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Abstract. Inspired by the electrolocalization behavior of weakly elec-
tric fish, we introduce a novel catheter guidance system for interven-
tional vascular procedures. Impedance measurements from electrodes on
the catheter form an electric image of the internal geometry of the ves-
sel. That electric image is then mapped to a pre-interventional model to
determine the relative position of the catheter within the vessel tree. The
catheter’s measurement of its surroundings is unaffected by movement of
the surrounding tissue, so there is no need for deformable 2D/3D image
registration. Experiments in a synthetic vessel tree and ex vivo biolog-
ical tissue are presented. We employed dynamic time warping to map
the empirical data to the pre-interventional simulation, and our system
correctly identified the catheter’s path in 25/30 trials in a synthetic phan-
tom and 9/9 trials in biological tissue. These first results demonstrated
the capability and potential of Bioelectric Navigation as a non-ionizing
technique to guide intravascular devices.

1 Introduction

As common vascular procedures become less invasive, the need for advanced
catheter navigation techniques grows. These procedures depend on accurate nav-
igation of endovascular devices, but the clinical state of the art presents signif-
icant challenges. In practice, the interventionalist plans the path to the area of
interest based on pre-interventional images, inserts guide wires and catheters,
and navigates to the area of interest using multiple fluoroscopic images. How-
ever, it is difficult and time-consuming to identify bifurcations for navigation,
and the challenge is compounded by anatomic irregularities.
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Previous work has focused interventional and pre-interventional image regis-
tration [2,3,9], but adopting those techniques to endovascular navigation requires
deformable registration, a task that has proven challenging due to significant ves-
sel deformation [1]. From a clinical standpoint, the interventionalist is interested
in the catheter’s position within the vessel tree, and deformation is irrelevant
to navigation since the catheter is constrained to stay within the tree. In fact,
to guide the catheter, one only needs a series of consecutive local measurements
of its surroundings to identify the branch and excursion into the branch. This
suggests that a sensor directly on the catheter could be employed for navigation.

In this paper, we propose a radical new solution, Bioelectric Navigation.
It was inspired by the weakly electric fish which generates an electric field
to detect subtle features of nearby objects [4]. Our technique combines such
local impedance measurements with estimates from pre-interventional imaging
to determine the position of catheter within the vascular tree (Fig. 1). Instead of
the interventionalist relying on fluoroscopy, the catheter itself is equipped with
electrodes to provide feedback. One or more of the electrodes on the catheter
emits a weak electric signal and measures the change to the resulting electric
field as the catheter advances through the vessel tree. The impedance of blood is
much lower than that of vessel walls and surrounding tissue [5], so the catheter
detects local vessel geometry from measured impedance changes. For instance, as
the device passes a bifurcation, it detects a significant disturbance to the electric
field caused by the dramatic increase in vessel cross-sectional area. Bioimpedance
analysis has been proposed for plaque classification [8] and vessel lumen mea-
surement [7,12] but, to our knowledge, has not been applied to navigation. The
relative ordering and amplitude of the features (e.g. bifurcations, stenoses) used
for matching the live signal to the pre-interventional estimate are unchanged
under deformation, so the system is unaffected by movement and manipulation
of the surrounding tissue and does not require 2D/3D deformable registration.

Diagnostic Images Vessel Model Signal Simulation Signal Registration

VisualizationSignal ProcessingLive Signal Aquisition

Fig. 1. In Bioelectric Navigation, live bioelectric measurements are registered to sim-
ulated signals from a pre-interventional image to identify the catheter’s position.

In our novel system, the local measurement from the catheter is compared to
predicted measurements from a pre-interventional image to identify the global
position of the catheter relative to the vessel tree. It takes advantage of high-
resolution pre-interventional images and live voltage measurement for improved
device navigation. Its primary benefit would be the reduction of radiation expo-
sure for the patient, interventionalist, and staff. Experiments in a synthetic vessel
tree and ex vivo biological tissue show the potential of the proposed technology.
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2 Materials and Methods

2.1 Modeling Bioimpedance as a Function of Catheter Location

The first step in Bioelectric Navigation is the creation of a bioimpedance model
from the pre-interventional image. A complete bioimpedance model requires
solution of the 3D Poisson equation, assuming known permittivities of blood
and tissue. Given a relatively simple geometry, one can employ finite element
analysis to numerically solve for the electric potential distribution. For our first
feasibility experiments, we designed an eight-path vessel phantom with two
stenoses and one aneurysm. We imported the 3D CAD model into Comsol Mul-
tiphysics (COMSOL, Inc., Stockholm, Sweden) and simulated the signal as a
two-electrode catheter passed through the six primary branches (Fig. 2A). The
simulation yielded six distinct models, one for each path.

2.2 Cross-Sectional Area to Parameterize Vessel Tree

It is unfeasible to import the geometry of an entire human cardiovascular system
and simulate every path from a given insertion site. However, for catheter nav-
igation, we are only interested in temporal variation of the measured signal as
the catheter travels through the vascular tree. This is why sensing technologies
such as intravascular ultrasound and optical coherence tomography are excessive
for catheter navigation. Instead of an exact characterization of the vessel wall
at each location, we use a simpler parameter to characterize the vessel geom-
etry: cross-sectional area along the centerline of a vessel. We model the blood
between the emitting electrode and the ground electrode as an RC circuit, so
the voltage magnitude at the emitting electrode is inversely proportional to the
cross-sectional area of the vessel between the two electrodes, greatly simplifying
our parameterization of the vessel tree.

There are many methods for the segmentation of the vascular tree in CT
images, and selecting the optimal method is not a contribution of this work. In
fact, our system is largely invariant to the segmentation algorithm chosen. It
uses the relative variation between segments to guide the catheter, so as long as
it captures major geometric features, the extracted model need not have high
resolution. Here, we selected segmentation parameters specific to the imaging
modality (e.g. threshold, shape, background suppression) based on published
techniques [6,10]. After manual initialization at an entry point, the algorithm
detected the centerline and the shortest path between two points in a vessel-like
segmentation. It generated the vessel model and computed the cross-sectional
area at each segment for each possible path.

For the synthetic phantom, the simulated voltage at the emitting electrode
was proportional to the inverse of the cross-sectional area extracted from the
cone-beam CT (CBCT) (Fig. 2B). We conclude that cross-sectional area is ade-
quate for localization with a two-electrode catheter, the minimum required for
Bioelectric Navigation.
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Fig. 2. (A) Simulation of synthetic vessel phantom from imported CAD geometry.
The electrodes (black) span the left-most stenosis in this image. The voltage decreases
at a bifurcation (blue star) and increases at a stenosis (pink star). (B) Simulated
voltage magnitude (green) and the inverse of the cross-sectional area (purple) from the
segmented CBCT.

2.3 Bioimpedance Acquisition

Like the fish, the catheter measures changes to its electric field to detect changes
in the geometry of its surroundings. The bioimpedance acquisition consists of
three main components: the catheter, the electronics, and the signal processing.
Almost any commercially available catheter equipped with electrodes can be
used to measure bioimpedance. A function generator supplies a sinusoidal input
to a custom-designed constant current source. The current source supplies a
constant low-current signal to the emitting electrode on the catheter, creating a
weak electric field in its near surroundings. As such, the voltage measured by the
catheter is a function of the change in impedance. Our software simply extracts
the voltage magnitude at the input frequency as the catheter advances.

2.4 Modeled and Empirical Signal Matching

The bioimpedance signal is a scaled and time-warped version of the inverse cross-
sectional area of the vessel, so the alignment of measured bioimpedance from the
catheter with the modeled vessel tree is the foundation of our technique. While
we are investigating other alignment methods, in these initial experiments we
used open-ended dynamic time warping (OE-DTW) [11]. OE-DTW was cho-
sen because it can be adapted to provide feedback to the interventionalist dur-
ing a procedure. OE-DTW enables the alignment of incomplete test time series
with complete references. The incomplete voltage series during a procedure is
incrementally compared to each of the complete references from the model to
obtain constant feedback about the predicted location of the catheter. See [11]
for details. In our implementation, inverse cross-sectional area along each path
formed the reference dataset, and the voltage magnitude from the catheter was
the test time series. It estimated the most likely position of the catheter in
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the vessel model by identifying the reference path with the highest similarity
measure: the normalized cross-correlation with the test signal. In these initial
experiments, we advanced the catheter through approximately 90 % of each path,
so our analysis did not take advantage of the open-ended nature of the algorithm.

3 Experiments and Results

3.1 Experimental Setup

The prototype was kept constant for the two experiments presented here (Fig. 3).
We used a 6 F cardiac electrophysiology catheter (MutliCath 10J, Biotronik,
Berlin, Germany). Its ten ring electrodes were 2 mm wide with 5 mm spacing.
The input to the current source was ±5 mV at 430 Hz, and the current source
supplied a constant 18µA to the emitting electrode. A neighboring electrode was
grounded. The voltage between the two electrodes was amplified and filtered by
a low-power biosignal acquisition system (RHD2000, Intan Technologies, Los
Angeles, USA). The Intan software (Intan Interface 1.4.2, Intan Technologies,
Los Angeles, USA) logged the signal from the electrodes. A windowed discrete
Fourier transform converted the signal into the frequency domain, and the mag-
nitude at the input frequency was extracted from each window. The most likely
path was identified as described in Sect. 2.4. While real-time implementation is
crucial to navigation, these first experiments involved only post hoc analyses.

Fig. 3. A function generator supplied a sinusoidal signal to the current source, creating
a weak electric field around the catheter tip. Electrodes on the catheter recorded the
voltage as it was pulled through six paths of the phantom. Inset: catheter in phantom.

3.2 Synthetic Vessel Tree

We performed the first validation experiments in the synthetic vessel tree
immersed in 0.9% saline (Fig. 4). A camera recorded the trajectory of the
catheter through the phantom as it advanced through the six main paths at
1–2 mm/s. The OE-DTW algorithm correctly identified the path taken in 25/30
trials. The similarity measure was 0.5245 ± 0.0683 for misidentified trials and
0.6751 ± 0.1051 for correctly identified trials.
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Fig. 4. (A) Synthetic phantom with labeled paths. The two halves of the phantom
were machined from acrylic and sealed with a thin layer of transparent waterproof
grease. When assembled, it measured 10 cm × 25.4 cm × 5 cm. (B) Trials for which
OE-DTW incorrectly predicted catheter position. (C) The measured voltage (blue)
and the simulated signal (green) identify the two stenoses and four bifurcations. The
signals appear correlated but misaligned. (D) The OE-DTW algorithm found a corre-
spondence path between the two signals. (E) OE-DTW aligned the simulated data to
the measured data and calculated the cross-correlation between the two signals.
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Fig. 5. Biological tissue experiment (left) and results from one trial in the long path
(right). The stenosis and bifurcation are visible in both the inverse of the cross-sectional
area and voltage magnitude.

3.3 Ex Vivo Aorta

The impedance difference between saline and vessel is less dramatic than between
saline and acrylic, so we expected lower amplitude signals in biological tissue. We
sutured two porcine aorta into a Y-shaped vessel tree and simulated a stenosis
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in the trunk with a cable tie. We embedded the vessel in a 20 % gelatin solution
and filled the vessel with 0.9 % saline. The ground truth catheter position was
recorded from fluoroscopic image series collected simultaneously with the voltage
measurements (Fig. 5). The catheter was advanced six times through the long
path and three times through the short path. The algorithm correctly identified
the path 9/9 times with similarity measure 0.6081 ± 0.1614.

4 Discussion

This preliminary investigation suggests that the location of the catheter in a
blood vessel can be estimated by comparing a series of local measurements to
simulated bioimpedance measurements from a pre-interventional image.

Our technology will benefit from further integration of sensing and imaging
before clinical validation. While OE-DTW did not perfectly predict the location
of the catheter, the trials for which the algorithm misclassified the path also had
the lowest similarity scores. In practice, the system would prompt the interven-
tionalist to take a fluoroscopic image when similarity is low. Because it measures
local changes in bioimpedance, we expect the highest accuracy in feature-rich
environments, those most relevant to endovascular procedures. The estimate is
least accurate in low-feature environments like a long, uniform vessel, but as soon
as the catheter reaches the next landmark, the real-time location prediction is
limited only by the resolution of the electric image from the catheter. A possible
source of uncertainty is the catheter’s position in the vessel cross-section relative
to the centerline, but according to our simulations and the literature [12], it does
not significantly impact the voltage measurement.

To display the real-time position estimate, our next step is to compare tech-
niques that match simulated and live data in real time (e.g. OE-DTW, Hidden
Markov Models, random forests, and particle filters). A limitation of these match-
ing algorithms is that they fail when the catheter changes direction (insertion vs
retraction). One way we plan to address this is by attaching a simple encoder to
the introducer sheath to detect the catheter’s heading and prompting our soft-
ware to only analyze data from when the catheter is being inserted. We recently
validated Bioelectric Navigation in biologically relevant flow in the synthetic
phantom and performed successful renal artery detection the the abdominal
aorta of a sheep cadaver model. Currently, we are evaluating the prototype’s
performance in vivo, navigating through the abdominal vasculature of swine.

5 Scientific and Clinical Context

The generation and measurement of bioelectrical signals within vessels and their
mapping to a patient-specific vessel model has never been proposed for catheter
navigation. This work is complementary to the research done within MICCAI
community and has the potential to advance image-guided intervention. Bioelec-
tric Navigation circumvents many clinical imaging challenges such as catheter
detection, motion compensation, and catheter tracking. Significantly, deformable
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registration for global 3D localization becomes irrelevant; the interventionalist
may move a vessel, but the catheter remains in the same vascular branch.

Once incorporated into the clinical workflow, Bioelectric Navigation has the
potential to significantly reduce fluoroscope use during common endovascular
procedures. In addition, it could ease the positioning of complex grafts, for
instance a graft to repair abdominal aortic aneurysm. These custom grafts incor-
porate holes such that the the visceral arterial ostia are not occluded. Angio-
graphic imaging is of limited use to the positioning of the device because the oper-
ator must study the graft markers and arterial anatomy simultaneously. In con-
trast, when the bioelectric catheter passes a bifurcation, the electric impedance
changes dramatically. Bioelectric Navigation’s inside-out sensing could change
the current practice for device deployment by providing real-time feedback about
device positioning from inside the device itself.
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