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Abstract

Geometric mechanics provides a framework through which top-down insights per-

mit novel motion planning approaches to a broad class of locomotion systems with

symmetry, including analytical computation of optimal gaits. A core premise of this

framework is that complex locomotor mechanics can be rewritten in a kinematic form,

where momentum effects are negligible (e.g., dissipative forces dominate the physical

interaction between the body and the environment). Here, we consider a subclass of

such group-invariant dynamical systems; the equations of motion can be kinematically

reduced such that the body velocity is expressed as a shape-dependent linear mapping

of shape velocity. The same framework has been instrumental in understanding cyclic

locomotion where a local model can be constructed in the neighborhood of the observed

limit cycle, using data points from stochastically perturbed, repeated behaviors. We

aim to tackle practical challenges in implementing data-driven geometric methods,

including (1) enhancing the framework’s real-time capabilities, (2) further improving

data efficiency, (3) providing a principled gait modulation scheme for continuous

steering control, and (4) extending the framework to even more general systems.

We have developed an adaptive system identification extension to the current

framework that enables the real-time update of the system model that can be used to

modify behaviors iteratively within a behavior optimization scheme. This capability

not only enhances fundamental behaviors but also enables precise motion tracking.

Additionally, we showcase its usage in refining behaviors, aiding in injury recovery,

and adapting to different terrains, especially scenarios where simulations (models built
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from first principles) provide inadequate guidance for real-world situations.

Obtaining a locomotion model efficiently from data, as described above, is an

important step that can be leveraged to guide robot behavior, as it facilitates the

principled designing of control policies. Acquiring nominal gaits for various behavioral

goals is an important step; in practical scenarios, the ability to steer from these

nominal gaits is just as important. We introduce principled gait modulation algorithms

designed to modify a nominal gait for single-parameter steering control by constructing

a continuum gait library using either global or local model information. This approach

opens doors to motion planning and control for systems with complex, a priori

unknown dynamics in which an intuitive ‘joystick’ control can be provided.

As soft (and in general underactuated) robots gain popularity, efficiently acquir-

ing useful reduced-order models for these highly underactuated systems becomes

increasingly demanding. Geometric methods have great potential in describing the

behaviors of many systems within this category. We developed an extension to the

data-driven geometric framework that builds layers of interconnected models, which in-

clude actuator and locomotor dynamics obtained from data gathered during repeatedly

stochastically perturbed behaviors. These linked models are grounded in the general

formulations of Lagrangian systems with symmetry, making them suitable for a broad

spectrum of robots with first-order, low-pass actuator dynamics, such as hydrogel

crawlers powered by swelling-based actuators. These models effectively encapsulate

the dynamics of system shape and body movements in a simplified swimming robot

model. We also suggested a numerical optimization scheme for control signals via

iterative model refinement, which we employed to optimize the input waveform for

the hydrogel crawler.
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Chapter 1

Introduction

Robotic locomotion is a dynamic and rapidly evolving field that has seen remarkable

growth and development in recent years, driven by its vast potential for application in

diverse domains. Whether it be in the context of manufacturing [1], healthcare [2],

search and rescue operations [3], or even the realm of entertainment [4], the field of

robotic locomotion aims to enable agents to master mobility. Wheeled locomotion

has been particularly successful in human history thanks to its efficiency and ease of

control as a means of transportation. This efficiency comes in part from the minimal

dissipation wheeled systems experience on structured environments such as paved

roads and train rails. The ease of control is a result of the exploitable symmetries

in the interaction of circular shapes on flat surfaces. However, in unstructured and

complex environments such as those observed in nature (e.g., sand, grass, rocky

surfaces, etc.), wheeled systems are often significantly less effective [5]. In contrast

to wheeled locomotion, nature offers a diversity of versatile and robust solutions,

such as legged and limbless locomotion, enabling animals to traverse a wide range of

environments. This dissertation focuses on topics within the broader field of robotic

locomotion that draw inspiration from nature, and seek to provide new methods for

data-driven modeling and control of such systems.
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1.1 Bio-inspired Robotic Locomotion

Robotics researchers have the opportunity to leverage the insights and knowledge

acquired from biology in their field. Studying the flight of birds, the swimming patterns

of fish, and the walking mechanisms of humans and other species offers valuable lessons.

Understanding and abstracting key principles from these biological systems can guide

the development of robot designs including legged locomotion (one-legged hopping

[6], bipedal [7], quadrupedal [8], hexapod [9]), limbless locomotion [10], swimming [11,

12], and flying [13].

Some robotic designs focus more on the mechanics or functionalities of their

inspirations from nature, such as pneumatic-driven crawlers [14] and single-leg hopping

robots [6]. Other biomimetic robotic systems aim to resemble biological systems in

both the appearance and intrinsic dynamics of movements. Examples include a

fish-inspired swimmer [15], a snake-like robot [16], cockroach-inspired RHex family

hexapod robots [9, 17], the robo-cheetah [18], and many more. This dissertation

primarily discusses locomotion on land, where legged and limbless locomotion schemes

are most observed in terrestrial animals including humans. Today, legged and limbless

locomotion schemes are of special interest to researchers due to their versatility and

robustness in unstructured environments.

Legged robots may have one, two, four, six or more legs depending on their

applications. Typically, systems with four or fewer legs have more dedicated and

complex legs with control algorithms because they are subjected to stability problems.

For example, in bipedal walking, one obvious controlling paradigm is to maintain static

stability, which requires the center of mass to be within the support polygon at all

times. While it is much easier to implement static walking, it is often slow and energy

inefficient [19]. Later, generalizations of the ‘center of mass’ criterion such as zero-

moment point (ZMP) [20] and foot rotation indicator (FRI) [21] gained popularity in
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generating stable walking movements for robotic systems. Researchers drew inspiration

and proposed a reduced-order model called ‘inverted pendulum’, which gave rise to

completely un-actuated passive dynamic walkers; this model then was generalized into

the ‘spring-loaded inverted pendulum’ (SLIP) model that describes running [22–24].

The SLIP model explains the capability of maintaining stable periodic orbits (or limit

cycles) [25] with underactuated or even completely passive legs. From this point, it is

believed that underactuation could be leveraged to achieve stable locomotion. Recent

efforts in this area include the development of control-enforced virtual holonomic

constraints and the use of hybrid zero dynamics [26, 27] to achieve stable walking.

Higher degree-of-freedom locomotion presents new opportunities as well as chal-

lenges. Quadrupedal walking is also an important research topic, with many robots

developed to mimic the walking patterns of animals such as dogs [8], horses [28], and

cheetahs [18]. When it comes to hexapod and multi-legged robots, dynamic stability is

of less concern because they typically can maintain static stability with three or more

legs on the ground. Note that many of these systems are also dynamically stable for

times when they do violate static stability [29]. Hexapod robots with high degrees of

freedom legs are capable of precisely planning and controlling each foothold, making

it easy to achieve stable locomotion [30, 31]. However, the complexity of the control

algorithms and the high number of actuators make these systems challenging to design

and implement. In contrast, hexapod robots with fewer degrees of freedom legs are

easier to design and implement while having on average more potential power output

per leg. For example, the RHex series robots [9, 17] have rotary ‘c’ shaped legs which

are only one degree of freedom, while they are still capable of performing various

movements, including walking, running, turning, and jumping.

Snakes in nature have incredibly high degrees of freedom which in turn provide

plenty of control redundancies to their movements. Researchers observed basic gaits

that can be categorized into four types: rectilinear, lateral undulation, sidewinding
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movements, and concertina. Rectilinear movement involves alternating movements

through the snake’s ribs and muscles to advance the body, making it suitable for

narrow spaces. Lateral undulation, characterized by lateral wave propagation, propels

the body forward and is ideal for flat terrains. The sidewinding movement, with its

spiral characteristic, allows for lateral or oblique movement. This is best exemplified

by the gait of desert-dwelling rattlesnakes, enhancing adaptability to the terrain.

The concertina movement, seemingly similar to the lateral undulation mode, involves

self-tracing to crawl forward and is typically used by snakes when climbing trees. [32]

Researchers often use proposed shape curves to control the motion curve of snake-like

robots, aiming to approximate the ideal shape curve. For instance, the serpenoid

curve proposed by Hirose et al. is used to mimic the lateral undulation mode [33],

while Burdick et al. established a three-dimensional motion curve in a piecewise

manner to analyze the sidewinding movement [34]. Drawing from these insights and

observations, researchers have developed various snake-like robots, such as the 2D

passive wheel snake robot [35], ACM R5 snake robot that has shielded joints [36],

and a modular snake robot presented in [37]. This motivates methods to procedurally

engineer behaviors without needing to rigorously study individual strategies.

Across degrees of complexity, the development of bio-inspired robotics and the

study of biological locomotion are heavily intertwined and mutually reinforcing. Efforts

are also made the other way around, using robots or physical models as experimental

tools to verify current understanding or propose new hypotheses in science. Terms

referring to this category include ‘robotics-inspired biology’ [38] and ‘robophysics’

[39]. In this evolving paradigm, researchers are challenging the traditional approach,

that exclusively relies on observations, by using robotic and mechanical systems

to gain fresh insights into nature [40]. Generally, this approach involves designing

physical models and robotic systems, studying their performance and control, and

subsequently directing biologists toward new animal experiments and the exploration
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of undiscovered biological phenomena.

Within this framework, mechanical and robotic systems become valuable tools for

understanding how sensory and feedback systems contribute to the control of intricate

biological movements. Additionally, they shed light on how various configurations

of actuators power movement and how skeletal elements may impact locomotion.

Insights derived from the study of these mechanical systems then guide the exploration

of similar phenomena in animals, proposing new hypotheses about animal function

that might not have arisen solely from traditional biological studies. This reciprocal

relationship between robotics and biology broadens the avenues for scientific inquiry

and discovery [41].

Despite the significant progress in this field, there are still many challenges to

overcome before robotics can achieve the level of effectiveness seen in biological systems.

One of the many challenges is the need for accurate and efficient modeling of these

systems, a central aim of this dissertation research.

1.2 Modeling Locomoting Systems

Models play a pivotal role by providing a structured and systematic approach to

understanding, predicting, and controlling the behavior of locomoting systems. The

underlying physical principles, dynamics, and interactions that govern the movements

and operations of robots are typically represented by a small number of simplified,

ordinary differential equations. These models serve as essential tools for designers and

engineers, allowing them to simulate and analyze the performance of robotic systems

in a virtual environment before real-world implementation. By offering insights into

system behavior, modeling not only accelerates the design and optimization of robots

but also supports their integration into diverse applications, from manufacturing and

healthcare to exploration and entertainment. We usually categorize approaches to

5



modeling locomoting systems onto a spectrum of bottom-up and top-down approaches,

where the former relies on induction from basic physical principles and the latter relies

on empirical data.

1.2.1 Bottom-up: Induction from First Principles

Towards acquiring such useful models, the more traditional approach has been to first

understand the underlying physics and mechanisms, make well-defined and explicit

assumptions, and then develop a model in a deterministic manner. This approach is

often referred to as a bottom-up approach, as it starts with the most basic components

and gradually assembles them into a more comprehensive model. By studying the

fundamental building blocks and their interactions, researchers can then scale up

their models to gain insights into the behavior of larger and more complex systems.

Bottom-up modeling is valued for its ability to provide a detailed understanding of a

system’s inner workings and for its applicability in fields where precision and accuracy

are crucial. Such analytical models are beneficial when you have a solid understanding

of the system and can make reasonable assumptions about its behavior. On the

other hand, when there is a lack of understanding of the underlying mechanisms, or

when the system is too complex to be effectively represented by analytical models,

constructing bottom-up models in such cases can be particularly challenging. For

locomoting systems, a mathematical framework geometric mechanics has been proven

useful in providing structural insights, which plays such an essential role in this

dissertation; we briefly review it in the next section.

1.2.1.1 Geometric Mechanics

Geometric mechanics offers powerful tools for studying locomotion [42, 43] that provide

deep links between physical motion and fundamental mathematical structures. These

methods exploit mathematical symmetry in systems’ equations of motion and highlight
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relationships between changes in the internal shape1 of a system and its position in

an externally fixed reference frame.

The use of symmetry takes the form of a fundamental assumption that when

expressed in body coordinates, the system’s constraints remain invariant concerning

its position, including orientation. Intuitively, if a set of changes in a system’s shape

is able to move the body frame in certain ways, it will always do so regardless of the

system’s orientation or location, as the system’s capabilities to locomote is totally

invariant to its position. This symmetry leads to a convenient separation between

a system’s shape space and position space, where the combination of both spaces

comprises the system’s full configuration space. This separation is formally represented

by a mathematical structure known as a fiber bundle, where the shape and position

of the system are respectively described as elements of the base and fiber spaces.

Connections on this fiber bundle encode combinations of shape and position velocities

that conform to constraints on the system, such as the conservation of momentum or

interactions with a surrounding fluid.

The early form of the current geometric locomotion framework can be traced back

to [45], where it discussed two representations of local nonholonomic constraints arising

from angular momentum conservation and body force conservation. Drawing on the

mechanical symmetry work in [46], researchers including Kelly, Ostrowski, Burdick,

Bloch, and Lewis developed the reconstruction equation [42, 47–49], which generalized

the earlier results to apply to systems with first-order nonholonomic constraints, such

as non-slip passive wheels. This generalization includes a momentum term reflecting

the system’s coasting behavior, facilitating the study of systems falling between

completely constrained low Reynolds number systems and those unconstrained except

by momentum conservation.

The reconstruction equation found diverse applications in locomotion contexts,
1The term ‘shape’ refers to a system’s internal configuration [44]. e.g., all of its joint angles.
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where it was used with Lie bracket theory to generate sinusoidal gaits for snake-like

systems [50]. The reconstruction equation was also used to decouple kinematic and

dynamic elements for designing kinematic gaits [51]. The connection vector field was

developed to aid in visualizing the reconstruction equation [52]. Recent attention in

geometric locomotion has returned to swimming systems, including the formulation of

the reconstruction equation for various Reynolds numbers [53–55].

It is typically impossible to integrate the reconstruction equation over arbitrary

shape trajectories in closed form. Challenges arise in the context of optimization and

planning, where it is difficult to find shape changes producing desired translations. In

special cases where the integration is done over closed loops in shape space, Stokes’

theorem can be applied to calculate net translation resulting from gaits [42] by

converting the line integral into an area integral. Following this principle, Shammas et

al. [56] developed height functions on the shape space to describe rotation displacements

of various gaits for their three-link robot. This development allowed visual design of

gaits that result in specified rotations. The above results were limited predominantly

to rotations because the noncommutativity of the Lie bracket makes it infeasible to

calculate net translations for arbitrary gaits; unless the system has zero turning at all

parts of the gait. By carefully selecting the body coordinates, Hatton & Choset [57]

showed that the noncommutativity effect on net translations can be greatly reduced.

This choice of coordinates can be systematically made so that the body frame has

minimal rotational perturbation, making the area integral from the height functions

much more accurate for translational movements. This procedure was then formalized

in differential geometry terms [58].

Some recent efforts focus on applying the geometric paradigm to analyze real-world

systems approximated by a local connection. Hatton & Choset [59] demonstrated the

utility of geometric tools for providing insights into analytically intractable systems,

whose output aligns with the geometric template. Dai et al. [60] applied the same
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geometric framework to a high degree of freedom snake robot parametrized with two

serpenoid mode functions.

On the theoretical side, Ramasamy & Hatton [61] extended the framework to

higher dimensional shape spaces where the area integral in [42] is generalized into

hyper-surface integral. Choi et al. [62] worked on generating gait libraries for planning

situations where intermediate gaits are preferred (e.g., smaller steps, making gentle

turns). They showed that by carefully selecting the constraint via the construction of

a Lagrange multiplier, a continuous gait library that satisfies the constraint can be

found through constrained optimization.

1.2.2 Top-down: Data-driven Methods

Often, the internal workings or mechanisms of a system are not explicitly known or

considered, yet acquiring models for such systems is still important for purposes like

control and planning. System identification methods under these scenarios are referred

to as Top-down approaches. They focus solely on input-output relationships, treating

the system as an opaque entity with inputs and outputs, much like a ‘black box.’

Black-box models are often based on empirical data and can rely on machine learning

techniques, such as neural networks [63], decision trees [64], and reinforcement learning

[65]. They are particularly useful when dealing with systems that are too complex

or poorly understood to be effectively represented by analytical models. Black-box

modeling has gained prominence in fields like artificial intelligence, where the focus is

on predictive accuracy and performance, rather than a detailed understanding of the

system’s inner workings. These models make predictions without providing insights

into the underlying processes that generate those results. While black-box models can

be highly effective at capturing complex relationships in data and making accurate

predictions, they lack transparency and interpretability. This lack of transparency

can be problematic in applications where the underlying mechanisms are subjected to
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changes or modifications, making it challenging to generalize a trained model to new

scenarios or slightly different systems [66].

Often, these black-box models consist of large amounts of parameters; and thus

require equivalently large amounts of empirical data to capitalize on the complexities

of the model. Modern robotic systems involve more and more degrees of freedom

for better performance, more redundancies, new mechanisms, and more complex

dynamics. The curse of dimensionality arises in the context of increasingly complex

systems, where higher dimensional action spaces (shape spaces, in our terms) become

exponentially more challenging to explore. A common solution is to parametrize

the action space where the effective degrees of freedom are reduced to a manageable

number. In addition to the curse of dimensionality, many systems (and/or their

interactions with environments) are subjected to changes and uncertainties due to

reasons like wear, manufacturing imperfections, dynamic environments, etc. Although

there have been specific techniques developed to mitigate these issues like domain

randomization [67], they are often highly specific to the system at hand and require

a large amount of data to train. The above complications undoubtedly make pure

black-box modeling challenging in terms of data efficiency and generalizability.

1.2.3 On the Spectrum of White-box and Black-box

Bottum-up (i.e., white-box) and Top-down (i.e., black-box) approaches are two ends

of the spectrum of modeling techniques, where the former relies solely on induction

from basic physical principles, and the latter relies only on empirical data. While both

approaches have their advantages and disadvantages, a combination of both approaches,

often referred to as grey-box modeling, can be particularly useful. These approaches

contain components from both ends of the spectrum. For example, sometimes there

are fundamental assumptions that can be made to provide a known structure (say a

spring-mass system) and empirical data can be used to fit unknown model parameters
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(a spring constant in the case of a spring-mass system). These integrated approaches

seek to leverage the strengths of both ends of the spectrum, combining the transparency

and interpretability of the bottom-up approach with the flexibility and predictive

power of black-box modeling. In this approach, the fundamental structure is modeled

explicitly, and data-driven techniques are utilized on top, completing the model.

Grey-box modeling is particularly useful when the system’s behavior is not entirely

understood, and there is a lack of data to build a purely data-driven model. In such

cases, the underlying mechanisms can be modeled explicitly, while the unknown or

uncertain aspects can be modeled using data-driven techniques. This approach can

be particularly useful in the context of robotic locomotion, where the underlying

mechanisms are often complex and poorly understood, and the data available is often

limited.

As discussed in 1.2.1.1, geometric mechanics provides a natural white-box com-

ponent for modeling locomoting systems, where specifically we can make the basic

assumption that system behavior is invariant to its location. Empirical data can then

be used on top to capture the complex system dynamics. This dissertation specifically

builds on this integrated approach. This approach is general enough to apply to a

broad class of locomoting systems, yet specific enough to efficiently and accurately

capture complex physical interactions from data.

1.2.3.1 Data-driven Geometric Methods

Bittner et al. [68] introduced a data-driven approach aimed at geometric modeling and

optimizing primarily kinematic systems. This innovative methodology offers a means

of performing in-situ system identification for various classes of platforms by locally

modeling their behaviors through the observation of approximately repeated behavior

cycles. By leveraging the variance in the repetition, researchers obtain regularly

sampled time series data that can be effectively fitted to a generalized oscillator [69].
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This fitting process assigns an asymptotic phase to all observed samples, facilitating

the linearization of connections within phase windows concerning an average behavior

or limit cycle, which is determined using the asymptotic phase. Across these phase

windows, model coefficients contribute to a Fourier series fit, providing a linearized

model that can be sampled as a function of phase.

To facilitate the modeling process, the data samples are grouped into overlapping

phase bins, and the choice of bin size is a heuristic decision that can significantly impact

the model quality. Larger phase bins offer a broader perspective on the dynamics

throughout the entire cycle, reducing the risk of overfitting the data globally. However,

they can also result in reduced accuracy within the specific phase bin of interest.

Initially, this approach had limitations in its application to systems with momentum.

Subsequent research efforts were dedicated to capturing and modeling systems with

dissipating momentum while retaining a first-order prediction structure [70]. Further

extensions adapted these models to primarily kinematic systems that lacked high

bandwidth control over their shape dynamics. The initial extensions focused on systems

with high bandwidth control of a subset of the entire shape space [71], eventually

progressing to address systems with low bandwidth control of shape variables [72]. In

this dissertation, we explore an extension to the original work [68], enabling real-time

updates for in-situ modeling and adaptation in the field. Simultaneously, our research

contributes to the development of an overarching architecture that can accommodate

these extensions into adjacent geometric domains, broadening the applicability and

potential impact of this innovative approach.

Zhao et al. [73] demonstrated the utility of this framework for modeling a seemingly

complex locomotion behavior (multi-legged walking with slipping) which they showed

can be modeled with a relatively simple geometric model just like other behaviors

such as slithering and swimming. This shows the possibility of efficient modeling

of many multi-legged robot designs with this framework [74], further extending the
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range of applicable systems. In the vision of practically deploying such robots in

the world, considering more uncertainties and unexpected changes, we introduce an

adaptive system identification scheme, in Chapter 2, that can be deployed to enhance

the real-time capabilities of the modeling framework.

Recently, the framework was extended to address ‘Shape-Underactuated Dissipative

Systems’ (SUDS), where the controlled degrees of freedom are restricted to a subset of

the full shape (i.e., existing passive joints that are not controllable) [71]. This opens

the doors to applying the geometric mechanics framework to soft robots, particularly

for robots incorporated high-damping series elastic actuators.

An assumption in [71] is that the controlled degrees of freedom are accessed with

high-bandwidth control, meaning we would have full access to the controlled joint

velocities. However, such high-bandwidth control is a luxury in cases like stimuli-

responsive soft actuators where the actuation dynamics restrict full access to the

controlled shape variables. Note that although the actuators generally have inherent

low-pass dynamics, it does not exclude the system from being principally kinematic

as long as the shape is an intermediate variable that is in the causal chain between

actuator dynamics and the system’s movement. Inspired by [75], in Chapter 4, we

further extend the modeling framework to systems with only low-bandwidth control

over their shape.

1.3 Steering and Control of Nonholonomic Systems

Controlling locomoting systems, especially in the context of robotics, presents prac-

tical challenges. Complex systems often require intuitive command inputs that can

transform into multi-joint commands, ultimately mapping to the desired outputs.

This chapter will delve into the specific needs for controlling locomoting systems,

considering the intricate interplay between inputs, control algorithms, and the dynamic
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nature of locomotion. As we progress through this thesis, we will explore how these

control aspects influence the design and implementation of robotic locomotion systems,

providing insights into the complexities involved in achieving robust and adaptive

locomotion in robotic platforms.

Unlike bipedal and most quadrupedal vertebrates, insects have legs sprawled

outward in fore-aft and lateral directions, which offers them additional stability and

exceptional maneuverability in the horizontal plane, making them able to execute very

tight turns at high speeds [76]. Researchers [77–80] have made mechanistic models for

cockroaches’ various tracking behaviors and found the ability to steer the whole body is

essential to achieve efficient tracking. Even with similar sprawled structures, achieving

such maneuverability in hexapod robots is challenging. Getting a better understanding

of the steering behaviors is an essential part of improving planar maneuverability.

Unlike wheeled systems, many biomimetic systems and animals do not have a

trivial steering scheme in terms of differentially driving the joints, especially in artificial

systems. Oftentimes, scientists get inspiration from particular biological systems for

basic movements, yet robots utilizing these basic policies are far from being as agile as

their biological counterparts [81]. There have been studies done in biology to explore

which mechanisms or control strategies were used for maneuverability in animals [18,

76]. On the robotics side, there are also efforts made to improve maneuverability and

steerability for artificial systems [81]. However, these methods are usually made ad

hoc and specific to the system. In Chapter 3, we propose a systematic way of steering

complex robotic systems based on the geometric mechanics framework and potentially

only need a partially estimated locomotion model of the system.
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1.4 Contributions

This dissertation aims to address three main practical challenges in various applications

of data-driven geometric methods.

Chapter 2 draws inspiration from data-driven modeling, geometric mechanics, and

adaptive control techniques. We employ an adaptive system identification framework

and demonstrate its efficacy in enhancing the performance of principally kinematic

locomotors (i.e., the term ‘principally’ expands the range to systems that are highly

influenced by dissipative forces). We showcase the capability of the adaptive model to

efficiently accommodate varying terrains and iteratively modified behaviors within a

behavior optimization framework. This provides both the ability to improve funda-

mental behaviors and perform motion tracking to precision. We also demonstrate, via

a Purcell swimmer, that our method may be successfully deployed for in-situ behavior

refinement, injury recovery, and terrain adaptation, particularly in domains where

simulations provide poor guides for the real world.

In Chapter 3, we propose both local and global gait modulation algorithms to

modify a nominal gait to provide a single-parameter steering control. Using a simplified

swimmer, we numerically compare the two approaches and show that for modest turns,

the local approach, while suboptimal, nevertheless proves effective for steering control.

A potential advantage of the local approach is that it can be readily applied to soft

robots or other systems where local approximations to the constraint curvature can

be garnered from data, but for which obtaining an exact global model is infeasible.

The method we present in Chapter 4 constructs a series of connected models

comprising actuator and locomotor dynamics based on data points from stochastically

perturbed, repeated behaviors. By deriving these connected models from general

formulations of dissipative Lagrangian systems with symmetry, we offer a method that

can be applied broadly to robots with first-order, low-pass actuator dynamics, including
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swelling-driven actuators used in hydrogel crawlers. These models accurately capture

the dynamics of the system shape and body movements of a simplified swimming robot

model. We further apply our approach to a stimulus-responsive hydrogel simulator that

captures the complexity of chemo-mechanical interactions that drive shape changes in

biomedically relevant micromachines. Finally, we propose an approach of numerically

optimizing control signals by iteratively refining models, which is applied to optimize

the input waveform for the hydrogel crawler. This transfer to realistic environments

provides promise for applications in locomotor design and biomedical engineering.

1.5 Dissemination

The material in Chapter 3 has in full been published in:

• Deng, S., Hatton, R. L. & Cowan, N. J. Enhancing Maneuverability via Gait

Design in Proc IEEE Int Conf Robot Autom (2022), 5799–5805

The material in Chapter 2 and 4 have in large part been submitted for publications

and their preprints are available on arXiv:

• Deng, S., Cowan, N. J. & Bittner, B. A. Adaptive Gait Modeling and Opti-

mization for Principally Kinematic Systems. arXiv preprint arXiv:2310.02141

(2023)

• Deng, S., Liu, J., Datta, B., Pantula, A., Gracias, D. H., Nguyen, T. D., Bittner,

B. A. & Cowan, N. J. A Data-Driven Approach to Geometric Modeling of Systems

with Low-Bandwidth Actuator Dynamics. arXiv preprint arXiv:2307.01062

(2023)

The following co-authored publication has largely inspired the work presented in

Chapter 4 but does not prominently appear in this dissertation:
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• Pantula, A., Datta, B., Shi, Y., Wang, M., Liu, J., Deng, S., Cowan, N. J.,

Nguyen, T. D. & Gracias, D. H. Untethered unidirectionally crawling gels driven

by asymmetry in contact forces. Science Robotics 7, eadd2903 (2022)

The following co-authored preprint is also relevant to but does not prominently appear

in this dissertation:

• Shi, R., Chen, K.-L., Fern, J., Deng, S., Liu, Y., Scalise, D., Huang, Q., Cowan,

N. J., Gracias, D. H. & Schulman, R. Shape-shifting microgel automata controlled

by DNA sequence instructions. bioRxiv, 2022–09 (2022)
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Chapter 2

In-situ System Identification for
Principally Kinematic Systems

This chapter was submitted for publication and was made available on arXiv entitled

In-situ System Identification for Drag Dominated Systems authored by Siming Deng,

Noah J. Cowan, and Brian A. Bittner. We re-used the article in this chapter with

permission from all the authors.

2.1 Motivation

The field of robotics has experienced significant advancements over the past few

decades, evolving from systems designed for explicit situations into more generalizable

and versatile machines. This transformation has been driven by the ever-growing

demands of robots that are capable of interacting with dynamic and unstructured

environments. In many such environments, learning from in-situ experiences is crucial

to functioning in the field. These challenges are particularly evident for systems with

high internal degrees of freedom and complex system-environment interactions, where

subtle changes in environmental characteristics can drive fundamental differences in

emergent behavior.

Current paradigms of motion control are not ideally suited to attaining precision

in these unstructured settings. Traditional bottom-up, model predictive approaches

18



to robotic control heavily rely on explicit accounting of physical quantities which

can be derived from first principles or hand-crafted to the desired precision of the

user [85, 86]. Adaptive system identification extends models to react to anticipated

changes in the model. The rate and quality of adaptation are affected strongly by the

assumptions about observable perturbations of the model [87–89]. In general, these

methods are ineffective when either (a) the range of assumed adaptations is so large

that overfitting occurs or (b) the assumptions are too specific such that violations

of the assumptions are common. More recent approaches to motion control include

reinforcement learning and deep learning approaches, both of which require large

magnitudes of training data or infrastructurally cumbersome quantities of real-world

data [90–92]. Here, the robot is particularly ill-suited to succeed in unanticipated

scenarios, since (by definition) they would not be included in the training set. Efforts

in domain randomization have yielded reinforcement learning agents more capable of

generalization and sim-to-real transfer, but often at the expense of achieving precise

mastery of individual domains [67, 93]. Learning frameworks such dynamic mixtures of

experts [94, 95] attempt to achieve robustness and precision with distributed expertise,

but the computation for these experts to both decouple from each others’ domains

and refine individual expertise has not yet been designed for real-time adaptation in

complex fielded environments. Adaptive control, reinforcement learning, and deep

learning architectures are not designed to rapidly and precisely handle unanticipated

changes to the dynamics.

This limits our ability to advance robots to new application spaces that can

handle complexities such as customized body parts, imprecise fabrications, and poorly

characterized environments. Such considerations are crucial for soft robotics [96, 97],

nano-robotics [98], medical robots [99], and bio-hybrid robots [100], as each is subject to

these considerations. In this work, we use an adaptive system identification framework

to leverage the top-down modeling insights of geometric mechanics [68]. This permits
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a framework for adaptation that captures the general space of possible dynamics

changes within a class of physics, but it is representationally compact enough to be

fit rapidly to data in situ. The result enables adapting motion models to distinctly

new regimes without knowing a priori the nature of that change (e.g. a substrate

change, morphology change, or weight distribution change). The assumptions made

are that the dissipative nature of the physics persists and that the recent history of

the behavior is evolving in a homogeneous environment. A key contribution of our

work is that empirical modeling is moved online as the system operates and captures

a general class of potentially time-varying factors such as environments and payload

changes, affording effective motion control despite unanticipated changes to the robot

morphology, weight distribution, or substrate conditions.

We restrict our attention in this work to systems that are principally kinematic

[42], a property developed in the geometric mechanics community that describes the

locomotion of systems governed by dissipative forces or conservation of zero momentum.

These systems enjoy an exploitable reduction from second-order mechanical dynamics

to ones that possess a first-order structure, namely a linear mapping from internal

configuration velocity to body velocity. Recent work has shown that this reduction

provides a reduced computational structure for fitting robot models that are broadly

descriptive of many classes of animal and robot behaviors [73, 74]. These works have

established that many robot and animal behaviors are describable by the space of

dissipative models, which span a dense and broad variety of animal morphologies,

weight distributions, and environmental substrates. Bittner et al. [68] introduced a

data-driven method for constructing a local model in the neighborhood of an observed

gait. This method relies on data points collected from stochastically perturbed and

iteratively repeated behaviors. The ability to construct local models makes it possible

to sample candidate gaits offline, which provides an opportunity for sample efficient

gait optimization as well as gait modulations for continuous gait control [82].
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Here, we capitalize on the use of adaptive filters in constructing the aforementioned

local models in real-time. The advantages of this reframing are multifold. In this

continuously updating paradigm, the model automatically adapts to changes in

physical interactions dynamically, rather than awaiting a batch update as in prior

work. This actively updated model enables tracking of the model confidence, which is

crucial in determining how much empirical data is required to obtain a model with

acceptable prediction quality for behavior refinement and control. We show that the

rate and quality of adaptation permit refinements of behaviors to master unanticipated

environments with speed and precision. We discuss that as internal complexity is

added to the system, we encounter situations where engineering decisions between

speed and reliable precision need to be made.

Next, we will provide technical background on the adaptive filters, followed by

a description of the filter which takes a recursive formulation. We follow this with

several experiments that demonstrate the performance of the adaptive filter, noting

its accuracy in capturing the dynamics of the principally kinematic Purcell swimmer

through a regime change from low drag ratio to high drag ratio swimming. Finally,

we offer points of discussion and our conclusions on the performance and implications

of the proposed approach.

2.2 Background

The mathematical framework used to capture the motion model of principally kinematic

systems is covered here. We also discuss prior efforts to model these systems from

data and their current limitations.

2.2.1 Principally Kinematic Systems

The field of geometric mechanics [101] [48] [47] has pursued the applications of symme-

tries to mechanics. In many cases, these applications result in reduced computational
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structures for system representation and analysis. One such insight is the reduced

Lagrangian or reconstruction equation, which writes the mechanics of the systems

using three distinct equations describing the generalized momentum, body velocity,

and shape dynamics of the system. Notably, these equations describe the interactions

of general second-order systems in ways that one can infer in fundamentally different

ways than classical rigid body dynamics formulations. This representation leans on a

key symmetry that the environment remains homogeneous, such that, for example,

the body velocity equation remains a constant function of shape, shape velocity, and

momentum, no matter where you place the object in the environment.

In this work, we will pursue an adaptation scheme that applies to a subclass of

these systems. Here, we focus on principally kinematic systems. Commonly, these can

be observed as systems where dissipative forces dominates the dynamics [102]. Recent

work has suggested this class of dissipation model, despite its simplicity, is highly

descriptive of a broad class of robots and animals [73, 74]. Principally kinematic

systems are also observed where conservation of zero momentum drives the physics [43].

These scenarios are less commonly observed but applicable to orbital manipulation.

In principally kinematic systems, the equations of motion can be reduced, resulting in

a shape-defined linear mapping from shape velocity to body velocity. The resulting

model is written as (4.1)

ξ = −A(r)ṙ, (2.1)

where ξ is the body velocity, r is the internal configuration, and A(r) is the linear

mapping termed a connection. In situations concerning momentum conservation,

we use the phrasing mechanical connection, whereas in dissipative regimes the term

viscous connection is applied.
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2.2.2 Data-driven methods for geometric systems

Bittner et al. [68] developed a data-driven approach to geometric modeling and

optimization of these principally kinematic systems. The approaches provide in-situ

system identification of various classes of platforms by locally modeling behaviors

by observing approximately repeated cycles of the behavior. The variance in the

repetition provides regularly sampled time series data that can be fit to a generalized

oscillator such that all observed samples are assigned an asymptotic phase. Within

phase windows, a linearization of the connection is fit to this data, organized with

respect to an average behavior or limit cycle fit using the asymptotic phase. Across

these phase windows, model coefficients provide input to a Fourier series fit which

provides a linearized model that can be sampled as a function of phase. Perturbations

from the average behavior are computed as δ := r − θ, where θ provides a shape on

the limit cycle as a function of phase. The first-order Taylor approximation of the

connection is computed as

Ak(r) ≈ Ak(θ) + δT ∂Ak

∂r
, (2.2)

where k denotes rows of the connection matrix.

Samples are grouped into overlapping phase bins. The size of these bins is a

heuristic that can strongly affect model quality. Large phase bins give the data set

larger insight into dynamics farther along or behind in the cycle. The result of large

phase bins is often less overfitting globally, but also less accuracy locally in the phase

bin of interest. The regression takes the form

ξ
(n)
k ∼ Ck + Bkδ

(n) + Ak(θ)δ̇(n) + δT (n)∂Ak

∂r
δ̇

(n)
, (2.3)

where k provides the output dimension, n is the sample number. These regressions

take place in phase windows centered about a phase-defined shape on the limit cycle,

θm. This model is fitted in phase windows across the cycle and then fitted to a Fourier

series, providing a phase-queried linearization of approximately repeated behaviors.
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The initial limitations of this approach involved its applicability to systems with

momentum. Follow-up work was done to capture and model the behavior of systems

with dissipating momentum while maintaining a first-order prediction structure [70].

Additional follow-on work extended these models to principally kinematic systems

that do not possess high bandwidth control of their shape dynamics. Initial extensions

addressed systems with high bandwidth control of a subset of the entire shape space

[71] but eventually worked towards addressing systems with low bandwidth control

of shape variables [72]. In this chapter, we explore an extension to the initial work

[68] that permits real-time updates for in-situ modeling and adaptation in the field.

Simultaneously, we work directly towards the overall architecture that can support

these extensions into adjacent geometric domains.

2.3 Methods

The two core methods of our implementation are presented here. One method

involves an adaptive filter for data-driven geometric mechanics that takes a recursive

formulation such that it is updatable in real-time for fielded platforms. The second

method covers prediction quality metrics, also computable in real-time, which provide

guides for when these adaptive models are suitable for trajectory tracking or informing

behavior refinements. We also cover a stochastic perturbation scheme for generating

approximately repeated behaviors, which is the means by which we generate local

behavior data for modeling.

2.3.1 Adaptive Filters

Our method employs adaptive filters, which are widely used in system identification.

These filters are designed to estimate the parameters of a linear model by recursively

updating the weights as new data samples are available. The main usage of adaptive

filters in system identification is that they can track time-varying systems and adapt
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to changes in the underlying process. Recursive Least Square (RLS) filters are a class

of adaptive filters that specifically minimize the mean square error of the predicted

filter output and the actual system output (measurements) [103]. Instead of collecting

samples in batches and then fitting a model, we designed a cluster of adaptive filters

on top of the data-driven modeling framework so that the model can be updated

simultaneously as samples are collected. RLS filters fit the role directly in the linear

regression problem in (4.3).

In this work, we restrict our attention to approximately cyclic behaviors. For

such behaviors, phase is a useful tool through which to organize behavioral data into

localized partitions. In phase coordinate, namely S1, the nominal gait is written

as θ(·); and phase windows with the same width are set up equally spaced along

S1. The phase window indexed at m is defined as [ϕm − ∆ϕ
2 , ϕ

m + ∆ϕ
2 ], centered at

ϕm with a width of ∆ϕ. The nominal gait at the mth window center is denoted θm

with its derivative θ̇m. In each phase window, an RLS filter is constructed for each

system output, body velocities ξk. For example, a system operating on SE(2) should

have three independent RLS filters in the same phase window, corresponding to its

three-dimensional body velocity. Every time a new sample is collected, all filters whose

corresponding phase windows cover the sample’s phase value are updated as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

...
ξk

ξk

ξk
...

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ∼

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
1, δm−1, δ̇

m−1
, δm−1 ⊗ δ̇

m−1

1, δm , δ̇
m

, δm ⊗ δ̇
m

1, δm+1, δ̇
m+1

, δm+1 ⊗ δ̇
m+1

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡⎢⎢⎢⎢⎢⎢⎢⎣

...
wm−1

k

wm
k

wm+1
k
...

⎤⎥⎥⎥⎥⎥⎥⎥⎦

T

(2.4)

Here, ξk is the desired value of the kth body velocity, δm := r−θm, δ̇
m := ṙ− θ̇

m are

the shape and shape velocity perturbation samples defined in the mth phase window.

wm
k is the weight vector of the kth RLS filter in the mth phase window, where the

dimension is 1 + 2d+ d2, d being the dimension of the system shape. The regressor

matrix is constructed by stacking the shape and shape velocity perturbation samples
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in all phase windows that cover the sample’s phase value. The full model of the system

is constructed by combining all the filter weights and smoothed along ϕ by a Fourier

series.

An important parameter in the RLS filter algorithm is the forgetting factor

λRLS ∈ (0, 1), which gives exponentially less weight to older samples. The forgetting

factor, in combination with other parameters (e.g. phase window width and spacing,

data sampling rate in terms of phase), determines how much data is effectively in the

memory of the model. This number can be tuned for the robustness vs. adaptability

trade-off, where larger memory results in a more stable model while being slower to

adapt to real changes.

2.3.2 Model Metrics

We evaluate the first-order data-driven model by comparing its prediction error to

that of the baseline phase model as in prior work [71]:

Γ = 1 −
∑︁N

n=1 ∥ξ(n)
D − ξ(n)∥∑︁N

n=1 ∥ξ(n)
T − ξ(n)∥

. (2.5)

ξ(n) is the body velocity from the nth collected sample, ξ(n)
D and ξ

(n)
T denote the

data-driven and phase (baseline comparison) model predictions for this velocity. The

baseline phase model is effectively the zeroth order approximation, in other words,

phase averaged behavior of the seen data.

In an online situation, it is important to keep track of a measure that gives a

level of confidence to the model. This moving metric can be used as a criterion for

determining whether the model has converged and can be used with confidence. This

metric is actively updated as new samples are collected as the following,

ψ
(n)
D = λΓ · ψ(n−1)

D + ∥ξ(n)
D − ξ(n)∥

ψ
(n)
T = λΓ · ψ(n−1)

T + ∥ξ(n)
T − ξ(n)∥

Γ = 1 − ψ
(n)
D

ψ
(n)
T

.

(2.6)
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Here, λΓ ∈ (0, 1) is the forgetting factor, which is set to be nearly 1. This number

determines how heavily new samples are weighted towards the measure and how fast

the history of the metric fades away. Similar to the forgetting factor λRLS in the

RLS algorithm, λΓ (together with other parameters) effectively controls how much

history the metric Γ is carrying. For convenience, we will later refer a relatively ‘rapid’

forgetting factor to λ’s further away from 1, and a ‘slow’ forgetting factor to λ’s closer

to 1. In practice, we try to match this metric memory to the effective model memory,

in terms of the number of cycles of empirical data, so that it reflects model qualities

on the same amount of data. Note that, in doing so, the two forgetting factors are

going to be different because each RLS filter updates only when the sample phase falls

into its window while the metric is being updated with every sample collected.

2.3.3 Online Noise Generation

The data-driven modeling framework needs to have good coverage of both shape and

shape velocity around the nominal gait. Hence, we need to generate perturbations in

the neighborhood of the nominal gait while commanding the system in real-time.

To ensure the relative smoothness of the generated shape trajectory, we employed

a second-order stochastic differential equation (SDE) as a smoothing filter,

dδ̇ = −(αδ̇ + βδ)dt+ η · dW (2.7)

where η is the brownian noise amplifier coefficient, α and β are the attraction coefficients

that are kept positive, and dW is the Wiener process. The noise generated by this

SDE is a smoothed first-order perturbation on the system shape velocity, which also

ensures that the resulting shape trajectory is pulled back to the nominal gait over

time.
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Figure 2-1. The Purcell swimmer incrementally experiences more stochastically perturbed
cycles in a new operating environment. Model metrics of the batch model (green) and
adaptive model (red) are evaluated for their predictive performance at that point in the
experiment on a hold-out test set of 40 cycles (for 100 pairs of training and testing trials).
The model metrics for both methods are shown in boxplots where each box corresponds to
5, 25, 50, 75, 95 percentiles of a model trained with the first n ∈ [5, 10, 15, 20, 25, 30, 35, 40]
cycles of data experienced.

2.4 Accuracy of Adaptive Geometric Modeling

We first seek to demonstrate the speed and precision through which RLS can pro-

vide geometric models of locomotion in real time. We demonstrate the method’s

performance first on a toy locomotion system, the Purcell swimmer [104], whose local

connection can be analytically derived [55, 59]. This analytical system provides a

test bed for our method that has clear foundations and has been well explored in

the robotics literature. As noted earlier, small soft swimming machines are included

within the principally kinematic operating environment for which these methods are

designed.
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Selecting the right data size for the batch model is important because too large a

data size is unnecessary which leads to data inefficiency, while too small a data size

is simply not enough to capture the dynamics of the system. From trial and error,

batch modeling a nine-link Purcell swimmer typically requires at least 30 cycles of

data. However, this number is not easily generalizable for arbitrary systems. One

advantage of the adaptive model is that it can keep track of the model’s accuracy in

real time so that there is no need to guess a data size as in the batch model. The

tracing accuracy (see (2.6)) can help determine whether the model has converged and

thus make the adaptive models more efficient in data usage.

We compared our adaptive models to the batch model mentioned in 2.2.2, in

terms of model metrics Γ covered in 2.3.2. Again, Γ captures the knowledge of the

model beyond 0 (the phase-averaged behavior) up to 1 (full reconstruction of the

ground truth). We generated 200 trials of 40 cycles of noisy shape trajectories as

mentioned in 2.3.3. We split the data in half, selecting two 40 cycle trials at a time

(100 pairs) and evaluating the model computed on the training set against the held

out 40 cycle test set. In Fig. 2-1, the model accuracies are plotted with respect to the

robot’s experience throughout the trial. This informs us how the prediction quality

grows as the robot’s experience grows. The model metrics are shown in boxplots

where each box corresponds to 5, 25, 50, 75, 95 percentiles of a model trained with the

first n ∈ [5, 10, 15, 20, 25, 30, 35, 40] cycles of data collected and tested on the holdout

set. When learning from no history, the adaptive model is capable of obtaining an

accuracy of Γ > 0.4 in 10 cycles, meaning that it can understand forty percent of all

perturbations from the limit cycle. This nears the approximate convergent prediction

quality of both methods after 40 cycles. The adaptive model metrics are computed

continuously, and so are available in between the discretely updated batch model.

As shown in Fig. 2-1, the adaptive model performs relatively well even when there

are relatively few samples, whereas the batch model performs best with large datasets.

29



Indeed, the adaptive method generally affords faster convergence yet a lower overall

accuracy than the batch method. With relatively small data sizes, the batch model

suffers from near-singular covariance matrices in the local linear regression processes,

which leads to poor performance. On the other hand, the adaptive model naturally

avoids this problem since the RLS algorithm does not require matrix inversions.

Eventually, the batch model converges to a higher accuracy than the adaptive model,

which is expected since the batch model has access to all the data while the adaptive

model only has a limited memory size. The variation in model quality over the

duration of the 40 cycles for the adaptive method speaks to the overfitting produced

by the recency bias of the measurements.

Forgetting factors are designed to help weight current (and possibly different)

domains more highly, but will also lead the model to potentially overweight data that

it has seen more recently. The batch model considers all samples equally, and it is

thus less prone to overfitting. Next, we revisit the forgetting factor as a key enabler

for the swimmer to regain predictive power on new, unanticipated substrates Fig. 2-2.

2.5 Adaptation to Changing Environments

In the derivation of the Purcell swimmer’s connection matrix (which defines its

mapping from shape velocity to body velocity), the ratio of lateral and longitudinal

drag coefficients [105] directly affects the nature of locomotion. Typically, this ratio is

assumed to be larger than one because the swimmer links are assumed to be slender

such that drag is stronger in the lateral direction of link motion. When the drag ratio

is 1, the system is unable to exploit the asymmetry of drag to create motion and is

unable to displace its center of mass. When the drag ratio approaches infinite, each

link acts like a non-slip wheel, allowing it to move farther per cycle than when the

drag ratio is classically set to 2.
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Figure 2-2. The predictive quality of the adaptive models (blue, λRLS = 0.99, and
orange, (λRLS = 0.7)) and batch model (green) are compared throughout environmental
changes experienced by the Purcell swimmer. Each model is trained with 40 cycles of
data collected in ‘Env 1’. In this test, the system is unknowingly exposed to two other
environments, where each environment consists of 40 cycles of data. We changed the
drag coefficient ratio experienced on the links for the environment changes, where this
ratio is 2.0, 3.0, 4.0, respectively for environments 1, 2, and 3. The batch model (which is
never recomputed during the trial) has constant large predictive errors on new substrates.
The adaptive model is refined each time a sample is collected and can adapt to the new
environments relatively quickly. We note that the forgetful model has a faster adaptation
rate but achieves lower, less stable prediction quality throughout the trial.

By altering this drag ratio, we are able to change the physical interactions and test

our adaptive method. We trained the batch and adaptive models with data sampled

at the classical drag ratio and then adjusted the ratio over a series of interventions.

We track the speed and precision with which each model adapts in Figure 2-2. The

log prediction error shows that the adaptive model is able to converge to a higher

accuracy steady state prediction and does so more quickly than the batch model. The

forgetting factor modulates the rate of adaptation, but in this trial, there appears

to be a relationship between adaptation rate and overfitting of the model, which is
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Figure 2-3. The predictive quality of the adaptive models (blue, λRLS = 0.99, and
orange, (λRLS = 0.7)), batch model (green), and ground truth model before injury (red)
are compared throughout an injury (links broke off) experienced by the Purcell swimmer.
Each model is trained with (a. 50, b. 100) cycles of data collected in normal conditions.
In this test, the system originally consists of (a. 4, b. 9) links, and it undergoes an injury,
where (a. one, b. two) links break off. The batch model is not updated within the trial
and it has constant significant predictive errors in the new conditions. The adaptive model
is refined each time a sample is collected and can adapt to the injury relatively quickly for
both low and high dimensional systems. The ground truth model is the simulation model
that generates the data used for this demonstration, hence the log error of this model
before the injury is negative infinity. It quickly degrades after the injury happens.
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Figure 2-4. Above we lay out an optimization architecture for behavior refinement. (Top
Level) The optimization will attempt to improve behaviors only when it receives a high
enough prediction confidence from the adaptive model. (Middle Level) The adaptive model
recursively updates from real-world interactions, also producing an estimate of its model
confidence in real-time (quantified as Γ). (Bottom Level) A nominal gait, parameterized
as p, is given to the Command Gen module, which generates stochastic perturbations
around the nominal gait.

consistent with our discussion of forgetting factors in 2.4.

2.6 In-situ Gait Optimization with Adaptive Geo-
metric Modeling

Here we show that sample-sample refinements of the adaptive model allow for ac-

celerated exploitation of policy gradients for rapid behavior optimization. A gait

optimization in the experiments considered starts with an initial nominal gait, where

the system is commanded to move in the neighborhood of the nominal gait using noise

signals generated online (see sec. 2.3.3). In past work, gait optimization for kinematic

systems involved collecting a 30-cycle model, building a batch model (identical to that

used as a baseline in Section 2.4), and using that model to step along a policy gradient
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in the gait parameter space. 30 iterations typically resulted in convergence for the

nine-link Purcell swimming totaling 900 total cycles [68]. In this work, we update the

adaptive model until we reach an accuracy threshold of Γ = 1
2 (taken over all prior

cycles of the current iteration), and then step along the gradient of the policy to select

the next set of gait parameters to evaluate. By this architecture, we can ensure that

we use the adaptive models to refine the behavior as soon as they provide an accurate

landscape of the local dynamics. Since each iteration of the optimization only locally

changes the dynamics, we expect the RLS filters to smoothly recalibrate the model

weights to adapt to the shifted domain of the shape space. In particular, we managed

to obtain faster convergence by updating the zeroth order model (the first element in

each RLS weights w[0]) using previous model predictions on the new gait.

w′
k[0] = [1,0,0,0] · w′

k = [1,∆θ,∆θ̇,∆θ ⊗ ∆θ̇] · wk (2.8)

Here, the subscript k is the kth body velocity, ∆θ = θ′ − θ is the difference between

the new and old nominal gaits, and w′
k[0] is the first element of the model weights

(which captures the phase averaged behavior of the new nominal gait). The rest of the

weights are left unchanged because we assume that the new nominal gait shares some

variational relationships with the prior gait due to their proximity in the shape space.

This provides a seeded model which we assume will require less refinement for the

RLS adaptation. This zeroth-order term update is equivalent to a Taylor polynomial

rebase. The full optimization pipeline is shown in Fig. 2-4.

We further demonstrate the effectiveness in data efficiency of rebasing local linear

models in 2-5. The adaptive model is effective at capturing unanticipated changes.

In the context of changing nominal gaits during the optimization process, the robot

should be able to anticipate changes to the model because it is actively changing

the gait that it operates around. Thus, rebasing the local model weights can utilize

the current model, which comes from previous data points, to obtain an estimate

for the new gait. In this experiment, we compare the performance of the adaptive
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model with and without linear rebasing. The metric criterion for optimization is set

to Γ = 0.8. The adaptive model with rebasing is able to achieve the same level of

model accuracy with fewer empirical data, which leads to faster convergence of the

optimization process.

Figure 2-6 covers an application of this architecture to the Purcell swimmer. We

repeat the optimization 50 times such that we can observe the range of performance

and the repeatability of the process. Each swimmer is seeded with an initial gait that

is a first-order Fourier series with equal phase lags between each link. The three-link

swimmer is capable of quickly accessing Γ = 1
2 predictive insight and continuously

refines its gait over the 40 cycles, improving its seed behavior by almost 50%. The

nine-link swimmer, while less reliable than the three-link swimmer, experiences trials

in its top quartile that exhibit over 80% improvement of the gait in just 60 cycles.

Our proposed method appears to exhibit a 10-factor improvement in sample efficiency

over the work of [68]. Notably, the adaptations are not exclusively successful on the

nine-link system, as they were in prior work. For more complex systems, careful

consideration of appropriate Γ and λRLS may improve the reliability of optimization

at the expense of sample efficiency.

2.7 Discussion and Conclusion

In this chapter, we illustrate the real-time capabilities of our adaptive methods for

constructing local models for in-situ motion control and behavior refinement. One

immediate advantage of integrating adaptive features is the model’s capacity to

autonomously adjust in real-time to unanticipated events such as variations in terrain

or payload. The prior batch modeling was unreliable at achieving this real-time

capability due to the lengthy requirement to run a batch udpate at every iteration.

This real-time enhancement brings fast, precise in-situ modeling to the field, which has

classically been a challenge for platforms with poor first principles models as well as
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Figure 2-5. An illustration of rebasing the local linear model at the nominal gait change
can further improve data efficiencies for (a) 3-link and (b) 5-link Purcell Swimmer in
gait iterations. For no-rebase trials (black), we let the model adapt its weights to reflect
nominal gait changes. For rebase trials (red), the model weights are updated using the
previous model predictions on the new nominal gait as described in (2.8). The rebase
method is able to achieve similar objective function values with fewer empirical data.
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Figure 2-6. Gait optimization results for Purcell swimmers using the adaptive model
optimizer. (a) The three-link Purcell swimmer can refine its gaits from grey to black,
optimizing in 40 cycles of experience. 50 trials of the (b) three-link, (c) five-link, and
(d) nine-link Purcell swimmer optimization for extremality, with current progress plotted
throughout the experience of the trial. Relative performance in displacement per cycle is
shown compared to the initial behavior, with [5,50,95] percentiles of performance plotted
throughout and [5,25,50,75,95] percentile boxplots provided for the end of the run. The
width of the boxplot indicates the number of cycles executed before reaching the final
performance value.
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systems that encounter unanticipated scenarios (i.e., not accounted for in training sets).

Unlike reinforcement learning agents and finely calibrated, explicit physics models,

our adaptive scheme is designed to refine models quickly and accurately with no

assumptions about morphology, weight distribution, or environmental characteristics

(so long as the behavior remains principally kinematic).

We demonstrated this by showing the ability of the adaptive RLS technique

to recapture an accurate physical model under significant substrate variation. The

adaptation outperformed prior work in terms of speed and data efficiency on the Purcell

swimmer as shown in Figures 2-1 and 2-2. These results indicate that the proposed

method is an asset for attaining effective motion control in dynamic environments.

Also, the adaptive model provides nearly instant reactivity in terms of model updates,

which is crucial for real-time applications, while the batch model has a much longer

latency in updating the model (mainly due to the matrix inversions in all the local

linear regressions).

We noted the relationship between forgetting factors, the rate of adaptation, and

the consequences of overfitting as observed in our results. Expectedly, rapid forgetting

factors yielded the fastest response to new substrates but the least stable performance.

Having a dial to tune can be crucial in settings where either (a) speed is critical to

success and risk is tolerable (b) speed is not important and safety is paramount.

We presented an optimization architecture where the system executes stochastically

perturbed repetitions of the same gait until it gains requisite confidence in its data-

driven model of the local dynamics. When this confidence is met, it leads to high-

frequency steps along a computed policy gradient, using this data-driven model to

select new gaits that locally improve some performance criteria. This led to a significant

performance boost for the state of the art, where the Purcell swimmer optimized its

gait to an 80% improvement within 60 cycles in its top quartile of performance. It is

likely that a large range of the swimmer behavior is attributed to a high forgetting
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factor λRLS and admissible model prediction threshold Γ, which could interact to give

false confidence, resulting in suboptimal steps along the policy gradient. Principled

selection of these parameters will likely yield different outcomes, such as a less rapid

optimizer that converges with near certainty to a similar behavior. This will be the

subject of further research.

The gait optimization result presented here demonstrated the method’s adaptability

to gait changes, involving shifts in the sampling region. We note that the rebasing

of our model coefficients across discrete changes in the behavior space was crucial to

accelerating the model adaptation rate. Notably, we acknowledge that it could also

reinforce an overfit model. However, across many trials, this rebase accelerates the

model’s capability to explore uncharted regions in the gait space, enabling systematized

integration of control, modeling, and optimization processes in real-time with varying

physical interactions. In future work, we seek to integrate these models into model

predictive control architectures [106–108] to demonstrate refined trajectory tracking

that persists through unanticipated scenarios.
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Chapter 3

Enhancing Manueverability via
Gait Design

This chapter was previously published in IEEE International Conference on Robotics

and Automation 2023 (ICRA) as a contributed paper entitled Enhancing Manuever-

ability via Gait Design authored by Siming Deng, Ross L. Hatton and Noah J. Cowan.

We re-used the article in this chapter with permission from the publisher and all the

authors.

3.1 Motivation

Often, the focus in locomotion research is on the design of a nominal gait—for

example, to minimize energy or maximize speed. However, maneuvering and steering

are essential aspects of controlling a system. Though switching between a “forward"

gait and a “turning" gait would provide a simple solution, continuous steering is

crucial to allow a graceful means to respond to sensory feedback, avoid obstacles, or

track moving targets. The value of such a graded steering control parameter becomes

obvious when one considers driving a car, which would be awkward (at best) if the car

only produced a finite set of discrete turning radii from which a driver (or algorithm)

must select at each moment in time. By contrast, it would clearly be desirable to be

able to exert continuous control over the steering direction. However, most complex
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undulatory robots—such as snake robots [33, 109] and legged systems [9], have no

such built-in “steering wheel.”

The problem we address in this chapter is how to efficiently modulate an optimized

forward gait to produce graded steering control, and effectively nudging the forward

gait into a turning gait in a smooth fashion, analogous to a steering wheel in a

car. Indeed, cockroaches exhibit graceful steering, as they modulate their gait to

“servo” along walls, using tactile feedback from their antennae [110]. Inspired by

cockroaches, engineering experts have devised smooth, but ad hoc steering control

inputs for hexapods such as RHex [9] and Sprawl [80], by effectively inducing graded

left–right asymmetries in the gait. The goal of this work is develop a principled way

of constructing and exploiting such asymmetries for control.

The present work builds on a massive literature on maneuverability, but we focus

narrowly on a few prior works most related to the present paper. Early work [33,

111] addressed how a multi-link snake-like robot that performs undulatory locomotion

can make turns by offsetting its body curvature (i.e., steering can be achieved by

regularizing the offset level), inducing a lateral asymmetry, a general idea later

formalized in a seminal paper on steering control for cyclic, nonholonomic systems

[112]. More recent work [113, 114] provided an approach to create gait libraries using

a geometric mechanics framework, establishing the framework for maneuverability we

build on in this chapter.

Here, we aim to incorporate a previously published geometric optimization algo-

rithm [115] to create general principled means by which to create effective, efficient

modulations of a nominal gait for undulatory, drag-dominated robotic systems. If

the locomotion model is a local, data-driven model [68]—only available in a neighbor-

hood of the nominal gait—we present a computationally simple, local-gradient-based

approach. But if the locomotor model is global (e.g., built from first principles),

we can apply an (approximately) globally optimal approach. Then we compare the
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Figure 3-1. An overview of an example system and its optimal gaits. (a) Schematic of
a three-link viscous swimmer—a minimal template [117] for understanding locomotion.
The shape of the system, described by its two joint positions, lives in a two-dimensional
space. The coordinate of the body frame is chosen according to the minimal perturbation
principle [57]. (b) The optimal gait (red) in the sense of x-direction motion efficiency
(i.e. the largest displacement in x-direction per unit power dissipation). The gait is
plotted over the system’s constraint curvature height function corresponding to x-direction
movement (−DA)x, which provides an approximation to the system’s locomotor behavior.
(c) Similar to (b), the optimal gait (blue) for turning motion. The two optimal gaits are
cross-illustrated in both (b) and (c) with dashed curves. (d) A trivial demonstration of
the system’s spatial trajectory from a gait-switching execution. The black arrows over the
trajectory denote the system’s x-axis at the beginning of each cycle, and the color-coded
trajectory represents which gait the system is operating on.

performance between the approaches through numerical simulations in a simplified

swimmer.

3.2 Background

this chapter will use Purcell’s three-link swimmer [116] as an example system to test

our gait modulation methods (Fig. 3-1). The three-link model is widely adopted

because its simple dynamics can be easily visualized in a two-dimensional shape space.

3.2.1 Locomotion Model

When analyzing a system’s locomotor behavior, it is convenient to separate its config-

uration space Q into its shape space M and position space G, namely Q = G×M . A

system’s shape (i.e., its joint configuration) r ∈ M defines its internal configuration—

namely, where each body segment is located with respect to a body-fixed frame.
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Meanwhile, its global position g ∈ G ( SE(2) for a planar system) locates the system

in a spatial frame, specifying the location and orientation of the body frame. The

three link swimmer is considered a planar system with a two-DoF shape space, namely

g ∈ SE(2) and r = [r1, r2]T . In the sequel, when convenient, we will conflate g with

its (global) coordinate representation, namely g = [gx, gy, gθ]T .

For a drag-dominated system (i.e., a system with negligible inertial effects), the

body velocity is related to its shape velocities by the local connection [42, 118]:

g−1ġ = −A(r)ṙ, (3.1)

where g−1ġ is the body frame velocity of the system, r ∈ M denotes the system’s

internal shape variable, and A(r) is the local connection matrix. The local connection

matrix A(r) contains all the information of the system’s locomotor behavior in the

environment; it acts analogously to a Jacobian in that it maps velocities in one

coordinate to velocities in another (however, unlike a Jacobian matrix, it is generally

non-integrable). The net spacial displacement of performing one gait can be calculated

with a path integral over the local connection vector fields:

gϕ =

⎡⎢⎣gx

gy

gθ

⎤⎥⎦ =
∮︂

ϕ
−gA(r) (3.2)

where gϕ denote the net displacement generated executing one cycle of gait ϕ. Previous

works [58] show that we can simplify this line integral by a surface integral as follows:

gϕ ≈ exp
(︃∫︂∫︂

ϕa

(−DA)
)︃

(3.3)

where (−DA) = dA + ∑︁
i<j[Ai, Aj] is the total Lie bracket of the local connection.

Here, dA is the exterior derivative, and ∑︁
i<j [Ai, Aj ] is the sum of Lie brackets between

the columns of A.

Another important aspect to a drag-dominated system is the effort required when

changing shape, which can be modeled as the path-length s of the system shape
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trajectory weighted by a Riemannian metric M

ds2 = drT Mdr, (3.4)

that encodes the actual effort required to move the links through the surrounding

fluid [116, 119, 120].

3.2.2 Gait Optimization

Given a gait parametrization p, optimal cycles must satisfy the following gradient

condition [115]

∇pJ = 0 (3.5)

where J is an objective functional. For example, we consider

Jx = gx

s
(3.6)

as the objective functional that captures how efficient the gait is in terms of moving

forward, regularized by its path-length. Similar objective functionals can be defined

in terms of rotation or lateral motion. Solutions to (3.5) for the cost (3.6) can be

reached by finding the equilibria of the dynamical system

ṗ = ∇pJx = 1
s

∇pgx − gx

s2 ∇ps+ ∇pσ, (3.7)

where g, s denote the spatial displacement and the path-length cost, executing one

cycle of the gait ϕ. The other terms in the expression will be described below.

The first term ∇pgx alone would lead to a gait that has the greatest displacement

per cycle, corresponding to the simple objective gx. The approximation in (3.3) is a

surface integral whose boundary is defined by the gait ϕ; hence a variation around gait

ϕ is intuitively thought of as adding or subtracting weighted regions near the surface

boundary. Formally, the general form of the Leibniz rule1converts this gradient of the

functional with respect to variations of its boundary to the gradient of its boundary
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weighted by the integrand:

∇p

∫︂∫︂
ϕa

(−DA)x =
∮︂

ϕ
(∇pϕ) ⌟ (−DA)x. (3.8)

Specifically, the sign ⌟ denotes the interior product2between the boundary gradient

∇pϕ and the weight (−DA)x. In the simple setting that we consider here, a system

with a two-dimensional shape space, the above interior product reduces to a normal

multiplication between the normal component of ∇pϕ and the scalar magnitude of

the constraint curvature,

∇p

∫︂∫︂
ϕa

(−DA)x =
∮︂

ϕ
(∇p⊥ϕ)(−DA)x. (3.9)

Running the optimization with only the first term will end up with gaits located on

the zero contour of the constraint curvature.

The second term ∇ps in (3.7) measures how variations of gait affect its execution

cost per cycle. This term acts to regularize the optimization, cutting off diminishing

returns around low-yield regions on the constraint curvature map. The third term

∇pσ in (3.7) is responsible for reorganizing waypoints in the local tangent direction to

achieve the most efficient pacing when executing the gait. This term applies changes

that keep the gait within the same image-family3. For the dissipative mechanical

systems that we consider here, this gradient term is orthogonal to the other two terms

mentioned above; this implies that the optimization of efficient pacing is independent

from the path optimization. In other words, the gradient responsible for pacing, ∇pσ,

does not affect either displacement per cycle or path-length cost (i.e., it is orthogonal

to both ∇pgϕ and ∇ps).

For the example system that we consider for this chapter, the optimal gaits,

that are generated by previously discussed algorithms, maximizing x and θ motion
1See [121] for more details
2An operation between a vector field and a differential form that results in a -1 degree differential

form by “pre-specifying" the vector field as one of the inputs to the differential form. See more in
[121].

3The image-family of a gait is the set of all gaits that share the same image in the shape space

45



efficiencies are shown in Fig. 3-1, respectively. The optimal gaits each encircle a rich,

sign-definite region, where it gives up the low-yield regions for shorter path lengths,

on their respective constraint curvature maps.

3.3 Maneuverability

A common scenario in locomotion is steering during forward motion–e.g., a robot

executing a translational gait, and modulating this nominal gait to accomplish graded

rotational redirection of the heading. Ideally, such steering occurs while largely

preserving the overall translational motion. In essence, we are looking for a smooth

transformation from the optimum under one objective (e.g. pure forward motion) to

the optimum under another objective (e.g. pure rotational motion). Depending on

how much information we know about the model, we can generate such transformation

of gaits with local or global approaches. In the following subsections, we discuss the

local and global methods respectively under the setting of enhancing turning around

a forward-moving gait.

3.3.1 Gradient-Based Approaches

The gradients of displacement and cost with respect to the gait parameters provide

locally optimal changes with respect to the new objective. Tweaking the gait along

the gradient direction will produce the fastest changes in the outcome; in other words,

the modulated gait will have significant changes under the new objective with minimal

modulation.

Under the previously mentioned setting, to modulate around an optimal forward

gait in order to achieve turning, we initiate at the optimal gait in the sense of the

most efficient x displacement as mentioned in 3.2.2:

px : ∇pJx = ∇p
gx

s
= 0. (3.10)
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Modulating this starting gait along the gradient ∇pJθ will provide the most rapid

changes of Jθ, rotational efficiency. Then, the solution of the following equation will

guide the gait toward the rotational optimum:

dp

du
= ∇pJθ, p(0) = px, (3.11)

where px denotes the optimal forward gait parameters. The solution p(u) can be

pre-calculated and stored as an infinite-dimensional gait library where u serves as the

modulation variable.

Calculating the above solution will require the model information (i.e. the constraint

curvature) at each iteration during the process; visually it is the shape space area

swept by the gait library. In situations where we do not have the luxury of knowing

the full model, as mentioned in Section 3.1, it is viable to simply use the first-order

approximation as the following:

p(u) = px + u∇pJθ|px , (3.12)

where ∇pJθ|px is the first gradient at the x-direction optimum. As a comparison, the

first order approximation requires less model information as well as less computational

power while maintaining similar performance within some range of turning behavior

(see Results, Section 3.4).

3.3.2 Pareto Front

Now assume we have the full locomotion model, and we would like to push for the

optimal transition from one optimum to another. Here we consider the trade-off

between x and θ efficiencies in the sense of Pareto optimality, where we cannot

improve one objective without hurting the other. A set of Pareto optimal gaits can be

generated, forming a Pareto front, using the following objective in our optimization

algorithm while iterating α from 0 to 1:

Jtotal = α
Jx

Jxmax

+ (1 − α) Jθ

Jθmax

, (3.13)

47



where Jx and Jθ are normalized using the optimal values in each direction alone Jxmax

Jθmax.

Although the above method can guarantee global optimality to the objective Jtotal

without being trapped at local optima (i.e., critical points) like the gradient-based

methods, it cannot guarantee a smooth transition among gaits located on the Pareto

Front. We will continue the comparison between this global method and previous

gradient-based methods in Results (Section 3.4).

3.3.3 Online Control

In general, it takes a handful of parameters to describe gaits, and the outcome of

gaits is of relatively small size (i.e., SE(2) has only 3 degrees of freedom). A higher

level control is useful in simplifying the control complexity. Previously discussed gait

modulation naturally enables a high level control over the robot movement despite its

complex locomotor behavior.

In an online, within-cycle type of control scenario, gait switching/modulation can

happen at phases where gaits are not collocated. Large-amplitude “jumps” can cause

the robot to stop the current motion, reposition its joints, and then finally follow the

new gait, which in general can badly affect the overall smoothness and efficiency of

the system motion. Limiting the bandwidth of the modulation rate can prevent jumps

from one gait to another. This limitation acts intuitively like a dynamically adjusted

interpolation between current and target gaits.

In an online control situation, the commanded shape velocity ṙ is constructed as

ṙ(t) = ṙ∗ + u̇d(t) + uḋ(t), (3.14)

where ṙ∗ denotes the shape velocity along the current gait, u denotes the control

variable providing steer-ability, and d(t) denotes the difference between the current

gait and target gait at time t. Because drag-dominated systems are most efficient

48



a) b)

Figure 3-2. An illustration of gait modulations generated with (a) gradient iteration
and (b) first-order approximation at the nominal gait. When the modulation variable
u = 0, the gait (red) is the x-direction optimal gait (i.e., the same as the one shown in
Fig. 3-1(b)). As u increase in value, the nominal gait is modulated toward the top-right
corner for additional θ movement.

when their power dissipation is held constant, we want to limit u̇ such that it does

not significantly impact the metric-weighted speed of the system,

∥ṙ∥M ≈ ∥ṙ∗ + uḋ(t)∥M. (3.15)

In the demonstration below, we implement this restriction enforcing

∥u̇d(t)∥M ≤ k∥ṙ∥M, 0 < k ≪ 1. (3.16)

3.4 Results

In this section, we provide a parallel comparison among different approaches in

generating gait modulations using the example simulated system three-link swimmer

mentioned in 3.2. Also, the following results are generated under the circumstance

where an optimal forward gait is modulated for turning.

Following the methods mentioned in 3.3.1, a number of snapshots from the solution

of (3.11), p(u), are shown in Fig. 3-2(a). As expected, as the modulation variable u
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Figure 3-3. An overview of the performance of the gait libraries from the global approach.
(a) Gaits generated with the global approach, where α = 1, 0 corresponds to those optimal
gaits shown in Fig. 3-1(b-c). (b) Displacement in (x, y, θ) per cycle of the gait library.
Note that the discontinuity appears around the region α = 0.4 where the optimizer decides
to qualitatively change the gait. (c) Pareto front, generated from (3.13), on the efficiency
trade-off map. The discontinuity appears here as a large gap where the optimizer was
not able to reliably converge to data points in between, likely due to a bifurcation in the
objective function as a function of α.

increases, the gradient pulls the gaits toward the top-right corner, where the optimal

rotation gait is located (see Fig. 3-1(b)).

As discussed in 3.3.1, under waypoint parametrization, the gradient is given by

local definitions along the gait. Consequently, part of the gait can be trapped in some

local critical points, where the gradient diminishes for some waypoints, even though

other parts of the gait are advancing with the gradient. In Fig. 3-2(a), the gradient

along the two sides (top-left and bottom-right) started as zeros, leaving no changes

across modulations. Similarly, as the bottom-left side of the gait gets close to a local

critical point, this side converges and is not able to proceed onward.

The first-order approximation renders the gait modulation linearly as expected.

The effect on the bottom-left side differs from the one mentioned above; because the

gradient is non-zero at the start, that side will keep modulating even though it causes

additional unnecessary path-length costs by dimpling inwards.

There is a significant gap in the middle of the Pareto Front (see Fig. 3-3) around

α = 0.4, where the optimizer is giving up a large amount of x-direction efficiency in
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Figure 3-4. An efficiency comparison between the gait modulations generated by local
and global approaches. The performance of the gradient-based methods is almost as good
as the global optimizer locally at the x-optimum, and slowly drops off.

return of θ-direction efficiency. We conjecture that the formation of such a bifurcation

region is due to the balancing of two local optima in x and θ efficiencies, similar to

those observed in the gradient iteration method. Around the region near α = 0.4, the

two local optima yield close values. As Jtotal is altered by α, the global optimum has

a sudden jump, both in the appearance of the gait and the motion output. Further

investigation is needed to make a conclusion here.

Intuitively such bifurcation is reasonable, where there are certain limits to the

extent that modulating a gait is meaningful, once beyond that limit, then it is time to

switch to some other qualitatively different gait.
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Fig. 3-4(a) shows a zoomed-in view of the three methods on the trade-off map

between x and θ efficiencies, focusing at the region close the x-direction optimum

(bottom right corner of Fig. 3-3). The efficiency of gradient-based methods slowly

drop off as they move towards turning, part of the reason being segments of the gait

are trapped at local critical points.

3.5 Demonstration

We implemented our gait modulation generation along with an additional command

filter control described in 3.3.3. The following demonstration is made on the same

example system as in previous sections, the gait libraries are generated by the gradient

iteration methods.

We chose turning curvature as an intuitive control input. For the gait modulations,

average turning curvature, which is a function of the x and θ displacements induced

by executing one full gait cycle, was used to map desired curvature to the gait

modulation variable u. Under an arbitrary command (i.e., to perform a slight turn

during forward motion), the controller limits the rate of modulation variable, u̇, based

on the differences between current and target shape as discussed in (3.16), where k

is set to 0.1. The gait trajectory in Fig. 3-5 is as expected, when at a phase where

current gait and target gait are not collocated, the command filter will dynamically

interpolate between the two gaits, preventing sudden jumps in the shape space.

3.6 Discussion and Conclusion

In this chapter, we incorporate insights from geometric gait optimization to construct

gait modulations that enable “controllable maneuverability”. The local approach

we present involves starting with a forward-optimized gait, and then inducing gait

parameter modulations that push the gait in the gradient direction of a turning
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objective function; this local strategy provides an effective turning control system up

to moderate turns, according to our numerical investigation of a simplified swimmer.

The global approach aims to generate a continuous family of optimal gaits that satisfy

Pareto optimality—trading off forward movement and turning. We also discussed the

advantages and limitations between local and global approaches in generating gait

modulations.

Finally, we demonstrated a common use case of gait modulations, where a high-level

continuous steering control is possible while largely maintaining a nominal forward

gait.

Some early works [122] are successful in building hydrogel-based origami structures

in which they are able to achieve a variety of shape changes including bending,

elongating, twisting, and buckling. From a roboticist point of view, these shape

changes can be utilized as actuation for soft robots. On the other hand, there is

no obvious way to build low-dimensional, first-principles models for the locomotor

dynamics—making our interest in using local maneuvering based on data-driven

models [68] particularly salient. Ultimately, we are interested in putting together

micro-scaled, hydrogel-based soft robots that locomote and perform a wide range of

dynamic, maneuverable locomotor tasks based on environmental information.

For the high-deformation structures, a key focus of future work will be understand-

ing how to access the steering modulations when only some of the shape variables are

directly controlled. This work will combine the ideas outlined in this chapter with the

geometric mechanics of semi-passive locomotion we explored in [123].
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Figure 3-5. A demonstration of gait modulation in motion. (a) Shape trajectory, as
quasi-periodic functions, of the robot over a normalized time (i.e. one full lap in the shape
space per normalized time). (b) The system’s spatial trajectory by executing the above
shapes. Black arrows denotes the system’s x-axis position at the beginning of each lap,
and the color coded trajectory shows approximately (not to scale) the average turning
curvature is currently being performed. The shape space trajectory of each lap is also
shown above the trajectory as a simple visualization.
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Chapter 4

Data-Driven Geometric Modeling
of Systems with Low-Bandwidth
Actuators

This chapter was submitted for publication and was made available on arXiv entitled

A Data-Driven Approach to Geometric Modeling of Systems with Low-Bandwidth

Actuator Dynamics authored by Siming Deng, Junning Liu, Bibekananda Datta,

Aishwarya Pantula, David H. Gracias, Thao D. Nguyen, Brian A. Bittner, Noah J.

Cowan. We re-used the article in this chapter with permission from all the authors.

4.1 Motivation

Many conventional robots rely predominantly on rigid, fully actuated mechanisms.

While these robots maintain superior force and precision compared to natural organ-

isms, these rigid machines usually struggle in tasks that involve interacting safely with

humans, handling deformable objects, and operating in unstructured environments

[124]. Designs from nature have inspired the development of compliant mechanisms

in robotics, enabling new capabilities [14, 125–131]. The emergence of such soft

components in robotic platforms has provided new avenues for improved adaptabil-

ity, safety, cost, and energy efficiency. On the other hand, these new mechanisms

introduce new challenges in modeling and control. The compliant nature of these soft
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components greatly increases the internal degrees of freedom as well as the degrees of

underactuation, which makes it hard to obtain precise control of each shape element

simultaneously. One potential approach is to utilize variations in passive actuation

responses to stimuli across different parts of the body as a means of locomotion.

This strategy capitalizes on the distinct temporal dynamics among subsystems or

constituents.

In addition to compliance, underactuation, and low-bandwidth dynamics, there

are other challenges introduced by soft robotic systems that complicate modeling

efforts. For example, boundary conditions, surface interactions, and nonlinear material

properties make it difficult to derive parsimonious models from physical principles.

Using a top-down, data-driven approach, this work investigates the aforementioned

passive responses within a systematic framework for locomotion control. We focus

on systems with low-bandwidth shape changes in response to a single actuator input.

Modeling actuator dynamics and its effects on the system can streamline engineering

efforts to design and control soft robots, maximizing their capabilities with less

exploratory or exhaustive experimentation. In many cases, a global model of system

dynamics may be impractical to obtain, especially for custom machines, machines made

through imprecise fabrication techniques, or systems deployed in poorly characterized

environments (e.g. a patient’s body). A key insight of this work is that in these

scenarios, we can avoid reliance on a global model or the sample inefficiency of

reinforcement learning schemes by systematically achieving function through iterative

modeling and refinement of local behaviors.

Geometric mechanics provides a framework through which top-down insights permit

novel motion planning approaches to dissipative systems with symmetry, including

analytical computation of optimal gaits [58, 120]. A core premise of this work is that

complex locomotor mechanics can be rewritten in a kinematic form, owing to the

assumption that dissipative forces dominate the physical interaction between the body
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Figure 4-1. Experimental screenshots of thermal cycling of two-segment robots with a
flexible linker at the end of a cooling half-cycle (top), and heating half-cycle (bottom).
One thermal cycle comprises a heating half-cycle and a cooling half-cycle. The robot
displaces 4.4% body length at the end of the cycle.

and environment [42]. The same framework has been instrumental in understanding

cyclic locomotion in nature [73, 132]. Bittner et al. [68] presented a data-driven

approach to construct a local model in the neighborhood of the observed limit cycle,

using data points from stochastically perturbed, repeated behaviors. More recent

work [71] extended this data-driven approach to shape-underactuated systems, which

have high bandwidth control available only to a subset of the shape space. The ability

to build local models provides the opportunity to sample candidate gaits offline for

sample efficient hardware-in-the-loop optimization.

In contrast to hard robots that can readily be powered by multiple, independent

electromagnetic modules with rapid (i.e., high-bandwidth) responses, soft robots

often must be stimulated by an external signal, typically a single stimulus such as
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pH, a specific biomolecule, light, or temperature. The impact of this signal must

play out through complex kinetics (i.e., low-bandwidth control). For this class of

systems, shape deformation is not instantaneously coupled to the control signal;

rather, there is a temporal lag in the excitation of actuator dynamics following

the control input. In our prior work [75] (see Fig. 4-1). In this prior work, we

conceptualized and built a thermo-responsive hydrogel crawler. Although stimulus-

responsive shape changes for hydrogels are ubiquitous in literature [133–135], the

design of our robot exploited the swelling and shrinking induced bending mechanism,

morphological asymmetry, and asymmetry in friction force in response to the change

in surrounding temperature to achieve the locomotion. In this crawler, there are three

distinct segments: a suspended linker segment connects two end bilayer segments

comprising active poly(N -isopropylacrylamide) (pNIPAM) and passive polyacrylamide

(pAAM) layers with different morphologies. Asymmetry in friction forces, caused

by morphological asymmetry, between the two bilayer segments at low and high

temperatures allowed the robot to change its anchor during a temperature cycle to

move unidirectionally. Additionally, we hypothesize that the distinct swelling rates of

these bilayers create such asymmetric ground reaction forces that can be exploited for

locomotion. Utilizing the asymmetric response time among segments, this robot can

locomote with a single cyclic input—temperature cycle. Alongside the fabrication of

this physical crawler, we also developed a Finite Element Analysis (FEA) model [75]

to simulate the response and investigate the deformation mechanisms, which we use

to generate the results in this chapter.

Our core contribution, presented in Section 4.3, is the data-driven modeling of

a ubiquitous class of underactuated systems, where the shape dynamics are subject

to a band-limited control. This contrasts with prior work [71], which required the

application-limiting assumption that at least one element can be accessed by high

bandwidth control. Our work enables the application of our framework for efficient
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behavior optimization and enhancement across a wide spectrum of previously unex-

plored soft robotic systems, such as hydrogel crawlers [71]. In 4.4, we demonstrate

our methods on a well-known, analytically tractable system, modified to include

low-bandwidth actuation of its shape parameters. Finally, in Section 4.5 we test

our methods on a high-dimensional, finite element model of our previously published

hydrogel robot [75]. In both examples, we show how the actuator dynamics can be

simultaneously modeled with the body movements, enabling a data-driven modeling

architecture for a broader class of soft or underactuated systems. Further, we use these

examples to numerically optimize a parameterized input signal for certain objectives

using an iterative parameter optimization and model refinement approach.

4.2 Background

4.2.1 Geometric Locomotion Model

Geometric mechanics [42, 48, 101] provides a framework for locomotion based on

exploiting symmetry. In this framework, a distinction is made between the internal

configuration (shape) of a locomotion system and its position and orientation (group)

in a spatially fixed reference frame. Central to this framework is the idea of group

invariance of the dynamics [47]: a shape change that moves the system in a certain

way—in the system body frame—will do the same at any position and orientation in

the environment, invariant to the absolute position and orientation.

Here, we consider a subclass of such group-invariant dynamical systems that are

dominated by dissipative forces as caused by many types of isotropic friction [102];

in such dissipation-dominated systems, the equations of motion can be kinematically

reduced such that the body velocity is expressed as a shape-dependent linear mapping

of shape velocity. In this case, the kinematic equation is

(︂
g−1ġ

)︂∨
= ξ = −A(r)ṙ, (4.1)
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where ξ is the group velocity in its body frame1, r denotes the system shape, and

A(r) is called the local connection. Here the matrix A(r) is a function of shape r

and acts analogously to a Jacobian in which it relates the system’s shape velocities to

body velocities. A spatial trajectory of the system body frame can be calculated by

integrating (4.1) with respect to a fixed reference frame.

For systems within the scope of (4.1), the local connection can be analytically

derived from a set of Pfaffian constraints on the system’s shape and body velocities. A

global model can be empirically estimated by exhaustively sampling the system shape

space and its tangent bundle (the collection of shape velocities available at each point

in the shape space) [60]. However, such global models are often difficult to obtain for

animals or underactuated systems because of the challenges in sampling this space

with sufficient density.

4.2.2 Data-driven Modeling

Bittner et al. [68] developed a data-driven approach to geometric modeling and

optimization, which was later extended [71] to be applied to systems with high

bandwidth control in only a subset of the shape variables. This approach allows

local estimation of a connection in the neighborhood of a limit cycle with far fewer

samples than required to train a global model, making it practical for in-situ system

identification, especially for systems with high dimensional shape spaces.

In this approach, system shape data (in the form of a regularly sampled time

series) are fit to an oscillator such that each data point is assigned a phase value [136].

A zero-phase-lag Butterworth smoothing filter is applied before finite differencing to

obtain time derivatives of both shape and position. Then, a local Taylor approximation

of the connection can be computed via linear regression across data points within
1Here (·)∨ is an isomorphism that maps velocities from Lie algebra form to vector form, and its

inverse is denoted as ˆ︂(·). In a SE(2), (·)∨ : se(2) → R3, and ˆ︂(·) : R3 → se(2)
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phase windows. A Fourier series is then fit to these local regression coefficients to

build a model that is supported at any queried phase.

We detail the process by which we estimate a linearized model within each phase

window. Data-driven Floquet analysis techniques extract information from the ob-

served oscillator data and assign each sample point an estimated phase [136, 137].

The observed shape samples are then phase-averaged and fitted to a Fourier series to

obtain a limit cycle, denoted as θr(·). The perturbed trajectory, relative to the limit

cycle, is denoted as δr := r − θr. The first-order Taylor approximation of the local

connection in each local phase window can be constructed as

Ak(r) ≈ Ak(θr) + δT
r

∂Ak

∂r
, (4.2)

where Ak(r) is the kth row of the local connection, which is a vector of the same

dimension as shape perturbation δr.

All samples are grouped into neighborhoods by their estimated phase values, and

a local model is fitted in each phase window. In the mth phase window, the averaged

shape is assumed to be a constant θm
r . The first-order Taylor approximation of the local

connection matrix A(r) in this phase window can be fitted by solving the following

Generalized Linear Model (GLM):

ξ
(n)
k ∼ Ck + Bkδ

(n)
r + Ak(θr)δ̇

(n)
r + ∂Ak

∂r
δ(n)

r δ̇
(n)
r . (4.3)

Here, ξ(n)
k corresponds to the kth coordinate of the nth sampled body velocity ξ(n),

and δ(n)
r := r(n) − θm

r , δ̇
(n)
r := ṙ(n) − θ̇

m

r are the shape and shape velocity perturbation

samples defined in the local region indexed by m. Regressor Ck := Ak(θr)θṙ describes

the average behavior in the neighborhood of θm
r . Bk := θ̇

T

r
∂Ak

∂r
and Ak are the terms

that respectively relate the effects of shape and shape velocity offsets from the limit

cycle. ∂Ak

∂r
is the cross term that incorporates the interaction between δr and δ̇r. Note

that this is a local estimate in the mth phase window. This local approximation is
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repeated for all separate groups of data points, after which a Fourier series model is

used to guarantee a smooth transition among the fitted matrices.

4.3 Methods

4.3.1 Low-bandwidth Shape Control

In this chapter, we consider systems whose locomotion can be characterized by (4.1)

while only having access to low-bandwidth control over r. In particular, we assumed

the dynamics on r to take the general form of

ṙ = f(r, u), (4.4)

where the system shape velocity ṙ is a function of its shape r and an input u.

First, we extracted a phase-averaged gait cycle (θr, θu) from the general input [136].

Denoting the perturbation from phase-averaged shape and control as δr := r−θr, δu :=

u− θu, the local first-order Taylor approximation of the actuation dynamics can be

written in the following form:

f(r, u) ≈ f(θr, θu) + ∂f

∂r
(θr, θu)δr + ∂f

∂u
(θr, θu)δu (4.5)

We then fit the data to the above first-order approximation by solving the following

Generalized Linear Model,

δ̇
(n)
r ∼ D + Erδ

(n)
r + Euδ

(n)
u , (4.6)

where D is the average shape velocities of the observed data in the local phase window,

and (Er,Eu) are the terms that describe how shape and input offsets respectively

modify the average behavior. δ(n)
r := r(n) − θm

r , δ
(n)
u := u(n) − θm

u are the shape and

input perturbations defined in the mth local phase window, where (θm
r , θ

m
u ) are the

mean values of shape and input.

The estimation of the local connection can be done separately from the actuator

dynamics, hence this part remains identical as in 4.2.2. We repeat the same procedure
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for all discrete phase windows and use a Fourier series to smoothly connect all local

models.

The fitted models from (4.6) and (4.3) can be used in series to make predictions

of the system shape and position trajectories given the input signal. First, the input

signal u(t) is transformed into the phase coordinate using the fitted phase map. The

initial shape is assumed to be on the limit cycle (δr = 0) as the same phase value

of the initial input u(t0). At each discrete time ti, the shape velocity perturbation

δ̇r(ti) is predicted using the actuator model (4.6) given the current shape perturbation

δr(ti) and the input perturbation δu(ti). δr(ti) is then integrated by Euler’s method to

obtain the predicted shape at the next time step δr(ti+1). The predicted shape δr(ti)

is then used to predict the body velocity ξ(ti) using the body velocity model (4.3).

The predicted body frame position at the next time step g(ti+1) is then integrated

using ξ(ti).

When building an actuator model, the system shape trajectory is the integrated

estimation of the shape velocity predictions. Simultaneously, it also appears as the

input to the local connection in the locomotion model. As in prior work, the shape

and body motion models are predicted in separate stages. Note that in the process of

simulating a system spatial trajectory from a general input signal, the two integration

steps of each model evolve in series. We start with knowledge of the initial system

shape r(t = 0) and the control input u(t). Then we can numerically solve (4.4) and

(4.1) together using the fitted regression models, (4.6) and (4.3).

We apply the model improvement metric described in [71], comparing our first-order

regression model predictions to the phase-averaged baseline model predictions,

Γχ = 1 −
∑︁N

n=1 ∥χ(n)
D − χ(n)∥∑︁N

n=1 ∥χ(n)
T − χ(n)∥

. (4.7)

This improvement metric is defined as one minus the relative error of the data-driven

prediction χD with respect to the baseline prediction χT over N samples of body
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velocity and shape velocity χ = {ξ, ṙ}. Γχ ≤ 0 means the data-driven prediction is no

better than the phase-averaged prediction, and 0 < Γχ ≤ 1 means that our model can

make better predictions than the baseline model, up to perfect reconstruction of the

ground truth at Γχ = 1.

The baseline phase model corresponds to the zeroth-order model, generating

predictions solely reliant on current phase information. This metric holds significance

in assessing the extent to which our data-driven first-order model outperforms the

baseline model within the local region. A substantial improvement metric implies that

the data-driven model more accurately approximates the ground truth compared to the

baseline model within the local region, making it more suitable for local optimization.

4.3.2 Optimizing Behaviors and Iterative Model Refinement

Once an initial model is obtained, we can make predictions on the system position

trajectories g(t) by a general control input u(t). Using finite differencing, we can

estimate the gradient of displacement per cycle with respect to the control parameters

around the observed data. We can then utilize the estimated gradient and Hessian to

numerically optimize the control parameters for certain behaviors of the system (e.g.

maximizing the displacement per cycle).

The expense of data collection1incentivizes our focus on sample-efficient optimiza-

tion schemes. Given an input parameterization, we sparsely sample data in the full

range of the input space and build a rough model. According to this rough model, we

numerically optimized the input parameters for certain behavioral objectives. Then

we zoom into the region around the optimized parameter and re-sample points in

this local area. The model built with sample points in a smaller region will be more

localized and accurate over that confined domain. We iterate between these two

processes—optimization and model refinement—so that in the end it converges to a

local optimum in the control space. A global optimum is not guaranteed. In Sections
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4.4 and 4.5, we demonstrate the methods using a sample objective where we maximize

the displacement per cycle and penalize the cycle time.

4.4 Illustrative Example: Purcell Swimmer with
Low-bandwidth Actuation

Before demonstrating the method on data, it is helpful to interrogate a simple

analytical model, such as a three-link Purcell swimmer. We modify the model to

include low-bandwidth actuation, inspired by the low-bandwidth actuation of our

hydrogel robot:

ri̇ = ci(rs
i (T ) − ri), ci > 0, i = 1, 2, (4.8)

where ri is the ith shape variable (joint positions), rs
i (T ) denotes each joint’s steady

state equilibrium given temperature, and ci is the converging rate of each joint towards

its steady state equilibrium. Specifically, the steady-state equilibrium rs
i (T ) is assigned

to be a linear function of a one-dimensional input signal, temperature T . We have a

bound on temperature that puts limits on the swimmer’s joint angles. The resulting

shape trajectory exhibits hysteresis which is often observed in low-bandwidth control

systems (see Fig. 4-2).

Assuming different constants ci on the two joints, the shape variables will exhibit

a gait where both joints are not synchronized under a repeating temperature cycle,

see Fig. 4-3. Although both joints are controlled by the same temperature input, the

phase lag between the two joints breaks the symmetry of joint synchronization, making

the gait enclose a nonzero area in the shape space, which is critical for locomotion in

viscous swimming domains from the scallop theorem [104].
1In practice, a typical temperature cycle for our hydrogel crawler takes approximately 6 hours

because of the slow actuation kinetics of the material. The FEA simulation is computationally
expensive as well; running a 10-cycle simulation on a well-equipped desktop computer takes about 2
days. Both facts make data collection for such systems expensive, thus data efficiency is crucial.
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Figure 4-2. Plotted on the shape space, phase-lag-induced shape trajectories exhibit the
hysteresis often observed in low-bandwidth control systems. The greater the difference in
the reaching rate ci, the larger the phase lag is. This behavior emerges by waiting for a
sufficient amount of time for the two joints to both reach steady-state equilibrium and
then exciting both joints by a step change in input.

4.4.1 Input Generation

Our parameterization on the control signal is concise while maintaining the ability to

alter important features of the temperature profile. Here, we used 4 parameters to

describe the temperature cycle: a low-point temperature Tlow, a high-point temperature

Thigh, time-span per cycle tcycle, and the portion of the half period to ramp between

high and low temperatures ηramp = 2tramp/tcycle, where tramp is the time to ramp

between high and low temperatures, see Fig. 4-3. Performing multiple cycles of these

parameterized temperature cycles, the shape trajectory forms a stable orbit under
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Figure 4-3. Example temperature cycles (our low-bandwidth control input), normalized
for period and temperature, where tramp = ηramp · tcycle/2 is the time used to ramp input to
the goal temperature. Since the ramp time should always be smaller than half of the period,
the use of the ramp time ratio avoids additional constraints other than a bounding box.
When ηramp is small, the temperature profile is more square-wave-like, and the resulting
shape trajectory is more likely to have a larger phase lag. Consequently, for longer ramp
times, the shape trajectory is more likely to have minimal phase lag because both joints
are in equilibrium for the duration of temperature change.

periodic forcing. We then perturbed the forcing parameters across cycles, which

resulted in what can be seen as a "tube" around the orbit as shown in Fig. 4-5.

4.5 Main Application: Hydrogel Crawler

4.5.1 Actuator Dynamics

Bilayers and other multi-material structures are useful in creating interesting modes

of shape changes like bending. Typical swelling-driven bilayer bending dynamics are

similar to the form of an exponential low-pass filter as shown in Fig. 4-2. Specifically,

the geometry of the bilayer (e.g., layer thickness ratio and material properties) can

affect the steady state equilibrium of the shape variables as well as the rate of reaching

equilibrium.
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4.5.2 Hydrogel Crawler

Thermo-responsive hydrogel crawlers in [75], capable of swelling and shrinking, utilize

geometric asymmetry, leading to asymmetry in friction forces, to generate net motion

under temperature cycles. We utilized the same 2D finite element model in Abaqus

Unified FEA [138] to produce a time-dependent x− y coordinate along the contour of

the robot to calculate the area (2-D volume) of the actuated segments. The data is

then parameterized into the shape variable r.

Here we assume the actuation dynamics in a general (nonlinear) form (4.4), without

any specific structure on it, namely

ṙ = f(r, T ), (4.9)

where the input is assumed to be the temperature T .

4.5.3 Finite Element Model

Briefly, our finite element model, based on chemo-mechanics described in [139], solves

coupled diffusion-deformation equations for hydrogel undergoing temperature-driven

swelling and shrinking. We used Neo-Hookean and Flory-Huggins potentials to describe

the entropic elastic behavior of the polymer network and the mixing of polymer-solvent,

respectively. The swelling of pNIPAM caused by the lower critical solution temperature

transition (LCST) was modeled by assuming a sigmoidal function for the temperature

dependence of the Flory-Huggins interaction parameter. We also assumed that the

diffusivity of the water through pNIPAM also increased sigmoidally with temperature

across the LCST, which caused the characteristic time of deswelling to be significantly

faster than the characteristic time of swelling. Given the relatively long actuation time,

the environment temperature can be simply assumed to be evenly distributed. We also

considered a combined effect of gravity and buoyancy by prescribing a net body force

on the hydrogel structure. Our material model included a total of 10 parameters which
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Figure 4-4. A representative finite element analysis showing unidirectional motion towards
the larger bilayer of the thermo-responsive hydrogel crawler subjected to 3 hours of ramped
cooling and 3 hours of ramped heating cycle.

Parameter Value
Differential density between polymer and water, ∆ρ 100 kg/m3

Shear modulus of pNIAPM, GpNIPAM 2.32 kPa
Shear moduli ratio of the gel, GpAAM

GpNIPAM
15.36

Curing temperature, Tcure 323 K
Flory-Huggins parameter at high temperature, χH 0.8031
Flory-Huggins parameter at low temperature, χL 1.0483

Transition temperature, Ttrans 318 K
Range of transition temperature, ∆ 8.0
Diffusivity at low temperature, DL 10−11 m2/s
Diffusivity at high temperature, DH 10−10 m2/s

Table 4-I. List of materials properties used in the simulation

were either directly determined from experiments or calibrated against experiments

using finite element analysis. A list of the parameters and their values are listed in

Table 4-I. In addition, we assumed a rigid frictional surface with a friction coefficient,

µk = 0.1, underneath the robot to facilitate friction-driven locomotion induced by

geometric asymmetry. Further details of the finite element simulation can be found in

[75].
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4.5.4 Input Generation

Here we used a similar parameterization for the input temperature signal as that in 4.4.1.

However, for thermo-responsive hydrogels, the kinetics of the swelling and shrinking

vary distinctively. We, therefore, separated the input cycle into two independent parts,

cooling and heating. Thus, the dimension of the input parameter space increases to

six, low temperature Tlow, ramped cooling time span tcool, cooling ramp time ratio ηcool,

high temperature Thigh, ramped heating time span theat, and heating ramp time ratio

ηheat. The ramp time ratios are defined as the ratio of the corresponding ramp time to

the cooling or heating time span, i.e., ηcool = t{ramp,cool}/tcool. The allowable range of

each parameter is determined by material properties and characteristic diffusion time

and was validated by a parametric study using FEA. Specifically, the ramped cooling

and heating timespans are determined by scaling swelling and shrinking characteristic

time of the hydrogel, both temperature ranges are specified by 4% equilibrium strain

span of the material. The ramp ratios are ideally in the range of [0, 1], but small

ramp ratios mean very large rates of temperature change, which is impractical and

often causes numerical stability and convergence issues in FEA simulation because of

the excessive deformation of the finite element mesh in a short period of time. Thus

in the implementations, we raised the lower bounds to 1
32 . The calculated full input

parameter ranges are shown in Table 4-II. The noisy input signal is generated by

sampling from a uniform distribution in the parameter space. The input parameters

are then used to generate noisy temperature cycles for FEA. To avoid numerical

issues, instead of running hundreds of thermal cycles at a time, each FEA simulation

comprised 10 thermal cycles. At each iteration, we ran 10 simulations resulting in 100

cycles of input data for our data-driven model.
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Parameter Range
Tlow 20 ∼ 41 ◦C
Thigh 45 ∼ 65 ◦C
tcool 2 ∼ 8 hrs
theat 0.5 ∼ 3 hrs
ηcool

1
32 ∼ 1

ηheat
1
32 ∼ 1

Table 4-II. Full input parameter ranges.

4.5.5 Shape Parameterization

The compliant nature of the devices and external forces makes the internal shape

high-dimensional. However, fitting models to a highly dimensional shape space will

likely cause overfitting. We thus seek a reduced-order representation of the shape

of the system. Here, principal components analysis (PCA) is a simple candidate

reduction method that could serve this purpose. We tried PCA on the streamline

along the crawler body, from which we calculated the internal angles between each

of the segments. Fitting a PCA model on the internal angles, we found that the

first two principal components (modes) reconstruct over 90% of the data. While it

is a straightforward way of reducing the effective degrees of freedom, the complex

coupling between segments led to principal components that lacked a clear physical

interpretation. As an alternative, we considered that the volume of each active section

is a more physical, descriptive candidate for representing the system shape variables.

To do this, we estimated the volume at each time point based on contour points from

the FEA simulation, and it was used to calculate the enclosed area (2D volume for our

planar FEA). This parameterization provided a clear, intuitive relationship between

the two segments, and exhibited the phase lag between the smaller and larger bilayer

segments that we expected from the design.
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Figure 4-5. Sampled shape data points around a limit cycle. Note that we cannot
directly sample the full shape and shape velocity space due to the presence of the actuator
dynamics. Fortunately, adding perturbation to the input parameters does generate shape
and shape velocity variations around the limit cycle, which is essential for building models
of behaviors.

4.5.6 Input Optimization

As a demonstration, we optimized the input parameters to maximize the displacement

per cycle. The objective function is defined as

F (u) = ∆gx − λtcycle, (4.10)

where ∆gx is the displacement in the x direction per cycle, and tcycle is the cycle

time. λ is a penalty factor that controls the trade-off between the above two terms.

The objective function is to maximize the net displacement per cycle. During the

optimization process, we noticed that the optimizer tended to find cycles with the
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Figure 4-6. Model prediction metrics for the Purcell swimmer (top left) and hydrogel
crawler (top right) model. We plot sample model prediction errors in phase coordinates
from each of the model refining iterations. Also, the average displacement, in terms of
percentage body length per actuation cycle, each iteration is shown below the plots. The
metrics are calculated on the testing set which is unseen by the model both on shape
velocity predictions and body velocity predictions. Test set trajectories (grey) along with
the mean (solid) and standard deviation (dashed) of the data-driven model prediction error
are plotted for each iteration. The body velocity prediction error is inherently propagated
from the shape velocity prediction error, and thus the body velocity prediction errors are
unsurprisingly greater than the shape velocity prediction error. While the model prediction
errors start to drop as we shrink the sampling range due to overfitting, the average
behavioral objective improves each iteration.

longest possible cycle times, optimizing cycle-to-cycle distance, with no penalty on

time, pushing the results toward the boundary. To address this, we added a regularizing

term to penalize the cycle time.

We started by sampling 100 points (resulting in 100 cycles of system motion)

in the full input parameter space as shown in Table 4-II. We performed ten-fold

cross-validation to avoid overfitting. A rough model of the system was built using

the initially sampled data points, and then the model was used to optimize for an

input parameter that maximizes the objective function above. The optimization

was performed using the Sequential Least Squares Programming algorithm where
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the local gradient and Hessian were estimated using finite differencing. Once the

numerical optimum was obtained, we shrank the range of each input parameter by

35%, centering at the optimum, and repeated the optimization process. We repeated

this process three times, and the parameters converged to a performant gait. The

model improvement metrics were calculated for each iteration as shown in Fig. 4-6

4.6 Discussion and Conclusion

In this work, we designed and implemented a data-driven modeling framework for

dissipative systems with low-bandwidth actuator dynamics. We showed the success

of this method in predicting behaviors on a classical simplified model, the Purcell

swimmer, with a modified class of passive shape dynamics. We built on prior work,

relaxing the requirement that at least one shape element is accessed through high-

bandwidth control. In doing so, our method enables the modeling of novel mechanisms

like the hydrogel crawler, whose internal degrees of freedom all exhibit a passive

response to controllable stimuli. Despite the challenges often associated with designing

control signals under low-bandwidth actuation, the robot was intentionally designed to

capitalize on morphology-induced actuation asymmetries for locomotion. We showed

not only that we could model the crawler with accuracy beyond the phase-averaged gait,

but that the system was capable of using this model in a gradient-based optimization

scheme to rapidly identify a viable crawling maneuver. The broader implications of

this result are that we now have a rational framework to pursue data-driven modeling

and optimization of a much larger class of underactuated systems. For applications

in biology, where continuous, soft interfaces facilitate safe interaction with the body,

this method provides the potential to model new mechanisms pre-deployment in the

body and even in situ, since variation amongst morphology and environment across

patients can be significant. Key additional future efforts will include power, actuation,

and sensing at the scales desired for the locomotion application. In addition, it is

74



well known that there is a significant phase lag between muscle activation and body

movements [140], suggesting that our approach can be used to better understand the

underlying neural control problem [141].

The model improvement saturated and decayed as the sampling region was reduced

in the hydrogel crawler gait optimization result. This likely occurred because there

was less variation in the sampled data (our tube of gait distribution data had a smaller

overall volume). This is loosely analogous to convergence results in adaptive control,

which often rely on sufficient excitation of the dynamics; in a similar vein, we do

not expect to learn informative improvement without cycles that excite significant

dynamic variation.

We have shown that the model was iteratively improved and the optimizer settles

at a performant gait. Given computational power, sampling from a variety of initial

conditions could excite a variety of achieved locally optimal gaits, from which a more

globally optimal gait could be selected. In this project, a single cycle of FEA simulation

takes hours to run, making brute forcing multiple initial conditions infeasible. Rather

than characterizing this as a limitation, we argue that our approach captures its ideal

utilization. Many next-generation soft robots will be hard to model apriori. Imagine

custom morphologies deployed in uncharacterized patient bodies (such as an artificial

heart valve [142]). This mechanism must leverage the ability to build a viable control

policy from very little data. Likewise, the objectives for the hydrogel crawler were

simply to obtain a functional control policy from very little data. We have provided a

framework through which it and similar robots can rapidly obtain functional motion

primitives. We juxtapose our method with reinforcement learning [143], deep learning

architectures [144], and gait optimization [145] which require large amounts of data

that are unavailable in simulation and impractical to empirically obtain for many

applications (e.g. in biomedical settings).

The viable gaits achieved through this sample efficient optimization could practi-
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cally extend to the real world. While many samples might be available in simulated

environments, there are many platforms that must be system-identified in the field.

In-situ system identification (such as the type we implement here) paired with a

gradient-based optimizer provides a tractable, system-oriented way to pursue opti-

mization of robot behaviors in hard-to-model environments. Further efforts can be

made to wrap control, modeling and optimization into an in-the-loop process, where

the robot can learn to navigate in complex, time-varying environments without human

intervention.
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Chapter 5

Discussion and Future Work

In this dissertation, we have proposed solutions to some practical challenges in

implementing data-driven geometric methods. We have shown that the proposed

methods are effective in solving the problems in a variety of scenarios, including

real-time system identification, enabling steering via gait control, and optimizing

control signals for a hydrogel crawler.

Chapter 2 takes its inspiration from data-driven modeling, geometric mechanics,

and adaptive control techniques. We implement an adaptive system identification

framework and demonstrate its effectiveness in improving the performance of primarily

kinematic locomotion systems, such as those dominated by dissipative forces or zero

momentum conservation. We highlight the adaptive model’s ability to seamlessly adapt

to various terrains and modify behaviors iteratively within a behavior optimization

framework. This capability not only enhances fundamental behaviors but also enables

precise motion tracking. Additionally, we showcase its successful application in refining

behaviors, recovering from injury, and adapting to different terrains. The methods

are shown to excel in scenarios where simulations provide inadequate guidance for

real-world situations.

This dissertation has mainly focused on the development of data-driven geometric

methods for analytical systems such as Purcell swimmers. To further validate these
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methods, we plan to apply them to real systems, with a hexapod robot (RHex) as

a potential candidate. We have done preliminary work on this topic in simulation

environments, and real-world experiments are needed to further validate the proposed

methods.

In Chapter 3, we introduce both local and global gait morphing algorithms designed

to modify a default gait for single-parameter steering control. Using a simplified

swimmer as an example, we perform a numerical comparison of these two approaches,

revealing that the local method, while suboptimal, remains effective for modest steering

control. An advantage of the local approach is its adaptability to soft robots or other

systems where local approximations of constraint curvature can be derived from data,

as creating an exact global model may be infeasible. This local approach makes the

steering control methods applicable to the adaptive geometric modeling framework

presented in Chapter 2, where such data-driven models are only local in nature.

Chapter 4 presents a novel method that constructs a series of interconnected

models, encompassing actuator and locomotor dynamics derived from data collected

during stochastically perturbed and repeated behaviors. These connected models

are based on general formulations of dissipative Lagrangian systems with symmetry,

making them applicable to a wide range of robots with first-order, low-pass actuator

dynamics, including hydrogel crawlers driven by swelling-based actuators. These

models accurately capture the dynamics of system shape and body movements in

a simplified swimming robot model. Furthermore, we apply this approach to a

stimulus-responsive hydrogel simulator, which emulates the intricate chemo-mechanical

interactions responsible for shape changes in biomedically relevant micromachines.

We propose a method for numerically optimizing control signals through iterative

refinement of models, which we apply to optimize the input waveform for the hydrogel

crawler. This transfer to real-world environments holds promise for applications in

locomotor design and biomedical engineering.
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Many systems such as the hydrogel crawler have complex internal dynamics that

are difficult to model due to a number of factors, including imprecise manufacturing,

complex geometry, and unknown composite material properties. In such cases, first-

order, low-pass actuator dynamics are less likely to capture the system’s true dynamics.

A more dedicated approach such as methods presented in [146] could potentially

be useful in capturing the internal dynamics of the system to further improve the

model capabilities. In addition, the tools introduced in this dissertation are limited

to principally kinematic systems; future works could utilize increasingly powerful

machine learning techniques to capture momentum effects as well.

The framework of geometric mechanics is becoming more and more inclusive in

terms of its applicable scenarios, including some dynamical systems that were previously

deemed to fall outside of its scope. A major advancement of this dissertation is that

it provides useful tools for the implementation of data-driven geometric methods that

make them particularly suitable for real-world situations. Obtaining steering control is

only one of many potential applications of the adaptive data-driven geometric methods.

We see the potential of integrating our tools into more general artificial intelligence

algorithms to facilitate robots to autonomously learn and adapt in complex scenarios.

In particular, the real-time capability of efficiently capturing system behaviors can

be useful in popular control algorithms, such as nonlinear model predictive control

[147] and adaptive control techniques [148], to help robots make real-time decisions

autonomously. For example, perception can provide certain expectations in changes

in the robot-environment interactions, which can be used to tune the internal learning

modules (adaptive models) to be either more reactive or robust. On a larger scale, we

anticipate the potential of our tools to enable stronger connections among subfields of

robotics like perception, planning, modeling, and control, bringing us one step closer

to achieving animal-like locomotion in robots.
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