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Abstract

Estimation of system states in complex biological systems, a precursor to sys-

tem identification, is complicated due to the high dimensionality of biological

systems and the inherently stochastic nature of biological processes. This

thesis presents state estimation for two model organisms, the weakly electric

fish and the laboratory rat.

Weakly electric fish, Eigenmannia virescens: The study of animal behav-

ior has been revolutionized by sophisticated methodologies that identify and

track individuals in video recordings. Video recording of behavior, however,

is challenging for many species and habitats including fish that live in turbid

water. This thesis reports a methodology developed for identifying and local-

izing weakly electric fishes on the centimeter scale with subsecond temporal

resolution based solely on the electric signals generated by each individual.

These signals are recorded with a grid of electrodes and analyzed using a two

part algorithm that identifies the signals from each individual fish and then

estimates the position and orientation of each fish using Bayesian inference.

Laboratory rat, Rattus norvegicus domestica: Hippocampal place cells

are spatially tuned neurons that serve as elements of a “cognitive map” in the

mammalian brain. To encode the animal’s location, place cells are thought
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to rely upon two interacting mechanisms: sensing the animal’s position rel-

ative to familiar landmarks and calculating the distance and direction that

the animal has traveled from previously occupied locations. The latter mech-

anism, known as path integration, requires a finely tuned gain factor that

relates the animal’s self movement to the updating of position on the internal

cognitive map, with external landmarks necessary to correct positional error

that accumulates. Path integration based models of hippocampal place cells

and entorhinal grid cells treat the path integration gain as a constant, but

behavioral evidence in humans suggests that the gain is modifiable. This

thesis reports physiological evidence from hippocampal place cells that the

path integration gain is indeed a highly plastic variable that can be altered by

persistent conflict between self motion cues and feedback from external land-

marks. In a novel, augmented reality system, visual landmarks were moved

in proportion to the animal’s movement on a circular track, creating continu-

ous conflict with path integration. A decoding algorithm was developed to

estimate the hippocampal path integrator gain. This algorithm is robust to

temporal changes in neuronal firing characteristics and has the versatility to

estimate the gain from both pyramidal cells and interneurons.

Primary Reader: Noah J. Cowan
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Chapter 1

Thesis synopsis

Biological data are seldom simple being the nonlinear superposition of the

output of multiple complex nonlinear biological processes. Proper experiment

apparatus and estimator design principles, guided by the scientific question

at hand, help manage this complexity. This thesis consists of two studies

exemplifying two types of studies on biological systems. Part I describes the

design of an apparatus and estimator created with the purpose of studying

unconstrained behavior of the weakly electric fish, Eigenmannia virescens, in its

natural environment, the rivers of the Amazonian rainforest. Part II details the

study of a much more controlled behavior, specifically the study of the path

integration system in the hippocampal formation in the brain of a laboratory

rat.
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1.1 High resolution behavioral tracking of electric
fish, Eigenmannia virescens

1.1.1 The weakly electric fish, Eigenmannia virescens

There are species of fish such as the sharks which can detect electric fields and

are said to be electroreceptive. An electric fish is specifically one that is electro-

genic, i.e it can generate electric fields (Nelson, 2011). Electric fish produce this

electric field via a specialized structure called an electric organ, usually located

in the tail of the fish. It is made up of muscle or nerve cells evolved to produce

electric fields. The output of the organ is called the electric organ discharge

(EOD). While some electric fish have EOD strengths of sufficient amplitude to

stun prey, weakly electric fish generate an EOD that is too weak to stun prey.

This EOD instead radiates out from the fish as its source and interacts with

whatever might be present in the fish’s immediate environment – plantlife,

rocks, predators, prey, and other objects. Depending on these objects’ relative

impedance with respect to water, the electric field line density can change –

lower impedance areas have a higher field density whereas higher impedance

areas have lower field density. The local potentials of this modulated field are

sensed by electroreceptors distributed over the surface of the fish’s body, creat-

ing a two-dimensional projection, called the electric image, of the surrounding

three-dimensional field. The fish is able to decipher this image to estimate

the size, shape and distance of objects in range of their electric field. Given

that these fish are also generally electroreceptive, this means that they can

detect the electric field generated by their conspecifics allowing for a medium

of social communication between conspecifics (Hopkins, 1974; S. A. Stamper
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et al., 2012).

Weakly electric fish can be classified broadly by the spatiotemporal prop-

erties of their electric signal. Pulse-type fish emit discrete pulses followed

by a silent period until the next pulse. In contrast, wave-type fish emit a

continuously modulating periodic signal. Species differences can be reflected

in frequency, harmonic content, and the spatial distribution of EOD. I will

be focusing on wave-type fish, specifically Eigenmannia virescens. Their EOD

frequencies span a wide range, from ≈200 - 600 Hz and each individual’s

discharge frequency is subject to change in response to internal and external

factors (Hopkins, 1974; Bullock, Hamstra, and Scheich, 1972).

1.1.2 Scientific question and approach

The study of animal behavior has been revolutionized by sophisticated method-

ologies that identify and track individuals in video recordings (Robie et al.,

2017; Egnor and Branson, 2016). Video recording of behavior, however, is

challenging for many species and habitats including fishes that live in turbid

water. Analyzing the EODs of weakly electric fish obtained from recordings

of natural populations is challenging. These groups of fish can contain more

than 15 individuals and are often composed of multiple species within a single

site (Tan et al., 2005a). Moreover, our field observations suggest that fish are

commonly near conspecifics both in terms spatial position and EOD frequency,

both of which can change rapidly. The recordings contain all fish EOD signals

in addition to environmental noise and equipment artifacts. There is also

limited visibility in the environment which complicates visual verification of
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the fish positions at most recording sites.

In Part I, I present a method for identifying and localizing weakly elec-

tric fishes on the centimeter scale with subsecond temporal resolution based

solely on the electric signals generated by each individual. These signals are

recorded with a grid of electrodes and analyzed using a two-part algorithm

that identifes the signals from each individual fish and then estimates the po-

sition and orientation of each fish using Bayesian inference. This aso includes

a method to use the estimates of the tracked frequency and spatial pose of

the fish to backtrack its electric dipole moment strength. Because this system

involves eavesdropping on electrocommunication signals, it permits moni-

toring of complex social and physical interactions in the wild. This approach

has potential for largescale non-invasive monitoring of aquatic habitats in the

Amazon basin and other tropical freshwater systems (Thomas, Flroion, and

Chretien, 1998; Geller, 1984).

1.2 Investigation of the role of path integration in
the hippocampal spatial map

1.2.1 Rat as a model organism for cognitive neuroscience

For the study of cognition and memory, the laboratory rat (Rattus norvegicus

domestica) is a useful model for multiple reasons. First, there are many similar

neuroanatomical and functional structures in the rat and human brains, specif-

ically in the hippocampus and related structures. The rat is also intelligent

enough to perform fairly complicated and varied cognitive tasks, allowing

for the design of a wide range of experiments. As a result, the physiological
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systems involved in learning and memory have been extensively studied in

this animal for many decades.

1.2.2 Cognitive map, place cells, and path integration

Cognitive map. The cognitive map is a mental representation which serves

an individual to acquire, code, store, recall, and decode information about

the relative locations and attributes of phenomena in their everyday spatial

environment. The concept of a cognitive map derives from Kant’s lectures

and writings on geography (Richards, 1974). Kant believed that humans and

animals have innate perceptual schemes for processing sensory information

and that a geometrical-spatial framework is one of them. In Kant’s words

(Richards, 1974, page 7):

“Whoever wants to build a house, for example, first of all conceives of the whole

from which all the parts will afterwards be derived. Therefore our present preparation

is an idea [Idee] of knowledge of the world. We are creating indeed just such an

architectonic concept [Begriff], which is a concept in which the manifold will be

derived from the whole. Here the whole is the world, the stage on which we shall

present all experience. Travels, and intercourse with people, broaden the extent of

our knowledge. Each contact teaches us to know mankind but demands much time if

this goal is to be reached. If we are already prepared by instruction we already have a

whole, a framework of knowledge which teaches us to know mankind. Now we are in

a position to classify each experience and to give it its place in this framework.”

Hippocampal formation and place cells. Extending this notion, Edward

C. Tolman, in 1948, proposed that rats and other animals had cognitive maps
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that permitted flexible and efficient navigation (Tolman, 1948). O’Keefe and

Nadel, in the landmark book The Hippocampus as a Cognitive Map (1978)

(OKeefe and Nadel, 1978), proposed the hippocampus as the neural sub-

strate of this cognitive map. Their work and many subsequent studies have

shown additional evidence that supports this conclusion with the discovery

of place cells, head direction cells, boundary cells, grid cells, time cells, and

much more (OKeefe and Nadel, 1978,Taube, Muller, and Ranck, 1990, Haft-

ing et al., 2005, Manns, Howard, and Eichenbaum, 2007). A commonly held

view was that the hippocampus receives spatial information from postrhinal

cortex and the medial entorhinal cortex and non-spatial information from

perirhinal cortex and lateral entorhinal cortex. By this viewpoint, the inte-

gration of this information in the hippocampus would make it a practical

location for cognitive mapping, which would necessarily involve combining

information about an objects’ location and its other features. Recent studies

have inspired a rethinking of this viewpoint with evidence pointing more

towards a more mixed representation in these two pathways feeding into the

hippocampus (Keene et al., 2016; Lisman, 2007; Knierim, Neunuebel, and

Deshmukh, 2014; Furtak, Ahmed, and Burwell, 2012; Sereno and Lehky, 2011;

Connor and Knierim, 2017). This makes the role of the hippocampus in the

instantiation of the cognitive map much more nuanced and the story is likely

to get more complicated over the coming years, befitting the complexity of

neural connectivity.

The hippocampus is thought to play a crucial role in episodic memory by
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binding the items and events of an experience within a spatiotemporal frame-

work instantiated by place cells and grid cells (OKeefe and Nadel, 1978; Manns

and Eichenbaum, 2006; Davachi, Mitchell, and Wagner, 2003; Suzuki, Miller,

and Desimone, 1997; Knierim, I. Lee, and Hargreaves, 2006; Eichenbaum,

Yonelinas, and Ranganath, 2007). These cells are influenced by both self-

motion (idiothetic) signals and by external sensory landmarks. Self-motion

signals provide the basis for a path integration computation, in which the

hippocampal system tracks the animal’s location by integrating its movement

vector (speed and direction) over time to continuously update a position signal

on the internal, cognitive map

Path integration. With knowledge of its initial position, path integration

is the process by which an entity’s movement signals are integrated over time

to determine its current position. The degree/order of integration needed

depends on the class of movement signal being integrated. For example, with

knowledge of the initial position, to get the current position, a continuous

velocity signal is to be integrated once and an acceleration signal twice.

For an entity, be it an animal or a robot, path integration is needed for the

following processes essential to navigation:

• Mapping: Upon initial exposure to a new environment, an internal map

needs to be generated for use in navigation, a process known as map-

ping. If all objects or landmarks of interest are within perceptual reach,

there are methods, using a learned internal model of one’s body, that

enable determination of distances between them without locomotion.

For example: distance estimation by stereovision works on this principle
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— the difference in the image projected at the eyes by an object combined

with the knowledge of the distance between the eyes can be used to

estimate the spatial depth of the object. Similarly the difference between

the amplitude and time-of-arrival of sound from a point source to a pair

of ears combined with an estimate of the distance between the ears can

be used to spatially localize the sound source in azimuth. However, a set

of landmarks can be out of perceptual reach of another. In this case, as

the entity explores the environment, path integration can be used to esti-

mate and establish spatial relationships between landmarks. This map

can be egocentric (i.e. where are the objects in the world with reference

to the entity) or allocentric (i.e. where is the entity with reference to the

world). The self motion signals can also be perceived in an egocentric or

allocentric frame of reference.

• Localization: When an environment is familiar and an internal map is

available, an entity is able to determine its location within this environ-

ment, a process known as localization, in ways similar to that discussed

in mapping: the techniques usable when landmarks are within percep-

tual reach are still applicable. When landmarks are unavailable, path

integration can be used in conjunction with the internal model to con-

tinue localization. However, given that measurement of motion signals

are prone to noise in the real world, integration inevitably leads to accu-

mulation of error which manifests itself as an estimate of one’s location

that is gradually drifting with respect to the actual location. The error

can be corrected once the landmarks come back into perceptual reach.
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1.2.3 Question and approach

There is strong evidence supporting the role of path integration inputs to place

cells, grid cells, and head direction (HD) cells (Knierim, Kudrimoti, and Mc-

Naughton, 1998a; Hargreaves, Yoganarasimha, and Knierim, 2007; Save et al.,

1998; Stackman, A. S. Clark, and Taube, 2002; Taube, Muller, and Ranck, 1990;

Sargolini et al., 2006; Vanderwolf, 1969; McNaughton, Barnes, and O’Keefe,

1983; McNaughton, Barnes, Gerrard, et al., 1996; OKeefe and Nadel, 1978). For

example, (a) the spatial firing of these cells can, under certain conditions, drift

relative to all external landmarks, but they maintain an internal coherence

relative to each other, suggesting an internally consistent map updated by

self-motion cues (Knierim, Kudrimoti, and McNaughton, 1998a; Hargreaves,

Yoganarasimha, and Knierim, 2007); (b) lesions to the vestibular system can

cause dramatic loss of spatial/directional firing (Stackman, A. S. Clark, and

Taube, 2002; Stackman and Taube, 1997); and (c) speed-, motion- and direction

related information – predicted by path integration models and necessary

components of the model’s function - is prevalent throughout the sys tem (Sar-

golini et al., 2006; Vanderwolf, 1969; McNaughton, Barnes, and O’Keefe, 1983;

Kropff et al., 2015a). In the absence of stable, external landmarks, however,

these spatial correlates of neuronal activity can quickly accumulate error and

cause the internal representation of position or direction to drift relative to

the external environment. Thus, it is crucial that endogenous spatial repre-

sentations be anchored by stable, external sensory cues, such as individual

landmarks and environmental boundaries. In support of the strong influence

of such external cues, (a) rotation of both salient local and global landmarks
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can cause the rotation of the firing fields of place cells, grid cells, and HD

cells (O’Keefe and Nadel, 1978; Muller and Kubie, 1987; Hafting et al., 2005;

Knierim, 2002; Knierim and Hamilton, 2011), (b) deforming the geometry

of an environment reliably distorts the firing fields of place cells and grid

cells (O’Keefe and Burgess, 1996; Barry et al., 2007; Krupic et al., 2015), (c) an

encounter with a boundary can correct the error accumulated since the last

boundary contact (Hardcastle, Ganguli, and Giocomo, 2015a); and (d) neural

correlates of boundaries and discrete landmarks are found in the hippocam-

pal formation (e.g., boundary/border cells, landmark vector cells (Savelli,

Yoganarasimha, and Knierim, 2008; Solstad et al., 2008; Lever et al., 2009;

Deshmukh and Knierim, 2013)). Vestibular signals, optic-flow, proprioception,

and motor efference copy are idiothetic cues most often proposed to provide

the self-motion signals that update hippocampal spatial representations in a

continuous manner as the animal explores an environment.

Studying this interaction between path integration and landmark-based

corrections requires three capabilities that are not possible using standard

experimental manipulations: (a) to make flexible, controlled adjustments of

landmark cues in real time; (b) to adjust self-motion inputs such as optic flow

in a controlled manner that allows explicit control over the place fields by

these cues, analogous to the control by external landmarks; and (c) to intro-

duce errors between the landmarks and the path integrator under carefully

controlled conditions to reveal the dynamics of the interaction, the constraints

on the system, and the limits to which it can be pushed.

With this in mind, we have constructed an experimental system that allows
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an unprecedented level of dynamic control of visual input to place cells and

grid cells during naturalistic locomotion. We have created a novel augmented

reality (AR) system that is quite different from (and complementary to) other

virtual reality (VR) systems that have successfully investigated spatial cells

of the hippocampal formation (Ravassard et al., 2013a; Saleem et al., 2013;

Aronov and Tank, 2014; Aghajan et al., 2015; Chen, King, Burgess, and O’Keefe,

2013). In typical VR systems, the animal runs on a ball or treadmill and the

visual landscape is updated as a function of the distance run. These systems

demonstrate an impressive ability to drive the cells to fire in a spatially se-

lective manner in virtual space, and they allow imaging and intracellular

recording studies impossible with most freely moving animal studies. One

major drawback, however, is that the vestibular input and the motor patterns

that the animals learn to move the track ball can conflict with the animal’s

virtual locomotion, possibly explaining observed phenomenological anoma-

lies such as the expansion of representations (Terrazas et al., 2005a; Aronov

and Tank, 2014), or the conversion of place cell’s response from encoding

position to encoding distance (Ravassard et al., 2013a; Chen, King, Burgess,

and O’Keefe, 2013). In our apparatus, the rat moves through real space, with

normal vestibular, proprioceptive, and motor activity patterns, with real-time

manipulation of visual inputs as a function of the rat’s locomotion. The ap-

paratus offers opportunities complementary to standard VR systems for the

investigation of the interplay of landmark control and path integration of

self-motion cues.

In Part II, I detail the experiments conducted using this augmented-reality
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system where visual landmarks were moved in proportion to the movement

of a rat on a circular track, creating continuous conflict with path integration.

Physiological evidence from rat hippocampal place cells in these experiments

show that the path-integration gain (the relationship between the displace-

ment in the physical world to the update of position representation in the

internal cognitive map) is a highly plastic variable that can be altered by persis-

tent conflict between self-motion cues and feedback from external landmarks.

Sustained exposure to cue conflict resulted in predictable and prolonged recal-

ibration of the path-integration gain, as estimated from the place cells after

the landmarks were turned off.

The estimation algorithm developed for this analysis was subsequently

shown to be able to reliably estimate the gain from unsorted neural data.

Unsorted gain decoding facilitated the development of an implementation

that decodes the gain in real-time on incoming unsorted neural data, opening

up previously infeasible experiments. The estimation algorithm itself was also

significantly improved.

I conclude Part II of the thesis with preliminary results from ongoing

research exploring two facets of the neural response to gain manipulation

and path integration recalibration. (1) The first facet looks at the response

of head direction cells to the same continuous conflict experiments. Head

direction cells are a vital input to the hippocampal spatial map, feeding in

information about the animal’s allocentric head direction. The circular nature

of the running trajectory of the animal means that the inputs have a significant

directional component. (2) The second facet presents evidence of modulation
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of the gamma oscillation component of the local field potential with gain

manipulation. The CA1 region of the hippocampus is thought to be the hub of

information transfer between the regions of the hippocampal formation and it

is believed that this information transfer is mediated by gamma oscillations.

The phenomenon of path integration recalibration, and in more general terms,

the formation and maintenance of the hippocampal spatial map, is the result

of the corrdinated dynamics of multiple brain regions. Characterizing how

the communication between these regions is affected by gain manipulation

will be essential to understand the neurophysiological phenomenon observed

in these experiments.
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Part I

Eigenmannia virescens

High resolution behavioral
mapping of electric fishes in

Amazonian habitats
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Chapter 2

Design and validation of
electric fish tracking
apparatus and algorithm

The text in this chapter is reproduced largely verbatim from Madhav et al., 2018 of

which I was co-first author. The results of dipole strength estimation to a epigean and

hypogean population of fish was published as a part of E. Fortune et al., 2019. The

associated text is my own.

The study of animal behavior often requires identification and localization,

and characterization of individuals as they move through the environment. In

the laboratory and in certain field conditions, this information can be extracted

from video recordings of individual organisms during complex interactions

(Robie et al., 2017; Egnor and Branson, 2016). Numerous methodologies have

been developed that allow automated and semi-automated video tracking

of individuals over a large range of spatial scales, ranging on the order of

millimeters (e.g. C. elegans), to tens of meters (e.g. bats) (Cheng, Deng, and
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Hedrick, 2011; Noldus, Spink, and Tegelenbosch, 2001; Chaumont et al., 2012;

Kohlhoff et al., 2011; Branson et al., 2009; Dankert et al., 2009; Fontaine et al.,

2009; Gomez-Marin et al., 2012; Kabra et al., 2013; Pérez-Escudero et al., 2014).

Tracking over larger scales, e.g. kilometers, has been accomplished using

devices attached to organisms (Weimerskirch et al., 2002; Tsoar et al., 2011;

Tomkiewicz et al., 2010). There are, however, many species and environments

in which these tracking techniques are infeasible, including certain aquatic

environments and dense forests, as well as for species in which attaching

tracking devices to each individual is not possible.

Many species that are difficult to track using video, however, may betray

their locations via the production of signals, such as sound or electricity, that

can be localized using computational techniques. Audio systems that monitor

autogenous acoustic signals, such as whale songs or bat calls, using grids

of microphones have been used to track some terrestrial and aquatic species

(Ghose et al., 2001; Blumstein et al., 2011; Ali et al., 2009; Giraudet and Glotin,

2006; Watkins and Schevill, 1972).

We developed a sensor array and analytic tools for measuring the positions,

electrical strengths and behaviors of weakly electric fishes. These fish species

are widespread throughout the Amazon basin and in certain river systems

in Africa. Measuring and monitoring the numbers of individuals, spatial

movements and electric strength distributions, and social interactions of these

fish will provide insights that can be used in the context of ecology and

conservation of sensitive Amazonian habitats. These measurements are also

critical for interpreting data from neurophysiological studies of electrosensory
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control circuits in this important neuroethological model system (Heiligenberg,

1991; E. S. Fortune, 2006; Middleton et al., 2007; Chacron et al., 2003).

Weakly electric fish use a specialized electric organ to continuously pro-

duce electric fields that are detectable at distances of up to 2 m (Heiligenberg,

1991; Tan et al., 2005b). For many species (so-called wave-type fishes) this elec-

tric organ discharge (EOD) is pseudosinusoidal with fundamental frequencies

that range from below 50 Hz to above 1500 Hz. These nocturnal fish commonly

live in turbid water and in complex root and littoral habitats, where video

tracking is generally not possible. We have developed a recording system

and computational approach to track multiple wave-type electric fish that

relies solely on their EOD signals. Using this system, we tracked Eigenmannia

virescens, a species of Gymnotiform fish, in both laboratory and field settings.

Our method is designed to make long-term behavioral recordings of these

animals in the wild.

We capture the electric signals using a grid of amplified electrodes that are

deployed in the fish’s habitat. Our analytic approach is composed of two steps.

In the first step, the algorithm identifies a set of signal features (e.g. frequency,

harmonic amplitude ratio), that are unique to each individual fish. In the

second step, the algorithm estimates the location of each fish by solving an in-

verse problem based on the sensor geometry and an electrostatic dipole model.

In theory, each fish’s location could be estimated analytically by inverting

the signal propagation. However, even if the fish were a perfect dipole in an

infinite placid lake, the transformation from fish position to the array of sensor

measurements is highly nonlinear, rendering the inverse problem challenging.
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Moreover, unpredictable sources of physical and biological variability (e.g.

turbulent clouds of silt, fish and other objects through the grid, body bending)

dynamically alter electric fields that add ”noise”. As a result, we believe the

inverse problem is best addressed using statistical estimation techniques.

Our statistical approach is to estimate each fish’s position and orientation

using a particle filter. In a nutshell, the particle filter simulates thousands of

signal sources (particles) in the environment, and compares the simulated

readings at the sensors from these sources to the actual measured values. The

particles with the closest readings to the actual measurements are assigned

higher ”weight”, and the location estimate is the weighted mean of particle

locations.

Once an estimate of the fish position has been obtained, the electric dipole

strength of the fish can be subsequently estimated. This enables further rich-

ness of behavioral analysis enabling characterization of the relative strengths

of the fish involved in a social behavior, with the best case scenario being the

estimation of the age and sex of the individual.

2.1 Methods

Adult Eigenmannia virescens (10–15 cm in length, EODs between 346–452 Hz)

were obtained from commercial vendors. The fish were housed in group

aquarium tanks that had a water temperature of approximately 27◦C and a

conductivity in the range of 150− 500 µS/cm (Hitschfeld et al., 2009). All

experimental procedures were approved by the Johns Hopkins Animal Care
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and Use Committee and the Rutgers Institutional Animal Care and Use Com-

mittee, and followed guidelines established by the National Research Council

and the Society for Neuroscience. Permits to conduct this research in Brazil

were granted to Dr. Maria Elina Bichuette.

2.1.1 Electrode design

We designed and built custom amplifiers to record the specific electric signals

produced by Eigenmannia. These fish produce an EOD in the frequency range

200 to 750 Hz with measured amplitude on the order of mV. Correspondingly,

the amplifier circuitry (Fig. 2.1A) consists of a passive band-pass filter (≈

25—20000 Hz) at the input, an instrumentation amplifier with a gain of ≈ 50,

and an op-amp buffer at the reference which acts as an high-pass filter (≈ 1.6

Hz) to mitigate the AC-coupling.

Figure 2.1: (a) Mechanical design of the electrode (b) Schematic of the individual
amplifier with band-pass input. (c) Bode plot of the whole amplifier. The dashed
blue lines represent the theoretical response given an ideal op-amp. The solid black
line represents the theoretical response incorporating the manufacturer’s models for
both the instrumentation amplifier (INA128) and the reference buffer (OPA130). The
magenta dots represent experimental data.
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The input band-pass filter reduces low- and high-frequency noise signals

that contaminate the fish’s electric field signal. The filter cutoff frequencies

(≈ 25-20000 Hz) are chosen to be well outside of the Eigenmannia virescens

frequency range so that relevant data are not affected.

The mechanical design of an electrode assembly is presented in Fig. 2.1a.

We wrapped the amplifier circuitry in a heat- shrink tube and applied epoxy

at both ends after placing it into a cylindrical graphite shell in order to water-

proof it. Once submerged in the water, the graphite shell acts as the electrode

and conducts the signal to the amplifier board via a 27-gauge silver wire.

Power for the amplifier, ground, and the output signals are carried in a four-

channel cable bundle whose length depends on the location of the electrode

in the grid. Finally, the open cap of the graphite shell and the main cable

interconnection is sealed with an outer heat-shrink tube. Standard BNC and

RCA plugs are used to connect the amplifier to the data acquisition device

and power supply respectively.

We tested our electrodes by recording their responses to a range of frequen-

cies 0.5 Hz-15 KHz at 0.1 V. This was accomplished by generating frequency

sweeps (chirps) from a function generator. We sampled both the input and

output responses at 25 KHz using a data acquisition device. The theoretical

cutoff frequencies of our band-pass filter are 25.2 Hz and 19.9 KHz. The

theoretical frequency response curve is plotted in Fig. 2.1C, along with the

matching response from the chirp test. The Eigenmannia virescens frequency

range is depicted in the green shaded area where the attenuation is 0.50 (-6

dB) and phase is 2.4◦.
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Once electrodes were constructed, we assembled them into an array which

could be easily deployed at field sites. Our field recording sites were shoreline

edges, grass beds, and tree root systems that were reached by canoe. The grid

array facilitated rapid assembly, transport, and deployment at these types of

sites.

Electrodes were attached to a 1.5 m PVC grid with electrode spacing of

50 cm Each electrode was held∼10 cm below the surface using a perpendicular

PVC tube. The entire grid was suspended along the water surface using

floatation fixtures in the corners and along the PVC piping. The electrode-

amplifiers were powered by a common ±1.5 V power supply and grounded

via a carbon rod at least 1 m away from both the grid and from the water’s

edge.

Data were recorded with a Micro1401 DAQ with 12-channel expansion

using Spike2 software (CED, Cambridge, U.K.).

For laboratory experiments a smaller 9 electrode grid (with the same

electrode spacing) was constructed due to space constraints of the tank. All

data recording methodology was identical.

2.1.2 Oscillating dipole model

To analyze the data obtained with the electrode grid, we need a model of

the electric field generated by the fish. For our algorithms, we modeled

Eigenmannia approximately as an oscillating current dipole. This is consistent

with models constructed from spatial measurements of the electric field of

Eigenmannia (Assad, Rasnow, P. Stoddard, et al., 1998; Assad, Rasnow, and
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P. K. Stoddard, 1999). We made the following assumptions in approximating

the fish to be a dipole:

1. The dipole length is small relative to the grid spacing. If a dipole is sufficiently

close to an electrode such that r ≫ d does not hold true, we can safely

assume that for a grid of electrodes with spacing larger than d, the dipole

is sufficiently far away from almost all other electrodes such that r ≫ d

holds true for them. We observed that with the number and spacing of

electrodes present in our grid, a distortion on any one electrode has an

insignificant influence on the spatial tracking error.

2. The dipole is horizontal We observed that Eigenmannia in laboratory tanks

almost always oriented themselves horizontally, i.e. their anterior-

posterior axis is held parallel to the water surface. We have also seen this

anecdotally at our field sites. Thus, we specify the fish’s spatial location

using four coordinates: the spatial position and the orientation in the

x− y plane.

Consider an ideal current dipole, a source-sink pair of equal, but time-

varying strength I(t), separated by a small distance d at the origin, oriented

along the x axis. Using the assumption that r ≫ d, the potential due to this

dipole at a point with polar co-ordinates (r, θ) in the plane defined by the

dipole line and the point can be approximated by

Φ =
I(t) d
4πσ

cosθ

r2 = KI(t)
cosθ

r2 (2.1)

where σ is the conductivity of the medium. In Eigenmannia, we observed that
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contributions to the electric field oscillation can be well approximated by the

first two harmonics, i.e.

I(t) = A cos(2π f t + ψ) + γA cos(4π f t + ξ) (2.2)

where f is the fundamental frequency, A is the amplitude of the fundamental

harmonic, γ is the ratio of the amplitude of the second harmonic to the

fundamental, ψ is the phase is of the fundamental, and ξ is the phase of the

second harmonic. Equations (2.1) and (2.2) make the quasi-static assumption

that, for a given time window, the location (r, θ) and frequency f of each

dipole source is stationary.

Each fish, j = 1, 2, . . . nfish, induces a potential Φj
i at each electrode, i =

1, 2, . . . nelec. This potential can be calculated by replacing (r, θ) with the

pairwise configuration of the jth fish to the ith electrode (rj
i , θ

j
i ), as well as sub-

stituting fish-specific current waveform parameters (Aj, γj, ψj, ξ j, f j). Thus,

for a given time window, we have:

Φj
i(t) = K j cos θ

j
i (t)

rj
i(t)

2

[
Aj cos(2π f jt + ψj) + γj Aj cos(4π f jt + ξ j)

]
(2.3)

= aj
i cos(2π f jt + ψj) + γjaj

i cos(4π f jt + ξ j)

The amplitude ratio γj is invariant for each dipole. The spatial location of

dipole j with respect to electrode i is contained in the term aj
i . The potentials

from all the dipoles sum to form the total potential at electrode i:

Φi(t) =
nfish

∑
j=1

Φj
i(t). (2.4)
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If the different dipoles are oscillating at different frequencies f j, these

frequencies as well as their amplitudes at each electrode aj
i can be estimated

using Fourier analysis of the measured signals Φi. These amplitudes can then

be analyzed over all the electrodes i to estimate spatial position at time t. By

sliding the quasi-static time window, this analysis can be extended to the

entire period of measurement.

Here we present a two-step algorithm to estimate the time-varying absolute

position in three dimensions, (x(t)j, y(t)j, z(t)j), planar orientation, θ j(t), and

oscillation frequency, f (t)j of each of the dipole sources indexed by j, given

the set of potential measurements, {Φi(t)}nelec
i=1 . Note that the electrodes are

deployed at known locations on a rigid (PVC) grid. For example, see Fig. 2.5.

2.1.3 Step 1: Frequency localization of multiple oscillating
signals

This step identifies the time-varying EOD signal parameters of each individ-

ual fish given measurements from a shoal of unknown size. The resultant

”frequency tracks” represent the electric output of each individual (Fig. 2.2);

together these tracks constitute the electrosocial mileau each animal experi-

ences.

2.1.3.1 1(a): Detect harmonic signatures

For electrode i and for a window centered around time t, we compute the short-

time Fourier transform (STFT) of Φi(t) using the spectrogram() function in

Matlab. The result (Fig. 2.2) is a three-dimensional array of complex numbers,

indexed across frequency, time, and electrode. At time t and for electrode i, we
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Figure 2.2: Representation of spectrogram data and extracted frequency tracks. (a)
In the plots for each channel (electrode), the color denotes the amplitude of the signal
at each frequency and at each time. This data over all channels is used to extract
frequency ”tracks”, which are continuous traces of frequencies identified over time.
Three tracks are extracted from this dataset. (b) Spectrogram amplitudes and harmon-
ics. At each time instant (solid white line), the amplitudes from three representative
electrodes are shown. In the presence of multiple frequency components with har-
monics, these electrode amplitudes will typically show a peak at the fundamental
frequency, and another (often smaller) peak at the second harmonic. In this data,
fundamental peaks (red asterisks) and second harmonic peaks (green asterisks) from
three fish are indicated in all three electrode amplitude traces. Higher harmonic peaks
also exist, but are typically weaker and are not used in the analysis and therefore not
shown.
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Figure 2.3: Visual representation of frequency localization algorithm. (a) The
columns represent three contiguous time windows and the rows represent data
measured at three electrodes. Each axis shows normalized (0—1) STFT magnitude
vs. frequency (magenta traces). For simplicity, the algorithm is explained using three
electrodes. At each time window, for each electrode, the signals whose fundamentals
and first harmonics exceed the respective thresholds (red lines) are designated signa-
tures (green circled numbers). At each time window, frequencies at which more than
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dates (yellow squared numbers). (b) Candidates are matched across time windows
using the frequency and amplitudes of their fundamental to form tracks (colored
lines). These steps are carried out across all time windows, and tracks are created or
pruned using confidence criteria.
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define a harmonic ”signature” as a peak of the Fourier magnitude, which falls

within a specified frequency range and above a specified threshold, τ1. Each

signature should also have peaks at the second harmonic above a threshold,

τ2. The ratio τ2 : τ1 is chosen heuristically based on typical amplitude ratios,

γj, we have seen in laboratory experiments; see equation (2.3). For finding

signals corresponding to the weakly electric fish Eigenmannia, we assume

the fundamental frequency lies between 200—700 Hz and set the amplitude

ratio to τ2/τ1 = 1/8. The threshold τ1 was selected manually depending

on the noise level of the data, and the strength of the fish EOD signal at

the electrodes. For each signature, the fundamental frequency as well as

amplitude and phases of the first two harmonics were recorded.

2.1.3.2 Step 1(b): Cluster into candidates at each time window

At each time window, several harmonic signatures may be identified at each

electrode in the previous step. This step of the algorithm clusters the signatures

by their fundamental frequency and forms ”candidates”; each candidate

comprises signatures with the same fundamental frequency, occurring at

the same time instant at more than one electrode. Spurious signatures, e.g.

due to local noise at an electrode, can be eliminated by this voting method.

For tracking Eigenmannia, we assume that each candidate corresponds to the

measured signal from an individual fish at multiple electrodes at the same

time.
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2.1.3.3 Step 1(c): Associate candidate across time

In the third and final step, candidates are associated across time to form

’tracks’. This association is made using the Hungarian algorithm, a combina-

torial optimization algorithm that pairs measurements according to proximity

under a distance metric (Kuhn, 1955). For our implementation, we used as

our metric the Euclidean distance in the combined space of the candidates’

fundamental and second harmonic amplitudes. Candidates in neighboring

time instances are associated first. Because of possible frequency crossing and

temporal gaps caused during spectral analysis, any remaining candidates two

time intervals apart are associated next, and so on, up to a maximum gap of

5 s and a maximum difference in fundamental frequencies of 1 Hz. These

thresholds in time and frequency were selected heuristically. The final tracks

consist of continuous segments of frequencies, amplitudes, and phases of each

putative fish.

We implemented the frequency tracking algorithm in MATLAB, with a

GUI that displays the spectrogram from each electrode and the autonomously

tracked frequency trajectories. The GUI allows manual edits to the frequency

tracks: the user can split, join, or delete tracks. This, along with the ability to

set the threshold τ1 and the range of signature frequencies, provides user input

and customization in frequency tracking, and makes sure that the tracked

frequencies correspond to the patterns that humans can detect readily when

visualizing the spectrogram amplitudes; see Fig. 2.2.
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2.1.4 Step 2: Spatial localization of a moving dipole source

2.1.4.1 Observations from grid electrodes

The frequency localization algorithm outputs tracks, each of which represents

the signal trajectory of a single dipole source. This allows each dipole to be

spatially localized independent of other sources. In other words, we spatially

track each fish separately, allowing us to omit the superscript j (putative fish

number) in the derivations that follow.

Electrode iElectrode k

Ground 

electrode, 0

+

-

OriginDipole

Figure 2.4: Dipole with two electrodes and ground. The dipole consists of two equal
and opposite charges along an axis. The variables used in equations (2.18) and (2.21)
are illustrated here. ri, rk and r0 are the distances from the dipole axis midpoint, and
θi, θk and θ0 are the angles from the dipole axis, to electrodes a, b and g respectively.

Fig. 2.4 shows a dipole and three electrodes: i and k are grid electrodes,

and 0 is the ground electrode with respect to which all electric potential

measurements are made. The vector from the dipole center and each electrodes

have lengths ri, rk and r0 respectively, and the angles of these vectors from the

dipole axis are θi, θk and θ0 respectively. Note that the dipole and electrodes

need not be coplanar; however, as stated earlier, the dipole and the electrode

plane is assumed to be parallel.

We obtain amplitudes, phases, and frequencies of the fundamental and
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second harmonic at each time window from the frequency localization algo-

rithm. As per equation (2.3), the amplitude is a function of the polar position

and orientation (r(t), θ(t)) of the fish and other fish specific constants. The

fundamental phase at an individual electrode by itself does not contain any

spatial information as it can vary depending on the phase of the electric field

oscillation at the start of the time window. However, if an electrode closer to

the positive pole of the dipole has a phase value ψ, all other electrodes which

are closer to the positive pole will have the same phase. The electrodes which

are closer to the negative pole will have the opposite phase, i.e. ψ± π. This

binary grouping of the electrodes results from the fact that the dipole midline

splits the electrode plane into two. Thus, knowledge about this grouping

yields information about the orientation of the dipole. In order to leverage this

binary (signed) phase information, we define the signed potential amplitude

at electrode i as:

λi = ai sign(cos ψi) (2.5)

Using the grid, we can only measure the potential difference with respect to

the ground electrode:

λi,0 = λi − λ0 = ai sign(cos ψi)− a0 sign(cos ψ0) (2.6)

The difference between the voltages at two electrodes i and k eliminates the

effect of the unknown but constant location of the ground electrode:

λi,k = λi,0 − λk,0 = ai sign(cos ψi)− ak sign(cos ψk) (2.7)
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For n such electrodes, the voltage measured from the nth electrode is sub-

tracted from the other (n− 1) electrodes and the resulting (n− 1) vector is

normalized to eliminate fish-specific constants:

Λideal(t) =
(λ1,n . . . λn−1,n)

T

∥(λ1,n . . . λn−1,n)∥
= h(X(t)) (2.8)

This ideal observation vector does not depend on the fish-specific constants K, A

or γ, but is a function h(.) of the unknown state X(t) of the dipole (see Fig. 2.4).

This state vector comprises the position of the dipole source with respect to a

fixed origin, and angle θ(t) of the dipole in the horizontal (x-y) plane:

X(t) = (x(t), y(t), z(t), θ(t))T. (2.9)

We assume that the actual observations are contaminated with indepen-

dent, zero-mean observation noise, νobs:

Λ(t) = Λideal(t) + νobs = h(X(t)) + νobs (2.10)

If fobs(.) is the probability density of νobs, this also means that the likelihood

of a particular observation given the state of the fish is

p (Λ(t)|X(t)) = fobs
(
Λ(t)− h(X(t)

)
. (2.11)

Our goal is to find an estimate, X̂(t), for the 4-dimensional state of each

dipole, given the (n− 1)-dimensional measurement vector Λ(t). Since the

relationship between the state and the measurements is through a transcen-

dental equation, this is a highly nonlinear problem, which typically has no

closed-form inverse. Even if such an inverse exists, it is still necessary to
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combine redundant noisy data. To do so, we resort to a particle filter, a statisti-

cal estimation technique analogous to other (approximate) Bayesian schemes

such as extended or unscented Kalman filters. We chose to use the particle

filter because of its ability to handle non-unimodal data.

2.1.4.2 Particle filter approach

A particle filter is a statistical estimation technique that can be applied to

nonlinear problems with multimodal noise distributions. The state vector of

the fish X(t) evolves in time. We make observations Λ(t) of the system, as

described in the previous section. The particle filter uses a set of N particles

{Xk(t)}N
k=1, each of which has the same state variables as X(t), in addition to

a weight wk(t). Our current knowledge of X(t) is the posterior distribution

given all previous observations, p (X(t)|Λ(1 : t)). The assumption is that,

given large enough N, the set of particles and their respective weights approx-

imates the posterior distribution. That is, each particle is a sample from this

posterior distribution and its weight is the probability of drawing that sample.

At time t, we compute observation vectors for each of the particles:

Λk(t) = h(Xk(t)). (2.12)

We also compute the actual observation vector Λ(t) from the grid electrode

data. From equation (2.11), the likelihood of observing the vector Λ(t) given

the current state of the particle Xk(t) is computed as:

p(Λ(t)|Xk(t)) = fobs(Λ(t)− h(Xk(t))). (2.13)
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We assume fobs to be a zero-mean normal whose covariance grid is σ2
obs times

an (n− 1)× (n− 1) identity grid. The variance σ2
obs was selected heuristically

to give good tracking performance in preliminary lab data.

This likelihood is used to update and re-normalize the weights of the

particles from the previous time step:

wk(t)← [ wk(t− 1)p(Λ(t)|Xk(t)),

wk(t)← [
wk(t)

∑N
k=1 wk(t)

.
(2.14)

The state estimate at time t, X̂(t), is the weighted mean of the particles:

X̂(t) =
N

∑
k=1

wk(t)Xk(t). (2.15)

The particles at time t evolve via a simple random motion model:

Xk(t + 1) = Xk(t) + νmot, (2.16)

where νmot is drawn from a 4-dimensional normal distribution with zero

mean and variances which were tuned heuristically to ensure good tracking

performance in laboratory data. We found that the results were not sensitive to

this value, and we were able to change νmot by an order of magnitude without

substantive change to tracking performance.

2.1.4.3 Specifics of filter implementation

We implemented the particle filter algorithm as described in Arulampalam

et al. (Arulampalam et al., 2002), with the parameters and modifications as

described below.
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We used N = 2.5× 105 particles. At the first time step, the initial states

of the particles were sampled from a non-informative (uniform) prior distri-

bution in the state space. The weights of the particles, wk, are set to 1
N at the

first time step. To achieve reasonable particle density, we constrained the state

space. For x and y, the limits are the tank boundaries in lab data, and twice

the dimensions of the grid for field data. The z state can take values between

0− 3 meters from the plane of the grid of electrodes for both the lab data and

field data. Note that this restriction in state is relaxed for subsequent time

steps: particles are permitted to cross the constrain threshold if that is what

the motion model dictates.

One common problem that arises during particle filter implementation

is sample impoverishment, where most particles end up having (near) zero

weights after a few iterations. In order to counter this, we compute the

effective number of particles (Arulampalam et al., 2002):

Neff =
1

∑N
k=1 wk(t)2

(2.17)

When Neff falls below a threshold, which we set to N
2 , we trigger a re-

sampling operation. 50% of the particles are resampled from the existing

distribution, as represented by the particles and their weights. 45% of the

particles are ”locally sampled”, i.e. they are normally distributed around the

current estimate, X̂(t). 5% of the particles are ”globally sampled” from the

same non-informative uniform prior distribution in the state space used at the

first time step.

During tracking, the particles often converge to a small region of state space
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around the fish as desired, and consequently, the density of particles becomes

sparse in most of the state space. Eigenmannia sometimes perform rapid

”darting” movements, swimming to high velocities with high acceleration

for a short period of time. Such movements are not readily captured by the

motion model which is tuned to capture smooth, not ballistic, motion. If the

fish moves rapidly in this way into a region where there are few particles, the

distribution of particles will not keep pace, and the estimate will diverge. The

obvious way to counter this would be to obtain spatial estimates at a temporal

rate fast enough to capture these darting movements. However, the hardware

EOD sampling rate, combined with the length of the time window needed to

encompass sufficient number of cycles of the EOD for obtaining a discernible

spectrum, limits the temporal rate of frequency and spatial tracking. Instead,

we deploy the locally and globally sampled particles to maintain a sufficient

particle density in the state space to capture these quick movements.

2.1.5 Laboratory experiments

In order to validate our tracking algorithm, we performed experiments of

fish swimming in a large laboratory tank. We used a 3 × 3 electrode grid

with an inter-electrode spacing of 30 cm in an acrylic tank of dimensions 1.5

m × 1.2 m × 0.3 m (Fig.2.5). The tank was filled to a depth of 28 cm with

water, whose conductivity was maintained between 100—250 µS/cm. The

PVC support of the grid was at the water surface, and the electrodes were

lowered to a depth of ∼10 cm below the surface. Fish were released into the

tank and acclimatized for several hours prior to recording data.
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A camera (Logitech C920) with a ring illuminator captured an overhead

view of the tank at 30 frames per second. Retroreflective markers were placed

on the top surfaces of the electrodes as well as the four corners of the tank.

These markers were isolated and identified post-hoc through image processing

to detect the position and orientation of the tank and electrodes in the camera

frame. Electric potential measurements from the electrodes were digitized at

20 kHz. and recorded using a Spike2 data acquisition device (CED, Cambridge,

U.K.). The acquisition device also triggered a blinking LED in the field of

view of the camera, the timing of which was used to synchronize between

the electrode recordings and camera frames. We performed two types of

laboratory experiments: TUBE and FREE.

In the TUBE condition, each fish was confined to a tube of length 20 cm

with plastic mesh sides and ends. The tubes were placed horizontally at

a depth of 10–15 cm at different locations and orientations relative to the

electrode grid. Two retroreflective markers were placed on either end of each

tube, which enabled us to track the position and orientation of the tubes in

the camera frame. We performed 15 trials with a single fish in a tube, with

the tube at different positions and orientations across the tank both within the

grid perimeter and outside the grid. We also performed 40 trials with three

fish in three separate tubes (e.g. Fig. 2.6(a)), arranged from being immediately

adjacent to each other to being across the tank from each other, across a variety

of relative orientations. The position and orientation of the tubes tracked from

a single frame of the overhead video is considered the video-tracked pose, and

the mean of the estimates from our algorithm is considered the electrode-tracked
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pose. (See supplementary figures for more examples. All TUBE data are made

available as part of this publication.)

In the FREE condition, fish were released into the tank and allowed to

swim freely. When the lights were on, fish preferred to remain at the edge of

the tank, outside the grid. To maintain movement, the experimenter used a

clear acrylic rod to induce the fish to swim. For our analysis, we chose epochs

where the fish were moving for a majority of the epoch. We performed trials

with a single fish in the tank (e.g. Fig. 2.6 (b)), and with groups of three fishes.

The head and tail of each fish were manually clicked every 10th video frame.

The clicked points are used to compute the position and orientation of the fish,

and form the video-tracked poses. The estimates from our algorithm at the same

time instances as the clicked video frames are the electrode-tracked poses. (See

supplementary videos for more examples. All FREE data are made available

as part of this publication.)

2.1.6 Estimation of electric fish dipole moment

For a single fish, the frequency tracking algorithm takes the spectrogram of

the oscillating potential signal, tracks the fundamental frequency and outputs

its amplitude, ϕ(t) at each electrode i with respect to the ground electrode 0 at

each time window.

ϕi,0 = ϕi − ϕ0 (2.18)

37



where

ϕi =
A d
4πσ

cosθi

r2
i

(2.19)

=
p

4πσ

cosθi

r2
i

where p = Ad is the time-invariant dipole moment of the fish. The location

of the ground electrode with respect to the dipole is unknown. Taking the

difference between the voltages at any two electrodes 1 and 2 eliminates the

effect of the unknown potential ϕ0 of the ground electrode:

ϕ1,2 = ϕ1,0 − ϕ2,0 (2.20)

=
p

4πσ

cos θ1

r1
2 −

p
4πσ

− cos θ0

r02
p

4πσ

cos θ2

r22 +
p

4πσ

cos θ0

r02

=
p

4πσ

(
cos θ1

r1
2 −

cos θ2

r22

)
Rearranging to get an expression for the dipole moment p, we get

p =
4πσϕ1,2(

cos θ1
r1

2 − cos θ2
r22

) (2.21)

Therefore, at each time window, for n electrodes, we get (n
2) estimates of the

dipole moment. The dipole moment estimate for that time window is the

median of these estimates. To calculate the estimated dipole moment of an

individual fish, a subset of the time windows are selected in which the area of

the convex hull (outer bounds) of 90% of the highest-weight particles (from

the particle filter used in the spatial tracking algorithm) is less than 0.16 sq.m.
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This is a proxy for the spread of the particles which represents the uncertainty

of the estimate. The dipole moment of the fish is estimated as the median of

dipole moment estimates across the selected subset of time windows.

2.2 Results

We validated the approach, which relies on recordings made with an electrode

grid system (Fig. 2.5) and a two-step algorithm to extract the identities and

positions of individuals in a laboratory tank in which the positions of the fish

were also tracked via video recordings. We subsequently validated the system

at a field site in Brazil, in which fish were restrained in mesh tubes at known

locations within the grid.

The tracking system involves three steps: (1) capturing the data using

an array of electrodes placed in the habitat of the animals, (2) extracting the

parameters of the electric signals (e.g. fundamental frequencies and harmonics)

of each individual fish, and (3) tracking the spatial position and orientation

(pose) of each fish with respect to the grid geometry.

The frequency tracking algorithm is semi-automated. The computer ex-

tracts potential frequency tracks produced by individual fish by identifying

peaks in amplitudes of Fourier transforms of the electrode data. These fre-

quency tracks are then superimposed on the spectrogram of the recorded

data. The user then selects those tracks that match the frequency bands in the

spectrogram - each band corresponds to the EOD of an individual fish.

Frequency tracking of signals recorded in the laboratory required little

human intervention, because of the high signal-to-noise ratio, and due to the
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Figure 2.5: The laboratory grid setup. A 3× 3 grid of electrodes (50 cm inter-electrode
spacing) are mounted to a PVC support structure, and mounted to the edges of an
acrylic tank. In the TUBE condition, fish are enclosed in tubular refuges and placed
near the bottom of the tank. In the FREE condition, fish can swim freely through-
out the tank. A ring light around the camera mounted above the tank illuminates
retroreflective markers on the electrodes. The electrical signals are captured and
subsequently recorded by the DAQ.

reduced electrosocial behaviors that Eigenmannia and other species exhibit

in large laboratory tanks. Eigenmannia maintained almost constant EOD

frequencies that were typically separated by more than 5 Hz from other fish

in the tank.

In contrast, we observed more complex electrosocial behaviors and in-

creased interference, including 60-cycle noise, at our field sites. Fish routinely

changed their frequencies over a range of more than 20 Hz, and routinely

crossed or shared EOD frequencies for periods of up to tens of seconds. The

algorithm is robust to such crossings, and the interface allows the user to
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reassign frequency tracks as needed. For fish that shared the same frequency

for 10s of seconds, we were able to use both small independent deviations in

EOD frequencies of each fish and differences in amplitude across the electrode

array to identify individuals.

The output of the frequency tracking algorithm was manually checked

against the raw spectrogram for both lab and field data and corrections, if

needed, were made via the GUI. We extensively and explicitly validate the spa-

tial tracking in the next section, which also implicitly validates the frequency

tracking.

2.2.1 Validation of the spatial tracking algorithm

The second component of the algorithm, spatial tracking, is fully automated.

We validated the pose of each fish estimated by the tracking algorithm by

comparing against the pose measured through image processing of overhead

video. We performed two types of experiments in the acrylic laboratory tank.

In TUBE trials, one or three fish were enclosed in PVC tubes which were

stationary during the course of one trial. In FREE trials, one or three fish

swam freely in the tank, and we chose epochs where one or more fish were

swimming through the grid. A detailed description of the experimental setup

and data collection is provided in the methods section.

2.2.1.1 Laboratory trials.

When the output of the tracking algorithm, i.e. the electrode-tracked pose was

compared to the camera-tracked pose, we observed that the estimate of fish
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Figure 2.6: Results of tracking. (a) Overhead view of one three-fish TUBE trial. The
mean position from tracking is shown using the circle markers with orientation indi-
cated by the lines. The radius of the circle corresponds to two standard deviations of
the X-Y position estimate.(b) Overhead view of one single-fish FREE trial, constructed
by superimposing multiple keyframes from the video. Trajectory of the fish tracked
from the video along with the trajectory and orientations of the fish estimated by the
electric tracking system. (c) Cumulative error plots (solid curves) of position (top)
and angle (bottom) for all TUBE trials. For position plots, the length of the tube (20
cm, ≈ 1.5 fish body lengths) is shaded in grey. Errors are divided into instances when
the fish was within the grid, outside the grid, and all data taken together. The dashed
curves show the mean of the shuffled cumulative error distributions and the shaded
areas indicate the the 0.001 and 0.999 quantiles of the shuffled data, equivalent to
99.8% CI (see Statistical Methods) (d) The same curves for FREE trials.
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Figure 2.7: Shuffled error test of spatial tracking. Position (top) and Orientation (bot-
tom) errors are shown for TUBE (left) and FREE (right). The normalized histograms
of the shuffled RMS error distributions (see Statistical Methods) of all data are shown,
as well as the subsets of data within and outside the grid. The dotted vertical lines
indicate the 0.001 quantile lines (equivalent to 99% CI) of the distributions of the
corresponding colors. The points on the x-axis represent the RMS errors of the true
(unshuffled) data of the corresponding colors.
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pose deteriorated (i.e. the error increased) when the fish were close to the tank

boundary. We attribute this to the insulating acrylic walls of the tank, which

distort the signals from any sources close to it. Because of these boundary

effects, we partitioned the data into two sections based on the actual position

of the fish: within the grid and outside the grid. Fish are considered to be

within the grid if their video-tracked position is within the square defined by

the outermost electrodes.

In the TUBE condition, for fish within the grid, a majority of positions

and orientations estimated by our method fall remarkably close to the actual

pose of the fish. Specifically, within the grid, more than 90% of the tracked

positions were within 20 cm (≈ length of the tube, ≈ 1.5 fish body lengths) of

the video-tracked positions. More than 80% of the tracked orientations were

within 30◦ of the video-tracked orientations (Fig. 2.6(c)). Data within the grid

have better (lower) cumulative error curves than data outside the grid, and

the combined data have a cumulative error curve in between the two.

In the FREE condition, the tracking error is nearly identical to that seen

for the restrained fish; more than 90% of the position errors were within 20

cm and more than 90% of the tracked orientations were within 30◦ of the

video-tracked orientations (Fig. 2.6(d)). The cumulative error curves also have

the same performance relationships.

We compared the tracking errors to two different test statistics on a dataset

where the video-tracked poses were randomly shuffled against the electrode-

tracked poses (see Statistical methods for details).

We used a shuffling (Monte-Carlo permutation) procedure in order to
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analyze the performance of our tracking algorithm. For the TUBE and FREE

trial types, we compiled all pairs of poses (X-Y positions and orientations)

of all fish tracked through overhead video and our electrode-based tracking

method. Each pose pair consisted of one video-tracked pose of one fish for one

frame of the overhead video, and its corresponding electrode-tracked pose.

There were 135 pose pairs for the TUBE dataset (using a single video frame

per trial for each fish) and 3222 pose pairs for the FREE dataset (using every

tenth video frame from each trial for each fish). In each shuffling iteration, the

video-tracked poses were randomly permuted, and position and orientation

errors to their corresponding electrode-tracked poses were computed. These

iterations were repeated 100,000 times. The set of cumulative errors from the

iterations form the shuffled cumulative error distribution. The set of root-mean-

square (RMS) errors from each iteration form the shuffled RMS error distribution.

The data were also divided into instances where the video-tracked positions

are within the grid (TUBE: 73, FREE: 2081) or outside the grid (TUBE: 62,

FREE: 1141). The shuffling procedure was also repeated for these subsets,

creating three cumulative error and three RMS error distributions.

We compared the true (non-shuffled) cumulative error to the shuffled

cumulative error distribution (Fig. 2.6 c,d). We also compared the true (non-

shuffled) RMS error to the shuffled RMS error distribution (Fig. 2.7). This

was to test the null hypothesis that the tracking error of the actual data was

statistically no different from a random permutation of the locations of the

fish.

The shuffled cumulative error distributions for data within the grid, data
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outside the grid, and all data, along with their 0.1% and 99.9% quantiles are

plotted in Fig. 2.6(c) and (d). The shuffled distributions appear to have the

same relative relationships as the true error curves. The cumulative error

curves of the true data are lower than the shuffled distributions in all cases

except the orientation error for data outside the grid. This indicates that our

algorithm cannot determine orientation of the fish accurately when the fish

are restrained outside the grid boundaries. This is in fact confirmed and quan-

tified by the second statistic, the root-mean-square (RMS) error between the

set of video-tracked and electrode-tracked position and orientation estimates.

Fig. 2.7 plots the shuffled RMS error distributions for positions and orienta-

tions in the TUBE and FREE conditions, along with their 0.1% quantile, and

the RMS errors of the true data. In all cases except TUBE orientation outside

the grid, the true data have significantly lower RMS errors than the distribu-

tions. For these cases, we can reject the null hypothesis that the tracking error

of the actual data was statistically no different from a random permutation

of the locations of the fish. However, in most cases, especially when the fish

are freely swimming and within the grid, our algorithm performs orders of

magnitude better than chance.

46



2.2.1.2 Field trials.

An 8-electrode grid with a 50 cm.inter-electrode spacing was deployed in the

Lapa river within 200 m of the entrance of the Terra Ronca I cave (13◦44’06.8"S

46◦21’29.3"W, Goiás, Brazil). A characteristic of this field site was crystal-

clear water, which allowed us to video the grid from above and under the

water. The depth of the water under the grid ranged from 5 cm to 40 cm. The

conductivity of the water has been reported to range between 15 and 34 µS/cm

(Bichuette and Trajano, 2015). We performed four 100s recordings from the

field site (Fig. 2.8). In each recording, three fish with known EOD frequencies

were restrained in tubes at known locations and orientations within the grid.

However, other Eigenmannia freely swam in and around the grid. Interestingly,

the fish in tubes maintained nearly constant EOD frequencies, whereas the

free fish produced complex excursions in EOD frequency (Fig. 2.8).

We spatially tracked fish in the wild using the same parameters as those

used for tracking fish in the lab. A site photo with overlaid spatial estimates

is shown in Fig. 2.8. The spatial estimates varied over the 100 s long trials

and we characterized the distribution of the estimates across time. The dis-

tribution of each fish’s estimate for each data set was non-normal (Royston’s

Multivariate Normality Test, 5% significance level). To quantify the error in

the estimate over time, we computed the root-mean-squared-error (RMSE) for

each fish in each dataset (see Table 2.1). Errors were typically within 1.5 body

lengths (10/12 estimates) and 15◦ (8/12 estimates), and never worse than 3

body lengths. As with the tracking in the lab, the positions and orientations

estimated by our method fall close to the actual pose of the fish.
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Figure 2.8: A grid of 8 electrodes was deployed at a field site in Brazil (right). Three
fish were captured, their baseline EOD frequencies recorded, and placed in tubes.
Signals were recorded from the grid electrodes, while other free electric fish swam
within the grid. The spectrogram of the recorded data (left) reveals several tracks,
including those belonging to the restrained fish (marked as 1-3). We traced the
locations of all the Eigenmannia that entered the grid area during the trial. The
trajectories of two freely swimming fish are shown as examples on the right, with
their orientations indicated at several locations. For the restrained fish, the mean
and two standard deviations of the position estimate is marked using circles, and
the mean and two standard deviations of the orientation estimate is marked using
wedges within the circles.
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Dataset Position Orientation
RMSE (cm) RMSE (deg)

TerraRonca_01
Fish 1 6.6 9.9
Fish 2 10.6 3.1
Fish 3 16.5 12.6

TerraRonca_02
Fish 1 33.8 57.9
Fish 2 43.9 50.1
Fish 3 15.6 6.1

TerraRonca_03
Fish 1 13.1 22.9
Fish 2 8.6 5.6
Fish 3 7.6 4.5

TerraRonca_04
Fish 1 13.1 6.6
Fish 2 19.3 28.5
Fish 3 17.3 4.7

Table 2.1: Root-mean-squared-errors (RMSE) of position and orientation estimates in
the field. We performed four 100 s recordings in the field (TerraRonca_01 through
TerraRonca_04), each of which had three fish restrained in tubes, and estimated their
poses. The position RMSE which are not within the length of the tube (20 cm, ≈ 1.5
fish body lengths) and angular RMSE which are not within 15◦ are shaded.

2.2.2 Dipole moment strength comparison between epigean
and hypogean subpopulations of fish.

Recently, a species of troglobitic Eigenmannia, which are either eyeless or have

vestigial eyes, was discovered in a cave in Brazil (San Vincente II) within the

Terra Ronca State Park (13◦30’ - 13◦50’ S, 46◦0’ - 46◦30’W). To compare between

these cave fish with their epigean relatives from a nearby river (Rio da Lapa),

electrosocial and swimming behaviors were recorded at these field sites using

a 16-electrode grid with 0.5 meter spacing placed into the streams. Dipole

strength estimation shows that the electric field strength of the hypogean fish

were dramatically increased relative to their epigean relatives (2.9, E. Fortune

et al., 2019).
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Figure 2.9: Population distribution of fish dipole strengths at cave and surface sites.
Top panel shows the distribution of estimated dipole moments of the hypogean
subpopulation discovered in a cave in Brazil (San Vincente II) within the Terra Ronca
State Park. Bottom panel shows the distribution of estimated dipole moments of
the epigean population from a nearby surface site. Dipole moment in Amp-meter is
shown on the x-axis. The y-axis shows the number of fish. The hypogean population
distribution has a peak at a higher dipole moment value and a longer tail as compared
to the epigean population.
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2.3 Contributions

The contributors to this work were Ravikrishnan P. Jayakumar(R.P.J.), Manu S.

Madhav (M.S.M.), Alican Demir(A.D.), Sarah A. Stamper(S.A.S.), Maria Elina

Bichuette (M.E.B.), Daphne Soares (D.S), Eric S. Fortune(E.S.F.), and Noah J.

Cowan(N.J.C.). R.P.J. developed and implemented the spatial tracking and

dipole moment estimation algorithm and associated GUI. M.S.M. developed

and implemented the frequency tracking algorithm and associated GUI. A.D.

designed the electrode assembly and circuit, and performed the calibration

tests on the electrode amplifier circuit. S.A.S., M.S.M. and R.P.J. performed

the laboratory experiments and analyzed the data. S.A.S. and E.S.F. collected

preliminary field data used to develop the algorithm and E.S.F., M.E.B., and

D.S. collected the final field data from the Terra Ronca site. R.P.J. generated

the final spatial trajectories from laboratory and field data and performed the

dipole moment estimation contributions, and M.S.M. performed the statistical

shuffling tests. N.J.C. and E.S.F. guided the development of the spatiospectral

tracking algorithms, and oversaw the testing and analysis of the electrode

array and laboratory experiments.
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Chapter 3

Discussion

The material from the discussion section of Madhav et al., 2018, of which I am the

co-first author, has been used largely verbatim to form parts of this Chapter

Weakly electric fish are nocturnal and commonly live in silty, complex

habitats, making video tracking generally impossible. Fortunately, these fish

betray their position by continuously generating autogenous electric signals

for communication and for detecting and characterizing nearby objects. We

eavesdropped on these signals using a grid of custom electrodes as the fish

swam in their natural Amazonian habitats. We tracked each individual’s

electric field frequency and used the relative distribution of amplitudes and

phases across the electrodes to estimate the 3D postion and orientation of each

fish. In a sense, we tackled a similar inverse problem as the electrosensory

system of the fish—finding the location and orientation of objects in the

environment using spatially distributed measurements of electric fields, an

idea that has also been explored in bio-robotic electric navigation (Snyder

et al., 2012; Boyer et al., 2012).
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In order to reliably record EODs in the wild, we designed and custom-

built electrodes with a built-in active amplifier and filter. The amplifier helps

minimize recording noise, and the filter retains frequencies from our species

of interest, Eigenmannia. The electrodes are arranged in a spatially distributed

grid. The electrode grid needs to be constructed and repaired with material

easily sourced in the country of recording and deployed by boat in remote

locations. The electrodes are independently powered from a central power

supply which is situated in a boat or on land near the grid. This ensures that

the failure of one electrode would not disrupt the experiment. Due to con-

venience (cost, sturdiness, etc.) of construction and deployment restrictions,

we restricted the design of the grids to two-dimensional arrangements that

can be constructed using locally-available PVC pipe fittings. We designed the

laboratory grid to simulate the field grid as much as possible. We used the

same electrodes that were used in the field, as well as a PVC support structure

which was at the water surface.

Frequency analysis over time inherently involves a trade-off between

spectral and temporal resolutions. The complex numbers obtained as the

spectrogram of the raw electrode potential signals are sensitive to the size

of the each temporal window, the windowing (weight) function used, and

the size of overlap between windows. Moreover, a practical implementation

also has to trade-off and optimize computational time. We chose the spectro-

gram parameters through trial and error, but verified these parameters on

both laboratory and field data. It is often possible to spot frequency traces
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in the spectrogram amplitudes; thus when the frequency tracking is imple-

mented on field data, it goes through manual scrutiny where we verify that

the algorithmically generated frequency tracks do "line up" with observed

spectrogram tracks. We developed a GUI which allows the person doing the

analysis to manually intervene, and add, delete or re-assign whole or parts

of frequency tracks. Of course, these edits are also recorded so that during

spatial localization, frequency tracks can be used with or without manual

intervention.

Each of the tracks generated by the frequency tracking algorithm corre-

spond to the electric signal of individual fish. The spatial localization al-

gorithm uses the amplitudes and phases measured at each of the tracked

frequencies over time, in order to estimate the position and orientation of each

fish. Spatial localization is thus made independent of the number of fish, since

in effect, spatial tracking is performed on each fish independently. We were

able to calibrate our algorithms using data collected in the laboratory when

we had known fish positions and also at a field site in Brazil where restraining

the fish and position visibility was attainable.

The spatial tracking algorithm is a particle filter that relies on simulating

large number of "fish" at initially random locations, and having these pop-

ulations converge to the true position and orientation of the fish. A large

number of particles approximate the true posterior probability distribution of

the fish, however it is computationally expensive to simulate large particle

groups and to compute their statistics. The particles are assumed to be ideal

electric dipoles. Even though this is true for Eigenmannia in general, individual
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fish can vary in their electric field structure. Fish also bend their bodies and

thus can distort their electric field temporarily. Also, the ideal dipole model

assumption breaks down close to the dipole source. Since fish within the grid

sometimes swim right next to an electrode, the reading at that electrode is

less reliable. The model used for simulating electrode readings also assumes

that the environment around the dipole source and measurement electrode

is homogeneous. The environment around the grid in the field is clearly

not homogeneous, since the fish generally live in littoral environments, and

sometimes in shallow water of varying depth. In the laboratory, the insulating

walls of the acrylic tank produce a non-homogeneous boundary conditions.

As we describe in the results, the accuracy of spatial tracking under these

conditions can be compromised.

Previous work demonstrated the feasibility of using a multi-electrode array

to spatially localize pulse-type weakly electric fishes (Jun, Longtin, and Maler,

2013). This approach, designed for behavioral observation in a laboratory

setting, is similar to ours in that simulated electrode readings based on a

dipole model are compared with actual readings from the fish. They take

advantage of the known geometry of the tank and water surface boundaries

to account for boundary effects in the simulated readings. A shallow water

depth also allowed them to use a planar dipole model.

Field recordings, by contrast, occur under much more uncontrolled condi-

tions, such as environmental noise sources corrupting the signal, unknown

boundary conditions and variable water depth. Since the electrode grid is

constructed on site under less than ideal conditions, there can also be small
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uncertainties about the geometry of the grid of electrodes. We use a Bayesian

approach, specifically the particle filter, to deal with such noisy recordings.

This allows us to construct the posterior probability density function of the

fish’s state based on all available information. This distribution would, in prin-

ciple, yield an optimal estimate of the state as well as a measure of confidence

(Arulampalam et al., 2002).

These methods were developed to study the social and locomotor dynam-

ics of weakly electric fish that live in habitats where video tracking is generally

not possible. This is due to the fact that these nocturnal fish commonly live

in turbid water and in complex root and littoral habitats. There have been

previous efforts to localize these fish using spatially distributed electrode

recordings; however, these approaches have been limited to a laboratory set-

ting on a single fish (Jun, Longtin, and Maler, 2013), or on a fish analog (Snyder

et al., 2012). We tracked Eigenmannia virescens, a species of Gymnotiform fish,

in both laboratory and field settings, and our method is specifically aimed at

chronic behavioral recordings of these animals in the wild.

Weakly electric fish, Eigenmannia virescens exhibit indications of a complex

electrosocial behavior in their natural habitats. The results in Chapter describe

the estimation of the frequency and spatial trajectory of the individuals com-

prising the recorded population of fishes. This enables us to determine if two

fish are within biologically salient distances of each other and consequently,

to start to discern the nature of specific behaviors exhibited by a fish and what

sort of responses this elicits from its neighboring conspecifics. In addition to

the spatial distances, given that the electric field generated by the fish can be
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approximated by a dipole model, the relative orientation between the fish may

also have particular significance in behavioral epochs such matching of EOD

frequencies, particularly if the fish are parallel to each other. Two candidate

cases are:

• The dipole oscillation of the two fish are in phase

– If the fish are close enough, the two fish may act as a single dipole of

a higher strength. This may serve a cooperative strategy to enhance

the sensing abilities of both fish.

• The dipole oscillation of the two fish are antiphase

– This may occur due to the natural interaction of charges in a dipole.

Specifically, if the two fish are close to and parallel to each other, a

charge of one polarity at one end of the dipole on a fish may make

it more probable for a charge of the opposite polarity to be at the

proximal end of the dipole on the other fish.

The ability to estimate a fishes’ dipole moment strength is of high bio-

logical significance. The results showing higher dipole moment strengths of

hypogean fish relative to their epigean relatives exemplifies how troglobitic

animals often exhibit dramatic differences in behavior and in the size and

structure of sensory organs when compared to their epigean relatives. These

differences can include the loss of eyes and the emergence or elaboration of

other sensory organs.

Weakly electric fish have been a valuable model system for furthering our

understanding of social communication. In the laboratory, it is known that fish
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modulate their frequency in very short timescales for social communication

signal. Frequency behaviors such as Jamming Avoidance Response (JAR) and

Social Envelope Response (SER) have never been observed in the wild context.

Spatial behaviors are interesting in terms of understanding social dynamics,

but also to see if JAR, SER etc. have motion correlates. The knowledge of

baseline frequency and dipole moment strength as an indicator of gender and

social dominance, combined with frequency transitions and spatial motion as

indicators of aggressiveness, sexual selection or cooperation, can significantly

enrich social behavior analysis.

The spatiotemporal resolution and accuracy of the grid system permits

the observation of currently unknown parameters of locomotor-related be-

haviors, particularly social behavior. The system can resolve the numbers

and movements of fish in groups, which is known to vary between species

(S. Stamper et al., 2010; Oestreich and Zakon, 2005; Tan et al., 2005b). We

will, for the first time, be able to identify the transit of individuals across

territories and through groups, providing insight into the parameters that

govern these differences in behavior (see Henninger et al., 2017). However,

close interactions (less than one body length distance), which can include

body contacts, biting, and complex poses (Hupé and Lewis, 2008), cannot be

determined using this system. These important social behaviors are of interest

to biologists but are unlikely to be resolvable using the current technology.

Weakly electric fish are distributed through much of the Amazon basin and

are known to be sensitive to environmental perturbations (Thomas, Flroion,
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and Chretien, 1998; Geller, 1984) making them a bellwether for changes to crit-

ical Amazonian habitats. The technology presented in this paper, which takes

advantage of the continuous electrical signals produced by these animals, can

be scaled for widespread monitoring of these fish and therefore of environmen-

tal impacts of human activity: the custom amplifiers are composed of a simple,

low-power, inexpensive circuits, readily integrated into autonomous systems

that automatically capture and upload data. These data can be analyzed to

assess behavioral activity, species distributions and diversity.

The application for these analysis techniques is promising for data collected

in natural habitats. Researchers measure as many parameters as possible in-

cluding conductivity, location of visible objects (tree roots, etc.), water depth,

at each site to facilitate the use of the frequency tracking and spatial localiza-

tion algorithms. The data is monitored in real-time to allow the adjustment of

electrodes and grid placement. However, there is much in the environment

that can not be controlled including noise sources, weather disturbance of

site by other animals, etc. Thus, estimating fish position in the wild will

likely be more variable. However, based on the analysis to date, we are

confident that our methods will be applicable under such conditions. This

data will give insights into the sensory milieu of the fish and inspire future

neurophysiological and behavioral experiments in the laboratory to gain a

more controlled understanding of the mechanisms underlying processing

electrosensory signals.
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Part II

Rattus norvegicus domestica

Investigation of the role of
path integration in the

hippocampal spatial map

60



Chapter 4

Recalibration of path
integration in hippocampal
place cells

Aside from Figure 4.4, the rest of this chapter is reproduced verbatim from Jayakumar

et al., 2019 of which I was the co-first author.

Hippocampal place cells are spatially tuned neurons that serve as elements

of a "cognitive map" in the mammalian brain (OKeefe and Nadel, 1978). To

detect the animal’s location, place cells are thought to rely upon two interact-

ing mechanisms: sensing the animal’s position relative to familiar landmarks

(Acharya et al., 2016, Chen, King, Burgess, and O′Keefe, 2013) and measuring

the distance and direction that the animal has traveled from previously occu-

pied locations (Etienne and Jeffery, 2004, Wehner and Menzel, 1990, Wittlinger,

Wehner, and Wolf, 2006, M. .-.-L. Mittelstaedt and H. Mittelstaedt, 1980). The

latter mechanism, known as path integration, requires a finely tuned gain

factor that relates the animal’s self-movement to the updating of position on
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the internal cognitive map, with external landmarks necessary to correct posi-

tional error that accumulates (Gallistel, 1990, Samsonovich and McNaughton,

1997). Path-integration-based models of hippocampal place cells and en-

torhinal grid cells treat the path integration gain as a constant (Samsonovich

and McNaughton, 1997, Fuhs and Touretzky, 2006, McNaughton, Battaglia,

et al., 2006, Hasselmo, Giocomo, and Zilli, 2007, Blair, Gupta, and Zhang,

2008, Burgess, Barry, and O’Keefe, 2007), but behavioral evidence in humans

suggests that the gain is modifiable (Tcheang, Bulthoff, and Burgess, 2011a).

Here we show physiological evidence from hippocampal place cells that the

path integration gain is indeed a highly plastic variable that can be altered

by persistent conflict between self-motion cues and feedback from external

landmarks. In a novel, augmented reality system, visual landmarks were

moved in proportion to the animal’s movement on a circular track, creating

continuous conflict with path integration. Sustained exposure to this cue con-

flict resulted in predictable and prolonged recalibration of the path integration

gain, as estimated from the place cells after the landmarks were extinguished.

We propose that this rapid plasticity keeps the positional update in register

with the animal’s movement in the external world over behavioral timescales.

These results also demonstrate that visual landmarks not only provide a signal

to correct cumulative error in the path integration system (Etienne and Jeffery,

2004, Gallistel, 1990, Knierim, Kudrimoti, and McNaughton, 1998b, Zugaro

et al., 2003, Hardcastle, Ganguli, and Giocomo, 2015b, Etienne, R. Maurer, and

Séguinot, 1996), but also rapidly fine-tune the integration computation itself.

Path integration is an evolutionarily conserved strategy that allows an
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organism to maintain an internal representation of its current location by

integrating over time a movement vector representing distance and direction

traveled (Etienne and Jeffery, 2004, Wehner and Menzel, 1990, Wittlinger,

Wehner, and Wolf, 2006, M. .-.-L. Mittelstaedt and H. Mittelstaedt, 1980). Place

cells and entorhinal grid cells have been implicated as key components of a

path integration system in the mammalian brain (E. I. Moser, M.-B. Moser,

and McNaughton, 2017, Gil et al., 2018, Tennant et al., 2018). We recorded

place cells from area CA1 (Extended Data Fig. 4.5) in 5 rats as they ran laps on

a 1.5 m diameter circular track. The track was enclosed within a planetarium-

style dome where an array of three visual landmarks was projected onto the

interior surface to create an augmented reality environment (Fig. 4.1 a,b).

In contemporary virtual reality systems (Chen, King, Burgess, and O′Keefe,

2013, Hölscher et al., 2005, Harvey et al., 2009, Ravassard et al., 2013b), head-

or body-fixed rats fictively locomote on a stationary air-cushioned ball or

treadmill. Notwithstanding the flexibility of these systems to manipulate the

visual experience of the animal, we built the dome apparatus to instead more

completely preserve natural self-motion cues, such as vestibular, propriocep-

tive, and motor efference copy. This system enabled us to test the a priori

hypothesis that manipulating the animal’s perceived movement speed relative

to the landmarks results in a predictable recalibration of the path integration

gain.

To create the visual illusion that the animal was running faster or slower,

the array of landmarks was rotated coherently as a function of the animal’s
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movement speed. Movement of the landmarks was controlled by an exper-

imental gain, G, which set the ratio between the rat’s travel distance with

respect to the landmarks (landmark reference frame) and its travel distance

along the stationary circular track (laboratory reference frame) (Fig. 4.1c).

Recording sessions began with G = 1 (Epoch 1), a control condition with

landmarks held stationary, so that the rat traveled the same distance in both

the landmark and lab frames (Fig. 4.1d). The gain was then ramped over the

course of multiple laps (Epoch 2) to values less than or greater than one. For

G < 1, the landmarks moved at a speed proportional to (but slower than)

the rat in the same direction; hence, the rat ran a shorter distance in the land-

mark frame than in the lab frame. For G > 1, the landmarks moved in the

opposite direction; hence, the rat ran a greater distance in the landmark frame

than in the lab frame. In Epoch 3, G was held at a steady-state target value

(G f inal). In some sessions, the landmarks were then extinguished (Epoch 4) to

assess whether the effects of gain adjustment persisted in the absence of the

landmarks.

4.1 Results

Under gain-adjusted conditions, CA1 units (mean 7.2± 5.8 S.D. units/session)

tended to fire in normal, spatially specific place fields when the firing was

plotted in the landmark frame, but not when plotted in the lab frame (Fig.

4.1e). The strength and continuity of visual cue control over the place fields is

highlighted by special cases of G (Fig. 4.2). As G was ramped down to 0, the

place fields became increasingly large in the lab frame, eventually spanning
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multiple laps (Fig. 4.2a), but they maintained normal spatial selectivity in the

landmark frame (Fig. 4.2b). At G = 0, the animal’s position became locked to

the landmark frame, as the landmarks moved in precise register with the rat.

Consequently, a unit that was active at that moment would typically remain

active throughout Epoch 3, (e.g. yellow unit, Fig. 4.2a); in contrast, a unit that

was inactive at that moment would typically remain silent throughout Epoch

3 (e.g. red unit, Fig 4.2 a). When G was clamped at integer ratios such as 3/1

(Fig. 4.2c) or 1/2 (Fig. 4.2e), the units maintained the typical pattern of one

field/lap in the landmark frame, while firing at the expected periodicity such

as 3 times per lap (Fig. 4.2d) or every other lap (Fig. 4.2f) in the lab frame.

Remapping events sometimes caused different populations of place cells to be

active at different times. For example, place cells active during the initial part

of the session sometimes went silent (loss of field; Fig. 4.2e, yellow unit), and

place cells silent during the initial part of the session sometimes began firing

at a preferred location (gain of field; Fig. 4.2e, red unit). The remapped cells

exhibited normal place fields only in the landmark frame. These examples

illustrate that the landmark array exercised robust control over the place fields,

outweighing any subtle, local cues on the apparatus as well as nonvisual path

integration cues, such as vestibular or proprioceptive cues.

To quantify the degree of landmark control over the population of recorded

place cells, we developed a novel decoding algorithm that was robust to the

remapping events described above. We estimated the gain, Hi, for each

individual unit, i, by measuring its spatial frequency (i.e., the frequency of

repetition of its spatially periodic firing pattern). The median value of Hi over
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Figure 4.1
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Figure 4.1 (previous page): Dome apparatus, experimental procedure, and sample
data. (a) Semi-transparent illustration of the dome apparatus. (b), Photo of the
apparatus. The dome is raised to allow visualization of the interior, but it is lowered
as in (a) for the experiment. (c) Illustration of experimental gain G. From the same
initial positions of the landmarks and rat, three gain conditions are shown, in both lab
(top) and landmark (bottom) frames of reference. In each case, the rat runs 90◦ in the
lab frame. (d), Profile of gain change and epochs during a typical session. An annular
ring is always projected at the top of the dome (as shown in (a)) for illumination
purposes, and is not turned off even in Epoch 4. (e) Representative firing rate maps
for five different units from five separate gain manipulation sessions, shown in the lab
frame (top, middle rows) and landmark frame (bottom row) during Epoch 3 (constant
experimental gain). Plots in the top row are color scaled to their own individual
maximum firing rates; middle and bottom row plots are color scaled to the maximum
firing rate of the bottom plot of each pair.

all simultaneously recorded active units during a given set of laps was taken

as a population estimate of the hippocampal gain, H, for those laps. Just as G

quantifies the ratio between the rat’s travel distance in the landmark frame

versus lab frame, H quantifies the ratio between the rat’s travel distance in the

internal hippocampal "cognitive map" frame (OKeefe and Nadel, 1978 versus

the lab frame. An ensemble coherence score for each unit was computed as

the mean value over the session of |1− Hi/H|, measuring the deviation of Hi

from H. The distribution of coherence scores (Fig. 4.2g) shows that Hi was

within 2% of H for 80% (399/500) of individual units, and deviations greater

than 5% were rare. Even when individual cells remapped, they still exhibited

spatial periodicity at gain factors Hi that were close to H (see red and yellow

units in Fig. 4.2c). Hence, the population of place cells acted as a rigidly

coordinated ensemble from which a precise estimate of H could reliably be

computed, despite occasional remapping by some place cells.

The degree of cue control in each session was quantified by the mean ratio
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H/G for Epochs 1-3 of a session; a ratio close to 1 indicates that the cognitive

map was anchored to the landmark frame (i.e., G = H). The majority of

sessions (83.33%) exhibited H/G near 1, but the rest showed substantially

larger ratios (H/G > 1.1) indicating loss of landmark control (Fig. 4.2h;

Extended Data Fig. 4.6). For sessions with H/G < 1.1, the spatial information

per spike in the landmark frame far exceeded that in the lab frame (Fig. 4.2i).

Further quantitative analyses was restricted to these sessions demonstrating

’landmark control’. These results indicate that the augmented reality dome

was successful in producing the desired illusion by strongly controlling the

spatial firing patterns of the hippocampal cells in the majority of sessions

(Extended Data Figs. 4.7 4.8).

Despite strong cue control in the majority of sessions, place fields nonethe-

less tended to drift systematically by a small amount against the landmark

frame on each successive lap (Extended Data Fig. 4.9; also visible in Figs. 2a,c,e

and 3a,b) leading to total drifts of up to ∼80◦ over the course of a session.

The direction of this bias was consistent with a continuous conflict between

the dynamic landmark reference frame and a path-integration-based estimate

of position (although we cannot rule out the possible contribution of subtle

uncontrolled external cues on the track or in the laboratory). That is, when

path integration presumably undershot the landmark-defined location system-

atically (G < 1), the place fields shifted slightly backwards in the landmark

frame; conversely, when path integration overshot the landmarks (G > 1),

the place fields shifted forward. The shift may reflect a conflict resolution

that is weighted heavily, but not completely, in the direction predicted by the
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landmark frame.
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Figure 4.2 (previous page): Control of place fields by landmarks. (a) (top) Profile of
experimental gain, G, for Epochs 1-3 of a session where G f inal was 0. (middle) Colored
dots show the location of the rat in the lab frame (y axis) as a function of cumulative
distance traveled on the track (x axis) when spikes from 3 units (red, blue, yellow)
were recorded. Alternate gray and white bars indicate laps in this frame. (bottom)
The same spikes in the landmark frame. Alternate gray and white bars indicate laps
in this frame. The yellow unit fired weakly during the first 8 laps, became stronger
on laps 9-10, and maintained the strong field in the landmark frame throughout the
remainder of the session. During the last landmark-frame lap, the unit fired in a
field that spanned ∼1080◦ (3 laps) in the lab frame (middle). (b) Rate maps of the
red unit in lab and landmark frames for Epoch 2 of the trial shown in (a). The firing
rate is low and diffusely distributed (on average) in the lab frame, whereas there is a
well-defined place field in the landmark frame. (c) Epochs 1-3 of a session where the
G f inal was 2 (same format as (a)). In Epoch 3, all three units maintain normal spatial
firing in the landmark reference frame, but they have 3 fields/lap, separated by 120◦,
in the lab frame. (d) Rate maps of the red unit for Epoch 3 of the trial shown in (c).
(e) Epochs 1-3 of a session where the G f inal was 0.5. Remapping occurred near the
transition between Epoch 2 and Epoch 3, as the previously silent red unit became
active and maintained a stable place field in the landmark frame. In the lab frame,
however, the unit fired every other lap, (i.e., it was active on the gray laps and silent
on the intervening white laps). (f) Rate maps for the red unit for Epoch 3 of the trial
shown in (e). Separate rate maps are shown for the odd- and even-numbered laps in
the lab frame. (g) Coherence of the population response. The n = 500 units acted as
a coherent population in sessions with (blue, 411/500) and without (pink, 89/500)
landmark control (see panel h). Units with coherence score above 0.1 (range 0.12 -
0.47) were combined in a single bin (29/500 units). These cells generally displayed
poor spatial tuning and therefore did not admit a reliable estimate of hippocampal
gain. (h) Landmark control ratio. In most sessions (blue, 60/72), the landmark control
ratio was ∼ 1. Sessions with gain ratio above 1.1 (range 1.16 - 4.02) were combined
in a single bin (pink, 12/72). (i) Spatial information scores in the lab and landmark
frames for each rat (sessions with n = 12, 3, 17, 15, 29 units) are significantly different
(two-sided paired t-test, n = 5 rats, t4 = 6.213, p = 0.0034). Small dots represent scores
from individual units. Mean (large dots) ± s.e.m. are shown.

Given the apparent influence of path integration on place cells, revealed

by systematic place-field drift despite strong landmark control, we tested

whether anchoring of the cognitive map to the gain-altered landmark frame

induced a recalibration of the path integrator that persisted in the absence of

landmarks. Such recalibration would be evidenced by a predictable change in
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the hippocampal gain H when visual landmarks were extinguished (Fig. 4.1

d, Epoch 4). The baseline hippocampal gain H was measured for each animal

after extinguishing landmarks in sessions where the rat ran ∼30 laps with

stationary landmarks (G = 1). As expected, the baseline value of H was close

to 1 (range 0.997 - 1.036). In subsequent gain manipulation sessions, if the

path integrator circuit were unaltered, one would expect the place fields to

revert to the lab frame (H ≈ 1) when landmarks were extinguished, as in the

baseline sessions. Alternatively, if the path integrator gain were recalibrated

perfectly, one would expect that the place fields would continue to fire as if the

landmarks were still present and rotating at the final experimental gain (i.e.,

H ≈ G f inal). We found that the hippocampal representation during Epoch 4

was intermediate between these extremes (Fig.4.3): there was a clear, linear

relationship between G f inal and the hippocampal gain H estimated during

the first 12 laps after the landmarks were turned off (Fig. 4.3c). Moreover,

this linear relationship was maintained when H was estimated during the

next 12 laps Extended Data Fig. 4.10 The values of H for the first and second

12 laps were highly correlated (Fig. 4.3d) with a slope near 1 (1.03). Thus,

H was stable over at least 18 laps (i.e., the middle of the second estimation

window). Despite this overall stability, there were still fluctuations in H in the

absence of landmarks (Fig. 4.3e, Extended Data. Fig. 4.10). We tested whether

changes in behavior could account for the hippocampal gain recalibration

by computing several behavioral measures for each epoch (Extended Data,

Behavioral Analysis). Multiple regression analysis showed that G f inal strongly

predicted H, whereas the behavioral variables had negligible influences on H

(Extended Data Table 4.1).
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Figure 4.3
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Figure 4.3 (previous page): Recalibration of place fields by landmarks (a) Example of
positive recalibration. (top) Experimental gain, G (blue) and hippocampal gain, H
(yellow) for Epochs 1-3 of a session in which the G f inal was 1.769. (middle) Spikes from
three putative pyramidal cells (blue, red and yellow dots) in the lab frame. (bottom)
The same spikes in the landmark frame. When the landmarks were turned off (dashed
line, Epoch 4), H remained close to G f inal , shown by the slower drift of the place fields
in the landmark frame compared to the lab frame. (During Epoch 4, the landmark
frame was defined assuming the gain was G f inal even though landmarks were off.).
Note that the traces of H (yellow) deviate from G (blue) prior to the landmarks
turning off; this is an artifact of the sliding window used in the spectrogram and
does not affect the conclusions (see Methods, Visualizing H). (b) Example of negative
recalibration. The G f inal was 0.539. (c) Recalibration of place fields. The x-axis is G f inal
and the y-axis is H computed using the first 12 laps (i.e., the value of H at lap 6) after
the landmarks were turned off. Linear fits for each animal (color) and for the whole
data set (black) are shown (n = 45 sessions, Pearson’s r43 = 0.94, p = 3.4 x 10-21), along
with the perfect recalibration line (dashed line, black). Note that the linear fit passes
close to the origin, showing that H ≈ 1 when the landmarks were extinguished after
baseline control experiments. (d) Stability of recalibration. Comparison of H during
laps 1-12 vs. H during laps 13-24. The linear fit is shown in black. (n = 27 sessions,
Pearson’s r25 = 0.96, p = 1.16 x 10-15) (e) Complete gain dynamics for one animal. For
all sessions from one rat, H is plotted as a function of laps run in the lab frame. All
the sessions are aligned to the instant when the landmarks were turned off (lap 0).
The recalibrated H was maintained for as many as 50 laps or more.

4.2 Methods

4.2.1 Subjects

Five male Long-Evans rats (supplier Envigo Harlan) were housed individ-

ually on a 12:12 hour light-dark cycle. All training and experiments were

conducted during the dark portion of the cycle. The rats were 5-8 months old

and weighed 300-450 g at the time of surgery. All animal care and housing pro-

cedures complied with National Institutes of Health guidelines and followed

protocols approved by the Institutional Animal Care and Use Committee at

Johns Hopkins University.
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4.2.2 Dome apparatus

The virtual reality dome apparatus that we designed for this experiment is

similar to a planetarium. The hemispherical dome was constructed from

fiber glass (Immersive Display UK, Ltd, Essex, UK). The inside surface was

uniformly coated with a 50% reflective paint (RAL7040 grey). A hole (15 cm

diam.) at the top of the dome allowed light from a video projector (Sony

VPL-FH30) with a long-throw lens (Navitar ZM 70-125 mm) to enter. Visual

cues were projected onto the inside surface of the dome (Fig. 4.1). An annular

ring of light was projected onto the top, interior surface of the dome; when

the spatial landmarks were turned off in Epoch 4, this ring remained on to

provide nondirectional illumination.

An annular table (152.4 cm outer diam, 45.7 cm inner diam.) was centered

within the dome. The support legs of the dome and the legs of the table were

not visible to the rat during the experiment. A commutator (PSR-36, Neural-

ynx Inc.) was mounted in the center of, but slightly below, the tabletop. The

commutator drum was upward, inverted from the typical, ceiling-mounted in-

stallation. A hemispherical first-surface mirror (25 cm diam.; JR Cumberland,

Inc, Marlow Heights, MD, USA) was mounted to the commutator drum. The

image from the projector was reflected off of the mirror and onto the interior

surface of the dome. A radial arm (6 mm carbon fiber rod) extending almost

to the edge of the table was attached to the central commutator through a

smooth bearing. The angle of rotation between the arm and the commutator

drum was monitored by a built-in optical encoder. A microcontroller actuated

a stepper motor attached to the commutator drum to maintain this angle close
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to zero, effectively rotating the drum of the commutator along with the radial

arm. The rate of rotation of the motor, and correspondingly its auditory noise

frequency, was proportional (up to a saturation point) to the speed of the

rat in the lab frame. The noise could thus potentially serve as an artificial

(learned) self-motion cue. If so, the results indicate either that this cue is

inconsequential for path integration updating or it is recalibrated along with

the natural self-motion cues (i.e., vestibular, motor copy, proprioception, etc.).

Two 3D-printed ’chariot’ arms for harnessing the rat were attached to

the radial arm near the edge of the table. Other lightweight 3D printed

components were sometimes attached to the radial boom arm to affix infrared

lights, feeding tubes, recording tether supports, etc. The rat wore a body

harness (Coulbourn Instruments, Whitehall, PA, USA), onto which Velcro

strips and a magnetic attachment pad were sewn. The magnets helped align

the harness to paired magnets attached to the chariot arms and the Velcro strip

held the rat in that position relative to the arms. During the experiment, the

rat pulled along the arm and the components attached to it. Due to the long

lever provided by the radial arm and the smooth bearing attachment to the

commutator, the load borne by the rat was minimal.

A liquid reward vial and pump and a battery to power the pump and IR

lights were mounted to the commutator drum. The commutator drum was

connected to a second optical encoder (Hohner Corp., Beamsville, Ontario,

Canada) that measured its angular displacement relative to the table. Hence

the angle of the rat in the lab frame was the sum of the angle measurement

from the two encoders (i.e., the angle of the commutator relative to the table

75



and the angle of the radial arm relative to the commutator). A Hall effect

sensor (55100-3H-02-D, Litttelfuse Inc., Chicago, IL, USA) mounted to the table,

and a corresponding magnet mounted to the commutator drum, were used

for post-hoc detection and correction of any spurious jumps in rat angle. To

mask auditory cues emanating from outside the dome during the experiments,

white noise was played by a speaker placed centrally underneath the table.

A camera was mounted next to the hole at the top of the dome and was

hidden from the animal using an annular, concentrically mounted one-way

mirror that encircled the hole, occluding the camera from view. The camera

provided an overhead view of each experiment, which allowed observation

of the experiments and experimenter intervention when necessary (e.g., if the

rat broke free from the harness). During the experiments, synchronized video

of the rat’s behavior was recorded. To verify our ability to track rat angle, we

tracked the location of the boom arm post-hoc using the video recording. We

implemented a template-based tracking algorithm using standard subroutines

in the freely available OpenCV library (opencv.org, V 3.2.0). Based on the

camera resolution (1024 x 768 for the first two animals and 2048 x 2048 for

the last three animals), each pixel was calculated to correspond to <1◦ of the

track. The mean absolute error between the video-based tracking and the

encoder-based rat angle was small (mean: 3.60◦ ± 3.86◦ S.D.) across all 72

sessions.
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4.2.3 Training

Over 2-3 days, we familiarized the rats to human contact and to wear the

body harness. The rats were placed on a controlled feeding schedule to reduce

their weights to ∼80% of their ad libitum weight, whereupon they were

trained to run for food reward (either Yoo-hoo® or 50% diluted Ensure® )

on a training table in a different room from the experimental room. Reward

droplets were manually placed at arbitrary locations on the track in the path

of the running rat, and the experimenter attempted to lengthen the average

interval between rewards to maintain behavior while prolonging satiation.

The rats were then transitioned to automatic feeding, where liquid reward was

dropped at intervals that varied over time as the rats’ behavior was shaped

to maximize forward movement with minimal pauses. The training setup

had a similar radial arm and chariot as the main apparatus, but without the

surrounding virtual environment. Once the rats were consistently running

30-40 laps without human intervention on the training table, we moved them

into the dome and trained them until they ran 30-40 laps in the presence of

stationary visual cues. Training usually took 2-3 weeks.

4.2.4 Electrode implantation and adjustment

After training, rats were implanted with hyperdrives containing 6 (2 rats)

or 12 (3 rats) independently movable tetrodes. Following surgery, 30 mg of

tetracycline and 0.15 ml of a 22.7% solution of enrofloxacin antibiotic were

administered orally to the animals each day. After at least 4 days of recovery,

we began slowly advancing the tetrodes and resumed food restriction and
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training within 7 days of surgery. Once the tetrodes were close to CA1 they

were advanced less than 40 µm per day. Once the tetrodes were judged to be

in CA1, as confirmed by sharp wave/ripples in EEG signals and the presence

of isolatable units, and the animal was again running at least 30 laps inside

the dome, the experimental sessions began.

4.2.5 Neural recording

During sessions, the rat was attached to the chariot arms and a unity-gain

headstage was attached to its implanted hyperdrive. The neural signals

passed through the commutator and were filtered (600-6000 Hz), digitized

at 32 kHz, and recorded on a computer running the Cheetah 5 recording

software (Neuralynx Inc., Bozeman, MT). Simultaneously, EEG data from

each tetrode was filtered (1-475 Hz), digitized at 33 kHz, and stored on the

computer. Pulses sent from the experiment-control computer (see below) were

time-stamped and recorded as events on the neural recording computer to

allow the post-hoc synchronization of the data streams recorded on the two

computers.

4.2.6 Experimental control

The NI PCIe-6259 data acquisition system (National Instruments Inc., Austin,

TX USA) was used to communicate with the dome apparatus. The experiment

control was executed by a custom software system coordinated by the software

development framework called Robot Operating System (Quigley et al., 2009)

(ROS, Open Source Robotics Foundation, distributed under the BSD-3-Clause
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License) on a computer running the Linux Operating System (Ubuntu 12.04,

14.04). The custom ROS-based system received information about the rat’s

angular position from the two optical encoders and generated the visual scene

using standard open-source OpenGL C++ libraries. The visual scene was

deformed to match the optics of the projection system and displayed on the

projector mounted above the dome. The experimentally measured time lag

between movement of the vehicle and movement of the landmark array was

97 ± 24 S.D. ms. The time lag was due to processing time delays as well as

to the frame rate of the video projector (17 ms/frame); the jitter was due to

occasional frame drops and inconsistencies in update rate due to momentary

computational demands (data not shown). We also computed where the

landmarks should have been projected if we had instantaneous control. There

was no detectable slippage (drift) between the intended location of landmarks

and where they were actually projected. The mean absolute error between

these values was small for all sessions in which the landmarks were moving

(i.e., non-control sessions) (54/72 sessions; mean: 0.59◦ ± 0.43◦ S.D.; max:

1.69◦).

Rats were rewarded by automatically dropping liquid reward at pseudo-

random spatial intervals in the lab frame. These intervals were picked from

a uniform distribution with means (typically 40-80◦) specified at the begin-

ning of each session. The mean feeding interval was increased gradually

during training to delay satiation and maintain running performance, and

was generally constant during each experimental session. The experimenter

could also dispense reward manually to encourage running behavior when
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necessary. All the data, including position of the rat, position of the visual

stimuli, reward locations, and the overhead video, were saved during the

course of the session.

4.2.7 Experimental procedure

On each experimental day, baseline data were recorded from the rat for 20

minutes before and after the session while it slept or rested quietly in a towel-

lined dish on a pedestal. These sleep data were used post-hoc to confirm

recording stability of single units during the trials. During the sessions, the

experimenter went into the dome with the rat and always attached the rat

to the harness at the same starting location relative to the landmarks (which

always were located at the same locations relative to the lab frame). After

ensuring that the rat was running with a natural gait, the experimenter left the

dome. The progress of the session was monitored using the overhead camera,

and the experimenter only interfered in cases when the rat partially broke

free of the harness, stopped running for long periods, or was running with an

unnatural gait.

The session duration varied depending on the running speed of the rat

and on how many laps were planned for that session (e.g., ramps to smaller

gain values required fewer laps to run the experiment). On days with short

sessions, a second session was sometimes run after a short rest duration. The

rat was taken out and placed on the pedestal between sessions, to keep the

initial conditions consistent. Except on some days where landmarks were kept

stationary for the whole duration of the experiment, we took the rat out of the
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dome only during Epoch 4 (no landmarks inside dome).

4.2.8 Experimental gain selection and gain ramp rates

Each rat initially ran 1-3 sessions in which the landmarks were stationary. In

most of these sessions, rats first ran 30 laps with stable landmarks (G = 1), and

then they ran 30 laps with the landmarks extinguished, to mimic the number

of laps in Epoch 3 for our regular recalibration sessions. After these initial

days, subsequent days of recording varied the value of G away from 1. For

the first rat (515), we chose values of G close to 1 (1.0625, 0.9375), in addition

to one session with a gain of 0. For the second rat (576) we typically used

gains 0.25, 0.5 and 0.75, which resulted in periodic repetitions of place fields in

the lab frame. For the remaining three animals, in order to reduce ambiguity

of firing patterns in the lab and landmark frames of reference, gains were

selected in the form of , resulting in gains of 0.231, 0.539, 0.846, 1.154, 1.462,

and 1.769. These values ensured that during Epoch 3 the animal’s position

relative to the lab and landmark frames of reference only aligned once every

13 laps. We used gain ramp rates during Epoch 2 ranging from 1/128 to 1/26

(gain change per lap). The number of laps in Epoch 1 was different for each rat

(4 laps for 515 and 576, 6 laps for 637 and 638, and 15 laps for 692). However,

the number of laps in Epoch 1 had no apparent relationship to the degree of

cue control when the landmarks started to move (proportion of sessions with

landmark control failure: 515: 0/15; 576: 1/9; 637: 4/17; 638: 3/14; 692: 3/17).
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4.2.9 Data analysis

Data from the two experiment computers were synchronized using the paired

pulses, and all data were transformed into the same set of timestamps. For

each triggered spike waveform, features such as peak, valley, and energy were

used to sort spikes using a custom software program (WinClust; J. Knierim).

Cluster boundaries were drawn manually on 2-dimensional projections of

these features from two different electrodes of a tetrode. We mostly used

maximum peak and energy as features of choice; however other features were

used when they were required to isolate clusters from one another. Clusters

were assigned isolation quality scores ranging from 1 (very well isolated) to 5

(poorly isolated) agnostic to their spatial firing properties. Only clusters rated

1-3 were used for all quantitative analyses in the main text.

To be included in the quantitative analyses, sessions were required to

meet the following criteria: (1) sessions with landmark manipulation were

completed and the rat was removed in the absence of landmarks, and (2)

there were no major behavioral issues / long manual interventions during the

session. For the 72/88 sessions meeting these criteria, spikes that occurred

when the rat’s movement speed was less than 5◦s−1 (about 5 cm/s) were

removed. For each unit, the number of spikes fired when the rat occupied a

5◦ bin was divided by the time the rat spent in the bin to compute the firing

rate. The firing rate was further smoothed with a Gaussian filter of standard

deviation 4◦. Single units were classified into putative pyramidal cells and

putative interneurons by separating them based on firing rate, spike duration,

and the autocorrelation function (Csicsvari, Hirase, et al., 1999). Only the
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putative pyramidal cells were used for the main analyses, and the putative

interneurons are described in Extended Data Fig. 4.11.

Spatial information scores were computed by binning and determining

firing rates of spikes in both the lab and the landmark frames of reference,

as described above. If the occupancy-corrected firing rate in bin i is λi, then

information score is computed as:

1
N

N

∑
i=0

λi log2
λi

λ
(4.1)

where N is the total number of bins, and λ is the mean firing rate (Skaggs

et al., 1993)

4.2.10 Behavioral analysis

For each of the 4 epochs, the mean running speed (cm/s), the rate of pauses

in running (defined as continuous epochs of 3 seconds or more where the ve-

locity drops below 5 cm/s) (number/lap), the mean duration of each pause(s),

the mean interpause temporal interval (s), and the mean interpause spatial

interval (cm) were calculated. Interpause intervals were spatial or temporal

differences between pause events, where the beginning and end of an epoch

were also considered pauses. We first tested whether there were significant

changes in these variables between Epochs 1 and 3 (i.e., before and after the

gain ramp) and between Epochs 3 and 4 (i.e., before and after the landmarks

were extinguished). Next, to address whether changes in behavior predicted

the hippocampal gain change in Epoch 4, we ran 2 multiple regression anal-

yses. First, we subtracted the values of each of the behavioral variables in
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Epoch 1 from the values in Epoch 3. A multiple regression was run with

the hippocampal gain (H) in Epoch 4 as the dependent variable and the five

Epoch 3 - Epoch 1 behavioral measures, as well as the experimental gain (G)

of Epoch 3, as the regressors. Second, we ran a multiple regression (similar

to that above) with Epoch 4-Epoch 3 behavioral measures, as well as the

experimental gain (G) of Epoch 3, as the regressors.

4.2.11 Estimation of hippocampal gain, H

A rat’s position can be decoded from a population of simultaneously recorded

place cells using established techniques (Zhang et al., 1998, Kloosterman et al.,

2014, Brown et al., 1998). However, these techniques use an independent

dataset to train an estimator and require that the spatial coding be unchanged

during the testing phase. In our experiments, there were often remapping

events during the gain manipulation epochs, as some units lost their firing

fields and other units, which were previously silent, gain place fields on the

track. This remapping was typically not all-or-none; rather, different place

fields would appear or disappear at different times in the experiments (e.g.

Figs. 4.2 c,e, 4.3 a,b). Although the new place fields changed their firing

locations coherently with the existing place fields during the experimental

manipulations, extensive remapping causes classic population decoding meth-

ods to become less accurate or to fail entirely. To solve this problem, we

took advantage of the periodicity of firing of the place fields as the rats ran

laps on the circular track to measure the spatial frequency of the population

representation. This spatial frequency is insensitive to the specific place cells
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that are active at any given moment and it thus forms the core of a spectral

decoding technique robust to remapping (Extended Data Fig. ??).

The frequency estimate is termed the ’hippocampal gain’, H. A typical

place cell with a single field on a circular track exhibits one field/lap, and

hence H should be 1/lap (Fig. 4.1e). As the visual landmarks are moved at an

experimental gain G, the rat encounters each landmark every 1/G laps. If the

place fields are controlled by landmarks, i.e., they fire every lap at the same

location in the landmark reference frame, the value that we estimate for H

should be similar to the value of G. For example, when G = 1/2, there should

be one field every two laps, and thus H = 1/2 (Fig. 4.2 c,d), and for G = 3,

there should be 3 firing fields per lap, and thus H = 3 (Fig. 4.2 e,f).
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Figure 4.4: Flowchart showing the steps of the spectral gain estimator.
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Hippocampal gain is first estimated independently for all well-isolated

units (Hi for the ith unit) that fire at least 50 spikes per session while the rat

is running faster than 5◦s−1. The method of gain estimation is illustrated in

Figure. 4.4 and is described in the following. The spatial spectrogram of the

firing rate of each unit was computed at spatial frequencies (i.e., the frequency

of repetition of its spatial firing pattern per physical lap) between 0.16/lap and

6/lap, using a sliding window of size 12 laps applied at increments of 5◦. The

spectrogram was further sharpened using the method of reassignment, which

can be used when the input signal contains sparse periodic signal sources

(Flandrin, Francois, and Chassande-Mottin, 2002). The original spectrogram

was also thresholded to the mean + K times standard deviation (K between

1.1 and 2 based on visual inspection of the raw spectrogram) of its power at

each spatial window; this thresholding was then applied to the sharpened

spectrogram to improve the signal-to-noise ratio of the spatial frequency

content.

The spectrogram can have substantial power in the harmonics of the

fundamental frequency, requiring a method to reliably find the fundamental.

The gain estimation algorithm identified peaks in the autocorrelation of the

spectrogram at each spatial window. Since these peaks typically lie at the

fundamental frequency and its harmonics, the fundamental frequency should

be both the lowest peak and the difference between peaks. If the median of

the difference between peaks was an integer multiple of the lowest peak, the

lowest peak was considered the fundamental frequency, and all the power

in the reassigned spectrogram further than 0.1 Hz from the fundamental
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was set to zero (if not, the spectrogram was used as-is). This process was

repeated for each spatial window. Finally, the maximum-energy trajectory

from the reassigned spectrogram was extracted, and this trajectory formed

the time-varying gain estimate for that particular unit.

In some cases a particular unit did not produce sufficient spiking activity

to generate an estimate for a given window; entries for which there was

no estimate were set to NaN in MATLAB for computational convenience.

The hippocampal gain estimate for each window for the population (H) was

calculated as the median Hi from all units under consideration. If there were

no active units during a given window (all NaNs) then the value for H was

set to NaN for that window.

4.2.12 Visualizing H

For each experimental session, H can be plotted as a function of angular

displacement of the rat (e.g., Fig. 4.3 a,b, Extended Data Fig. 4.9 a,b). It is

important to note that each estimate is correlated with neighboring estimates

due to the 12-lap sliding window. Estimates that are 12 laps apart are cal-

culated from independent data. The estimate at any given angular position

is "non-causal" in the sense that it uses neural data from ±6 laps centered

around that angular position. This creates the illusion that H "anticipates"

the extinguishing of landmarks (Fig. 4.3 a,b,f, Extended Data Fig. 4.10 a-e,

Extended Data Fig. 4.11 a,b). Inspection of the raw spikes readily verifies that

this is an artifact, but this artifact does not affect any of the interpretations in

this paper.
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4.2.13 Coherence score

In a session, if a unit, i, is part of a coherent population, its gain should equal

the hippocampal gain, namely Hi ≈ H. Thus for each 12-lap window we

computed a coherence error |1− Hi/H| and defined the coherence score as

the mean of this quantity over an entire session.

4.2.14 Landmark control ratio

In a session, if the hippocampal gain follows the experimental gain, we expect

H/G = 1. Thus, H/G was computed at each overlapping 12-lap window for

Epochs 1-3 and the landmark control ratio was defined as the average of this

quantity over a session.

4.2.15 Analysis of drift

From each session with landmark control, we identified units which had a

single, non-remapped firing field in the landmark frame during Epochs 1 - 3.

The average landmark-relative firing rate maps of the unit were calculated

separately for the duration of Epoch 1 (start of experiment, G = 1) and for

the last 12 laps before the landmarks were turned off. The cross-correlation

between these two firing rate maps was computed as the rate maps were

rotated relative to each other. The landmark-relative angle lag corresponding

to maximum correlation was considered to be the drift of the unit. For trials

with multiple units with firing fields that did not remap during Epochs 1- 3,

we took the mean drift over all units to be the drift for that session. In all, this

analysis utilized 136 units from 55 days.
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4.2.16 Analysis of recalibration

We chose sessions with landmark control and at least 12 laps run after the

landmarks were turned off (Epoch 4). The recalibrated gain was selected as

the value of H six laps after the landmarks were extinguished (lap 6 was the

midpoint of the first 12-lap window that includes only data from Epoch 4).

To examine the decay rate of recalibration, we chose sessions with landmark

control and at least 24 laps run in Epoch 4. We compared the recalibrated

gain at lap 6 with the value of H at lap 18 (the first point at which the 12-lap

spectrogram windows do not overlap).

4.2.17 Histology

Once experimental sessions were complete, rats were transcardially perfused

with 3.7% formalin. The brain was extracted and stored in 30% sucrose

formalin solution until fully submerged, and sectioned coronally at 40 µ m

intervals. The sections were mounted and stained with 0.1% cresyl violet,

and each section was photographed. These images were used to identify

tetrode tracks, based on the known tetrode bundle configuration. A depth

reconstruction of the tetrode track was carried out for each recording session

to identify the specific areas where the units were recorded.

4.2.18 Statistics

Parametric tests were used to determine statistical significance. Pearson

product-moment correlations were used to test the linear relationship between

variables. Paired, 2-sided t-tests were used to compare information scores in
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the lab and landmark frames of reference, which assumes normality. Wilcoxon

rank-sum tests were used to test differences in behavioral variables. To prevent

sampling the same cells across days for this analysis, the experimental session

with the greatest number of units was chosen for each rat and for each tetrode.
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4.3 Extended data figures

Figure 4.5: Representative histology. Coronal slices from the five rats used in this
study. Arrows point to tetrode tracks in different stages of advancement towards
CA1. Note that these are not always the termination of these tetrodes, simply one
section along their tracks. In one animal (Rat 576), the histology was inconclusive
due to poor fixation and slice quality; however, we determined that the tetrodes were
correctly placed in CA1 by the medio-lateral placement of the bundle, tracks in the
few sections that we could analyze, and features in the EEG signals observed during
recording (e.g., sharp wave/ripples). In one animal, (Rat 638), two of the most medial
tetrodes (not shown) appeared to record from the fasciola cinereum, rather than CA1.
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Figure 4.6: Examples of failure of landmark control. (a) (top) Experimental gain, G
(blue), and hippocampal gain, H (yellow), for Epochs 1-3 of a session where G f inal
was 0.231. Note that the two curves overlap until ∼lap 40, when they start to diverge.
(middle) Spikes from three putative pyramidal cells (colored dots) in the lab frame.
Alternate gray and white bars indicate laps in the lab frame. (bottom) The same
spikes in the landmark frame. At the point of landmark control failure, the place cells
stop firing at a particular location in the landmark frame, and instead start drifting in
both lab and landmark frames. Alternating gray and white bars indicate laps in the
landmark frame. (b) Second example, from a different animal, for a session where
G f inal was 0.1 (same format as (a)). (c-e) Trajectory of hippocampal gain, H, for three
rats for all sessions where landmark control failed. The hippocampal gain generally
starts near 1 and then diverges from the experimental gain trajectory (not shown)
during the session.
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Figure 4.7

93



Figure 4.7 (previous page): Gain dynamics during each experiment. Each plot repre-
sents data from a single experiment. The x-axis is the laps that the rat ran in the lab
frame (on the table) and the y-axis is gain. The black scale bar in each plot indicates
10 laps. The applied experimental gain (blue) is plotted with the hippocampal gain
estimate (red). The ramp rate, length of epochs and final experimental gain for each
session can be observed from the curves. An asterisk indicates experiments with loss
of landmark control (gain ratio greater than 1.1; see Fig. 4.2 h). In the other plots,
the blue and red curves overlap indicating control of landmarks over the place fields.
Number of units that passed acceptance criteria (Methods) in each session is indicated
in the bottom right hand corner of each plot.
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Figure 4.8
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Figure 4.8 (previous page): Summary of dataset. Each row indicates one of the 72
sessions composing the dataset during the period when the landmarks were on. In the
left plot, the x-axis is laps in the lab frame. In the right plot the x-axis is experimental
gain, G. The sessions are chronologically ordered (bottom to top). Sessions from
different animals are separated by dashed lines. In all rats, we typically performed
smaller manipulations in G first, since initial landmark failure tended to occur at
larger manipulations of G. Once landmark control failed, it tended to fail more
frequently. The color represents the ratio between hippocampal and experimental
gains (H/G, color bar, right). Green (H/G = 1) indicates landmark control. Four
of the rats (576, 637, 638, 692) experienced landmark failure (red portions of trials).
Failures only happened when the G was less than one (i.e., the landmarks moved in
the same direction as the rat) and generally occurred at low values of G (less than
0.5) and after rats had experienced multiple gain manipulation sessions over days.
The asymmetry in landmark control between G < 1 and G > 1 is similar to a study
of medial entorhinal cortex by Campbell and colleagues (Campbell et al., 2018). In
this study, mice ran on a VR linear track controlled by a stationary treadmill, and the
authors manipulated the gain factor between distance traveled on the treadmill versus
the VR track. Grid cells showed asymmetric responses to increases versus decreases of
the gain. Gain increases (i.e., G > 1) caused phase shifts in the spatial firing patterns
but gain decreases (i.e., G < 1) caused changes in the spatial scales. These results
were elegantly explained by a model of how grid cells respond to conflicts between
self-motion and landmark cues. Although this paper did not address the issues of
path integration gain recalibration as in the current study, its results may provide
a causal explanation for the asymmetric responses of place cells to the landmark
manipulations seen in the present study.
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Figure 4.9
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Figure 4.9 (previous page): Slow drift of place fields against landmarks. (a) Example
of positive drift. (top) Experimental gain, G (blue), and hippocampal gain, H (yellow),
for Epochs 1-3 of a session in which G f inal was 1.769. There is no H (yellow) in the first
or last 6 laps due to the 12-lap sliding window. (middle) Spikes from one putative
pyramidal cell (blue dots) in the lab frame. Figure format is the same as in Figure
2. (bottom) The same spikes in the landmark frame. The unit was silent for the first
12 laps but developed a strong place field in the landmark frame that slowly drifted
in the same direction as the animal’s movement over the course of the session. (b)
Example of negative drift from a session in which the G f inal was 0. In the landmark
frame, the slow drift was in the direction opposite to the animal’s movement direction.
Note that the unit was completely silent in Epoch 3, because the rat was not in the
place field of the unit as G reached 0. (c) Drift over the entire session vs. G f inal . Each
point represents an experimental session. Linear fits are shown for each individual
rat (colored lines) and for the combined data (black line; n = 55 sessions, Pearson’s
r53 = 0.64, p = 1.5 x 10-7). The two example sessions of (a) and (b) are shown with
the circled markers. (d) Drift rate vs. G f inal . Although the magnitude of drift is
correlated with the final experimental gain (G f inal), as shown in (c), a confound is
present because the ramp duration in Epoch 2 depends on the value of G f inal (e.g.,
for G > 1, the larger G f inal is, the more laps required to ramp G up to that value). It
is thus possible that the correlation between the total drift and G f inal is due to the
differences in Epoch 2 duration (and, in some experiments, Epoch 3 duration) rather
than due to different rates of drift that depend on G. To control for the effect of trial
duration, we calculated drift rate by dividing the total drift by the total number of
laps in the landmark frame over which the drift was computed. Linear fits are shown
for each individual rat (colored lines) and for the combined data (black line; n = 55
sessions, Pearson’s r53 = 0.54, p = 1.9 x 10-5). The two example sessions of (a) and (b)
are shown with the circled markers. These results show that the drift rate was related
to the value of G f inal .
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Figure 4.10
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Figure 4.10 (previous page): Dynamics of recalibration. (a-e) The complete hippocam-
pal gain (H) dynamics for all 5 rats for trials that exhibited landmark control. (The
gain dynamics for Rat 692 is also shown in the main text, Fig. 4.3 e.) In the left panels
for each rat (color), H is plotted as a function of laps run in the lab frame. Sessions are
aligned to the instant when the landmarks were turned off (denoted as lap 0). In the
presence of landmarks, (before lap 0), the hippocampal gain tracked the experimental
gain profiles during a given session (not shown). After the landmarks turned off, the
traces largely maintained their recalibrated gain, while also showing some variable
drift across experiments. Note that for each rat, for experiments in which G = 1 (i.e.,
the landmarks did not move), the value of H was close to 1 when the landmarks
were extinguished. The right panels for each rat show the gain trajectories of all the
units in the dataset. The gray scale represents the number of active cells with gains
falling in a given bin (bin size is 5◦ for laps axis and 0.01 for gain axis). These graphs
demonstrate the high degree of coherence of the hippocampal population, as almost
all cells shared the same gain with minimal deviation. The light-colored lines that
occasionally deviate from the main trajectories arise from the small number of cells
with poor spatial tuning or from cells that remapped. In the latter case, because our
spectral gain analysis used a window of 12 laps, these remapped cells continued to
show artefactual values for the limited number of laps that fall in this window but
during which the cell was silent. As can be seen, these exceptions had negligible influ-
ence on the median population gain values. (f) Sustained recalibration. Comparison
of G f inal (x-axis) and H computed using laps 13-24 (i.e., the value of H at lap 18) after
the landmarks were turned off (y-axis). Sessions for each rat are plotted in different
colors, along with the perfect recalibration line (dashed line, black) and a linear fit
(solid line, black; n = 27 sessions, Pearson’s r25 = 0.85, p = 2.04 x 10-8). The number
of data points is lower than in Fig. 4.3 c because some experiments ended prior to
lap 24. (g) Histogram of coherence scores (same format as Fig. 4.2 g) for units firing
during Epoch 4 (landmarks off). The shape of the histogram is very similar to Fig.
4.2g. Almost all units had a coherence score below 0.1, indicating that the place fields
acted as a coherent population in sessions with (blue) and without (pink) landmark
control in Epochs 1-3, even after landmarks were turned off. Units with coherence
score above 0.1 (range 0.11 - 0.41) were combined in a single bin (17/336 units).
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Figure 4.11: Path integration gain recalibration is also demonstrated by hippocampal
interneurons. (a) (top) Experimental gain, G (black) and hippocampal gain, H (yellow)
for Epochs 1-4 of a session where the G f inal was 1.769. H was computed as usual
from putative pyramidal cells (Methods, Estimation of Hippocampal Gain). In Epoch
4, landmarks are off and hence there is no G. (middle) Spatiotemporal rate map of
one putative interneuron in the lab frame. Due to the high firing rate of interneurons,
rate maps are more illustrative than the spike plots used in place cell examples. Each
horizontal bin represents a lap in the lab frame, similar to the alternating gray and
white vertical bands in the place cell examples (e.g. Fig. 4.2 a,c,e). Each vertical bin
spans 3◦ in the lab frame. (bottom) Rate map of the same unit in the landmark frame.
Each horizontal bin represents a lap in landmark frame, and each vertical band spans
3◦ in landmark frame. Note that the firing pattern is preserved across laps until Epoch
4, when the landmarks turn off. (b) Example of putative interneuron in a session
where G f inal was 0.846. Same format as (a). (c) Histogram of coherence score between
interneurons and putative pyramidal cells, as in Fig. 4.2g. The score for each putative
interneuron is computed as the mean value of |1− I/H| over the entire session, where
I is the spectral gain estimated from the interneuron, and H is the hippocampal gain
computed as usual from putative pyramidal cells. Units with coherence score above
0.1 (range 0.15-0.24) were combined in a single bin. (d) H estimated using the first 12
laps after landmarks were turned off, using the median of estimates from putative
pyramidal cells compared to the median of estimates from putative interneurons.
There are only 5 data points since these are the subset of sessions in Fig. 4.3 c with
simultaneously recorded putative interneurons and place cells.
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Figure 4.12: Illustration of spectral decoding scheme. In the dome, as visual land-
marks are presented and moved at an experimental gain G, the rat encounters a
particular landmark every 1/G laps (the spatial period). If the place fields fire at
the same location in the landmark reference frame, the cell’s firing rate exhibits a
spatial frequency of G fields/lap. (a) Illustration of place field firing for three values
of hippocampal gain, H. (b) Data from a session in which G was gradually increased
from 1 to 3 (top) as in Epoch 2 of our experiments. The spectrogram of one unit
is shown at the bottom, with the color denoting the power at a given position and
frequency. A clear set of peaks in the spectrogram emerges at spatial frequencies
corresponding to the experimental gain and at its harmonics. We use a custom algo-
rithm to trace these peaks (Methods, Estimation of Hippocampal gain) and estimate
the gain for each unit. The hippocampal gain, H, is estimated by taking the median
spatial frequency across all isolated units (Hi for the ith unit) for a given session. Note
that this method does not require that cells display single, sharply tuned place fields,
as it works for cells with multiple fields as well as for interneurons (Extended Data
Fig. 4.11). (c) Reproduction of Fig. 4.3 b, along with addition panel at the bottom
that represents the same spikes in the "hippocampal frame;" that is, the spikes were
plotted in the frame of the landmarks as if they were rotating at the calculated gain of
the place cell map (the hippocampal gain, H). The shaded vertical bars denote each
lap in the hippocampal frame. Fields from all three units are horizontally aligned
in this panel during all epochs, indicating that the spectral decoding technique was
successful and that the place fields acted as a coherent spatial representation within
the hippocampal frame. (d) Reproduction of Extended Data Fig. 4.2a, along with
additional hippocampal gain panel at bottom. In this dataset, it can be seen that even
after ’failure’ of landmark control of place fields, the fields are still coherently firing at
the same hippocampal gain, which we are able to estimate using spectral decoding.
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Table 4.1: Results of behavioral analyses Two-sided Wilcoxon Signed Rank tests were
performed on the differences between values in Epochs 3 and 1 and Epochs 4 and 3
with null hypothesis that the difference = 0. Pauses/lap (n = 37 sessions; p = 0.035);
Interpause Interval (n = 37 sessions; p = 0.001); Interpause Distance (n = 37 sessions;
p = 0.003). All other tests for Epochs 3-1 and Epochs 4-3 were not significant
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animals and perfomed the experiments. M.S.M did the cluster cutting of
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Chapter 5

Further developments to
spectral gain estimator

For this chapter, I performed the majority of the analysis and generation of figures

in this chapter. I wrote the text and the work has not yet been published elsewhere.

External contributions are detailed at the end of this chapter

The spectral gain decoding algorithm is a robust and versatile method

that allows one to get an output of the rat’s internal perception of velocity

(or dilation of space, from a different point of view) and, in conjunction with

the Dome experiment apparatus, enables the pursuit of many new avenues

of research and data analyses. The decoding can be done on a cell by cell

basis, being highly insensitive to rate and position remapping. Getting an

estimate from each cell allows subsequent analysis on the homogeneity or

heterogeneity of the population response, if any.

This chapter is a record of subsequent developments with this algorithm.

Sections 5.1.1 and 5.1.2 describe improvements to the gain estimation itself

while 5.2.1 and 5.2.2 talks about two new applications of this algorithm beyond
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its use on clustered spike data.

5.1 Improvements to the algorithm

5.1.1 Adaptive windowing

The version of the decoder used in the analysis of the results presented in

Chapter 4 had opportunities for improvement. This can be seen in Figure 4.12

c,d where the spikes are plotted in the hippocampal frame of reference. While

the estimate is able to correct the field movement, almost completely putting

it into a stable frame of reference, there are still slow oscillations and drift in

the place fields from lap to lap. Because the hippocampal frame is defined by

estimating spike position by integrating the "internal velocity" signal as read

in by the decoder, slight errors would accumulate leading to drift of the fields.

One of the factors contributing to inaccuracies in estimation was that the

size of the sliding lap window was set to be a constant size regardless of the

actual spatial frequency content. Thus, if the sliding spatial window does not

encompass a natural number of cycles of the spatially periodic spike firing

rate signal, spectral leakage can occur due to the signal getting cut off. The

algorithm of the spectral gain decoder was modified to reduce this leakage.

The modified algorithm works in two stages. The first stage is the same as that

described in Section 4.2.11 where estimation is done with a constant sliding

spatial window size and an estimate of the spatial frequency is obtained. In

the second stage, this spatial frequency estimate is used to adaptively change

the window size at every step to one that minimizes the spectral leakage.

This is done by first defining the position of the spikes in the estimated
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hippocampal frame of reference as defined by the spatial frequency trajectory

obtained from the first step. As shown in Figure 4.12 c,d bottom panels,

this brings the place fields to a frame of reference in which they are almost

completely stable. The fields of a place cell with a single place field fire at the

same location lap after lap. Thus the spatial frequency of the spikes in this

frame of reference would this be close to 1.

The occupancy-corrected spatial firing rate is computed for the spikes in

this estimated hippocampal frame of reference. The spatial frequency of this

firing rate curve is are estimated using the same spectral gain decoder algo-

rithm used in the first step with a constant window size of a natural number

lap width. While the window size is constant in the estimated hippocampal

frame, it is effectively resizing as a function of the estimated spatial frequency

in the lab frame. As an example, if the spatial frequency estimated in lab

frame at a spatial step is h, then the sliding spatial window used in step 2 be

of constant width c laps will effectively be of width
c
h

in the lab frame. While

it is not perfect, this method of adaptive windowing can yield improvements

in the frequency estimation especially in the lower frequency range where

the spectral leakage issue is more severe. This is because, for a given window

size, the number of cycles of a periodic signal goes down with the frequency

and the clipped cycle of the signal will cause relatively more distortion and

spectral leakage.
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5.1.2 Enhancing gain estimation using place field detection

Setting the size of the sliding window for a spectrogram inherently has trade-

offs between gaining frequency resolution for larger window sizes and gaining

temporal resolution – or spatial resolution in this particular application – for

smaller window sizes. But in a lot of cases, depending on the specifics of the

problem at hand, there are ways to circumvent these limitations. One such

step discussed in Section 4.2.11 was the use of the method of reassignment,

which assumes that in a local frequency-space window of a spectrogram, there

is only one frequency source that is contributing to the power in that window,

allowing the concentration of power to the center of gravity as determined by

the phase information. This allows compensation of blurring of the spectral

content to an extent. A two stage process was described in the Adaptive

windowing section above. I describe a third stage below which will give as its

output a close-to-perfect estimate of the underlying spatial frequency/gain.

The third stage assumes that there is a hippocampal frame of reference

where the place fields are in a stable position every instance that the rat visits

it and the spatial frequency is ∼ 1. The enhanced two stage gain estimation

from the two stage process described is able to plot the spikes in a frame of

reference that is a small “delta" away from the actual hippocampal frame,

with the discrepancy being due to slow oscillations and the drift. The third

stage involves detecting the individual place fields in the hippocampal frame

of reference as defined by the previous step of the decoder and then aligning

them such that fields are in a stable position. The amount by which the

individual fields needs to be shifted to do this is almost exactly the “delta"
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difference between decoder gain estimate and the actual hippocampal frame.

This field correction signal can be used to further refine the gain estimate

signal resulting in it reflecting the actual gain dynamics almost perfectly.

The process by which this is done is to first plot the spikes in the hippocam-

pal frame of reference as estimated by the decoder. Next, assuming that place

cell spikes are basically samples from an underlying firing probability density

function reflecting its spatial tuning, a kernel function is used to estimate the

firing rate curve in this estimated hippocampal space in unwrapped angle.

The peaks in this spike firing curve are detected. If two peaks are too close

together (< 10◦), then the higher peak is kept and the smaller one is removed

from the list of peaks. Then, using this list of peaks as being the point of

maximum firing rate of a field, individual passes of place fields are defined

as contiguous segments around each peak where the firing rate is above 10%

(heuristically determined) of the maximum firing rate. Minimum and maxi-

mum field size limits for individual passes of the place field are set to filter

these merged fields.

If we had place cells with a single stable firing field without positional

remapping over the course of the experiment, the field passes detected at this

stage would be sufficient to find the “delta” gain difference. However, place

cells can have more than one field and undergo position remapping. And

exacerbating this is the fact that the process of manipulating the experiment

gain seems to increase the probability of remapping. So the final step in this

stage is to cluster together the detected field passes i.e. the times the animal

passes through a place field to separate out remapped fields or multiple fields
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which is done as follows. For a given field pass, field passes in the adjacent

4 laps are defined to be in proximity to it if 1) the centers (defined as the

geometric midpoint of the field pass; this is not the point of peak firing rate

of the field pass) of the adjacent field passes are within the field limits of the

selected field pass in wrapped hippocampal angle space and 2) if the centers

of the adjacent field passes are within 15 degrees of the selected field pass in

wrapped hippocampal angle space. If, for a selected field pass, the number of

adjacent field passes are less than 3 or if the number of spikes in the selected

pass is less than 4, this field pass is deleted as it is most likely spurious spikes

that do not maintain a stable spatial tuning for a significant amount of time.

The clustered field passes that pass the above criteria is defined to be a field.

These clustered field passes within a field can then be aligned to correct for any

slow oscillations or drift and the amount by which they are aligned provides

the correction curve for the estimated gain curve.
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Figure 5.1: Two examples of place field detection in the presence of multiple place
fields and remapping. The data is from sessions with landmark control. Laps in lab
frame are shown on the x axis and the animal’s angle in landmark frame is shown on
the y-axis. Each dot is a spike and dots of a particular color represent spikes from a
putative neuron. Asterisks show the limits of the detected fields. Asterisks defining
the place fields of a place cell maintain a particular color until a remapping event.

5.2 New applications of the algorithm

5.2.1 Decoding on unsorted spikes

The decoder was originally used to estimate the gain of a sorted cluster

of spikes which putatively belong to an individual neuron. If these cells

were place cells, the spatial tuning would be fairly sharp and well-defined.

However, as was shown in Figure 4.11, the decoder is able to estimate the

spatial frequency from cells with much more diffuse spatial tuning like those

of an interneuron. This result, supported by the fact that a coherent population

response was observed in every gain manipulation experiment, motivated a

look at decoding gain from unsorted spikes from a tetrode. Presumably, for

hippocampus, a large majority of the recorded cells would be place cells. The

spatial tuning of the superposition of the spatial firing of all of these cells with
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more or less well defined spatial tuning would result in a more diffuse spatial

tuning but nevertheless, one which still has the same spatial frequency as the

constituent spatially tuned cells. The spectral decoder will fail if the spatial

tuning gets diffuse enough to fall below the noise threshold or if the spatial

tuning is too flat. The latter case is unlikely even if the cells being recorded on

a tetrode had a uniform distribution of place fields over the track – the spatial

distribution of all the (velocity filtered) spikes would also need to have an

uniform distribution. The spectral gain decoder was run on velocity filtered

unsorted spikes from a tetrode and the hippocampal gain was estimated as

the median of the gain estimates from individual tetrodes rather than as the

median from individual sorted clusters. As evident from the error measures

shown in Fig. 5.2 c , the gain estimation from unsorted spikes is almost as

good as the gain estimation from sorted spikes.
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Figure 5.2: Unsorted decoding. The top left panel shows the spatial frequency
spectrogram from a gain manipulation experiment being very similar when using
sorted clusters or when using unsorted spikes from a tetrode. The right panel shows
that an example of hippocampal gain estimation using unsorted spikes performs at
the same level as that from sorted spikes. The histograms in the bottom row show the
error between the gain as estimated when using sorted spikes versus unsorted spikes.
Each panel uses data from a single rat.
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While these error measures are very good, there are potential failure points

to this approach. First would be the case where we have the "fortunate"

situation of getting a large number of cells on a tetrode that happen to tile

the space and have firing rates such that the superposed tuning curve is too

diffuse and close to a flat line. In this case, the spectral power at the spatial

frequency of this spatial tuning curve will be low and can be drowned out by

spectral noise introduced by stochastic firing of neurons. The second would

be a failure of the assumption that the population response is coherent. If

there were sub-populations with different responses, it might yield a noisy

gain estimate signal. Or worse, if spatial firing rate curve of one of the sub-

populations dominates the rest, the output of the spectral decoder would

be the gain of this dominant sub-population, masking out the existence of

sub-populations.

5.2.2 Online gain estimation from unsorted spikes

The previous section discussed gain decoding from unsorted spikes from a

tetrode. This is exactly the format of the incoming data while an experiment

is running allowing for gain decoding from the data as soon as it comes in

during an experiment.

The gain decoding step itself was trivial as it was a straightforward plugin

of the unsorted spike based gain decoding algorithm. The hurdle in the

implementation of online gain decoding lay in the preparation of the incoming

data for use by the decoder with the primary challenge being that of timestamp

synchronization. Previously, there were two computers involved in collecting
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experiment data. In one, neural data was collected and timestamped according

to the clock on the Neuralynx system. In the other, experiment data such as the

animal’s angular position, visual scene definition and manipulation, feeding,

video refresh, etc were recorded and timestamped by the ROS master using

the clock of that computer. The neural data would synchronized with the rest

of the data using the process described in Chapter 3, where a pseudo-random

signal, sent from the ROS computer to the Neuralynx’s Digital Lynx box,

would be used to estimate the offsets and relative drifts between the clocks

and bring the timestamps of all the data to a common frame of reference.

For online decoding, this step of synchronizing the neural data to the

ROS data still holds true. But the process of online decoding now uses ROS

nodes running on three different computers. There is now a ROS node on

the computer (PC1) which does the neural data collection that converts the

Neuralynx’s timestamp to the ROS timestamp as determined by the local

instance of the ROS Master node using PC1’s clock. PC2, which also does

the experiment control, collects data on the animal’s position and the local

instance of the ROS Master node timestamps it using PC2’s clock. PC1 and

PC2 pass their neural and position data respectively to PC3 at frequent and

regular time intervals. PC3 interpolates the position and velocity data of the

animal to the time of each spike and uses this to calculate the velocity filtered

and occupancy corrected spatial firing rate curve. This firing rate curve is the

input to a MATLAB instance that is running the spectral gain estimation that

estimates the gain as soon as it comes in.

The complication in synchronization arises due to the fact that the ROS
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Masters running on each of these computers timestamps data according to

the local clocks. These clocks could be offset and drifting relative to each

other and spikes could be assigned the wrong position and velocity. This

can lead to spurious spikes being included or good spikes being rejected at

the point of velocity thresholding. This cause of error and also the potential

misassignment of position to a spike can cause distortions in the occupancy

corrected spatial firing rate curve which in turn could lead to erroneous

estimates of the hippocampal gain. To avoid this, a Network Time Protocol

(NTP) was setup on all three computers and setup such that the clocks of PC1

and PC3 synchronizes with the clock of PC2 every 15 minutes.

There are certain steps in the spectral gain estimation that require filtering

the data, such as the velocity measurements or the computed firing rate.

Filtering can introduce edge effects at the very beginning and end of the

stream of data. When the gain is decoded offline, the edges of the data are at

the beginning and end of the experiment session, thus minimizing the edge

effects to just a few instances. When decoding online, more care has to be

taken. A buffer of data is built up to span a spatial window size that’s bigger

than the sliding window used by the gain estimator. The data within this

buffer window is filtered and the gain estimation is done on a window that is

centered in the buffer window such that it is unlikely that the data distorted

by edge effects would be included.
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Figure 5.3
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Figure 5.3 (previous page): (A) Example of online gain estimation. The data is from a
session with landmark control over the place cells. The black trace is the experiment
gain. The dots are gain estimated in real time using unsorted spikes from a tetrode.
Colors of the dots represent different tetrodes. The yellow trace is the median of the
gain estimates from all the tetrodes and is defined as the online gain estimate. (B) - (I)
is the flowchart showing the steps of the online implementation of the spectral gain
estimator. (B) Neural data and experiment related data (such as angular position of
the rat) is being collected by two different computers. The clocks of the two computers
are synchronized using a pseudo-random signal sent between the computers and the
timestamps of the data collected on both computers is brought to a common time
frame. (C) The data is collected in 10s buffers and sent to a third computer which
does the rest of the steps. (D) Data within a sliding spatial window, from the current
location to 6 laps prior, is considered. (E) The velocity of the animal is calculated
from the angular position data and filtered with the same parameters used for the
analysis in Chapter 4. This is used to filter out spikes that fired at velocities less than
5◦/sec. (F) The spikes are spatially binned and the occupancy time of each bin is
computed. (E) The occupancy corrected firing rate is calculated and (F) smoothed.
(G) The spatial frequncy of this segment of spike firing is calculated using the same
spectral decoding algorithm as described in Chapter 4.

5.3 Contributions

The work in this chapter was primarily my contribution with external contri-

butions listed below.

Enhancing gain estimation using place field detection: The decision to

use kernel density estimation as the foundation for field detection builds off

work previously done by Manu S Madhav and Macauley Breault.

Online gain estimation from unsorted spikes: Manu S Madhav con-

tributed equally in all aspects of the development of the online implementation

of the gain estimation. This was a highly collaborative effort that needed a

lot of combined effort, brainstorming, debugging, and testing. Manu S Mad-

hav made the flowchart portion of FIgure 5.3 while I made the subplot with
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the example dataset of online gain decoding. I wrote up the collaborative

implementation independently for this thesis.
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Chapter 6

Looking beyond place cells:
investigation of the head
direction cell network and
potential role of gamma
oscillations

For this chapter, I performed the majority of the analysis and generation of figures

in this chapter. I wrote the text and the work has not yet been published elsewhere.

External contributions are detailed at the end of this chapter

6.1 Investigation of the head direction (HD) cell
network

We have data from one rat where we recorded simultaneously from place cells

in CA1 and from head direction (HD) cells under the same gain manipulation

protocol used in the datasets in Chapter 4 The head direction of the animal
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was tracked using the 3D head tracking system described in Appendix A.

Figure 6.1 shows one representative experiment from this dataset. The first 4

panels show a replication of the results shown previously where CA1 place

cells behave as a coherent population, showing landmark control under gain

manipulation and recalibration of the path integration gain (as read out from

CA1 place cells) once the landmarks are extinguished. The last set of sub-

figures describe the behavior of a simultaneously recorded head direction

cell as polar plots where the angle is the direction of tuning and the radius

is the head direction occupancy corrected firing rate. The first row shows

the head direction tuning when the animal is stationary and looking around.

The second row shows the tuning when the rat is running. The plots are split

up into blocks with data from Epochs 1 (gain 1), Epoch 3 (plateau gain), and

Epoch 4 (landmarks off). The title of each of the columns of plots shows the

frame of reference.
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Figure 6.1: Preliminary data from simultaneously recorded place cells and head
direction cells in a gain manipulation experiment

In general the tuning curves appear to be a bit wide when the rat is station-

ary versus when the rat is running. In Epoch 1, the HD tuning direction is the

same when the animal is stationary and running. In Epoch 3, the cell shows

little to no tuning in the lab frame while the tuning is still preserved in the

landmark frame, which means that the internal frame of reference is locked

122



to the landmark frame. In Epoch 4, the tuning is degraded for both the lab

and landmark frame (had the landmark frame still continued rotating at the

same gain). However, when plotted in the hippocampal frame of reference (as

determined by the hippocampal gain estimated from CA1 cells, the HD cell

show a well defined tuning. This implies that the internal frame of reference of

the HD cells is in sync with the recalibrated hippocampal frame of reference.

This cannot be taken as evidence of recalibration of the inputs to the head

direction cells. The rotation of the frame of reference of head direction cells

may be driven by hippocampal feedback when the animal is running. Chapter

7 includes discussion of ways in which this may be happening. The way

to ascertain if the HD cells have recalibrated is to check the head direction

tuning of these cells when the animal is stationary and looking around. In this

behavioral epoch, the head direction cells gets inputs from motor efference

and sensory re-afference. Sensory re-afference can include vestibular, propri-

oceptive, and external inputs from landmark (spatial and non-spatial) and

optic flow cues. These inputs drive the bump of activity around the closed

ring of HD neurons mapping the angular space. If the HD cell network has

recalibrated, then the gain manipulation would have modulated how fast this

bump of activity traverses this ring in the absence of external inputs. This

would in Epoch 4 of the gain manipulation experiments where the projected

visual cues have been extinguished and due to the design of the dome appara-

tus, other landmark cues have been minimized. Local optic flow is present to

an extent. When recording from HD cells (in a stationary animal), evidence of

recalibration can manifest itself in two ways. One, compared to the control
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epoch 1, the width of head direction tuning of each HD cell is modulated by

the recalibration amount - gains less than 1 will manifest itself as wider tuning

width and gains greater than 1 will be narrower. The second is to compare the

angular distances between the the tuning direction between two HD cells as

compared to their distance in control epoch 1. If the distance gets larger, the

HD gain has recalibrated to values less than 1 and vice versa for if the distance

gets shorter.

The caveat here is that even if recalibration of the HD cells is not observed

in this analysis, it does not rule out context dependent recalibration where the

recalibration is only engaged during animal locomotion.

Preliminary evidence suggests that the HD cells do recalibrate but to a

different extent than what is seen in the place cells. Figures 6.2, 6.3, and 6.1

show data from a session where the experiment gain was taken to 1.77. Figure

6.2 shows spikes from a CA1 place cell plotted in the lab frame with laps on

the x axis and track angle on the y axis. The place cell starts off with one field

at the start of the experiment. The dashed line shows when the landmarks

were turned off. At this point, there are two repetitions of the field indicating

that the hippocampal gain was approximately 2 once the landmarks were

turned off.
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Figure 6.2: Simultaneous place and head direction cell recalibration experiment: Place
cell spike plot

Figure 6.3 shows the head direction tuning of two simultaneously recorded

HD cells with the animal’s head angle on the angular axis and head occupancy

corrected firing rate on the radial axis. The data is from Epoch 1 when the

landmarks were visible and stationary. The left panel shows the data when

the animal was stationary (body velocity < 5 cm/s) and the right panel is with

the animal running (body velocity > 5 cm/s).
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Figure 6.3: Simultaneous place and head direction cell recalibration experiment: HD
cell tuning.

Table 6.1 shows data from these two cells where the start and ends of

individual passes through the tuning field of each cell in Epoch 1 and Epoch 4 ,

with the animal stationary and running, was manually found. The field widths

in Epoch 1 establishes the baseline width of the field in each of the movement

conditions. The recalibrated gain in each of the movement condition is defined

as the ratio between the average field width in Epoch 1 versus Epoch 4. For

both cells, the recalibrated gain under the running condition is approximately

the same as that seen in the place cell. However, the recalibrated gain under

the stationary condition is significantly lower. This indicates that the HD cells

do recalibrate but not to the same extent as the place cells.
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HD cell 1 
(cell id 5): 

Epoch 1: Stationary Epoch 4: Stationary
Field Start Field End Field Width Field Start Field End Field Width

77 220 143 78 205 127
37 204 167 90 208 118
25 192 167 100 209 109
29 173 144 84 200 116
38 185 147

HD cell 2 
(cell id 10): 

Epoch 1: Stationary Epoch 4: Stationary
Field Start Field End Field Width Field Start Field End Field Width

78 221 143 79 183 104
73 204 131 91 208 117
89 211 122 100 207 107
43 189 146 91 199 108
38 176 138
29 167 138

HD cell 1 
(cell id 5): 

Epoch 1: Running Epoch 4: Running
Field Start Field End Field Width Field Start Field End Field Width

61 158 97 138 176 38
42 146 104 133 176 43
78 166 88 98 152 54
77 166 89 320 375 55
73 174 101 309 350 41
83 178 95 46.2

HD cell 2 
(cell id 10): 

Epoch 1: Stationary Epoch 4: Stationary
Field Start Field End Field Width Field Start Field End Field Width

118 197 79 141 181 40
97 179 82 121 155 34
93 172 79 108 138 30
97 167 70 319 350 31
98 175 77 295 325 30
97 165 68 330 374 44
91 159 68 327 378 51

HD cell 1 (cell 
id 5): 

Mean Field 
Width Epoch 1 Epoch 4 Recalibrated 

Gain
Stationary 153.6 117.5 1.307234043
Running 95.66666667 46.2 2.070707071

HD cell 2 (cell 
id 10): 

Mean Field 
Width Epoch 1 Epoch 4 Recalibrated 

Gain
Stationary 136.3333333 109 1.250764526
Running 74.71428571 37.14285714 2.011538462

Table 6.1: Simultaneous place and head direction cell recalibration experiment: HD
cell tuning width and recalibration gain.
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6.2 Potential role of gamma oscillations on the asym-
metry of neural response to gain manipulation
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Figure 6.4: Gain modulation of average theta precession of place cells (from the
dataset used for drift calculation in Chapter 4)
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Theta precession is the phenomenon in which, as the animal runs through a

place field of a place cell, the cell fires spikes in time with the underlying theta

oscillation in the local field potential such that the spikes are at a later phase

at the start of the place field and gradually shift to earlier phases as the animal

progresses through the field. The precession usually has a stereotypical banana

shape with two parts to the precession, one showing slow precession in the

late phases of theta and the second showing faster, more random firing across

a range of early phases of theta. Figure 6.4 shows the mean theta precession

of spikes fired between Epochs 1-3 by stable place cells with a single place

field. The theta precession phenomenon is still preserved on average at all

ranges of gain with perhaps the exception of the averaged theta precession

between gains 0-0.6 where the second half of the precession appears a bit

sparse, indicating that a relatively lower number of spikes appear to be firing

locked to the earlier phases of theta at those gain values.
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Figure 6.5: Histogram of theta cycles skipped by spikes in place cells from the dataset
used for drift calculation in Figure 4.9.

Figure 6.5 shows further supporting evidence. The plot shows the relative

number of instances of number of theta cycles skipped (normalized to the

total count in a gain range) for place cells used in the dataset for place field

drift calculation in Figure 4.9. There is a clear trend of there being more

skipped theta cycles with decreasing gain. This theta skipping could explain

the sparsity observed in the second half of the precession for the range of gain

0-0.6 in Figure 6.4.
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Figure 6.6: Histogram of inter-spike interval (ISI) histogram of spikes in place cells
from the dataset used for drift calculation in Figure 4.9.
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Figure 6.6 shows the histogram of interspike interval of spikes of a place

cell at different ranges of gain when landmarks were visible. The dataset of

place cells used were the same as that used for drift calculation in Figure 4.9

i.e. place cells that had a single stable place field from Epochs 1-3. The firing

locked to theta frequency (and its sub-harmonics) stays about the same for

a gain of 1 and above, but increases its ISI (or in other words, decreases its

frequency of firing) for gains less than 1. The peak height at theta decreases

relative to the rest of the histogram with lower gains. This corresponds well

with the valley developing with lower gain in the ISI histogram to the left of

the peak at theta. One of the reasons for the formation of this valley might

correspond to the firing locked to the higher harmonics of theta as Figure 6.7

shows that the power in the higher harmonics of theta are lower for gains less

than 1 relative to the control condition and gains greater than 1.
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Figure 6.7: Average frequency content in the local field potential in the theta and
higher harmonic range of frequencies at instances when the animal is moving.

Figure 6.6 also shows a possible but not so clear modulation of the ISI

distribution in the gamma range of frequencies. Plotting the histogram of

spike ISI versus theta phase (Figure 6.8) allows a closer, albeit rough, study of

how the spikes are locked to different frequencies as the animal progresses

through a place field. Two cycles of theta are plotted to better disambiguate

circular wraparound.
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Figure 6.8: 2D histogram of inter-spike interval versus theta phase of spikes in place
cells from the dataset used for drift calculation in Figure 4.9.

Let’s first characterize the plot in the standard condition at a gain of 1.

There appears to be three main components to this plot with each component
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showing its own dynamics.

The first component is the progression of the theta precession seen in the

hot zone starting at a later phase with a larger ISI. As the spikes fire at earlier

phases, the ISI also goes down leading to theta precession due to the changing

difference in frequencies between the LFP theta and the spike firing frequency.

A relatively clean almost-linear decrease is seen in ISI with decreasing phase

until at one point, this trend breaks with a high count blob forming at an

earlier phase of theta and between ISIs in the frequency equivalent range of

10 - 25Hz. This most likely corresponds to the second half of theta precession ,

with the blob like nature corresponding well to the sporadic firing in this half.

The linear section would correspond to the initial slow half of theta precession.

The second component is on the left third of the figure with ISIs in the

gamma range of frequencies ( 0.007 - 0.025s). The gamma range of oscillations

can be further subdivided into three parts - slow gamma( 40 - 70Hz or 0.025 -

0.014s), medium gamma ( 70 - 100Hz or 0.014 - 0.01s) and fast gamma ( 100 -

140 Hz or 0.01 -0.007s).

It is hard to disambiguate between what’s happening in fast gamma and

the spike burst frequency range ( 0.001 - 0.005s), the third component of this

plot, at this resolution and will need more refined analysis. However, the

two things to note at this stage is (1) the conspicuous concentration of ISIs in

the combined spike burst-fast gamma range happening at the start and end

of theta precession and (2) the nature of the change of this concentration at

different ranges of gains.

We’ll take a look at what’s happening in the slow and medium gamma
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range and discuss its implications. As the theta precession starts at the start of

a field at a later phase, there is a high concentration at the medium gamma

range. This concentration moves towards the low gamma range and reaches

a peak roughly at the end of the slow half of theta precession. Then the

concentration moves back into the medium gamma range as the second half

of theta precession starts firing. This movement from medium to slow back to

medium gamma shows an almost symmetric distribution of concentration.

All of the above observations are consistent with previously published

results (Colgin et al., 2009). This concludes the characterization of the compo-

nents of this plot at a gain of 1. The following effects are seen at other ranges

of gain:

• For all ranges of gain , the slow half of theta precession remains roughly

the same. The hotspot corresponding to the second half starts becoming

larger and more diffuse for gain > 1. For gain < 1, the hotspot starts

disappearing with lower gains till it looks like a continuous progression

of the linear slow precession all the way through the field at the gain

range 0 - 0.6.

• At all gains, there is a concentration at medium gamma at the start of the

field which is more prominent for larger gains and almost nonexistent

at the lowest gain range. This concentration moves towards the slow

gamma range as in the control condition and then moves back to medium

gamma towards the end of theta precession. There is a shift from the

symmetric distribution of concentration in this back and forth movement

at a gain of 1 to an asymmetry biased towards later theta phase – so
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much so that the movement from slow gamma back to medium gamma

is almost nonexistent. The hotspot of concentration at slow gamma at

the schism between the two halves of theta precession shows a similar

effect as the fast theta precession hotspot at different gain ranges.

Figure 6.9 shows the average frequency content in the slow and medium

gamma range at instances when the animal is moving. The left panel shows

normalized local field potential power and the right panel shows mean sub-

tracted LFP power. Compared to a baseline at gain 1, slow gamma power

increases and fast gamma power decreases with further deviations from 1. In

both cases, the deviations are more exacerbated for gain ranges below 1 as

compared to equivalent gain ranges above 1.
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Figure 6.9: Average frequency content in the slow and medium gamma range at
instances when the animal is moving. The left panel shows normalized local field
potential power and the right panel shows mean subtracted LFP power.

This seems to be congurent with the findings of Kemere et al., 2013. An

excerpt from the abstract of this paper: “found evidence suggestive of a smooth

transition from strong CA3 drive of CA1 activity at low speeds to entorhinal cortical
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drive of CA1 activity at higher speeds. These changes occurred with changes in

behavior on a timescale of less than a second, suggesting a continuous modulation of

information processing in the hippocampal circuit as a function of behavioral state.”

The next question is if this speed modulated transition from CA3 to MEC

drive is based on speed in lab frame or landmark/hippocampal frame. Figure

6.10 shows data from Rat 692, which had landmark control over a large range

of gains. Landmarks were on. The peak gamma frequency for low and

medium gamma at a range of velocities is shown. The left panel only includes

data from when the experiment gain was 1. The relationship between peak

gamma frequency and animal velocity is very similar to that described in

Zheng et al., 2015.

The right panel includes data from when the experiment gain was away

from 1. The top right panel has velocities in lab frame. The bottom right panel

has velocities in landmark frame. The relationship between peak gamma

frequency and velocity is preserved in landmark frame.
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Gain 1: Velocity in lab frame
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Gain away from 1: Velocity in landmark frame
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Figure 6.10: Relationship between peak gamma frequency and velocity in lab and
landmark frames. The bar graph shows the frequency with the maximum power in
the slow and fast gamma ranges for a range of velocities (in cm/s) of the animal in
different frames of reference. The left panel has data with animal velocity in lab frame
and experiment gain at 1. The top right panel data with animal velocity in lab frame
and experiment gain away from 1. Bottom right panel shows the same data except in
landmark frame.

Thus, for a given value of running speed of the animal in lab frame, values

of gain less than 1 would cause the animal to experience a perceptually lower

speed, potentially inducing more CA3 drive as compared to a gain of unity

condition. Gain values greater than 1 would cause the animal to experience a

perceptually higher speed, potentially inducing more MEC drive to CA1 as
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compared to a gain of unity condition. The data in the figures described thus

far support this.

A similar asymmetry also shows up when looking at sharp wave ripples

(SWRs). Figure 6.11 shows the number of cells recruited in SWRs as a function

of gain. This is data from one rat. SWRs were detected using code made

publicly available by the Buzsaki lab. The number of cells recruited is relatively

constant for gains greater than 1. For gain less than 1, it increases with lower

gain.
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Figure 6.11: 2D histogram of experiment gain versus number of cells recruited in
sharp-wave ripples (SWRs).

140



This matches with the results from Amemiya and Redish, 2018. An excerpt

from page 8 of this paper: “Our data reveal that intrinsic asymmetry of theta

cycles reflects the gamma states: more asymmetric theta with a relatively longer HG

phase reflects preference for current location representations, and more symmetric

theta with a relatively longer LG phase reflects farther search processes. Associated

with these different theta wave shapes, ensemble activity of cells in asymmetric theta

cycles preferentially represents the current location, and ensemble activity of cells in

symmetric theta cycles preferentially represents future locations.”

The reason that these observations may be critically important is its impli-

cations in the asymmetry observed in gain manipulation experiments detailed

in Chapter 4. Landmarks were able to establish control over the place cell

map in a majority of sessions. But the rare cases where it did lose control, the

gain was always less than 1. Other assymmetries were observed even in the

presence of landmark control. The first row of Figure 6.12 shows examples

of typical theta precession in individual passes through a field at different

gains. The third example covers almost 2 meters. However, this isn’t always

the case. In the following example that looks at fields from a place cell on an

experiment day when the gain was driven to 0, examples are shown of theta

precession being preserved at gains close to 1 but as the gain starts getting

lower, some instances of fields show fractured theta precession, breaking

down into multiple precessions. Anecdotally, there also appears to be some

methods to this madness of fractured theta precession that when taken on

average, still shows a typical theta precession. For example, we would see a

typical theta precession when taking the average of fractured theta precessions
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where the peak spike density within each of the multiple precessions goes

from a later to an earlier phase.
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Figure 6.12: Examples of theta precession: stereotypical and during breakdown.
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This manner of theta precession, where spurts of the early phase of preces-

sion interjects in between breakdown only seemed to happen for gains less

than 1 and more frequent the lower the gain got.

It is known that theta precession of CA1 place cells, CA1 medium gamma,

driven by direct inputs from the MEC, peaks at the beginning and end of the

theta precession cycle and that CA1 slow gamma has the most influence mid

theta precession cycle(Colgin et al., 2009). CA1 pyramidal cells firing gets

phase modulated by inhibitory control by CA1 interneurons, which in turn

receive driving input from CA3 slow gamma (Csicsvari, Jamieson, et al., 2003).

It has been known previously that LTP in CA1 is most easily induced

at a particular phase of theta, corresponding to when EC drive was high

(from Colgin et al., 2009: linked sources: Huerta and Lisman, 1995, Hasselmo,

Bodelón, and Wyble, 2002). The phase corresponding to maximal CA3 input

was thought to be linked to memory retrieval. However, recent results have

implicated phase locked firing to slow gamma in being involved in modulating

syaptic plasticity during novelty learning. An excerpt from the abstract of

Kitanishi et al., 2015

“By devising a virus-mediated approach to perform multi-tetrode recording from

genetically manipulated neurons, we demonstrated that synaptic plasticity dependent

on the GluR1 subunit of AMPA (Îś-amino-3-hydroxy-5-methyl-4-isoxazole propi-

onate) receptor mediates two dynamic changes in neuronal firing in the hippocampal

CA1 area during novel experiences: the establishment of phase-locked firing to slow

gamma oscillations and the rapid formation of the spatial firing pattern of place cells.

The results suggest a series of events potentially underlying the acquisition of new
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spatial information: slow gamma oscillations, originating from the CA3 area, induce

the two GluR1-dependent changes of CA1 neuronal firing, which in turn determine

information flow in the hippocampal-entorhinal system. ”

6.3 Contributions

The work in this chapter was primarily my contribution with external contri-

butions listed below.

Investigation of the head direction cell network: Marissa Ferreyros and

Nick Lukish trained the animals used in the experiments and assisted with

surgery, turning tetrodes, and running experiments. They also built the

hyperdrives used for these experiments. Marissa did the brunt of the analysis

of the head direction data thus far. Manu did the surgeries. Manu and I ran the

experiments on the first animal and worked to get 3D head tracking working

in an experiment setup. I ran subsequent experiments and oversaw training,

tetrode turning, hyperdrive building, and analysis.

Potential role of gamma oscillations on the asymmetry of neural re-

sponse to gain manipulation: Manu Madhav wrote the code computing

the theta phases of the spikes. Figures 6.4 and 6.12 looking at average theta

precession and instances of breakdown of theta precession was a collaborative

effort by Manu and me.

145



Chapter 7

Discussion

7.1 Recalibration of path integration in hippocam-
pal place cells

The material from the discussion section of Jayakumar et al., 2019, of which I was the

co-first author, has been used verbatim for this section

Using a novel augmented reality dome apparatus, we show here that the

path integration system employs a modifiable gain factor that can be recali-

brated to a new value that can remain stable for at least several minutes in the

absence of salient landmarks. Recalibration of this nature has been described

extensively in other systems. The cerebellum plays a key role in recalibra-

tion of feedforward motor commands (Bastian, 2006). Similarly, the gain of

the vestibulo-ocular reflex adapts to changes in the magnitude of retinal slip

caused by magnifying glasses, an effect that persists even after the glasses

are removed (Miles and Lisberger, 1981). As with our own results, the recali-

bration is not perfect in these motor adaptation tasks; i.e., the gain measured

after the training trials are biased towards, but not precisely the same as, the
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experimental gain implemented during the training trials. To our knowledge,

such gain recalibration has not been demonstrated physiologically in cogni-

tive phenomena such as spatial representation and path integration (but see

Tcheang, Bulthoff, and Burgess, 2011b). The lack of complete recalibration

may be due to an insufficient number of training laps during Epoch 3, or may

reflect inherent limits on the plasticity of the path integrator gain variable.

It is widely accepted that visual landmarks provide a signal to correct error

that accumulates during path integration (Terrazas et al., 2005b). The results in

this paper demonstrate physiological evidence for a role of vision in the path

integration computation itself by providing an error signal analogous to retinal

slip in the VOR (Miles and Lisberger, 1981). Specifically, this error signal fine-

tunes the gain of the path integrator (Tcheang, Bulthoff, and Burgess, 2011b),

minimizing the accumulation of error in the first place. Although recalibration

of the path integrator gain may be expected over developmental time scales,

these results indicate that the path integration gain is fine-tuned even at

behavioral time scales. This fine-tuning may be required to (a) maintain

accuracy of the path integration signal under different behavioral conditions

(e.g., locomotion on different surfaces that provide varying degrees of slip

and cause alterations in the self-motion inputs to the path integrator); (b)

synchronize the different types of self-motion signals (e.g., vestibular, optic

flow, motor copy, or proprioception) thought to underlie path integration; and

(c) coordinate the discrete set of different path integration gains thought to

underlie the expansion of grid scales along the dorsal-ventral axis of the medial

entorhinal cortex (Hasselmo, Giocomo, and Zilli, 2007,Terrazas et al., 2005b,
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A. P. Maurer et al., 2005). The recalibration might be implemented by changes

to the head direction ( citeCullenSense2017) or speed (Kropff et al., 2015b,

Hinman et al., 2016) signals that provide input to a path integration circuit.

Alternatively, these representations may be unaltered and the gain changes

are implemented by changing the synaptic weights between the inputs and

putative attractor networks that perform the path integration (Samsonovich

and McNaughton, 1997, Fuhs and Touretzky, 2006,McNaughton, Battaglia,

et al., 2006, Blair, Gupta, and Zhang, 2008). The augmented reality system

described here will allow the investigation of mechanisms underlying the

interaction between external sensory input and the internal neural dynamics

at the core of the path integration system.

We also show that in the majority of cases, visual landmarks reliably

control the location of place fields, even under severe landmark manipulation.

Removing the landmarks revealed that the path integrator is recalibrated to

a gain lower in magnitude (but always consistent in direction) than the final

experiment gain. Thus it is extremely likely that the path integrator gain is

not the same as the experiment gain even in the presence of the landmarks.

Indeed, a slow drift of the place fields against the landmarks was measured

even under conditions of (preponderant) landmark control, possibly as a result

of an inherent, continuous conflict between the position as informed by the

landmarks and the position as computed by path integration. We observed

drifts of place fields in both positive and negative directions, as a linear

function of experimental gain. In our control (no landmark manipulation)

trials, the drift had a slightly negative bias (-X ± Y degrees). This is similar to
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the backward expansion / drift of place fields on a track that has previously

been observed (Mehta, Barnes, and McNaughton, 1997). If this drift is due

to path integration, these results might suggest that path integration tends to

overestimate distance even in the normal condition.

7.2 Further developments to spectral gain estima-
tor

7.2.1 Enhancing gain estimation using place field detection

Beyond getting a refined gain estimate, the field detection process is also vital

for implementing the standard suite of place field analysis in the field. Studies

into place fields, in general, do not look at individual passes of the place field

but rather the combined average of neuronal firing in all passes through a

stable field. Some of the characteristics studied are place field size, mean and

peak firing rate, theta modulation and average theta precession, burstiness,

interspike intervals etc.

A place field is stable in the hippocampal frame of reference by definition.

The decoder as described in Chapter 4 could approximate this to an extent but

uncompensated effects such as field drift and slow oscillation would cause the

averaged place field to be larger and more diffuse. This would cause distor-

tion in many of the standard place field measures such as its size, mean and

peak firing rate, shallower average theta precession. Not accounting for this

drift/oscillations can also blur the precise timing of spikes relative to position

in field for theta precession causing what might be a precise mechanism to

appear more stochastic.

149



In addition to the standard averaged place field analyses, which deal with

a static picture that does not take into account the dynamics in the neuronal

response either due to internal dynamics or due to response to the dynamic

stimulus enforced by the experiment, we can also start extending these anal-

yses to see the time varying responses of these standard measures. This is

of particular import to the study of the dynamic change in theta precession,

interspike intervals and its interplay with the underlying local field potential.

Preliminary evidence discussed in Chapter 6—such as interesting and com-

plex interactions between the spike firing and local field potentials, putative

influence of other brain regions and the role of optic flow in this system—is

hinting at fundamental insights into the mechanisms that define the hippocam-

pal spatial map.

7.2.2 Decoding on unsorted spikes

The utility of decoding the gain from unsorted spikes is many-fold. First, it

can potentially yield a more robust decoding of the gain estimate. This is due

to two factors. One is that remapping of a small subset of a large population

of neurons recorded in a tetrode, which is generally what tends to happen

in these experiments, may not significantly change the shape of the spatial

tuning curve formed by the superposition of the firing of the entire population

of neurons. This will result in a more continuous gain estimate. Second,

the experimenter can start analysis of the data almost immediately after the
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experiment without going through the intermediate step of manual cluster

cutting. While many analyses will still require sorted spikes, there are also a

significant number of analyses that can be done just using the gain estimate

assuming that the coherent population response still holds true. This is also

especially useful as the experimenter can get immediate feedback about the

outcome of an experiment and potentially use this information to close the

loop in determining the parameters of subsequent experiments.

7.2.3 Online gain estimation from unsorted spikes

While real-time estimation of gain is a useful feature for monitoring the neural

response during an experiment, the real power of this lies in the fact that the

experimenter can now close the loop by having the experiment parameters

such as the applied visual gain now be modulated by the neural feedback.

This makes possible a number of previously infeasible experiments. One

such experiment is testing if gain manipulation of optic flow can result in

recalibration of the path integrator gain.

Optic flow has experimentally investigated to a relatively lesser degree

(Sharp et al., 1995; Arleo et al., 2013) in spite of its theoretically (Raudies,

Mingolla, and Hasselmo, 2012; Raudies, Hinman, and Hasselmo, 2016) and

empirically motivated (Sherrill et al., 2015; Tcheang, Bulthoff, and Burgess,

2011b) role in spatial processing in the hippocampal formation. A single

study shows preliminary, but convincing, evidence that optic flow can bias

the preferred direction of HD cells to rotate in the same direction (clockwise

or counter-clockwise) as a drifting pattern of random dots in the periphery

151



(Arleo et al., 2013).

The necessity of implementing neural closed loop feedback for optic flow

based recalibration experiments is due to the nature of spatial information

provided by optic flow, or indeed any other form of self-motion input. Salient

landmarks directly give the animal an indication of its position in its environ-

ment. This allows the animal’s internal map to instantly correct any drift with

respect to the external world by triangulating its location with respect to the

landmarks. Thus, in a gain manipulation experiment with landmarks, this

influence by salient landmarks makes driving the internal hippocampal gain

to the experiment gain relatively easy

For optic flow however, the input is a velocity signal which has to be

integrated to get a position estimate. This is prone to accumulating error

introduced by noisy measurements or inherent neural stochasticity. Thus,

when applying a gain to the optic flow, the internal map may indeed update its

position estimate based on the integrated velocity cues but the accumulating

error means that the effective hippocampal gain will most likely not follow the

applied experiment gain. However, if the experimenter is able to determine the

hippocampal gain in real time, a control law can be applied to the experiment

gain as a function of the current and desired hippocampal gain to drive the

hippocampal gain to the desired gain. This allows the experimenter to perform

recalibration experiments using optic flow and maintain the place cell map at

gains that they choose rather than have it drift in a random and uncontrolled

fashion in the open loop case.
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Figure 7.1: Open- and closed-loop control of place fields by optic flow. (A) In the
Open-loop experiment, the rat’s velocity is measured through the optical encoder
at the center of the table, and multiplied by the pre-determined experimental gain
(gexp) value in order to determine optic flow velocity. Using the neural recordings, we
spectrally decoded an estimate of the rat’s internal gain (grat) post-hoc. Data from a
single trial (bottom) indicates that the rate of change of the rat’s internal gain tracks
that of the experimental gain. (B) In the closed-loop experiment, the internal gain is
estimated online, and its error with respect to the pre-determined desired gain (gdes)
is used to determine the instantaneous value of gexp. The data from a closed-loop trial
shows grat coarsely tracking gdes.

7.3 Looking beyond place cells: investigation of
the head direction cell network and potential
role of gamma oscillations

7.3.1 Investigation of the head direction cell network

Although the CA1 population shows evidence of recalibration of the path

integrator, we do not yet know where and how recalibration is implemented
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neurally. Since the rat is running in a circle of a fairly large diameter, its

locomotion is a combination of linear and angular movement. There are

multiple sensory modalities that could be used for path integration, such as

optic flow, vestibular and proprioceptive. Each of these modalities could be

integrated with its own gain and then incorporated into a combined path-

integrative estimate. On the other hand, the path integrator gain may be

an abstract quantity independent of sensory modalities. We also do not yet

know the loci of the functional implementation of this recalibration in the

rodent brain. Given the angular-linear nature of the animal’s locomotion,

head direction cells in the anterior dorsal thalamic nucleus and grid cells and

speed cells in the medial entorhinal cortex were potential suspects for further

investigation.

When the animal is running around the track, there is a linear and an

angular component to the movement. This engages both the place cell and

HD cell network. One cause for the HD cells maintaining their tuning in

the hippocampal frame of reference in the absence of landmarks could be

that the frame of reference of the HD cells is being driven by the rotation of

the place cell map. How does the place cell map rotate when not driven by

HD cells? One possibility, suggested by Prof James Knierim, is by the use of

step counting. During the epochs when the landmarks are on, as the animal

runs laps, it progresses sequentially through a series of place cells, each one

being a certain linear and angular distance away from the previous one and

eventually closes back on the first in the sequence. Continuous exposure to this

sequence lap after lap could cause the recurrent collateral system of CA3 cells

154



to increase the strength of connection of this circular sequence of cells forming

a pseudo 1-D "map". The connection strength between two consecutive cells

can be equivalent to the integrated driving input by step counting needed for

travel from one to the other. Gain manipulation can cause the step counter to

recalibrate resulting in a modulation of driving input to CA3 place cells for

a given step. This could appear externally as the recalibration phenomenon

seen in Chapter 4. In the absence of landmarks, the path integration input

from step counting can drive the sequential activation of this 1D circular

network of cells in CA3—and subsequently in CA1 which receives CA3 inputs

and purportedly would not have its own attractor dynamics owing to its

parallel organization in terms of connectivity (Amaral and Witter, 1989)—in

this recalibrated state which when seen from the lab frame of reference could

appear as if the hippocampal map is rotating with respect to the external

world. The hippocampal map may in turn be dominant over the HD cell map

when running and cause the HD cell map to stay locked to it, causing it to

"rotate" its frame of reference as well.

Another potential implementation of this same result is where a 2D map

with place cells tiling the environment exists but now there is an interaction

between the self-motion inputs. As the animal continually runs laps in the

presence of landmarks, if a mechanism exists for the network to learn that

a step taken along this circular trajectory corresponds to both a linear and

angular distance traveled, then once the landmarks are extinguished, the

driving input from step counting could cause the trajectory to move forward

by both a linear and angular amount with each step. Then, if the drive from

155



step counting input experiences recalibration in the previously described

manner, this can cause the hippocampal map to rotate with respect to the

lab frame. Thus, when locomoting, the animal could still traverse a circular

trajectory that has an ’angular’ component without an explicit directional

input from the HD cells.

7.3.1.1 Possible mechanism for higher frequency of place field remapping
in gain manipulation compared to gain of unity condition

As mentioned in Chapter 4, the recorded place cell map undergoes more

frequently in the gain manipulation experiments as compared to the normal

gain of unity condition. The remapping is also observed to varying degrees

in the population of cells being recorded. Some may be stable, some may

be dynamically undergoing rate remapping, some cells may turn on or off

entirely, or even change position. Global remapping of all cells is rarely

observed. I suggest below a mechanism and an accompanying simulation

by which these experiments could be inducing this level of remapping with

Figure 7.2.

As described in Chapter 4, even in epochs with landmark control, place

fields drift in a direction consistent with a small but ever present influence of

path integration. This drift means that the effective hippocampal gain even

during landmark control is slightly away from the experiment gain. A simple

model for representing this might be one where the hippocampal gain Ghipp

is a weighted mean of the experiment gain Gexp and the path integrator gain,
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Gpi with weights wexp and wpi respectively.

Ghipp = wexpGexp + wpiGpi (7.1)

where 0 ≤ wexp, wpi ≤ 1 and wexp + wpi = 1

As the animal runs around the track, its movement has a linear and angular

component. The above equation would represent a path integrator gain being

applied to the combined path integrator signal. If separate gains were being

applied to the subsystems involved in each component, then it might be

represented as,

Ghipp:linear = wexp:linearGexp + wpi:linearGpi:linear

Ghipp:angular = wexp:angularGexp ++wpi:angularGpi:angular (7.2)

When the landmarks are stationary, one may assume that the gains are

tuned such that the error between the estimates from path integration and

the external landmarks is minimal. In this case, as the rat runs laps on the

track, its trajectory through its internal map may look like the top left panel

in Figure 7.2 where the internal trajectory almost exactly reflects the circular

path that the rat is running.

The results from Chapter 4 shows that the path integrator gain is indeed

getting recalibrated during gain manipulation. If the underlying mechanism

is as in Eq 7.1, with one path integrator gain Gpi applied to a combined path

integrator signal as in Eq 7.1, the trajectory in its internal map would continue

to be a tight circular trajectory. If there was a 2D place cell map tiling the
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environment and the animal’s trajectory were to cause it to traverse across the

fields of three place cells shown in red, green, and blue shaded regions, the

resulting spike firing from these cells will result in a stable firing as shown in

the bottom left panel of the figure. Fluctuations in wpi would yield the same

outcome.
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Figure 7.2 (previous page): Simulation of remapping mechanism. The top row is the
overhead view of the animal’s internal representation of the track that it is running
on. The place fields of three place cells are shown as the red, green, and blue shaded
regions. The black dashed line (appears as a solid line in the left panel due to overlap
of multiple dashed lines) represents the trajectory of the animal through its internal
place cell map. The bottom row shows a spike plot in the same format as used in
Chapter 4. The laps run around the hippocampal map is shown on the horizontal
axis. The angle on the track in hippocampal space is shown on the vertical axis. The
spikes fired by each place cell as the animal’s trajectory intersects with the place fields
are shown in the corresponding color coded dots

However, if the underlying mechanism is as in Eq 7.2 with the linear and

angular components having independent gains, ignoring fluctuations in the

weights, wexp:linear, wexp:angular,wpi:angular and wpi:linear for the moment, two

scenarios can happen:

• The linear and angular components of movement get recalibrated at

about the same rate. The trajectory in its internal map would continue

to be a tight circular trajectory and will result in a stable firing as shown

in the bottom left panel of the figure.

• If the linear and angular component gains recalibrate at even slightly

different rates, the trajectory in its internal map would deviate from the

tight circular trajectory. As an example, assume noisy rates of recalibra-

tion. In Figure 7.2, the top right panel shows a case where the gains on

the linear and angular components are indeed changing, due to being

enforced by landmarks and recalibration but there is a small stochastic

difference between the two gains in the rate at which they change. The

result is that the internal trajectory is no longer a tight circle but one

which meanders around the circle. The intersection of this trajectory

159



through the fields of three place cells would now result in spike firing as

shown in the bottom right panel. This shows almost exactly the kind of

remapping seen in the gain manipulation experiments. Do note that this

mechanism cannot explain position remapping unless the place cell has

multiple fields and the meandering trajectory happens to intersect with

the other fields.

It is to be noted that, even under the first scenario with equal rates of

calibration, unequal fluctuations in the weights between angular and linear

components can result in the same remapping like phenomenon shown above.

Extending this mechanism to MEC recordings, one could even see what

looks like remapping in the firing of grid cells - which aren’t traditionally

prone to remapping - due to the internal trajectory deviating from the an-

imal’s trajectory in the actual world. Head direction cells would broadly

maintain their tuning but would still show the fluctuations associated with

the gain/weights (Ghipp:angular) of the angular component of movement. Re-

construction of the 2D internal map and the animal’s trajectory through it may

allow determination of the underlying nature of the fluctuations, be it in the

weights or in the rates at which the gains get recalibrated.

Another mechanism for remapping proposed by Prof. James Knierim was

that the map itself is fluctuating and the fields are drifting around, possibly

due to the strength of the synaptic connection between place cells being

modified during the recalibration process and consequently, presumably,

the spatial distance between them (Muller, Stead, and Pach, 1996, Isaac et

al., 2009). If the field drift is coherent, perhaps due to a global shift of the
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internal map’s relationship to the gain-modulated distal cues, this would be

equivalent to a fluctuating internal trajectory and the two mechanisms would

yield indistinguishable place cell recordings.

However, under the fluctuating map mechanism, if the individual fields

themselves were drifting relative to each other, then the resultant place cell

remapping would not be consistent with a shift of the whole map and would

be more random in nature.

This is all under the assumption that the dynamics of the fluctuating

internal trajectory is slow, which would be supported by the fact that even the

place fields which remap tend to be stable for many laps.

7.3.2 Potential role of gamma oscillations on the asymmetry
of neural response to gain manipulation

I speculate a description of what could be happening in gain manipulation

experiments that ties together the results in Section 6.2. The MEC and CA3

have recurrent connectivity that facilitates attractor dynamics. The internal

representation of position in MEC may be a bump of activity in an attractor

that’s mainly path integrator driven. The internal representation of position in

CA3 (in conjunction with dentate gyrus inputs) may be a bump in an attractor

that’s mainly driven by external landmarks (Kesner, 2007; Rolls, 2013; J. W.

Lee et al., 2012; J. W. Lee et al., 2009; Yoder, B. J. Clark, and Taube, 2011).

Under normal conditions (gain = 1), the coherence of internal representa-

tion between CA3 and MEC is mediated by information transfer via CA1. CA1
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cells get MEC drive mediated by medium gamma at the early and late phases

of theta oscillation in CA1(essentially the same since the phase wraps around).

CA3 drive to CA1 cells comes in at middle phases of theta mediated by slow

gamma (Colgin et al., 2009). Synaptic plasticity may be induced in CA1 due

to MEC and CA3 drive ((from Colgin et al., 2009: linked sources: Huerta and

Lisman, 1995, Hasselmo, Bodelón, and Wyble, 2002), Kitanishi et al., 2015).

This results in a representation of position in CA1 that is influenced by the

representation of position in MEC and CA3 in an alternating fashion relative to

theta phase and is weighted by the level of synaptic plasticity induced by the

drive from each region. This is, in essence, a prediction (using path integration

by MEC) and correction (using visual cues by CA3) process with synaptic

plasticity determining the weighting. This weighted CA1 representation could

then be projected back, possibly in the same medium gamma epochs, to the

deep layers of MEC. The deep layers then projects back to the superficial layers

as well as to other brain regions, unifying the representation across multiple

brain regions. MEC may have its own correction and recalibration step where

it uses the difference between its estimate of position to the weighted CA1

position to calibrate the path integrator gain.

Gain manipulation in recalibration experiments affects the animal’s percep-

tion of motion. The results of Section 6.2 suggest that the gamma oscillations

relationship to speed is maintained in the landmark frame, not the lab frame.

This result combined with the results from Kemere et al., 2013, which shows a

transition from CA3 drive of CA1 activity at low speeds to EC drive of CA1

activity at higher speeds, means that the modulation of perceived speed can
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alter the level of drive provided by MEC and CA3 to CA1 compared to a gain

of unity condition, with a perceived lower speed increasing CA3-driven low

gamma and a perceived faster speed increasing MEC-driven medium gamma.

Zheng et al., 2015 shows that CA3 slow gamma frequency has regions of high

power for speeds of 0 to ∼24 cm/s with a slow gamma frequency of peak

power ramping up from 3 cm/s to 24 cm/s. MEC has high levels of medium

gamma activity above 24 cm/s.

Consider a gain manipulation experiment where the experiment gain is

greater than 1. The animal perceives itself as moving faster than it actually

is (6.10) which bumps up epochs of movement normally slow enough to be

within the range of heightened CA3-driven slow gamma, up into the range

of of heightened MEC-driven medium gamma. Thus, on average, there is

more of a MEC drive on CA1 as compared to a unity gain condition. However,

given the nature of the task, a well-trained animal is executing repeated stop-

go ballistic movements between drops of liquid reward on the track. As

the animal stops to lick the liquid reward, the animal will frequently have

movement epochs where the speed is slow enough for CA3 slow gamma drive

to be dominant. Thus, even though the tendency is towards MEC drive due to

a higher perceived velocity, the CA1 representation of position will still have

influence from CA3 regularly when the animal slows down at the reward

drops.

The same, however, does not hold true for experiment gains less than 1.

The animal perceives itself as moving slower than it actually is (6.10) which

bumps down epochs of movement normally fast enough to be within the
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range of heightened MEC-driven medium gamma, down into the range of

heightened CA3-driven slow gamma. Thus, on average, there is more of

a CA3 drive on CA1 as compared to a unity gain condition. However, an

animal cannot run infinitely fast in the lab frame. In addition, due to the

frequent stop-go ballistic nature of movement and the physical restraints of

the experiment setup, the animal may only be able to achieve limited top

speeds. The average top speed of a rat in the gain manipulation experiments

in Chapter 4 was about 50-60 cm/s. Given this range of peak velocites, the

experiment gains would need to be 0.4 - 0.48 to bump the perceptual velocity

down to the slow gamma range at a threshold of ∼24 cm/s,

In a gain manipulation experiment where the gain is lower than 1, assume

that the distal cues started off exerting landmark control. The experiment gain

being lower than 1 causes the perceptual velocity to be lower than the velocity

in lab frame. Thus, at lower values of gain, there is a lower likelihood of the

perceptual velocity crossing the slow gamma to medium gamma threshold.

In that case, the CA1 place cell representation will be more often driven

by CA3 with intermittent synchronizations with MEC whenever medium

gamma drive goes up due to higher velocity. Incidentally, the theta precession

breakdown at gain less than 1 showing multiple fast precession phases may

be evidence of this intermittent synchronization.

An animal may place a weight for external landmarks that reflects its belief

in that object as a static reliable landmark to which it can lock its cognitive

map. At each synchronization with MEC, if the error between the CA3 driven

position estimate and the MEC position estimate has drifted far enough, this
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may drive belief in the reliability of landmarks to gradually deteriorate. The

mechanism behind this may be a form of synaptic LTD due to the place cell

firing spikes that were firing out of order in the theta precession of the cell

active at the moment of synchronization. If the experiment gain is maintained

at this low value, the deterioration of the belief in the landmarks becomes

a runaway process till landmark control finally fails. Thus, the probability

of landmark failure will be a function of both the running behavior of the

individual rat and the gain applied.

Predictions:

• At lower values of gain, the MEC representation of position will drift

from the CA1 representations with possible intermittent weighted cor-

rections to this drift. This may be behaviorally linked to the animal

intermittently achieving a high enough running speed to cause CA1 to

receive MEC driven medium gamma.

• Such drift corrections may also manifest itself in the firing of CA1 place

cells as theta precession breakdowns in the form of a sudden spurt of

spikes firing at early phases of theta. The early phase of theta is when

MEC-driven medium gamma has preferential influence.The MEC may

also show simultaneous spikes in medium gamma amplitude.

• There might be a theoretical lower limit to the value that the path integra-

tor gain can recalibrate to. Every animal will have a limited maximum

running speed. There will be a corresponding gain greater than 0 and

less than 1 that will cause the perceived running speed to go into the
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slow gamma range. If recalibration occurs as a result of using the error

signal between MEC and CA3 mediated by the slow gamma - medium

gamma epochs for transmission and coordination of this error signal,

then at low enough gain values, synchronization between the regions

is highly unlikely to happen except by chance and recalibration of the

path integration will cease.

7.4 Conclusion

The dome experiment apparatus and estimator is designed to give the experi-

menter an unprecedented level of real time control in perturbing the different

streams of spatial inputs received by the animal. This will enable us to pull

apart at the seams of how the internal dynamics of the hippocampal formation,

with its intricate feedback networks, incorporates landmark and path integra-

tive information, adapting to and resolving conflicting information, to form

and maintain a representation of the world. The phenomenon of recalibration

of the path integrator gain reveals that this network is able to quickly adapt in

the presence of conflicting landmark information. Experiments are ongoing

to figure out the roles played by the other participating brain regions in this

process and at what stages of processing this recalibration is realized. Further

studies will follow up on how the different modalities of path integration

(optic flow, vestibular, proprioceptive) interact with each other. The inputs to

the system can be enriched by adopting system identification principles. And

finally, studies will be done to investigate the real-world implications of these

findings i.e how the distortion of the internal spatial map affects the decision
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making processes and cost functions involved in cognitive tasks set in this

distorted map.

The dome apparatus, as it is right now, does have the limitation of having

the animal run in a simple circular 1D trajectory in a 2D space. But this simplic-

ity and the circular nature of the trajectory affords dimensionality reduction

and a regular sampling of the entire space. Under the assumption that the

spatial map instantiated in the hippocampal formation in both 1D and 2D

environments arises from a set of fundamental mechanisms, a comprehensive

characterization of the dynamics in a lower dimension will provide a solid

foundation towards deciphering the results of experiments that bring in more

spatial - and non-spatial - dimensions, completing the picture.
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Appendix A

Real time 6DoF pose
estimation of animal’s head
for head direction cell
analysis and enabling freely
behaving animal

A robust high-precision single-camera system was developed for tracking the

pose – position (x,y,z) and orientation (roll, pitch, yaw) – of a custom visual

target attached to a test subject. The system builds upon existing monocular

tracking algorithms, referred to as Perspective from n Points (PnP), that use a

visual target comprising point-like fiducials (passive retroreflective markers

in our implementation) arranged in known configuration (Faessler et al., 2014,

Savkin et al., 2017). Such methods are constrained by the trade-off between

fiducial count and range of detectable orientations. A low fiducial count
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limits the range of angles from which enough fiducials are visible due to self-

occlusion, leading to loss of tracking, time needed for video processing and

recapture of target pose upon loss of tracking scales poorly with the number of

fiducials due the combinatorial complexity of possible point correspondences.

We introduce geometric constraints and multiple fiducial sizes, drastically

reducing the number of possible correspondences facilitating a higher fiducial

count. Our improvements enable real time operation (15-30 ms per frame

at 4MP resolution using 11 fiducials) in a host of new applications where a

wide range of orientations need to be tracked. The system consists of custom

software, a Near-IR camera, an IR LED light source mounted near the camera,

and the custom visual target (a example shown in Figure A.1) described above.

The software can process a video file input, but is also capable of real time

operation on live camera images with a supported camera model. Cost of

implementation is a fraction of commercially available solutions. The tracker’s

real time mode is being used to manipulate the visual scene in the augmented

reality dome described in Jayakumar et al., 2019. Previously, the dome system

relied on the animal being tethered to a boom arm instrumented with an

angular optical encoder that measured the position of the animal as it ran

on a circular track. The new real time tracking system allows for a freely

behaving, untethered animal. We also present results from an experiment

where the system, post-processing a video file, was used to track the head of

a rat. In the experiment, the surrounding visual scene of virtual landmarks

was either static or rotated coherently as a function of the rat’s running speed.

Simultaneous neural recordings were taken from CA1 place cells and ADN

head direction cells. We find that that the place cell and head direction cell
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Figure A.1: 6DoF head tracking. The left panel shows a close up of a version of the
physical tracker using a 3D arrangement of retroreflective markers on a Neuralynx
wireless recording headstage. The right panel shows a similar version of this tracker
on a rat

map respond coherently to the visual cue manipulation. This was described

in more detail in Section 6.1.

Contributions: Balazs Vagvolgyi developed the software code that does

the tracking. Manu Madhav implemented the tracking code into the exper-

iment control code and gave feedback on the hardware design. I designed

and built the hardware. All three of us were in involved in testing, debugging,

contributing of ideas for adopting Balaz’s tracking algorithm to the particulars

of running in an animal experiment
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Appendix B

Evolution of the hyperdrive
design

The neural recordings in the experiments detailed in Part II are done using

tetrodes, a twisted bundle of four electrode wires, implanted in the brain. Each

tetrode is attached to a microdrive that allows high-precision linear actuation

of the tetrode into the brain towards to sub-region of interest. We used an

design incorporating an array of 18 microdrives, called the Endodrive, which

was the design by Francesco Savelli and JD Luck. This design comprised

of three functional components. One is the drive core which houses a set

of 18 microdrives. The next is the bottom bundle which determined the 2D

distribution of how tetrodes enter the brain and is attached to the skull at

the time of surgery. The third is the walls which go between the drive core

and the electronic interface board(to which the the tetrodes are crimped to)

and contains the tetrodes inside the drive core while providing a support

for the EIB. This is a highly robust and versatile design with a well built

drive of this design being easy to use in terms of microdrive actuation and
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implanting during surgery. The cannulae carrying the tetrodes also had to

bend through a shallower angle. There were versions of the bottom bundle

with different tip geometries suited for recording in specific brain sub-regions.

The design was much more compact than previous designs which meant

that the impact on the animal after surgery was reduced. The tetrodes and

microdrive mechanisms were enclosed and well protected. This design was

also highly resistant to damage from impacts.

However, the overall level of skill required in getting a well built endodrive

which has all of the above characteristics is fairly high. The skill level also

determined how much time was needed to build a usable endodrive. The

drive building process also has certain steps that are especially sensitive to

the level of focus and fine motor skills, which can vary in a person day by day

or as fatigue builds up. Thus, even for someone highly skilled at building an

endodrive, there would be variability in quality across multiple builds of the

drive.

While retaining the foundational principles behind the endodrive design,

the retained design components was refined and a plethora of new design

features added, with the following guiding principles in mind: 1) Reduce

time of manufacture 2) Reduce skill of manufacture 2) Reduce variability of

manufacture.
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Figure B.1: Unibody hyperdrive. The left panel shows the body of the drive. The
right panel has a transparent version of the drive showing the the dedicated pathways
for the tetrode guide and carrier cannulae

The following are some of the more significant design modifications. The

unibody design (Figure B.1) combines all the functional components of the

endodrive into a single rigid 3D printable structure and predefined cannulae

paths are printed as a part of the drive. This serves all three design objec-

tives mentioned. The tetrode guide cannulae paths are printed ready-to-use

and do not need to be reamed out. The paths have a shallow curvature so

that the cannulae do not encounter sharp bends. This reduces the friction

between walls of the tetrode carrier and guide cannulae. The distribution

of the cannulae/tetrodes when they exit the drive core is predefined and

distributed in close packed formation. This distribution can be customized

for use in different brain regions. The process of gluing the guide cannulae

to the drive body is much simpler, with dedicated glue wells that are easy to
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fill at the drive tip and improvements in the center dental acrylic fill to help

it grab onto the drive body better. The amount of dental acrylic needed is

also significantly reduced, cutting down on the overall weight. A combined

drive body also helps with an issue where a bad seal between the drive core

and the bottom bundle could cause dental acrylic to leak and flow around

the 0-80 nuts jamming them up. This is now almost impossible in the new

design. Dedicated glue wells has been added for support posts with the

gluing at the bottom of the drive being a single fill to glue in all support

posts. This cuts down on time needed as well as keeps the glue away from

the 0-80 washers and nuts. Dedicated pathways has been added for routing

ground wire that are now removed from the central dental acrylic fill well

to allow better guidance of ground wire as well as repair/replacement if

needed. Use of 29 gauge Extra Thin Wall (XTW) cannulae to add enough

tolerance for manufacturer variability helps reduce tetrode guide cannulae

to carrier cannulae friction consequently also reducing backlash. All screw

holes are printed pre-threaded. The 0-80 shuttle shuttle screw holes have been

enlarged to make the process of reaming them easier. The drive core has been

designed not just with the required functionality of a hyperdrive in mind

but also includes design decisions to compensate for the foibles of the 3D

printer used to print this, reducing the variability of quality from print to print.

External contributions: Francesco Savelli and JD Luck developed the orig-

inal drive design on which the following design was based on. I received
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general feedback on design changes from members of the Knierim Lab es-

pecially Francesco Savelli, Manu S Madhav, Vyash Puliyadi. In addition

Francesco helped in understanding the thought behind the design of the en-

dodrive. Manu built a drive using this design and gave feedback which was

incorporated in subsequent versions. Vyash Puliyadi contributed design ideas

for making the drive print more reliably on the Form2 printer.
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