The uncoupled system, on the other hand, displays a steady
response in θz and an unstable response in θw .

Let us compare the control strategies available to a human

user attempting to maintain steady oscillations in the virtual

spring-mass in the cases of coupled and uncoupled dynamics

(with and without haptic rendering). For the case of coupled

dynamics, the smooth amplitude function
θW (s)
θR(s) in Fig. 4A

serves as a map to select an amplitude for an open-loop

strategy based on generating a persistent sinusoidal control

input. The map can also be applied at frequencies other than

ω0. Note that this strategy is very robust and even insensitive

to loop delays because it is, after all, an open-loop strategy.

In that sense it may be considered a feed-forward control

strategy. Note that this feedforward strategy does not make

use of an inverse model of the spring-mass system, as in

standard conceptions of model-based feedforward control

[12].

Fig. 5. Time domain simulation results. (A) Coupled system, (B) Uncou-
pled system. Parameter values were selected as follows: k1 = 2.1 N/m,
b = 0.27 Ns/m, m1 = 0.00068 kg, m2 = 0.2 kg, k2 = 2.84 N/m.

B. Closed Loop Strategies For Driving Oscillations

What is available to the user if feedback is added to the

open-loop strategy for the control of the coupled dynamical

system described above? After all, haptic feedback is avail-

able as a neural signal, provided to the central nervous system

by haptic sensory organs. We can now ask how closed-loop

sensory feedback might enhance performance and addition-

ally whether a feedback strategy would be sensitive to the

loop delays inherent in human motor control.

We presume that a neural substrate is available to generate

a sinusoidal command to muscle at a specified frequency and

amplitude (this is represented in Fig 6 as the block C(s) =
C0/(s

2 + w2
0) which describes a sinusoid at frequency w0

in the laplace domain). We also suppose that there exists

a means of generating a signal F exp
m (t) that describes the

expected haptic feedback, or the force Fm(t) felt by the hand

grasping the haptic device. An error signal e(t) could be

formed by computing the difference between the expected

and actual haptic feedback, as shown in the block diagram

in Fig. 6. An analysis of this loop shows that
E(s)

F exp
m (s)

also

has transmission zeros at the roots of (s2 + ω2
0).

Again it follows that e(t) → 0 for F exp
m (t) = sinω0t.

Figure 7 shows results from a simulation of an internal

model controller C(s) closing a loop around the coupled

system. C(s) is simply a model or generator of steady

oscillations characteristic of the spring-mass. When driven

with F exp
m (t) = Ad sin(ω0t + φd), where Ad and φd are

a desired amplitude and phase, this controller will produce,

after a brief transient, steady oscillations in the virtual spring-

mass system with θz(t) → 0 (haptic device handle motion-

less) and e(t) → 0. That is, all objectives are achieved:

θW (t) = A sin(ω0t+ φ), with A → Ad and φ → φd.

The control strategy based on the internal model principle

described above is also compatible with an adaptive con-

troller that supports adjustment in control parameters C0 or

ω0. Whether the neural substrates are available to support

570

Authorized licensed use limited to: Johns Hopkins University. Downloaded on September 10,2022 at 17:05:51 UTC from IEEE Xplore.  Restrictions apply. 



� �

Fig. 6. Block diagrams for the closed-loop controller based on the internal model principle wrapped around the coupled system

Fig. 7. Time domain simulation results for the closed-loop system shown
in Fig. 6. The value 1 was used for the single free controller parameter C0.

the computations suggested in the block diagram of Fig.

6 or some alternate computation produces similar behavior

remains an open topic. In the meantime, we undertake a

human participant study to test some of the hypotheses

generated by the exposition above.

In our human subject experiment we evaluated three

strategies “Relax”, “Co-contract”, and “Oppose” with the

expectations that follow from our analysis above. First, we

expect that oscillations in the coupled dynamics will decay

in amplitude if the user relaxes their muscles (“Relax”

strategy). A second approach to maintaining oscillations is

co-contracting muscles (increasing impedance) in an attempt

to hold the handle stationary (“Co-contract strategy”). In such

case muscle action will be high and steady, not correlated

to the sinusoidal motion of the oscillator. Both of these

strategies do not correspond to Fig. 6 because the neural

substrate is not generating a sinusoid. These strategies are

better understood by viewing Fig. 2 where the strategy of

relaxing corresponds to the human maintaining nominal k1
and b and the strategy of co-contracting corresponds to

increasing k1 and b such that the human acts like a high

gain position controller. Alternatively, the user may adopt the

approach, we will call “Oppose”, suggested by the internal

model principle: to simply balance the force feedback felt

from the haptic device. Our analysis suggests that this

strategy will also eliminate motion in the haptic device,

resulting in sustained oscillations in the virtual spring-mass.

This balancing the force feedback is what is shown in Fig.

6. It is important to note here that for all three strategies

the transfer function shown in eq(4) is representative of all

three cases of the coupled human wheel system and these

strategies simply represent a construction of θr (in the case

of “Oppose”) or adjustments to b and k1 (in either “Relax”

or “Co-contract”).

III. METHODS

A. Participants and Apparatus

Experiments were conducted with 5 participants (3 male,

2 female) from the population of engineering students at

the University of Michigan. All participants signed an in-

formed consent according to an IRB approved protocol

(HUM00148462). The angular position θZ of the haptic

wheel (Encoder - US Digital E6S-2048-157), the angular

position θW of the virtual wheel, an amplified, rectified mea-

sure EMG of surface electromyographic signal (Ottobock

13E200 = 60) from the medial aspect of the forearm, and the

current commanded to the motor (Maxon RE−40−148877)

were all recorded at 1KHz. The EMG signal was low pass

filtered at 5Hz. All signals were collected using a Sensoray

626 and Simulink real-time at 1KHz. The haptic wheel is

pictured in Fig. 1.

B. Experiment Conditions

Each participant was instructed to grasp the haptic wheel,

which was rendering a virtual spring-mass with a natural

frequency fn = 0.6Hz. A diagram of the coupled system

is shown in Fig. 2. The participant was asked to displace

θZ by about 160◦), return θZ to 0◦ to excite the system, and

then attempt to maintain oscillations under three instructions:

“Relax”, “Co-contract”, and “Oppose”. The instructions un-

der the “Relax” were to passively hold the wheel. Under

“Co-contract”, the participants were asked to hold the haptic

wheel stationary at 0◦ by contracting their arm muscles hard

(holding the haptic wheel stiffly). In the “Oppose” strategy

the instructions were to counteract the torque they felt by

applying an opposing torque that would keep the wheel

steady at about 0◦. The duration of each trial was 120

seconds.

IV. RESULTS

A. Raw Signals

The raw signals for a sample participant (S4) are shown in

Fig. 8 including EMG, the physical wheel position θz(t), and

virtual wheel position θw(t) under all three control strategies.

The oscillations decay rapidly under “Relax”, decay slowly

under “Co-contract”, and are maintained (or only decay

slightly) under “Oppose”.

B. Fast Fourier Transform (FFT)

A single sided FFT from one subject (S4) is shown in Fig.

9 where a spike in the EMG signal present at the natural

frequency (0.6 Hz) can be seen in the “Oppose” strategy

and is not present in either the “Relax” or “Co-contract”
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Fig. 8. Raw Signals: EMG, Virtual Wheel θw(t), and Physical Wheel θz(t) position for Participant 4 (S4). The force Fm(t) experienced by the user is
proportional to the difference between θw(t) and θz(t)

TABLE I

POWER AT 0.6 HZ AND SIGNAL ENERGY ASSOCIATED WITH EMG AND

θW FOR ALL THREE STRATEGIES AND ALL 5 PARTICIPANTS.

strategies. Both the “Co-contract” and “Oppose” strategies

have a large DC component (near f = 0). The oscillations

in θW (t) were successfully generated at 0.6 Hz in the

case of the “Co-contract” and “Oppose” conditions, whereas

oscillations were not generated in the “Relax” strategy. The

relax strategy does however have a smaller spike closer to

0.45Hz due to the dampened oscillations that were seen in

Fig. 8. The powers at ω0 in the EMG and θW (t) signals for

all participants are shown in Table I .

C. Signal Energy

To compare differences in the amount of control effort,

the energy of the EMG and θW (t) signals was calculated

in all conditions, and can be seen in Table I. It is evident

that the Energy in “Co-contract” and “Oppose” conditions is

typically higher than “Relax”, as expected. In addition, the

energy in “Co-contract” is about twice that of the “Oppose”

condition showing that the “Co-contract” strategy requires

considerably more control effort.

D. Phase Plots

For each participant and strategy the derivative
dθW (t)

dt was

calculated and plotted against θW (t) as a function of time.

The trajectories start at (0, 0), spiral quickly outwards due to

the large initial excitation, and then either spiral back towards

(0, 0) or maintain a circular oscillatory pattern. In figure 10

the phase plots calculated in this manner are shown for all

participants and strategies. The “Relax” strategy trajectories

quickly decay, the “Co-contract” trajectories decay slowly,

and the “Oppose” trajectories decay slightly but are the best

maintained. The differences between subjects during these

conditions have to do with each subject having differing

m1, k1, and b parameters as well as differing success in

performing the control task. The take away from these results

is all of the human subjects performed similarly in terms of

general behavior. The one apparent difference is that S3’s

oscillations are large and tend to spiral outwards. This is

likely due to S3 injecting energy into the system by having

too large an input command; driving the system instead of

just compensating for the haptic feedback.

V. DISCUSSION AND CONCLUSION

The correlation between surface EMG signals and virtual

oscillator displacement was evident when our participants

held the haptic device stationary by opposing the torque that

they felt. However, this cannot be taken as direct evidence

of a neural controller containing a sinusoid generator per

the internal model principle. But the alternative hypothesis

involving the formation of an error using (delayed) haptic

feedback would by comparison be very sensitive to parameter

perturbations and noise. Our results also show that an ap-

proach involving increased impedance—which can either be

construed as brute force suppression of haptic device motion

or high gain error feedback on haptic device displacement—

was by comparison a more costly approach. This energy

comparison highlights the fact that a human’s innate ability

to make predictions and interpret haptic feedback naturally

allows for a more economical strategy for movement. It

should also be noted that the arm model we used in this work

is a highly simplified approximation. For future work a more

complex nonlinear model with more degrees of freedom

could be explored. We are also interested in looking at

better separating feed forward, feedback, and internal model
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Fig. 9. Fast Fourier Transforms: EMG and Virtual Wheel Position for Subject 4 (S4)

Fig. 10. In this figure dθW (t)/dt is plotted against θW for all three
strategies and all 5 participants cr(t)eating phase plots.

principle elements of human motor control, the effects of

varying haptic feedback, and the effects of varying preview.

In particular, the question of how the human builds its

internal model is a nonlinear one, and there is evidence from

a pursuit tracking task in weakly electric fish that this process

may be quite fast—possibly on the order of 2-3 cycles of the

sinusoidal stimulus [21]—indicating that nonlinear adaptive

controller dynamics are likely important for short timescales

and for small signal analysis.
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