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Abstract We present an algorithm for SLAM on planar graphs. We assinatest
robot moves from node to node on the graph using odometry tsure the dis-
tance between consecutive landmark observations. At ezad, the robot follows
a branch chosen at random, without reporting which branfildws. A low-level
process detects (with some uncertainty) the presenceddfiarks, such as corners,
branches, and bumps, but only triggers a binary flag for laarrdetection (i.e.,
the robot is oblivious to the details or “appearance” of taedimark). Under un-
certainties of the robot’s odometry, landmark detectiord the current landmark
position of the robot, we present an E-M-based SLAM algarifbr two cases: (1)
known, arbitrary topology with unknown edge lengths andu@iknown topology,
but restricted to “elementary” 1- and 2-cycle graphs. Inl#tr case, the algorithm
(flexibly and reversibly) closes loops and allows for dynaemivironments (adding
and deleting nodes).

1 Introduction

Navigation of inexpensive mobile robots with limited conggional capabilities,
imprecise sensing, and crude odometry presents a numbeeoésting challenges.
Here, we approach the problem of Simultaneous LocalizatmmhMapping (SLAM,
cf. [10]) in this setting. We assume that as a robot movesutjitadhe environment,
a low level control algorithm allows the robot to follow phgal structures (walls,
doorways, etc.). These physical structures are presumgiréorise to a natural
graph structure where nodes of the graph are intermittentifes detected by the
robot’s sensory system, including doorways, corners, argaion the wall (Fig. 1).
This sensory system was inspired by an artificial antenngif@m which the tactile
feedback received is close range, intermittent, and sp@nse means that the robot

Department of Mechanical Engineering, Johns Hopkins Uniixe
{avi k. de, j sl , ncowan}@ hu. edu



2 Avik De, Jusuk Lee, Nicholas Keller, and Noah J. Cowan

2
3
1
* 4
7 5
6
Fig. 1: An illustration of how an environment with landmarkgreated purely as a
graph by the robot.

needs only run its mapping and localization algorithm oely (when a feature
is detected), but that only “corridor-like” environment#lwwalls are considered
in this paper. Here, the observation is simply the odomatyieneasured distance
traversed since the last detected node, and we allow fordksilility of missing
nodes or detecting false positives.

In short, we propose a solution to the SLAM problem given spaensory data
(binary and intermittent) and a low dimensional state spabe topological ap-
proach lets us abstract the application (for example andndavironment) from
the basics of the algorithm.

Almost all existing SLAM approaches use some statistiazthtéque due to the
inherent uncertainty in noisy robot motion and/or obseovaiCsorba [7] developed
the theory behind a modified Extended-Kalman-Filter (EKE}dd SLAM algo-
rithm; the EKF method has been improved and used extensuely as in [12]. By
the nature of an EKF, the motion model and observation nosédependent: the
sensory noise is a function of the sensor physics, and ipamtient of the robot’s
motion noise. By contrast, our approach considers the matial observation mod-
els as deeply related: the observation model is the “timelismn” for the motion
model. In this paper, we use a Wiener process motion modealhadiives rise to
an Inverse Gaussian sensory model; however this method cdawith a variety
of movement and sensory models as long as there is a prapalshsity function
describing the observations and an estimator, such as maxiikelihood, for its
parameters.

Monte Carlo or particle filter approaches like FastSLAM [¥#§re designed to
be computationally efficient, mapping up to thousands aftaarks while using the
EKF for landmark location estimation. In our framework oférmittent observa-
tions, such a huge number of landmarks would be rare.

We used an E-M (Expectation—Maximization) based mappimgaach which
has been explored previously by others using various appesaUnlike Thrun [23]
who considered a discrete brute-force minimization of & funsction over a grid-
based map, we considered our map lengths to be continuouteaive a formula
for an approximate solution. GraphSLAM [24] optimizes a@ally constructed
graph with robot poses and landmarks as nodes to get the nseripo and is
meant to work “off-line.” We considered an “on-line” appobawhere the robot
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dynamically builds the map as it receives observations.teroapproach uses a
Kalman filter [22] which attempts to keep track of the fullts&sin between nodes
(or observations) by taking the limit of a “dummy” obsergativariance to infinity.
Utilizing the fact that our sensory information (edge ld1ygs only available on
every node contact and is directly related to the motor neiseposed the problem
to recovering the topological state of the robot; this h@&satided benefit of being
more robust to problems such as loop closure.

Most SLAM implementations represent the map as a metricobljet several
researchers have taken a topological approach. Choset agatadhi [6] treat the
higher dimensional robot navigation space as a topologydiygua Generalized
Voronoi Graph (GVG) and perform localization using graphchang. Our simple
sensor models generate sparse data that lends itself wgthph representation,
and we attempt to simultaneously map and localize the robdhe graph using
only odometry and landmark detection without appeararfogrimation. In [20], the
authors demonstrate mapping using Bayesian methods andraper graphs. To
search over the space of graphs, they use Monte Carlo sayrplistarting with
a random topology, proposing a modification based on a pedplistribution and
then picking the new one if it improves a pre-set cost fumcti®ailey [3] proposes
a graph theoretic approach to data association. A recembagip [11] performs
SLAM on graphs using “energy” of the graph as a metric for g the best fit-
ting topology and Extended Information Filter (EIF) for npéapg. For all of these
“model selection” issues, like data association and evialgaow good a topo-
logical fit is, we use an information theoretic criterion winirationalizes selection
based on entropy considerations. A few methods [16, 18] aoeritioth metric and
topological information, composed of local feature-baseatric maps connected
by edges in a topology, using Kalman Filter or FastSLAM basethods. Our ap-
proach does not require metric mapping because we estigragthk in the map as
edge parameters.

The main contribution made by this paper is a multi-part athm that solves
SLAM on planar graphs (assuming “elementary” 1- or 2-cysfmiogies) including
a novel loop closure approach using a model selection imtéBections 3-5). We
verify our results and test applications of the algorithmotlyh numerical experi-
ments (Section 6), and address unsolved problems and opggifor improvement
(Section 7).

2 Preliminaries

2.1 Notation

We represent the topology of landmarks as a gaplith N nodes andil edges. We
denote the set of all nodes & = {1,...,N}. Each nodeé € 2" has degreeg; [13]
and a landmark detection probabild@ywhich is assumed to be knovarpriori (our
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long-term goal is to use sensor characteristics to estittéde—see Discussion).
The edge lengths between adjacent nodes are denot@e:byb, ..., 6u }, and the
robot's estimates ar@ = {6,...,6u}.

As mentioned in Section 1, our SLAM algorithm runs at diseiastance& € Z
where each increment ik occurs when a landmark is detected. We yuse 27
to denote thenode position of the robot in the graph at instankeThe robot’s
(odometry) observatioy is a variable representing the distance traveled between
the events of detecting nodes at instankes1 andk. The history of odometry
observations is denotei = {y, ..., Yk}

Let.” denote the discrete set of states the robot can be in vgheréx,, &) € .7
ande is the “entry” edge to node. Note thatl.#| = SN , k;. This choice of state
takes into account the position and orientation of the rath@ at any instancé.
We also denote the transition made by the robot at tirasty, the corresponding
observation agy, the start state as(i;), and the end state astR). Relating to
our existing notation, Ry) = sc = L(tx;1). Let the number of edges included in a
transition be the “length” of the path.

2.2 Odometry Measurement Error: I nverse Gaussian

When using Bayes'’ rule or performing parameter estimatiemeed to analytically
express the posterior likelihood of an observatiRily). This expression can be
thought of as the distribution over the first passage time fiaea distance in a
random walk. This distribution is known in the literaturetas Inverse Gaussian
(IG) or Wald distribution [5].

We assume the robot’s motion in between nodes to be a Wieneegs with a
varianceo? and a constant and strictly positive drift velooityThen the distribution
of the first passage time is a probability density functign [5

_ 2
JV1ﬁ7u,A):=\/Eg;gexp(—-éigﬁggl—), 1)

whereu =L /v, A = L2?/a?, T = yi/v (passage time) arldis the actual edge length
associated with the observatigin For our purposes it makes more sense to write
the pdf as a function ofi,, v andL:

Pa(yi) ~ A (L, v, 0%) =

LV3/2y;3/2 o <_ (Yi— L)2v> | @

2102 202y

For this distributionP(yx < 0) = 0, and as noise decreases the shape looks more
and more Gaussian.
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3 Mapping with Known, Arbitrary Topology

Mapping an unknown environment along with localization malp the SLAM
problem. We treat mapping first, and then localization intidad.
The “map” in our case consists of the graBhand its associated edge lengths
6(G) = {61,...,6u}. In this section we assunt is known (and can be a general
graph W|thout any restrictions) and we find an estmﬁa(l@)

6(G) = arg n’g)aP(y‘ﬂG; G). (3)

In Section 4 we address the problem wlt&is unknown.

3.1 Perfect Data Association

When each observation can be perfectly associated to anledgth, we can do
a simple ML estimate of the parameter. For this section@léte the edge length
associated with the observatioyfs Then

6 = arg rglax(ln P(y|6 )) .

Using (2) and maximizing the likelihood function above g;'@aas a function of the
sample harmonic meay):

1 k &1
3 (047 a02tv)  wherere = 5 2 @

éI:

3.2 Imperfect Data Association: E-M Approach

When data association is not deterministic (for exampléeéfrobot does not per-
fectly detect nodes), the observed dy%@aare “incomplete” and we cannot directly
maximizePy(yX). The E-M algorithm [8] introduces “hidden variablez’ which
are chosen such thBg (v, z‘{) or the “complete data” is specifiable by some distri-
bution.

The E step computes an expectation (and effectively averager) the hidden
variablesZ and lets us maximize a likelihod®(y¥):

Q(6,6) = Ezw [InPo v, 2|

Z S (INPy(yi[2) +InPs())Py (3 y5)- (5)

=17
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The natural choice of each hidden variable is- t;, but this raises the issue that
the space of pathsis infinite and the sum seems intractable. This problem can be
solved by breaking up the sum by the possible length of thie pat

f(t ft) = f(t f)+... .
Z se/tR) () sezy(t:R%—s,()_F R% ()+ )

lt|I=1 2
The infinite sum above is suited for a breadth-first searchS|Bkhich is a tree
traversal technique. Any planar gra@hcan be expanded to an infinite tree if we
allow nodes to appear multiple times in this tree, by lookihgonnectivities in the
incidence matrix of5. We can make an approximation and truncate this trégak
levels deep, making the set of possible paths (dengtgéinite and the sum above
computable.

By keeping track of detection probabilitigs of each node in the tree and the
sum of the edge lengths from the root node, the BFS can té¥(isand P(y; |t).
Since we only care about transitions with non-zero proltghwe let |7 | be the
number of paths witlfP(t) > 0

E-Step. We use the “forward” and “backward” algorithms from HiddemMov
Model (HMM) theory to comput®y (1 [y¥) efficiently. Let

m 2 (1) = 9= 1LE)PEPMWI) B (RE))

Y 0k(S) ’ ©)
wherej indexes into the (finite) set of paths returned by BFS, and
a(s)= 5 PWHPHa-1(L(1)) (7
t:R(t)=s
B(= > PMIPOB1(R()), (8)
t:iL(t)=s

with ag(s) = P(Sy=s) andBk.1(s) =1V se .7t
1 if pathj contained edgg
0 otherwise.

Also letL; be the length of pathy. To maximize we take the first derivative, and
that gives us

M-Step. We can define M x |.7| matrixD with dij =

Q K ()(3
— = In Pa(yitj) |nP9 wltj)

k

_ a(l v .V)
= ' =+ = -Li= ), )
glj:cgzl PAL o? a?y

1 These computations are standard in HMM literature and agoins should be easily found in
texts such as [14].




Toward SLAM on Graphs 7

by the chain rule. Foae , we knowlj = 3;. d) —16 where the conditiorj; = 1
ensures that the derivative is not zero, and we assume ttlak ppasses through
no more than once.

Using all the6 we getM quadratic equations iM variables which are hard to
solve analytically. Gradient ascent methods may fail beedle likelihood function
(5) may have local maxima as shown by Fig. 4.

We can get an analytical solution by making the following r@xmmation. If we
assume that the edge lengths are large compared to the mutidel noise, the first
term in the sum in (9) can be ignorédhen we get

== Zx g <1——). (10)

After manipulating the sums, we get a linear system of equatiif we letU; =

S 1CJ V=5t 1( EI)/y') A={aij},aj = Ymddjn—1 Vi 0= (b1......bm)T . bi =
¥ mdip=1Um, ando = (6y,..., 6w)T, we can solve for the estimates @by solving
A6 =h.

Given reasonable odometry, such as would be expected witiealed robot on
an office floor, we expect this approximate solution to belyfaitose to the real
solution, and, when using gradient ascent, within the regioconvergence of the
true solution. In future work we will establish this for ouanticular experimental
platform.

4 Mapping with Unknown Topology (1- or 2-Cycles)

The space of planar graphs is large, so we restrict our aitetd a specific, nar-
row class of topologies, and enumerate all possible topesofjom that class—
“elementary” planar graphs consistingly of one or two cycles, without leaves or
self-loops. The former is clearly defined as a “cycle graphfiterature, and the
latter is a union of two cycle graphs (at an edge chain or singttex) which is
connected.

4.1 Model Selection Using I nformation Theory

To select the most parsimonious moGelo fit the data/X we use the Akaike Infor-
mation Criterion (AIC) [1] which is defined as

2 To achieve (10), we assun%zj < 1. In our numerical trials (Section 6.1) this ratio is in thder

of 10-3. The ratio depends on the chosen robot’s dynamics and magtbenined by performing
random trials or characterizing the dynamics [4].
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AIC:Z%—ZIn(X), (12)

where.#" is the number of model parameters (itNsin our case because there
areM edges inG) and.¢ is the maximized likelihood (5) for tha. A lower AIC
indicates a better model. Now the algorithm pi¢kas

é:argrgin(ZM(G)—2InP(y‘{|G,é(G))), (12)

wheref(G) was found in the previous section.

4.2 1-Cycle Graphs

For simple graphs with 1 cycle we are just estimatihgand that completely spec-
ifies the graph. This is equivalent to the problem of “clodimg loop,” because the
robot must make a decision about when it has re-visited trérsbde.

Our mapping procedure finds length estimates according fo(a preset range
of M (for implementation feasibility), and then uses (12) to fid

4.3 2-Cycle Graphs

Graphs with two cycles and other more complex graphs cobtairches, or nodes
with k; > 2. We use this nomenclature because if we call one edge thwy ‘&ige,”
there are more than 1 “exit edges,” only one of which the retibtuse to exit the
node.

In our simple framework, we will ignore all control input aadsume that the
robot picks from the exit edges uniformly at random. Thiseasily be incorporated
into the BFS mentioned before in the calculatiorPgf).

4.3.1 Enumerating 2-Cycle Topologies

One type of 2-cycle topology has two nodes of degree 3 whiettcannected by 3
edge chains. We will refer to these edge chainsupsredges.

For a given total number of edgbt the problem reduces to finding the number
of edges in each superedge, or the number of ways in wHican be written as
a sum of 3 positive integerp (- 1 positive integers for @-cycle graph) which is
the number of solutions tg + ¥ + ...+ Yp+1 = M, ¥ > 0, which is the same as the
number of solutionstgr + @+ ...+ @Gpr1=M—(p+1),@=y—-1,@ >0.

This last problem is almost the same as that of finding “pant# of an integer”
which has been studied extensively such as in [2]. In theradesef a simple formula
for the number of partitions, we can provide a very consarmgatpper bound using
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Fig. 2: Eliminating symmetric start states in a 2-cycle ¢grafl) Draw a plane of
symmetry between the two nodes of degree 3. (2) Discardaatirsg states lying on
edges completely in the lower half. (3) For edges being cuhbysymmetry plane,
discard one of the two starting states on that edge. (4) lerttoan one superedge
has the same number of edges, ignore duplicates.

D

the “stars and bars” combinatorial argument which will ud# solutions that are
permutations of one another. The upper boun@"i;l) solutions. To actually find
these partitions a very simple recursive function that er@eg < @_1 or similar
to eliminate permuted solutions can be implemented as a gtamprogram.

The other type of 2-cycle graph can be thought of being twtirdis 1-cycle
graphs joined together at a degree 4 node. These can be extachiby finding the
ways in whichM can be expressed as a sum of 2 integers each greater than 1. We
disallow a superedge of length 1 because that would implsepree of a self-loop.

4.3.2 The Start State Problem

The 1-cycle graphs has a symmetry that any choice of stggsgionP(xg = x) =
o(x,x*), x* € 2" would yield a correct map up to a cycling of the edges. However
for more general graphs, this is not true. One way to circurhthés problem is to
use a uniform distribution foP(sp), which is the most general and intuitive but also
less optimal for the algorithm because at the start locitimaesults will be poor.

An alternative approach which we take is to enumerate alptissible distinct
starting states for a given topology while taking symmestiigo account. The num-
ber of elements in this set is usually much smaller th#it a visual demonstration
of how this elimination occurs is shown in Fig. 2. A start eigtcan be represented
completely by an edge and a direction (with the edge bejrand the direction be-
ing towardsxg) and is represented by an arrow in the figure. Then we perfeivh E
calculations for each of those starting states and pick tieetloat gives maximum
likelihood. We use a similar method as in (3) but maximized@ands, together:

6(G) =arg 215%\>P(y‘ﬂ6,so;6). (13)
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Fig. 3: The first few iterations from a numerical trial of theMEmapping algorithm
for imperfect detection. The filled circles in the “groundth” row are the true
position of the robot and the filled bars in the localizati@n plots are the peaks of
the pmfP(x). Between observations 6 and 7, the robot failed to detectla.no
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Fig. 4: A: Contours of the likelihood function (5) showing Hiple maxima. The

blue star is the true value of the parameters and the redsdtae solution found us-
ing the “noise approximation” in (10). The red star is closéte peak of the global
maximum showing that the approximation was valid. B: WhenEaM algorithm

finds the correct solution, the number of E-M iterations fegplin total is roughly
independent of the motion noise.

5 Localization

The localization problem asks to find a distribution overdheent stats given the
history of observationﬁi. If we use E-M for mapping as described in Section 3.2,
localization is performed implicitly in the E-step. Aftdred computation of (6),

P(sdly%) = g Por (t]y). (14)
tR(t)=s¢
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6 Numerical Tests
6.1 Mapping Lengthswith E-M

Figure 3 shows a simple trial run of the algorithm in Sectidhi which the robot
attempts to map the edge lengths and localize in a knownaggalith imperfect
association of observations with edges. We used a unifosinifalition forP(sp),

and the initial length guesses are shown in the leftmostnanlof the figure. We

choselt|max = 5 for this trial (and others in this section), and for this cledy cgl)
was 1 without need for renormalization.

At every “branch point” the exit edge is picked uniformly andom and node
detection is imperfect, resulting in imperfect data asstimn. The given map has a
symmetry so that if it is, for example, “flipped” about the tveall or horizontal, we
still get the same graph. The ground truth and developed nayes been aligned
for the reader’s convenience.

It is evident that localization results are poor initiallgdause of the developing
map and the initial uniform distribution, but it performdtee after a few iterations.
After each iteration localization is performed using therent map estimate, so
the localization results may be drastically different frtime previous belief after
the map is updated. We can only hope to get good localizagsalts after the
developed map is perfect.

Figure 4A justifies the assumption made in (10) by showingfitrasufficiently
small noise, the peak of the approximated likelihood fuorct{red star) closely
matches that of the exact function (blue star) given in (%.mise is increased,
the red star diverges from the blue star and at each E-M iberahe maximum
obtained by solving (10) will not necessarily maximize theetlikelihood function.
Since the maximization is key to convergence of E-M, we scistimt sufficiently
large noise will cause E-M to fail and degrade the perforreafour algorithm.

The figure also shows the presence of local extrema in théhdad function
making a gradient ascent method difficult. This trial wasd@imple 2-edge cycle
so that the likelihood function can be visualized.

In general for E-M, no bounds can be given on the rate of cgarare, but
Fig. 4B empirically shows that the total number of E-M itéwas required to find
the solution is roughly independent of the motion noise chlis important from an
implementation point of view.

6.2 Loop Closure (and Re-Opening)

With respect to “closing the loop,” Fig. 5 demonstrates ttheamtage of using the
method described in Section 4.1: the robot can modify a Idopuce decision as
long as we do not discard the history of observations. Inttiasthe robot is per-
forming SLAM in an unknown topology with imperfect assoat
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Fig. 5: An illustration of loop re-opening using the AIC mddelection criterion.
A: The simple (but almost ambiguous) map given to the robofllige AIC of the

hypotheses for a 3-edge and 6-edge cycle evolving over tin€he top three hy-
potheses at any period during the same trial. D: The averageeogence time to
the correct hypothesis as a functionegio?.

The robot is given a simple cycle map of six edges with the firete edges
almost of equal length to the last three (with one of the tiweiag perturbed by an
€). Itinitially picks M = 3 as the best hypothesis after the trial starts, but afterggoi
around more times and receiving more observations it ctritchypothesis and
choosedvl = 6 as the most parsimonious model. This behavior can be exqolait
a higher level by the following argument.

When the robot does not have much information about the rhag'perturba-
tion” can be attributed to noise, so that the lower order rhisdgufficiently good at
predicting the observations. From the asymptotic normalitML estimators [9],
we know that var@) falls as J/v/k. So ask gets bigger the lower order model gives
a much poorer fit to the data than the higher order model.

The time required for the algorithm to decide to favor thenleigorder (but cor-
rect) model over the lower order model depends on the petiory and this “con-
vergence time” is plotted in part (D). The minimum number b§ervations to sup-
portaM = 6 model is six, and so there is a horizontal asymptote ate6gass larger
and larger. The motion model variance was= 0.05 for these trials.

6.3 Dynamic Environment

Another problem which pertains to model selection for usis problem of “dis-
appearing landmarks” where a previously existing landnmatéken away, and the
similar problem of “new landmarks” where a newer landmarik&erted in the en-
vironment. By comparing the AIC of hypotheses which h&telose to the best
model the robot can make “soft” or modifiable decisions alibetnature of its
environment (Fig. 6).

Note in Fig. 6A that the 2-edge model adjusts its length estéisito considerably
lower its AIC around iteration 12, but it still cannot matdiet3-edge model. In
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Fig. 6: The A: “new landmark” problem where a node is added fegige cycle

map and B: “disappearing landmark” problem where a nodd&e®from a 3-edge
cycle, as handled by our algorithm. In both the plots, thenglean the environment
occurs at iteration 7. For the disappearing landmarks propbne possibility is that
the robot attributes the missing landmark to imperfect cte&ie and continues to
favor the higher-order model (which helps in case the lankimaappears). In this
trial we set detection probabilitieg ~ 1 so that this did not happen.

Fig. 6B it takes about three iterations for the 2-edge hypsithto beat the 3-edge
hypothesis.

6.4 Topology Enumeration and Selection: 2-Cycle Graphs

We used the AIC again to help the robot pick the best topolagpmling to (12).
Due to calculation costs, the robot searched only the sph2eedge-connected
planar graphs with two cycles, having<3M < 5. The candidate topologies are
shown in the right half of Fig. 7. For each of these “edgeipant’ hypotheses, there

AIC (arbitrary scale)

———

0 2 4 6 8 10 12 14 16 18 20
k

Fig. 7: The robot picks the best (2-cycle) topology fit for sbobservations using
AIC. The true topology was “F,” i.e. the rightmost one in tleesnd row.
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were a number of possible starting states to be taken intuat¢see Section 4.3.2).
The robot assumed perfect detection for this particulat.tri

7 Discussion

This paper presents an algorithm to perform SLAM on elemgrgeaphs. We di-
vide the mapping into two parts, known and unknown topoldgyr algorithm
solves the former in the most general case using E-M, aneépresechniques of
finding the topology from a very small subset of planar graptis pick this sub-
set to be graphs with one or two cycles, but this could beyeagtiended to other
families of graphs as long as they can be parametrized andexated.

This method, while still targeting simple environments arsihg minimal sen-
sory information, can address some well known SLAM probl§h$. We present
numerical experiments demonstrating how the algorithmesothe “loop closure”
problem without requiring appearance information in a pamametric way by us-
ing an information theoretic model selection criterion. ®go present numerical
experiments illustrating the solution to the problem of a@yric environments by
maintaining multiple hypotheses.

To apply our framework to the real world, several issues @ddve to be ad-
dressed. First, we need a better way to characterize valdmasnarks and their
corresponding detection probabilities. Although the angesensor is capable of
capturing finer details of a landmark, we have chosen to usesparse sensor in-
put (a binary flag for detection) which gives rise to problesush as “misses” and
“false positives” (Section 6.3) which correspond to thessgsignal being below or
above (resp.) a pre-set threshold. This approach wouldrtedey trials to give an
accurate detection probability and the detection probigiidr one landmark would
most likely be different from the rest of the landmarks. le flature, we plan to
incorporate a richer sensor model of the antenna to (a) cohmasses” or “false
positives” for cases in which the signal is close to the thoéd, (b) predict; based
on how “close” the signal magnitude is to the threshold the& fime a landmark
is observed, and (c) incorporate landmark appearances a@arithm which may
make data association simpler in more complex environments

Second, some parts of the algorithm, such as maintainingipteuhypotheses
for a large number of possible topologies as well as enuingrat find graph struc-
tures, require large computations. Methods of graphidaté@mce from data [15] as
well as approximate methods that take assumptions abostrineure, such as the
“topology improvement algorithm” in [21], should be expdok We plan to com-
pute the complexity bounds of our algorithm and compare #mopmance with our
approach to other existing approaches such as EKF-SLAM e lanvironments.

A natural extension to the algorithm presented here would loevise a method
of mapping a general planar graph. Our algorithm targetsand-dimensional en-
vironments (corridors), but we imagine using our algorithith GVG’s [6] to map
higher dimensional environments; extensions to the algorito handle “leaves”
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will naturally have to be made. Furthermore, with the framekin this paper, we

can perform SLAM on any parameter (e.g., landmark appeajamtich can be as-
sociated with edges on a graph that has states as nodesgasslare can define a
probability distribution for observations and an estimatbits parameters.
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