
IEEE TRANSACTIONS ON ROBOTICS, VOL. 25, NO. 1, FEBRUARY 2009 191

IEEE Trans. Robot. Autom., vol. RA-3, no. 4, pp. 323–344, Aug.
1987.

[11] Z. Y. Zhang, “Flexible camera calibration by viewing a plane from un-
known orientations,” in Proc. IEEE Int. Conf. Comput. Vis., 1999, pp. 666–
673.

[12] R. Estaña, J. Seyfried, F. Schmoeckel, M. Thiel, A. Buerkle, and H. Woern,
“Exploring the micro and nano world with cm3 sized autonomous micro
robots,” Ind. Robot, vol. 31, no. 2, pp. 159–178, 2004.

[13] Y. Zhou and B. J. Nelson, “Calibration of a parametric model of an optical
microscope,” Opt. Eng., vol. 38, no. 12, pp. 1989–1995, 1999.

[14] M. Ritter, M. Hemmleb, O. Sinram, J. Albertz, and H. Hohenberg, “A ver-
satile 3D calibration object for various micro-range measurements meth-
ods,” in Proc. XXth ISPRS Cong., Istanbul, Turkey, Jul. 12–23, 2004,
pp. 696–702.
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Image Guidance of Flexible Tip-Steerable Needles

Vinutha Kallem and Noah J. Cowan

Abstract—Image guidance promises to improve targeting accuracy and
broaden the scope of medical procedures performed with needles. This pa-
per takes a step toward automating the guidance of a flexible tip-steerable
needle as it is inserted into the human tissue. We build upon a previously
proposed nonholonomic model of needles that derive steering from asym-
metric bevel forces at the tip. The bevel-tip needle is inserted and rotated
at its base in order to steer it in 6 DOF. As a first step for control, we
show that the needle tip can be automatically guided to a planar slice of the
tissue as it is inserted. Our approach keeps the physician in the loop to con-
trol insertion speed. The distance of the needle tip position from the plane
of interest is used to drive an observer-based feedback controller that we
prove is locally asymptotically stable. Numerical simulations demonstrate
a large domain of attraction and robustness of the controller in the face
of parametric uncertainty and measurement noise. Physical experiments
with tip-steerable nitinol needles inserted into a transparent plastisol tis-
sue phantom under stereo image guidance validate the effectiveness of our
approach.

Index Terms—Feedback control, needle steering, nonholonomic system.

I. INTRODUCTION

Successful outcomes for needle-based interventions such as inter-
ventional brachytherapy, fine needle aspiration biopsy, and thermal ab-
lation critically depend on accurate targeting [2], [3]. Improving needle
targeting accuracy and expanding the applicability of needle interven-
tions, in general, involve actively steering a needle as it is inserted
into the tissue. Physicians often rely on pre- or intraoperative medical
imaging to guide a needle to its target. Several factors limit the perfor-
mance, including the amount of steering that a needle affords after it is
inserted, noisy sensors, imperfect actuators, and tissue deformations.
Furthermore, navigation in 3-D under image guidance by manipulat-
ing the needle at its base (from outside the patient) requires profound
spatial reasoning skills and extensive training. Efforts to overcome
these limitations focus on developing new needles and their placement
devices [4]–[8], improving imaging modalities for building pre- and in-
traoperative models [9], developing models that capture tissue–needle
interaction [10]–[12], and improved path planning [13]–[18]; refer to
Abolhassani et al. [19] for a recent survey on needle insertions.

Building on these recent improvements in needle placement, imag-
ing, and planning, we propose to use model-based feedback control
theory for the first time, to the best of our knowledge, for real-time
image-based needle guidance. This approach relies on models of needle
steering amenable to systems theory (as opposed to, say, finite-element
models). Recent efforts make progress toward such “plant models” for
manipulating a needle from outside the patient. DiMaio and Salcud-
ean [10] show that needles that are stiff relative to the surrounding
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tissue can be steered by moving the base of the needle to deflect the
tissue as the needle is inserted; they model this effect as a kinematic
control system with a numerically determined Jacobian matrix that re-
lates base motions to needle tip motions. Glozman and Shoham [11]
model the interaction between a flexible needle and the surrounding
tissue using virtual springs to compute local deformations. Glozman
and Shoham [14] plan a needle path that avoids obstacles in the work
space, and then, at every time step, they invert their virtual spring
model to obtain the translation and orientation of the needle base (the
inputs) in order to drive the needle back to the planned path in one
step.

Webster et al. consider flexible bevel-tip needles that follow a curved
path due to asymmetric cutting forces at the needle tip [12]; they model
this effect using a nonholonomic, kinematic system, and the present
study builds directly on this model. In both the rigid and flexible cases
described before, the inputs at the needle base are treated as inputs to
a kinematic control system. Among these needle insertion models, the
one by Webster et al. seems to be the most amenable to a systems-
theoretic approach for control, and is the only such model that has
been experimentally validated for tip-steerable needles [12]. We build
on this model and apply observer-based feedback control to achieve
a desired task. This enables us to articulate analytical performance
limits of our controller, such as the domain of attraction. Moreover, our
approach only requires the extraction of the needle tip position from
images rather than the entire needle curve, thereby simplifying image
segmentation.

A. Problem Statement

A flexible bevel-tip needle [12], [20] can be steered by rotation and
insertion at the base of the needle (outside the patient). As the needle
is inserted, the asymmetry of the bevel creates a moment at the needle
tip, deflecting the needle and causing it to follow a circular arc. As
the needle base is rotated, the bevel tip is reoriented in space so that
subsequent insertion follows an arc in a new plane.

As the needle is pushed through the tissue, there is a small amount
of tissue deformation and the needle must be steered to avoid bones
and other sensitive organs through which it cannot or should not pass.
To address this problem, Alterovitz et al. propose planning algorithms
to generate desired needle trajectories within a 2-D plane [17] for the
same type of needles used in the present study. The output of these 2-D
planners is a path that can be followed by alternating between forward
insertion (without rotation) of the needle into the tissue and 180◦ rota-
tion (without insertion) of the needle base. The planners assume that
during the process, the needle stays in a known (nominal) 2-D plane.
However, our numerical tests indicate that small errors of only a few
degrees in needle tip orientation cause the needle to deviate rapidly
from the nominal 2-D plane. The goal of this paper is to ensure that the
needle tip is stabilized to the desired 2-D plane.

B. Contribution

In the current study, we design and demonstrate a nonlinear image-
based observer–controller pair to drive a flexible bevel-tip needle
to a desired 2-D plane. We base our plant model on the nonholo-
nomic kinematic model presented in [12]. We assume that the position
(but not orientation) of the needle tip can be measured in the operation
room by a 3-D imaging modality such as biplane fluoroscopy or 3-D
ultrasound or by stereo cameras in the laboratory setting, and present
an asymptotic observer for estimating needle orientation needed to
achieve the control task.

As detailed in [21], the controller presented in this paper operates in
conjunction with the 2-D planners previously developed [17]. When-

Fig. 1. Needle steering device inserts the needle into the tissue phantom while
the needle tip position is tracked using two overhead cameras.

ever there is a 180◦ rotation, the controller is employed to ensure that
the needle stays close to the nominal plane, as required for the plan-
ning algorithm to work effectively. We believe that this paper presents
a crucial step toward automated needle guidance in the human tissue.
Our controller also allows us to validate the efficacy of the kinematic
model described in [12].

II. SYSTEM OVERVIEW

We use the setup shown in Fig. 1, which is similar to that described
in [12], for image-guided needle steering experiments. In the setup,
transparent tissue phantoms made from plastisol, which is a mixture
of liquid polyvinyl chloride (PVC) plastics and the plasticizer adipate
(M-F Manufacturing Company, Inc., Fort Worth, TX), simulate the
human tissue. An overhead stereo pair of XCD-X710 firewire cameras
(Sony Corporation, Tokyo, Japan) captures images of the needle as
it is inserted into the phantom by a 2-DOF needle insertion device.
The insertion device is comprised of a stepper-motor-driven linear
stage that drives the insertion DOF and a dc servo motor that axially
rotates the needle shaft. The rotary stage is attached to the base of the
needle shaft, and as the linear stage drives the rotary stage forward, the
needle advances into the tissue. A telescoping support sheath around the
needle shaft prevents the needle from buckling outside of the tissue. The
needle itself is a 0.7-mm nitinol wire (Nitinol Devices and Components,
Fremont, CA), cut with an approximately 45◦ bevel tip, and prebent by
10◦ at 9 mm from the needle tip to enhance steerability.

The insertion and rotation speeds comprise two inputs to the kine-
matic model for bevel-tip flexible needle steering developed by Webster
et al. [12]. The model is a generalization of the nonholonomic bicy-
cle model, and neglects torsional compliance of the needle shaft. This
model, depicted in Fig. 2, is reproduced here for reader convenience.

In the model, !1 , !2 determine the location of bicycle wheels with
respect to the needle tip. Parameter φ is the fixed front wheel angle
relative to the rear wheel. Frame A is the inertial world reference frame
and frames B and C are attached to the two wheels of the bicycle.
In homogeneous coordinates, the rigid body transformation between

Authorized licensed use limited to: Johns Hopkins University. Downloaded on June 1, 2009 at 17:04 from IEEE Xplore.  Restrictions apply.



IEEE TRANSACTIONS ON ROBOTICS, VOL. 25, NO. 1, FEBRUARY 2009 193

Fig. 2. Kinematic bicycle model: Frame A is the inertial world reference
frame. Frames B and C are attached to the two wheels of the bicycle. This
figure is reproduced from [12] with permission from the authors.

frames A and B is given by the rigid body transformation matrix

g =
[

R p

0T 1

]
∈ SE(3), where R ∈ SO(3) and p ∈ R3 . (1)

We assume, in this paper, that the imaging system measures p, the 3-
D location of frame B. In the nongeneric case, i.e., !2 = 0 (the unicycle
model discussed in [12]), p coincides with the needle tip.

Let v, ω ∈ R3 denote, respectively, the linear and angular velocities
of the needle tip written relative to frame A, and let V = [vT , ωT ]T ∈
R6 . Webster et al. use Lie group theory to find a “coordinate-free”
differential kinematic model on the special Euclidean group SE(3)

V = (g−1 ġ)∨ = V1u1 + V2u2 (2)

where ∨ and ˆ denote the usual isomorphism between se(3) and
R6 (see the Appendix), u1 is the insertion speed, u2 is the rota-
tion speed of the needle, and the control vector fields are given by
V1 = [0, 0, 1, κ, 0, 0]T (which corresponds to insertion) and V2 =
[0, . . . , 0, 1]T (which corresponds to needle rotation). Here, κ =
tan φ/!1 is the curvature that the needle follows. Insertion of the nee-
dle u1 causes the needle to move in the body-frame z-axis direction,
and also to rotate (due to the bevel tip) about the body-frame x-axis.
Rotation of the needle shaft u2 causes pure rotation of the needle tip
about the body-frame z-axis. Note that this model is only valid for
forward insertions of the needle into the tissue; during the removal of
the needle from the tissue, there are no cutting forces on the needle tip,
and hence, the needle follows the path (in reverse) it followed during
the forward insertion into the tissue.

III. REDUCTION AND CONTROL FOR PLANE TRACKING

A. Reduced-Order Plant Model

We use Z–Y–X fixed angles as generalized coordinates to parame-
terize R, the rotation matrix between frames A and B. Let γ be the roll
of the needle, β be the pitch of the needle out of the plane, and α be the
yaw of the needle in the plane. Let the position of the origin of frame
B be p = [x, y, z]T ∈ R3 relative to the inertial frame A. We assume
that an imaging system measures the location of the origin of frame B.
Note that by driving the origin of frame B to the y–z plane, the needle
tip will also be stabilized to the y–z plane.

Using this notation, q = [ x, y, z, α, β, γ ]T ∈ U ⊂ R6 forms a (lo-
cal) set of generalized coordinates for the configuration of the needle
tip. The coordinates are well defined on

U =
{
q ∈ R6 : α, γ ∈ R mod 2π, β ∈ (−π/2, π/2)

}
. (3)

The body-frame velocity is given by V = J q̇, where

J =
[

RT 03×3

03×3 J22

]
, J22 =




cos β cos γ sin γ 0
− cos β sin γ cos γ 0

sin β 0 1



 .

The kinematic model (2) of the bevel-tip flexible needle reduces to

q̇ = J−1V1u1 + J−1V2u2

=





sin β 0
− cos β sin α 0
cos α cos β 0
κ cos γ sec β 0

κ sin γ 0
−κ cos γ tan β 1





[
u1

u2

]
.

(4)

Due to the introduction of generalized coordinates, there are singular-
ities at β = ±π/2 that cause det J = cos β = 0.

To stabilize the needle to the y–z plane, the states y, z, and α need
not be controlled. Also, these states do not affect the dynamics of
the remaining states x, β, and γ. Let r = [r1 , r2 , r3 ]T = [x, β, γ]T
denote the state vector of the “reduced” order system. Tracking the
needle tip with an imaging system typically enables us to measure only
the position of the needle and not its orientation (without performing
any differentiation), which in reduced coordinates is just the distance
from the y–z plane, namely x. We then reparameterize the reduced-
order system in terms of insertion distance l enabling the physician to
control the insertion speed. With a slight abuse of notation, we write
ṙ where we mean dr/dl, and interpret the insertion distance as “time”
for convenience of exposition; this is equivalent to setting u1 = 1 in
(4). This system can be represented as

ṙ =




sin r2

κ sin r3

−κ cos r3 tan r2



 +




0
0
1



 u

w = [ 1 0 0 ] r = r1 . (5)

Note that r = 0 corresponds to the desired equilibrium state of remain-
ing within the y–z plane in which we wish to stabilize the needle.

Using judiciously chosen generalized coordinates, we reduced the
plant model to a third-order nonlinear system (5). This system can be
feedback linearized (see, e.g., [22]) via a transformation of state and
input coordinates

s = [ r1 , sin r2 , κ cos r2 sin r3 ]T (6)

v = − κ2 sin r2 + κ cos r2 cos r3u. (7)

The state equations in the feedback linearized form are

ṡ = As + Bv =




0 1 0
0 0 1
0 0 0



 s +




0
0
1



 v (8)

w = Cs = [ 1 0 0 ] s.

The system (A, B, C) is completely controllable and observable.

B. Observer-Based Feedback Control

Note that even though the change of coordinates from the nonlinear
system (5) to the feedback linearized system (8) is nonlinear, the first
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state—and importantly, the output—is identical for both systems. In
other words, the system is completely observable in both coordinate
systems based on the sensory measurement w = s1 = r1 . Hence, sim-
ple control system design techniques from linear system theory can be
used to control this system. A full-state Luenberger observer with the
following dynamics estimates all the states from the output:

˙̃s = As̃ + Bv + L(w − w̃) (9)

w̃ = C s̃.

The control input to the system is then given by full-state feedback
using the state estimate

v = −K s̃. (10)

Because the system is linear and time-invariant, the separability prin-
ciple allows us to select the observer gain matrix L and proportional
gain matrix K independently, as we do in our experiments. Since there
are only three states to estimate and we expect to have reasonable esti-
mates of sensor noise, the observer can be quickly and effectively tuned
using the linear quadratic Gaussian framework, leading to successful
simulations and laboratory experiments (Section IV).

In the present framework, there are singularities at β = ±π/2 due to
the introduction of generalized coordinates. In addition, the nonlinear
transformation from r to s also introduces singularities at γ = ±π/2.
This limitation seems inescapable: global linearization is mathemati-
cally impossible for dynamical systems on the space of rigid transfor-
mations. Fortunately, our feedback linearization scheme works for all
needle positions and orientations except when the needle is orthogonal
to the plane to which we are trying to stabilize. We believe that this
scenario is not of clinical significance; such large errors in orientation
should be addressed at the level of planning, not with low-level servo
control. That said, it is important for the aforementioned described con-
troller never to take the system—or even the state estimate—to these
singularities.

Note that one theoretical difficulty arises because we compute u
from (7), which requires exact knowledge of r. However, we do not
know s nor r exactly, so we must use s̃ to compute an estimate of r
by plugging s̃ into the inverse of (6). This implies that the estimator
dynamics will have an input error. But locally near the goal, r ≈ 0, and
therefore v ≈ κu. This allows us to show local asymptotical stability
through linearization of the system given by (8) and (9). Fortunately,
both simulations and experiments suggest that the domain of attraction
is quite large; analytically proving this remains work in progress. It
is useful to find an invariant domain that avoids β = ±π/2 and γ =
±π/2. In general, this is challenging because of the nonlinear change
of coordinates from u to v and the lack of full-state knowledge needed
for that coordinate transformation. However, if we assume that the error
computing u is negligible, Lyapunov stability analysis can be used to
approximate this region; for details on this computation, see [23].

IV. RESULTS

A. Numerical Simulations

Extensive simulations were conducted in MATLAB to test our pro-
posed controller. We used a discrete-time implementation of the system
and the controller–observer pair to reflect our physical implementation
as closely as possible. The plant model was discretized assuming con-
stant insertion by 1 mm of the needle into the tissue between samples.
We assumed measurement noise of up to ±1 mm with a uniform dis-
tribution; this seems clinically reasonable given that 3-D ultrasound
imaging can be accurate within 0.8 mm [24], and is approximately the
same or slightly higher than the noise of our tracking system. The pa-

Fig. 3. Comparison among a simulation with no feedback control (first col-
umn), a simulation with feedback control (second column), and an experi-
mental trial (third column). The first three rows of plots show the three states
(r1 , r2 , r3 ), respectively. In the two simulations, the simulated ground truth
state is known (solid black line), whereas in the physical experiment, only its
estimate (solid teal line) is known. In the feedback control simulation and physi-
cal experiment, the first state is measured at each time step (small black circles).
The fourth row is the cumulative rotational input given to the system. First
column: open-loop simulation with initial conditions of r = [−3 mm, 2◦, 15◦].
With no control, the needle tip diverges the needle from the desired plane.
Second column: closed-loop simulation with the same initial conditions. Noise
in the needle tip position is modeled as a random variable with a uniform dis-
tribution between ±0.5 mm. With the feedback control, the needle converges
to the desired 2-D plane within the noise levels. Third column: one of the nine
experimental trials, with approximately the same initial conditions as the sim-
ulations (ground truth is not known). With the feedback control, the needle tip
converges to the desired 2-D plane.

rameter value for the model was taken to be 1/κ = 12.2 cm, which is
the radius of curvature of the needle used in laboratory trials.

In our simulations, we observed that if the entry point was too far
away from the desired plane, the estimator states (which are in the
feedback-linearized coordinates) left the region in which the inverse
of the change of coordinates in (6) is well defined. To avoid such sin-
gularities, we performed estimator saturation, namely if the estimator
states left this region, they were projected to the closest point in that
region. For example, if [s̃1 , s̃2 , s̃3 ]T = [0, 1.5, 0]T , then it is projected
to [s̃1 , s̃2 , s̃3 ]T = [0, 1, 0]T . Since we used state feedback control in
the feedback-linearized space, this pullback affects only the magnitude
of the input and not the sign of the input. Our numerical tests suggested
that this saturated nonlinear observer worked quite well, although for-
mal analysis of the saturation remains work in progress.

Two characteristic simulations are presented in Fig. 3, with the same
initial conditions. In the first case, we tested the system without any
feedback control, and it rapidly diverged from the desired plane despite
relatively small errors in roll, pitch, and depth. In the second simulation,
our observer-based controller drove the needle to the desired plane
within about 5 cm of needle insertion.

We tested our controller over a uniform grid (10 × 10 × 10) of 1000
initial conditions of up to ±3 mm error in depth from the plane, up to
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Fig. 4. Nine experimental trials validate the controller. The mean value of r1
of the nine trials is plotted against the insertion distance of the needle into the
tissue (solid magenta line; gray region indicates mean ± standard deviation).
The specific trial shown in Fig. 3 is reproduced here (solid teal line). All trials
control approach the desired 2-D plane (r1 = 0, dashed black line) and stay
within the noise levels of the position measurements of approximately 1 mm.

±10◦ initial error in “pitch” (r2 ), and up to ±30◦ initial error in “roll”
(r3 ). In all cases, we seeded the initial condition of the observer to
s̃2 = s̃3 = 0◦, and for the first state, s̃1 = z1 + noise of up to 1 mm.
Each initial condition was simulated ten times with noise for a total
of 10 000 simulations. Each insertion was to a length of 12 cm. We
found that 98.56% of initial conditions converged to within ±1 mm
(the sensor noise floor); upon closer inspection of the remaining 144
runs in which the states did not converge to within this tight tolerance in
the finite needle insertion distance, we found that they did not diverge.

We tested the controller using an incorrect value of κ (up to 20%
error), and found that the controller always converged, albeit slower
than it would have if the correct κ was given. Thus, the system appeared
to be robust to parametric uncertainty; for an analytic proof, refer
to [25].

B. Experimental Validation

Experiments were conducted on the needle steering device described
in Section II. The tissue used in the experiments was approximately
35 mm thick, and was sufficiently transparent for visual tracking pur-
poses. We captured the images of the needle inside the tissue using
XVision [26]. This tissue phantom had a refractive index of 1.3. Re-
fraction was accounted for in our calculations by assuming that tissue’s
top surface was horizontal. The needle used for the experiments had
a radius of curvature of 12.2 cm when inserted into the tissue. The
needle follows a circle of radius 1/κ when it is inserted into the tissue
without any rotation at the base, so we collected needle tip position
data during pure insertion to estimate κ using least squares. Following
the observation of Webster et al. [6], we assume that this parameter
does not change as a function of insertion speed.

In the experiments, the goal was to reach the y–z plane that was
3 mm above from the initial x position. The pitch was approximately
zero, but neither the pitch nor the roll of the needle tip was precisely
known. The needle was inserted into the tissue for 12 cm, which is
about the radius of curvature of the needle inside the tissue. Nine trials
were conducted on this experimental setup with varying pitch and roll
initial conditions. Fig. 3 shows a comparison of a typical trial with
our simulation results, and Fig. 4 summarizes all nine experimental
trials. In each of the trials, the needle tip converged to the desired
plane within the noise levels of the position measurement. As with the
simulations, these experiments validate the efficacy of our controller–
observer pair and the experiments further support the nonholonomic

model for flexible bevel-tip needle insertion developed by Webster
et al. [12]. It was, however, interesting to note that while the physical
and numerical results were qualitatively quite similar, the physical
system exhibited a consistently more sluggish response, which we
suspect was due to neglected torsional damping due to friction between
the tissue and the needle shaft.

V. DISCUSSION

We present a feedback controller that stabilizes a flexible tip-
steerable needle to a desired 2-D plane. We show that considering
a reduced 3-DOF system is sufficient to achieve this goal. The task
of driving the needle tip to a desired 2-D plane only required us to
keep track of 3 of the 6 DOF of the needle tip, which greatly simpli-
fies controller–observer design. We recently generalized this idea of
“task-induced” reduction for other tasks and kinematic systems on Lie
groups [25].

In this paper, we assume that only the 3-D position (but not orien-
tation) of the needle tip can be measured using an imaging system,
and present a linear observer to recover the reduced-order needle-tip
state. Another approach may be to enhance our sensory measurement,
for example, by measuring the pitch r2 , if needle shaft orientation can
be segmented in both images in a neighborhood of the needle tip. In
this case, we can use a reduced-state Luenberger observer (instead of
the full-state observer) to estimate only the roll r3 . Measuring the roll
itself may be more challenging due to very small size of the bevel tip.

Irrespective of the measurement (either just position, or position
and pitch), alternative estimation schemes could be used. For exam-
ple, in an extended Kalman filter (EKF), the system is (approximately)
linearized around the current state estimate to propagate covariance
and the Kalman gain matrices. In contrast, our approach uses an exact
change of coordinates to obtain the controller and estimator with the
tradeoff being the use of state estimates to obtain u from v, and as
discussed, exhibits local asymptotic stability. As with EKFs and other
schemes such as particle filters [27], we have no formal global charac-
terization of the domain of attraction for our observer–controller pair.
However, our scheme is relatively simple and performs well in practice.

An important next step is to evaluate the performance of this con-
troller by conducting tests on a variety of tissues (phantom, ex vivo,
and animal cadaver) using ultrasound or fluoroscopy imaging systems.
Due to tissue inhomogeneity, implementing control on real tissue might
benefit from an adaptive version of our controller that would “learn”
the model parameters while stabilizing the needle to a 2-D plane, or
a scheme that is insensitive to variations in steering curvature, as pro-
posed in [23]. Our ultimate goal is to incorporate automatic needle
steering with pre- and intraoperative planning to greatly enhance the
effectiveness of percutaneous therapies.

APPENDIX

Special Euclidean Group SE(3)

The special Euclidean group in three dimension SE(3) is the group
of rigid-body transformations. It is the cross product of R3 and the
space of rotation matrices SO(3). SE(3) can also be used to represent
configuration of a rigid body, as we do in this paper. The space of
skew-symmetric matrices in three dimensions so(3) is the Lie algebra
of SO(3). The “wedge/hat” isomorphism R3 ( so(3) is defined by

̂:




ω1

ω2

ω3



↔




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



 : ∨
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where so(3) is the Lie algebra of SO(3). The Lie algebra of SE(3) is
denoted by se(3). In a standard abuse of notation, we use the wedge/hat
isomorphism R6 ( se(3) to relate translational v and angular ω ve-
locities to “twists” ξ ∈ se(3) via

ξ∨ =
[

v

ω

]
and

[
v

ω

]̂
=

[
ω̂ v

0 0

]
= ξ.

For more detail, refer to [28].
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Adaptive/Robust Control for Time-Delay Teleoperation

Ali Shahdi, Student Member, IEEE,
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Abstract—The control of time-delay bilateral teleoperation systems in-
volves a delicate tradeoff between the conflicting requirements of trans-
parency and robust stability. The control design is complicated by latency
in data communication between the master and slave sites, as well as uncer-
tainties in the dynamics of operator, master, slave, and environment. This
paper proposes a systematic design procedure for improving teleoperation
fidelity while maintaining its stability in the presence of dynamic uncer-
tainty and a constant time delay. In a two-step control approach, first local
Lyapunov-based adaptive/nonlinear controllers are applied to linearize the
system dynamics and eliminate dependency on the master and slave pa-
rameters. Teleoperation coordination, subject to parametric uncertainty in
the user and environment dynamics, is then achieved by formulating an I/O
time-delay H∞ robust control synthesis that is solved via its decomposi-
tion to the so-called adobe problems. The transparency and robust stability
properties of the proposed method is examined via numerical analysis.
Furthermore, the results are successfully validated in experiments.

Index Terms—Adaptive control, H∞ robust control, robust stability,
teleoperation, time delay, transparency.

I. INTRODUCTION

Bilateral master/slave teleoperation systems allow a human operator
to extend his/her intelligence and manipulation skills to remote and/or
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