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Optimal Control With Noisy Time
Andrew Lamperski, Member, IEEE, and Noah J. Cowan, Senior Member, IEEE

Abstract—This paper examines stochastic optimal control prob-
lems in which the state is perfectly known, but the controller’s
measure of time is a stochastic process derived from a strictly in-
creasing Lévy process. We provide dynamic programming results
for continuous-time finite-horizon control and specialize these re-
sults to solve a noisy-time variant of the linear quadratic regulator
problem and a portfolio optimization problem with random trade
activity rates. For the linear quadratic case, the optimal controller
is linear and can be computed from a generalization of the classical
Riccati differential equation.

Index Terms—Optimal control, stochastic optimal control,
stochastic systems, uncertain time.

I. INTRODUCTION

E FFECTIVE feedback control often requires accurate
timekeeping. For example, finite-horizon optimal control

problems generally result in policies that are time-varying
functions of the state. However, chronometry is imperfect and
thus feedback laws are inevitably applied at incorrect times.
Little appears to be known about the consequences of imperfect
timing on control [1]–[3]. This paper addresses optimal control
with temporal uncertainty.

A stochastic process can be time-changed by replacing its
time index by a monotonically increasing stochastic process
[4]. Time-changed stochastic processes arise in finance, since
changing the time index to a measure of economically relevant
events, such as trades, can improve modeling [5]–[7]. This new
time index is, however, stochastic with respect to “calendar”
time.

We suspect that similar notions of stochastic time changing
may facilitate the study of time estimation and movement
control in the nervous system. Biological timing is subject to
noise and environmental perturbation [8]. Furthermore, humans
rationally exploit the statistics of their temporal noise during
simple timed movements, such as button pushing [9] and point-
ing [10]. To analyze more complex movements, a theory of
feedback control that compensates for temporal noise seems
desirable.

Within control, the most closely related work to the present
paper deals with analysis and synthesis of systems with uncer-
tain sampling times. The study of uncertain sampling times has
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a long history in control [11], and is often motivated by prob-
lems of clock jitter [12], [13] or network delays [14]. In these
works, control inputs are sampled at known times and held
over unknown intervals. To derive the dynamic programming
principle in this paper, system behavior is analyzed for control
inputs held over random intervals, bearing similarity to optimal
control with random sampling [15]. Fundamentally, however,
studies of sampling uncertainty assumes that an accurate clock
can measure the sample times; the present work relaxes this
assumption.

Other aspects of imperfect timing have been addressed in
control research to a more limited extent. For example, the im-
portance of synchronizing clocks in distributed systems seems
clear [16], [17], but more work is needed to understand the im-
plications of asynchronous clock behavior on common control
issues, such as stability [18] and optimal performance [19].

This paper focuses on continuous-time stochastic optimal
control with perfect state information, but a stochastically time-
changed control process. Dynamic programming principles
for general nonlinear stochastic control problems are derived,
based on extensions of the classical Hamilton-Jacobi-Bellman
equation. The results apply to a wide class of stochastic time
changes given by strictly increasing Lévy processes. The dy-
namic programming principles are then specialized to give ex-
plicit solutions to a time-changed version of the finite-horizon
linear quadratic regulator and a portfolio optimization problem.

Section II defines the notation used in the paper, states the
necessary facts about Lévy, and defines the class of noisy clock
models used. The main results on time-changed diffusions and
optimal control are given in Section III. The results are proved
in Section IV, with supplementary arguments given in the
Appendices. Section V discusses variations on the problem and
potential applications, while Section VI concludes.

II. PRELIMINARIES

After establishing notation and reviewing Lévy processes,
this section culminates in the construction of Lévy-process-
based clock models upon which the remainder of the theory
of this paper is built.

A. Notation

The norm symbol, ‖ · ‖, is used to denote the Euclidean norm
for vectors and the Frobenius norm for matrices.

For a set S, its closure is denoted by S.
The spectrum of matrix A is denoted by spec(A).
The Kronecker product is denoted by ⊗, while the Kronecker

sum is denoted by ⊕: A⊕B = A⊗ I + I ⊗B.
The vectorization operation of stacking the columns of a

matrix is denoted by vec.
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A function h : R× R
n → R is in C1,2 if h(s, x) is continu-

ously differentiable in s, twice continuously differentiable in x.
The function h is said to satisfy a polynomial growth condition,
if in addition, there are constants K and q such that

max

{
|h(s, x)| ,

∣∣∣∣∂h(s, x)∂s

∣∣∣∣ ,
∣∣∣∣∂h(s, x)∂xi

∣∣∣∣ ,
∣∣∣∣∂2h(s, x)

∂xi∂xj

∣∣∣∣
}

≤ K (1 + ‖x‖q)

for i, j = 1, . . . n, and all x ∈ R
n. In this case, h ∈ C1,2

p is
written.

Stochastic processes will be denoted as ζt, Xs, etc., with
time indices as subscripts. Occasionally, processes with nested
subscripts will be written with parentheses, e.g. ζτs = ζ(τs).
Similarly, the elements of a stochastic vector will be denoted
as X1(s).

The left limit of a process Xt will be denoted by Xt− =
lims↑t Xs.

Functions that are right-continuous with left-limits will be
called càdlàg, while functions that are left-continuous with
right-limits will be called càglàd.

B. Background on Lévy Processes

Basic notions from Lévy processes required to define the
general class of clock models are now reviewed. The definitions
and results can be found in [20].

A real-valued stochastic process Zs is called a Lévy process if

• Z0 = 0 almost surely (a.s.).
• Zs has independent, stationary increments: If 0 ≤ r ≤ s,

then Zr and Zs − Zr are independent and Zs − Zr has
the same distribution as Zs−r.

• Zs is stochastically continuous: For all a > 0 and all s ≥
0, limr→s P(|Zs − Zr| > a) = 0.

It will be assumed that Lévy processes in this paper are
right-continuous with left-sided limits, i.e., they are càdlàg. No
generality is lost since, for every Lévy process, Zt, there is a
càdlàg Lévy process, Z̃t, such that Zt = Z̃t for almost all t.

Some of the technical arguments rely on Poisson random
measures, which will now be defined. Let B be the Borel subsets
of R and let (Ω,Σ,P) be a probability space. A Poisson ran-
dom measure is a function N : [0,∞)× B × Ω → N ∪ {∞},
such that

• For all s ≥ 0 and ω ∈ Ω, N(s, ·, ω) is a measure.
• For all disjoint Borel subsets A,B ∈ B such that 0 �∈
A and 0 �∈ B, N(·, A, ·) and N(·, B, ·) are independent
Poisson processes.

Typically, the ω argument will be dropped, and it will be
implicitly understood that N(s,A) denotes a measure-valued
stochastic process.

The following relationship between Lévy processes and
Poisson random measures will be used in several arguments.
For a Lévy process, Zs, with jumps denoted by ΔZs, there is a
Poisson random measure that counts the number of jumps into
each Borel set A with 0 �∈ A

N(s,A) = |{ΔZr ∈ A : 0 ≤ r ≤ s}| .

Here, |S| denotes the cardinality of a finite set, S.

Subordinators: A monotonically increasing Lévy process,
τs, is called a subordinator. The following properties of sub-
ordinators will be used throughout the paper.

• Laplace Exponent: There is function, ψ, called the
Laplace exponent, defined by

ψ(z) = bz +

∞∫
0

(1− e−zt)λ(dt) (1)

such that

E[e−zτs ] = e−sψ(z) for all z ≥ 0. (2)

Here b≥0 and the measure satisfies
∫∞
0 min{t, 1}λ(dt)<

∞. The measure λ is called a Lévy measure. The pair (b, λ)
is called the characteristics of τs.

• Lévy-Itô Decomposition: There is a Poisson random
measure N such that

τs = bs+

∞∫
0

tN(s, dt).

Furthermore, if A ⊂ (0,∞) is a Borel set such that 0 �∈ A,
then E[N(1, A)] = λ(A).

The function, ψ, is called the Laplace exponent because (2)
is the Laplace transform of the distribution of τs.

For control problems, simpler formulas will often result from
replacing ψ with the function β(z) = −ψ(−z). Note then, that
β has the form

β(z) = bz +

∞∫
0

(ezt − 1)λ(dt). (3)

Define rmax by

rmax = sup

⎧⎨
⎩r :

∞∫
1

ertλ(dt) < ∞

⎫⎬
⎭

and define the domain of β as

dom(β) = {z ∈ C : Rez < rmax}.

Note that
∫∞
1 λ(dt) < ∞ implies that rmax ∈ [0,∞].

The function β is used to construct optimal solutions for
the linear quadratic problem, as well as the portfolio problem
below. The main properties are given in the following lemma,
which is proved in Appendix B.

Lemma 1: For all z ∈ dom(β), the function β is analytic
at z, and

E[ezτs ] = esβ(z). (4)

Furthermore, if A is a square matrix with spec(A)⊂domβ, then

β(A) = bA+

∞∫
0

(eAt − I)λ(dt) (5)

is well defined and

E[eAτs ] = esβ(A). (6)
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Since β is analytic, several methods exist for numerically
computing the matrices β(A) [21]. In special cases, as dis-
cussed below, β(A) may be computed using well-known matrix
computation methods.

Example 1: The simplest non-trivial subordinator is the ho-
mogeneous Poisson process Nt, which is characterized by

P(Nt = k) = e−γt (γt)
k

k!

where γ > 0 is called the rate constant. Its Laplace exponent is
given by ψ(z) = γ − γe−z , which is found by computing the
expected value directly. The characteristics are (0, γδ(t− 1)).
In this case, dom(β) = C, and β(A) = γeA − γI , which can
be computed from the matrix exponential.

Example 2: The gamma subordinator, which is often used
to model “business time” in finance [22], [23], has increments
distributed as gamma random variables. It has Laplace exponent
ψ(z) = δ log(1 + z/γ) with characteristics b = 0 and λ(dt) =
δe−γtt−1dt. Thus β(z) = −δ log(1− z/γ), dom(β) = {z ∈
C : Re z<γ}, and matrix function β(A) = −δ log(I − γ−1A)
may be computed from the matrix logarithm.1

Why Lévy Processes?: In the next subsection, the clock
model in this paper will be constructed from a subordinator
τs. The motivation for using Lévy processes will be explained.
Consider a continuous-time noisy clock, cs which is sampled
with period δ. A natural model might take the form

cδ(k+1) = cδk + δ + n(k, δ) (7)

where n(j, δ) are random variables. In this case, the clock
increments consist of a deterministic step of magnitude δ plus
a random term.

If cs is a Lévy process, then by definition, all of the in-
crements cδ(k+1) − cδk are independent and identically dis-
tributed. Thus, the decomposition in (7) holds with n(k, δ) =
cδ(k+1) − cδk − δ. If cs were not a Lévy process, then (7) may
hold for some particular δ, but there might be another period,
δ′ < δ, for which the decomposition fails. The Lévy process
assumption will guarantee that the clocks are well-behaved
when taking continuous time limits (i.e., δ ↓ 0).

C. Clock Models

Throughout the paper, t will denote the time index of the
plant dynamics, while s will denote the value of clock available
to the controller. Often, t and s will be called plant time and
controller time, respectively. The interpretation of s and t varies
depending on context. In biological motor control, t would
denote real time, since the limbs obey Newtonian mechanics
with respect to real-time, while s would denote the internal
representation of time. For the portfolio problem studied in
Section III-B, an opposite interpretation holds. Here, the con-
troller (an investor) can accurately measure calendar time, but
price dynamics are simpler with respect a different index,
“business time,” which represents the progression of economic
events [5]–[7]. Thus, s would denote calendar time, while t
would denote business time, which might not be observable.

1When spec(M) ⊂ {z ∈ C : Re z>0}, log(M) refers to the principle
logarithm: the unique matrix such that elog(M) = M and spec(log(M)) ⊂
{z ∈ C : −π < Im z<π}. See [21].

Fig. 1. (a) The inverse Gaussian subordinator, τs, with γ = δ = 2. The
process was simulated by generating independent inverse Gaussians using the
method from [25]. (b) The inverse process, ζt. Note that the graph of ζt can be
found from the graph of τs by simply switching the axes.

The relationship between s and t will be described stochas-
tically. Let τs be a strictly increasing subordinator. In other
words, if s < s′ then τs < τs′ a.s. (Note that any subordinator
can be made to be strictly increasing by adding a drift term bs
with b > 0.) The process τs will be interpreted as the amount
of plant time that has passed when the controller has measured
s units of time. The process ζt will be an inverse process that
describes how much time the controller measures over t units
of plant time. Formally, ζt is defined by

ζt = inf{σ : τσ ≥ t}. (8)

We claim that ζ(τs) = s a.s. Indeed, ζ(τs) = inf{σ : τσ = τs},
by definition. Since τs is right continuous and strictly increas-
ing, a.s., the claim follows.

Example 3: The case of no temporal uncertainty corresponds
to τs = s and ζt = t. The Laplace exponent of τs is computed
directly as ψ(z) = z and the characteristics are (1, 0). Here
dom(β) = C.

Example 4: A more interesting temporal noise model, also
used as a “business time” model [24], is the inverse Gaussian
subordinator. Fix γ > 0 and δ > 0. Let Ct = γt+Wt, where
Wt is a standard Brownian motion. The inverse Gaussian
subordinator is given by

τs = inf{t : Ct = δs}

with Laplace exponent ψ(z) = δ(
√
γ2 + 2z − γ). Here b = 0

and λ is given by

λ(dt) =
δ√

2Γ
(
1
2

)e− 1
2γ

2tt−
3
2 dt

where Γ is the gamma function. Here, dom(β) corresponds to
Re z<γ2/2 and β(A) = δ(γI −

√
γ2I − 2A), which can be

computed from the matrix square root. It can be shown that the
inverse process is given by

ζt = sup{δ−1Cσ : 0 ≤ σ ≤ t}.

See Fig. 1.
In the preceding example, the process τs has jumps, but the

inverse, ζt, is continuous. The next proposition generalizes this
observation for any strictly increasing subordinator, τs.

Proposition 1: The process ζt is continuous almost surely.
Proof: Fix ε > 0 and t ≥ 0. Set s = ζt. Strict monotonic-

ity of τs implies that [τmax{s−ε,0}, τs+ε] is a nonempty interval,
a.s. The inverse property of ζt implies (almost surely) that
t ∈ [τmax{s−ε,0}, τs+ε] and ζt′ ∈ [max{s− ε, 0}, s+ ε] for all
t′ ∈ [τmax{s−ε,0}, τs+ε]. �
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III. MAIN RESULTS

This section presents the main results of the paper. First,
given an Itô process, Yt, a representation of the time-changed
process Xs = Y (τs) as a semimartingale with respect to con-
troller time, s, is derived. This representation is then used to
derive a general dynamic programming principle for finite-
horizon control problems with noisy clocks. The time horizon
is taken with respect to the controller’s clock. As an example,
the dynamic programming principle is used to solve a simple
portfolio optimization problem under random trade activity
rates. Finally, the dynamic programming method is used to
solve a noisy-time variant of the linear quadratic regulator
problem. All proofs are given in Section IV.

A. Time-Changed Stochastic Processes

The results of this subsection shows how to reparametrize
the plant dynamics from a process over plant time t to a process
over controller time s. This reparametrization will be used to
pose optimal control problems with respect to controller time s.
The results are proved in Section IV-A.

Let Wt be a Brownian motion with E[WtW
T
t ] = tI . Let Y

be a stochastic process defined by

dYt = Ftdt+GtdWt (9)

where Ft and Gt are FW
t predictable processes, where

(FW
t )t≥0 is the σ-algebra generated by Wt. Furthermore, as-

sume that Ft and Gt are left-continuous with right-sided limits.
For a strictly increasing subordinator, τs, let Fτ,W =

(Fτ,W
s )s≥0 be the smallest filtration such that for all r ∈ [0, s]

and all t ∈ [0, τs] both τr and Wt are measurable.
Theorem 1: Let τs be a subordinator characterized by (b, λ).

If the terms of (9) satisfy
•

∫ τS
0 ‖Ft‖dt < ∞ almost surely;

• E[
∫ τS
0 ‖Gt‖2dt] < ∞;

then the time-changed process Xs = Y (τs) is an Fτ,W semi-
martingale given by

Xs = X0 + b

s∫
0

F (τr−)dr +
√
b

s∫
0

G(τr−)dW̃r

+
∑

0≤r≤s

⎛
⎜⎝

τr∫
τr−

Ftdt+

τr∫
τr−

GtdWt

⎞
⎟⎠. (10)

Here W̃s is an Fτ,W -measurable Brownian motion defined by
√
bW̃s = W (τs)−

∑
0≤r≤s

(W (τr)−W (τr−))

satisfying bE[W̃sW̃
T
s ] = bsI .

B. Dynamic Programming

This subsection introduces the general control problem stud-
ied in this paper. First, the basic notions of controlled time-
changed diffusions and admissible systems are defined. Then,
the optimal control problem in controller time is presented, and

the associated dynamic programming verification theorem is
stated. The concepts in this subsection are based on the gen-
eral theory of controlled Markov processes [26]. A nonlinear
portfolio problem is solved at the end of the subsection.

Controlled Time-Changed Diffusions: Consider a controlled
diffusion

dYt = F (ζt, Yt− , U(ζt)) dt+G (ζt, Yt− , U(ζt)) dWt (11)

with state Y and input U . Recall that ζt is defined in (8) as
the inverse process of a subordinator, τs. Let Xs denote the
time-changed process, Xs = Y (τs). The processes, Xs is thus
a time-changed controlled diffusion.

Admissible Systems: For s ≥ 0, let Fζ,X
s be the σ-algebra

generated by (s,Xs), and let Fζ,X be the associated filtration.
Let X ⊂ R

n and U ⊂ R
p be a set of states and a set of inputs,

respectively. A state and input trajectory (Xs, Us) is called an
admissible system if

• Xs ∈ X for all s ≥ 0
• Us is a càglàd, Fζ,X -adapted process such that Us ∈ U for

all s ≥ 0.

Note that the requirement that Us is càglàd and Fζ,X -
adapted implies that U(ζt) may depend on the “noisy clock”
process, ζt, as well as Xr, with r < ζt. If ζt �= t, then U(ζt)
cannot directly measure t.

Problem 1: The time-changed optimal control problem over
controller time horizon [0, S] is to find a policy Us that solves

min
U

E

⎡
⎣ S∫

0

c(s,Xs, Us)ds+Ψ(XS)

⎤
⎦

where the minimum is taken over all admissible systems
(Xs, Us).

Given a policy, U , and (s, x) ∈ [0, S]× R
n, the cost-to-go

function J(s, x;U), is defined by

J(s, x;U) = E

⎡
⎣ S∫

s

c(s,Xr, Ur)dr +Ψ(XS)

∣∣∣∣∣∣Xs = x

⎤
⎦ .

Note, then, that the optimal control problem can be equivalently
cast as minimizing J(0, x;U) over all admissible systems.

Backward Evolution Operator: As in standard continuous-
time optimal control, the backward evolution operator

Auh(s, x)

=lim
σ↓0

1

σ
(E [h(s+σ,Xs+σ)|Xs=x, Ur=u]−h(s, x)) (12)

is used to formulate the dynamic programming equations.
To calculate an explicit form for Au, an auxiliary stochastic

process is introduced. For (s, x, u) ∈ [0, S)×X × U , define
Y xu
st by

Y xu
st =x+

t∫
0

F (s, Y xu
sr , u) dr +

t∫
0

G (s, Y xu
sr , u) dŴr (13)

where Ŵr is a unit Brownian motion independent of Wt and τs.
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Now the domain of Au is defined. Let D be the set of h ∈
C1,2
p such that there exist K and q satisfying

∞∫
0

∣∣EŴ [h (s, Y xu
st )]− h(s, x)

∣∣λ(dt) < K (1 + ‖x‖q + ‖u‖q)

(14)

for all (s, x, u) ∈ [0, S)×X × U .
It will be shown in Section IV-B that for h ∈ D, the backward

evolution operator for Xs is given by

Auh(s, x) =
∂h(s, x)

∂s
+ b

∂h(s, x)

∂x
F (s, x, u)

+
1

2
bTr

(
G(s, x, u)T

∂2h(s, x)

∂x2
G(s, x, u)

)

+

∞∫
0

(
EŴ [h (s, Y xu

st )]−h(s, x)
)
λ(dt). (15)

Remark 1: When the dynamics are time-homogeneous, i.e.,
F (s, y, u) = F (y, u) and G(s, y, u) = G(y, u), and the policy
is Markov, Us = U(Xs−), the expression for Au in (15) is
a special case of Phillips’ Theorem [20], [27]. In this case,
the formula can be derived using semigroup theory [27]. The
derivation in this paper is instead based on Itô calculus.

Finite Horizon Verification: The following result is a dy-
namic programming verification theorem for Problem 1. The
theorem is proved in Section IV-B by reducing it to a special
case of finite-horizon dynamic programming for controlled
Markov processes [26].

Theorem 2: Assume that there is a function V ∈ D that
satisfies

inf
u

[c(s, x, u) +AuV (s, x)] = 0 (16)

V (S, x) =Ψ(x) (17)

where (16) holds for all (s, x, u) ∈ [0, S)×X × U and (17)
holds for all x ∈ X .

Then V (s, x) ≤ J(s, x;U) for every admissible system,
(X·, U·) with Xs = x.

Furthermore, if a policy U ∗
r and associated state process X∗

r ,
with X∗

s = x, satisfy

U ∗
r ∈ argmin

u
[c (r,X∗

r , u) +AuV (r,X∗
r)] (18)

for almost all (r, ω) ∈ [s, S]× Ω, then V (s, x) = J(s, x;U ∗).
Remark 2: The theorem gives a sufficient condition for a

policy to be optimal. By the definition of admissible systems
if (16), (17) hold and (X∗

r , U
∗
r ) satisfy (18), then U ∗

r is optimal
over all causal policies, including those with memory.

Example 5: Consider the problem of maximizing E[Xη
S ],

with η ∈ (0, 1) subject to the time-changed dynamics

dYt =U(ζt)Yt (μ1dt+ σ1dW1(t))

+ (1− U(ζt))Yt (μ2dt+ σ2dW2(t))

Xs =Y (τs)

where W1(t) and W2(t) are independent Brownian motions.
The problem can be interpreted as allocating wealth between
stocks modeled by time-changed geometric Brownian motions:
Zi(s) = Ri(τs), where dRi(t) = Ri(t)(μidt+ σidWi(t)).

Let u∗ maximize the following quadratic, f(u):

1

2
η(η − 1)

(
(uσ1)

2 + ((1− u)σ2)
2
)
+ η (uμ1 + (1− u)μ2)

and let ρ∗ = f(u∗). If ρ∗ ∈ dom(β), it can be verified by
elementary stochastic calculus that V (s, x) given by

V (s, x) = eβ(ρ
∗)(S−s)xη

satisfies the dynamic programming equations, (16) and (17),
with X × U = [0,∞)× R and max replacing min. The corre-
sponding optimal input is U ∗

s = u∗.

C. Linear Quadratic Regulators

In this section, Theorem 2 is applied to linear systems with
quadratic cost. The result (with no Brownian forcing) was
originally presented in [3], using a proof technique specialized
for linear systems.

Problem 2: Consider linear dynamics

dYt = (AYt +BU(ζt)) dt+MdWt (19)

subject to the time change Xs = Y (τs). Here X = R
n and

U = R
p.

The time-changed linear quadratic regulator problem over
controller time horizon [0, S] is to find a policy Us that solves

min
U

E

⎡
⎣ S∫

0

(
XT

s QXs + UT
s RUs

)
ds+XT

SΦXS

⎤
⎦

over all càglàd, Fζ,X -adapted policies. Here Q and Φ are
positive semidefinite, while R is positive definite.

The following lemma introduces the mappings used to con-
struct the optimal solution for the time-changed linear quadratic
regulator problem. The lemma is proved in Appendix C by
showing that each mapping may be computed from β(Ã) for
an appropriately defined matrix Ã.

Lemma 2: Let P be an n× n matrix. If {0} ∪ spec(2A) ⊂
dom(β), then the following linear mappings are well defined:

F (P ) = b(ATP + PA) +

∞∫
0

(
eA

TtPeAt − P
)
λ(dt)

G(P ) = bP +

∞∫
0

eA
TtP

t∫
0

eArdrλ(dt)

H(P ) =

∞∫
0

t∫
0

eA
TrdrP

t∫
0

eAρdρλ(dt)

g(P ) =Tr

⎛
⎝P

⎛
⎝bMMT+

∞∫
0

t∫
0

eArMMTeA
Trdrλ(dt)

⎞
⎠
⎞
⎠ .
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Furthermore, F , G, and H satisfy

E

[
eA

TτsPeAτs
]
=P + sF (P ) +O(s2)

E

⎡
⎣eATτsP

τs∫
0

eArdr

⎤
⎦ = sG(P ) +O(s2)

E

⎡
⎣ τs∫

0

eA
TrdrP

τs∫
0

eAρdρ

⎤
⎦ = sH(P ) +O(s2).

Remark 3: The descriptions of F , G, and H in terms of ex-
pectations are not required for the proof below. They are given
to demonstrate that the formulas in terms of (b, λ) coincide with
the formulas from [3].

Example 6: With no temporal noise, the mappings become

F (P ) =ATP + Y P, G(P ) = P,

H(P ) = 0, g(P ) = Tr(PMMT). (20)

Furthermore, since β(z) = z is analytic everywhere, these for-
mulas are true for any state matrix, A.

Example 7: Consider an arbitrary strictly increasing sub-
ordinator with Laplace exponent ψ. Let A = μ where μ is a
real, non-zero scalar with 2μ ∈ dom(β). Let M be a scalar.
Combining (2) with the formula

∫ t

0 eμσdσ = μ−1(eμt − 1)
shows that

F (P ) =β(2μ)P

G(P ) =μ−1 (β(2μ)− β(μ))P

H(P ) =μ−2 (β(2μ)− 2β(μ))P

g(P ) =
1

2
μ−1β(2μ)M2P.

Theorem 3: Say that {0} ∪ spec(2A) ⊂ dom(β). Define the
function V (s, x) = xTPsx+ hs by the backward differential
equations

− d

ds
Ps =Q+ F (Ps)

−G(Ps)B
(
R+BTH(Ps)B

)−1
BTG(Ps)

T

− d

ds
hs = g(Ps)

with final conditions PS = Φ and hS = 0. The function V (s, x)
satisfies dynamic programming equations, (16) and (17), and
the optimal policy is given by

Us =KsXs−

Ks = −
(
R+BTH(Ps)B

)−1
BTG(Ps)

T.

The policy is computed by minimizing (18). Thus, Theorem 2
implies that linear state feedback is optimal over all causal
policies.

A straightforward variation on the proof of Theorem 3
shows that for any linear policy, Us = LsXs− , the cost-to-go is
given by

J(s, x;U) = xTZsx+ ps

Fig. 2. (a) Plots of X1(s) under the optimal policy and the LQR policy for
10 realizations of τs. The initial condition is x = [0, 1]T. (b) The same plots
under time variable t. The black line shows the LQR trajectory with no temporal
noise. In the case of no temporal noise, the classical LQR uses high gains near
t = 0 to produces high-speed trajectories such that Y1 approaches 0 at final
time. In this case, timing errors lead to wide variation in the final position.
The optimal policy reduces the speed of the trajectory near s = 0 order to
minimize the effects of temporal noise. (c) The optimal cost V (s, x) and
J(s, x;U) for the LQR policy (i.e. U is optimal without time noise) are plotted
for x = [0, 1]T. As expected, V (s, x) ≤ J(s, x;U). Furthermore, as the time-
horizon increases, the LQR policy depends strongly on timing information, and
so temporal noise leads to higher cost as s goes to 0. (d) A histogram of the final
positions, X1(S), for 1000 realizations of τs. The optimal controller leads to
X1(S) being tightly distributed around 0, while the LQR controller gives a
wide spread of X1(S) values. The errors in the final position lead to increased
cost for the LQR controller.

where Zs and ks satisfy the backward differential equations

− d

ds
Zs =Q+ F (Zs) + LT

sB
TG(Zs)

T +G(Zs)BLs

+ LT
s

(
R+BTH(Zs)B

)
Ls

− d

ds
ps = g(Zs).

In the following example, these formulas are used in order to
compare the performance of the policy from Theorem 3 with
the policy Us = LsXs− , where Ls is the standard LQR gain,
not compensating for temporal noise.

Example 8: Consider the system defined by the state
matrices

A =

[
0.75 1
0 0.75

]
, B =

[
0
1

]
, M = 0

with cost matrices given by

R = 0.5, Q = 0, Φ =

[
1 0
0 0

]
.

Let τs be the inverse Gaussian subordinator with γ=δ=2.
The condition, spec(2A) ⊂ dom(β), is satisfied since 2 ·
0.75 = 1.5 < γ2/2 = 2. Fig. 2 compares the optimal policy
with the standard LQR policy.



LAMPERSKI AND COWAN: OPTIMAL CONTROL WITH NOISY TIME 325

IV. PROOFS OF MAIN RESULTS

A. Proof of Theorem 1

From the definition of Xs

Xs = X0 +

τs∫
0

Ftdt+

τs∫
0

GtdWt. (21)

Note that Xs is Fτ,W
s -measurable. Thus, Xs will be an Fτ,W

semimartingale, provided that 1)
∫ τs
0 Ftdt has finite variation

and 2)
∫ τs
0 GtdWt is an Fτ,W martingale.

Finite variation follows since:

Var

⎛
⎝ τs∫

0

Ftdt

⎞
⎠ ≤

τs∫
0

‖Ft‖dt < ∞ almost surely.

To prove the martingale property, note that for 0 ≤ r ≤ s,
we have

E

⎡
⎣ τs∫

0

GtdWt

∣∣∣∣∣∣Fτ,W
r

⎤
⎦=

τr∫
0

GtdWt+E

⎡
⎣ τs∫
τr

GtdWt

∣∣∣∣∣∣Fτ,W
r

⎤
⎦

=

τr∫
0

GtdWt.

Furthermore

E

⎡
⎣
∥∥∥∥∥∥

τs∫
0

GtdWt

∥∥∥∥∥∥
⎤
⎦
2

≤ E

⎡
⎣
∥∥∥∥∥∥

τs∫
0

GtdWt

∥∥∥∥∥∥
2⎤
⎦ < ∞

by Jensen’s inequality. Thus 2) holds.
Now (10) must be proved. For more compact notation, define

the processes Ht and Zt as

Ht = [Ft Gt ] Zt =

[
t
Wt

]

so that Xs may be written as

Xs =

τs∫
0

HtdZt. (22)

Note that Z(τs) = [τs,W (τs)
T]

T
. Since τs is a subordinator,

W (τs) is a Lévy process on R
d, with Lévy symbol

ηWτ
(z) = −1

2
bzTz +

∫
Rd

(
eiz

Tx − 1
)
μW,τ (dt)

for some Lévy measure μW,τ . (See [20, Theorem 1.3.25 and
Theorem 1.3.33].) Thus, the continuous part of W (τs) is a
Brownian motion with E[W (τs)W (τs)

T] = bI .
Define the Z̃s by removing the jumps from Z(τs)

Z̃s = Z(τs)−
∑

0≤r≤s

(
Z(τr)− Z(τ−r )

)
.

It follows that Z̃s = [bs,
√
bW̃T

s ]
T

, where W̃s is the Brownian
motion from the theorem statement. Thus, (10) can be equiva-
lently written as

Xs =

s∫
0

H(τr−)dZ̃s +
∑

0≤r≤s

τr∫
τr−

HsdZt (23)

So, the proof will follow by deriving (23) from (22). If b = 0,
then Z̃s = 0 and τs =

∑
0≤r≤s τr − τr− . Thus

Xs =
∑

0≤r≤s

τr∫
τr−

HsdZt

so, in this case, (10) holds.
Now assume b > 0. The cases when τs has finite rate

(λ((0,∞)) < ∞) and infinite rate (λ((0,∞)) = ∞) will be
treated separately.

Finite Rate: Let r0 = 0 and let r1, r2, . . . be the jump times
of τs. With probability 1, there exist a finite (random) integer
L such that L jumps occur over [0, s]. Note that (22) may be
expanded as

Xs =

τs∫
τ(rL)

HtdZt +

L−1∑
k=0

⎡
⎢⎢⎣

τ(r−
k+1

)∫
τ(rk)

HtdZt +

τ(rk+1)∫
τ(r−k+1)

HtdZt

⎤
⎥⎥⎦

(24)

Let sn0 ≤ sn1 ≤ · · · ≤ snKn
be a sequence of partitions such that

limn→∞ snKn
= ∞ a.s.

limn→∞ sup
{∣∣snk+1 − snk

∣∣ : k = 0, . . . ,Kn − 1
}
= 0 a.s.{

ri : ri ≤ snKn

}
⊂

{
sn0 , . . . , s

n
Kn

}
.

The last condition ensures that the jump times are contained in
the partition.

Note that for s ∈ [rk, rk+1), τs = bs+ τd(rk), where τds
is the discontinuous part of τs. Since b > 0 follows that the
sequence τ(sn0 ), τ(s

n
1 ), . . ., satisfies the following properties,

almost surely:

lim
n→∞

τ
(
snKn

)
= ∞

lim
n→∞

sup
{∣∣τ (

sni+1

)
− τ (sni )

∣∣ : i ≥ 0
}
= 0

Using a standard argument from stochastic integration (see
[28, Theorem II.21]), the integral from τ(rk) to τ(r−k+1) may
be evaluated as

τ(r−k+1)∫
τ(rk)

HsdZt

= lim
n→∞

∑
rk≤sn

i
<rk+1

H (τ(sni )) (Z (τ(si+1))− Z (τ(si)))

= lim
n→∞

∑
rk≤sn

i
<rk+1

H (τ (sni ))
(
Z̃(si+1)− Z̃(si)

)

=

rk+1∫
rk

H (τs−) dZ̃s. (25)
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The second equality uses the fact that no jumps occur over
(rk, rk+1). Equation (23) follows by combining (24) and (25).

Infinite Rate: Let εn > 0 be a sequence decreasing to 0, at
a rate to be specified later. Define τns to be the process by
removing all jumps of size at most εn from τs

τns = bs+

∞∫
εn

tN(s, dt). (26)

Let rn0 = 0, and let rn1 , r
n
2 , . . . be the jump times of τns . Let

Ln
s = sup{k : rnk ≤ s}. With probability 1, Ln

s < ∞. If εn are
chosen as in Lemma 3 from Appendix A, then Xs may be
computed as a limit

Xs = lim
n→∞

⎡
⎢⎢⎢⎢⎣

τs∫
τ

(
rn
Ln
s

) HtdZt

+

Ln
s −1∑
k=0

H (τ (rnk ))
(
Z
(
τ
(
rn−k+1

))
−Z (τ (rnk ))

)

+

Ln
s −1∑
k=0

τ(rnk+1)∫
τ(rn−

k+1)

HtdZt

⎤
⎥⎥⎥⎥⎦ . (27)

Note that Z(τ(rn−k+1))− Z(τ(rnk )) may be expressed as

Z
(
τ
(
rn−k+1

))
− Z (τ (rnk ))

= Z̃
(
rnk+1

)
− Z̃ (rnk ) +

∑
rn
k

<r≤rn
k+1

Δτr≤εn

(Z(τr)− Z(τr−)) .

Note that the terms in the summation all vanish as εn→0. Fur-
thermore, rnLn

s
↑s, almost surely. Thus, (27) can be expressed as

Xs = lim
n→∞

⎡
⎢⎢⎣

Ln
s −1∑
k=0

H (τ (rnk ))
(
Z̃(rk+1)− Z̃(rk)

)

+

Ln
s −1∑
k=0

τ(rnk+1)∫
τ(rn−

k+1)

HtdZt

⎤
⎥⎥⎦

and (23) now follows using [28, Theorem II.21]. �

B. Proof of Theorem 2

Theorem2isaspecialcaseoffinite-horizondynamicprogram-
ming for controlled Markov processes ([26, Theorem III.8.1]),
provided that the following two conditions hold for all h ∈ D:

(i) The backward evolution operator, defined in (12) is given
by the formula in (15).

(ii) If h satisfies

E [|h(S,XS)| |Xs = x] < ∞, and

E

⎡
⎣ S∫

s

∣∣AUrh(r,Xr)
∣∣ dr

∣∣∣∣∣∣Xs = x

⎤
⎦ < ∞

then the Dynkin formula holds

E [h(S,XS)|Xs = x]− h(s, x)

= E

⎡
⎣ S∫

s

AUrh(r,Xr)dr|Xs = x

⎤
⎦ . (28)

First, using Theorem 1, a more explicit formula for Xs is
derived, and then using Itô’s formula for semimartingales, a
formula for h(s,Xs) is given. Using the formula for h(s,Xs),
(15) and (28) are then proved.

Note that Y (τr−) = Xr− and for all t ∈ [τr− , τr], ζt = r.
Therefore

F (ζ(τr−), Y (τr−), U (ζ(τr−))) = F (r,Xr− , Ur), and

F (ζt, Yt, U(ζt)) = F (r, Yt, Ur) for all t ∈ [τr− , τr].

The expressions for G are similar. Thus, Theorem 1 implies that
Xs is given by

Xs = X0 + b

s∫
0

F (r,Xr− , Ur)dr +
√
b

s∫
0

G(r,Xr− , Ur)dW̃r

+
∑

0≤r≤s

⎛
⎜⎝

τr∫
τr−

F (r, Yt, Ur)dt+

τr∫
τr−

G(r, Yt, Ur)dWt

⎞
⎟⎠ . (29)

Now a formula for h(s,Xs) will be derived. Note that for any
càglàd, Fτ,W -adapted process, Zs, the stochastic integral with
respect to Xs is given by

s∫
0

ZrdXr =

s∫
0

ZrbF (r,Xr− , Ur)dr

+

s∫
0

Zr

√
bG(r,Xr− , Ur)dW̃r +

∑
0≤r≤s

Zr(Xr −Xr−).

Furthermore, the continuous part of the quadratic variation is
given by

[X,X]cs =

s∫
0

1

2
bG(r,Xr− , Ur)G(r,Xr− , Ur)

Tdr.

Thus Itô’s formula for semimartingales (see [28]) implies that
h(s,Xs) is given by

h(s,Xs) = h(0, X0)

+

s∫
0

(
∂h(r,Xr−)

∂r
+ b

∂h(r,Xr−)

∂x
F (r,Xr− , Ur)

)
dr

+

s∫
0

1

2
bTr

(
G(r,Xr− , Ur)

T ∂
2h(r,Xr−)

∂x2
G(r,Xr− , Ur)

)
dr

+

s∫
0

√
b
∂h(r,Xr−)

∂x
G(r,Xr− , Ur)dW̃r

+
∑

0≤r≤s

(h(r,Xr)− h(r,Xr−)) . (30)
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Now (15) will be derived from (30). Assume that Xs = x
and Ur = u for r ∈ [s, s+ h]. Then (30) implies that

E [h(s+ h,Xs+h)] = h(s, x)

+ E

⎡
⎣ s+h∫

s

(
∂h(r,Xr−)

∂r
+ b

∂h(r,Xr−)

∂x
F (r,Xr− , u)

)
dr

⎤
⎦

+ E

[
1

2
bTr

(
G(r,Xr− , u)

T ∂
2h(r,Xr−)

∂x2
G(r,Xr− , u)

)
dr

]

+ E

[ ∑
s<r≤s+h

(h(r,Xr)− h(r,Xr−))

]
. (31)

If r > s, the Brownian motions Wt for t ∈ [τr− , τr] and
Ŵt for t ∈ [0,Δτr] are identically distributed and independent
of Fτ,W

s . Therefore, using (13), and given that Xs = x and
Ur = u, the expectations of the jump terms may be written as

E [h(r,Xr)− h(r,Xr−)] = E [Θ(r,Δτr, Xr− , u)]

where Θ(r,Δτr, Xr− , u) = EŴ [h(r, Y
Xr−u

r,Δτr
)]− h(r,Xr−).

Thus, the term at the bottom of (31) may be evaluated as a
Poisson integral

E

[ ∑
s<r≤s+h

(h(r,Xr)− h(r,Xr−))

]

= E

⎡
⎣ s+h∫

s

∞∫
0

Θ(r, t,Xr− , u)N(dr, dt)

⎤
⎦

= EW

⎡
⎣ s+h∫

s

∞∫
0

Θ(r, t,Xr− , u)λ(dt)dr

⎤
⎦ (32)

where the second is equation follows from Fubini’s theorem
and (14).

Now, (15) results from combining (12) with (31) and (32).
Turning to (28), since Xs is Fτ,W

s measurable, it suffices to
prove that

E

⎡
⎣h(S,XS)− h(s,Xs)−

S∫
s

AUsh(r,Xr)dr|Fτ,W
s

⎤
⎦ = 0.

Since Xr(ω) = Xr−(ω) for almost all (r, ω) ∈ [s, S]× Ω,
and omitting Fτ,W

s from the expectations for brevity, it follows
that:

E

⎡
⎣ S∫

s

AUsh(r,Xr)dr

⎤
⎦ = E

⎡
⎣ S∫

s

AUsh(r,Xr−)dr

⎤
⎦ .

Combining (15) and (30) implies that

E

⎡
⎣h(S,XS)− h(s,Xs)−

S∫
s

AUrh(r,Xr−)dr

⎤
⎦

= E

[ ∑
s<r≤S

(h(r,Xr)− h(r,Xr−))

]

− E

⎡
⎣ S∫

s

∞∫
0

(
EŴ

[
h
(
r, Y

Xr−Ur

t

)]
−h(r,Xr−)

)
λ(dt)dr

⎤
⎦

(33)

As in the proof of (15), the two terms at the bottom of (33)
are equal in expectation. Thus (28) holds and the proof is
complete. �

C. Proof of Theorem 3

Assume that V (s, x) = xTPsx+ hs. Applying the backward
evolution operator corresponding to (19) to V (s, x) results in

AuV (s, x)=xTṖsx+ ḣs + bxT(ATPs + PsA)x

+ 2bxTPsBu+ bTr(PsMMT)

+

∞∫
0

(
EŴ

[
Y xu
t

TPsY
xu
t

]
−xTPsx

)
λ(dt). (34)

Note that EŴ [Y xu
t Y xu

t
T] may be evaluated as

EŴ

[
Y xu
t Y xu

t
T
]
= yxut yxut

T +Σt

where yxut is the mean of Y xu
t and Σt is the covariance. A

standard argument in linear stochastic differential equations
shows that the mean and covariance are given by

yxut = eAtx+

t∫
0

eArdrBu, Σt =

t∫
0

eArMMTeA
Trdr.

Thus, the integral in (34) may be written as

∞∫
0

(
EŴ

[
Y xu
t

T PsY
xu
t

]
− xTPsx

)
λ(dt)

=

∞∫
0

[
x
u

]T [
F̂ (t, Ps) Ĝ(t, Ps)B

BTĜ(t, Ps)
T BTĤ(t, Ps)B

] [
x
u

]
λ(dt)

+

∞∫
0

t∫
0

Tr
(
Pse

ArMMTeA
Tr
)
drλ(dt) (35)
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where the matrices F̂ , Ĝ, and Ĥ are defined by

F̂ (t, P ) = eA
TtPeAt − P

Ĝ(t, P ) = eA
TtP

t∫
0

eAρdρ

Ĥ(t, P ) =

t∫
0

eA
TrdrP

t∫
0

eAρdρ.

Combining (34) and (35), and using the linear operators from
Lemma 2 gives

AuV (s, x)

=

[
x
u

]T [
Ṗs + F (Ps) G(Ps)B
BTG(Ps) BTH(Ps)B

] [
x
u

]
+ ḣs + g(Ps).

Therefore, adding the cost gives

xTQx+ uTRu+AuV (s, x) = ḣs + g(Ps)

+

[
x
u

]T [
Q+ Ṗs + F (Ps) G(Ps)B

BTG(Ps) R+BTH(Ps)B

] [
x
u

]
.

The result now follows from quadratic minimization. �

V. DISCUSSION

The work in this paper lays a theoretical foundation for future
research on biological motor control [29], [30], finance [31],
and multi-agent control [32], [33] in context that the controller
is uncertain about the time of the plant. Possible extensions
include time estimation from sensory data, optimal control
control with different time horizons, and control with multiple
noisy clocks. It will also be useful to consider alternative clock
models, and practical methods for controller computation for
nonlinear systems.

Time Estimation: In our setting, the system is a controlled
Markov process with respect to controller time, and the optimal
solution only depends on the current values of the state and
the controller time. If the state cannot be perfectly measured,
the horizon is taken with respect to plant time, or the clock
τs does not have independent increments, then control perfor-
mance might be improved by using the measurement history to
estimate time. For example, in option pricing, inferences about
the “business time” can be used to estimate the volatility of
stock prices [34]. To perceive time, humans appear to integrate
sensory cues about the passage of time in a Bayesian manner
[35]; humans also appear to incorporate sensory information
about the timing of events to improve state estimation [36].
Formal analysis of optimal control with time estimation would
be interesting, but appears to be challenging.

It would also be interesting to test if probing control strate-
gies could improve time estimation. For example the distance
that a mass moves in response to a probing force gives infor-
mation about how much time has passed. It may be possible
to use the improved time estimate to achieve better control
performance at the cost of extra actuation.

Plant Time Control: This paper studies a controller horizon
[0, S], which is an interval of time with respect to the clock mea-
sured by the controller. For portfolio optimization, in which the

controller measures calendar time, such a horizon is sensible.
In other problems, such as control with real-time constraints,
it may be more natural to consider a horizon [0, T ] over plant
time. In this case, the challenges of time estimation discussed
above must be addressed.

Multiple Clocks: In this paper, we assumed that the plant
dynamics evolve according to one clock, while the controller
can measure a different clock. If the plant consists of numerous
subsystems, then each could potentially evolve according to a
different clock. This scenario arises in portfolio problems, in
which the goal is to allocate wealth between a bank process
which accrues interest at known, fixed rate and a stock process
that evolves in a variable rate market [22]. Here, the bank
process may be interpreted as evolving with respect to a perfect
clock, while the stock process may be viewed as evolving
with respect to a noisy clock. In engineering applications, such
as mobile sensor networks, multiple autonomous agents with
their own clocks solve cooperative control problems. Currently,
problems arising from drift between clocks are mitigated by
using expensive clocks and time synchronization protocols. The
work in this paper will be extended to reduce the need for
precision timing and synchronization.

Alternative Clock Models: This paper modeled clocks with
Lévy processes largely for mathematical convenience. It would
be interesting to study similar control problems based on jitter
[12], [13], phase noise [37], stochastic integrals [4], or biologi-
cal timing models [38].

Efficient Computation: Currently, the dynamic program-
ming method in this paper is limited to special problems that
can be solved exactly. It may be possible to solve a broader class
of problems by integrating approximate dynamic programming
techniques [39]–[41].

VI. CONCLUSION

This paper gives basic results on control with uncertainty
in time. The technical backbone of the paper is Theorem 1
which expresses the original plant dynamics in terms of the
controller’s clock index. Using the new representation, the
system becomes a controlled Markov process, and thus existing
dynamic programming theory can be applied. Given the dy-
namic programming equations, time changed versions of linear
quadratic control and a nonlinear portfolio problem problem are
solved explicitly.

APPENDIX A
A TECHNICAL LEMMA FOR THEOREM 1

Lemma 3: Let τs be an infinite rate subordinator. Let rn0 = 0
and let rn1 ≤ rn2 ≤ · · · be the jump times of τns , from (26). For
any sequence Sn → ∞ there is a sequence εn ↓ 0 such that the
following limits hold, almost surely:

lim
n→∞

sup {rni : rni ≤ Sn} =∞ (36)

lim
n→∞

sup
{
τrn

i
: rni ≤ Sn

}
=∞ (37)

lim
n→∞

sup
{
rni+1 − rni : rni ≤ Sn

}
=0 (38)

lim
n→∞

sup
{
τrn−

i+1
− τrn

i
: rni ≤ Sn

}
=0. (39)
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Proof: First it will be shown that for any sequence Sn →
∞, a sequence εn ↓ 0 can be chosen such that (38) and (39)
hold. Then it will be shown that (36) and (37) hold.

Consider (38). Using the Borel-Cantelli lemma, it is suffi-
cient to prove that for some constant R > 0, and εn sufficiently
small

P

(
sup

rn
i
≤Sn

|rni+1 − rni | ≥
1

2n

)
<

R

2n
. (40)

For ease of notation, the superscripts on rni and the subscripts
on εn and Sn will be dropped.

With probability 1, τns has only a finite number of jumps over
[0, S], so let K = max{i : ri ≤ S}.

Consider (40). Define the function g(ε) by

g(ε) =

∞∫
ε

λ(dt).

Note that the differences are ri+1 − ri are exponential random
variables with rate parameter g(ε). Thus, the event that ri+1 −
ri ≥ 1/2n is a Bernoulli random variable with probability p(ε)
given by

p(ε) =P

(
ri+1 − ri ≥

1

2n

)
= g(ε)

∞∫
1
2
n

e−g(ε)xdx

= e−g(ε)/2n .

Let J be the geometric random variable defined by

J = min

{
i : ri+1 − ri ≥

1

2n

}

Then the probability of J is given by

P(J = k) = (1− p(ε))k p(ε).

Using the definitions of K and J , the probability in (40) may
be written as

P

(
sup
ri≤S

|ri+1 − ri| ≥
1

2n

)
= P(J ≤ K).

Furthermore, given any constant M > 0

P(J ≤ K) ≤ P(J ≤ M) + P(M ≤ K). (41)

Thus, (40) may be bounded by bounding the terms on the right
of (41) separately.

Now P(M ≤ K) will be bounded. Note that K is a Poisson
random variable with parameter Sg(ε). Markov’s inequality
thus shows that

P(M ≤ K) ≤ 1

M
E[K] =

Sg(ε)

M
(42)

The term P(J ≤ M) can be computed exactly as

P(J ≤ M) = p(ε)
M∑
k=0

(1− p(ε))k = 1− (1− p(ε))M+1 .

Thus, (40) will hold if M can be chosen such that

Sg(ε)/M < 1/2n and 1− (1− p(ε))M+1 < 1/2n. (43)

Rearranging terms, (43) is equivalent to

2nSg(ε) < M <
log

(
1− 1

2n

)
log (1− p(ε))

− 1.

Therefore, a suitable constant M exists if

(2nSg(ε) + 1) log (1− p(ε)) > log

(
1− 1

2n

)
. (44)

It will be shown that (44) holds if ε is sufficiently small. Since
τs has infinite rate, g(ε) → ∞ and p(ε) → 0 as ε → 0. Setting
γ = g(ε)/2n, the left side of (44) converges to 0 by L’Hôspital’s
rule

lim
h→∞

γ log(1− e−γ) = lim
γ→∞

e−γ

1−e−γ

−γ−2
= − lim

γ→∞

γ2

eγ − 1
= 0.

Thus, when ε is sufficiently small, (40) must hold.
Now consider (39). Note that τrn−

i+1
−τrn

i
can be expressed as

τrn−
i+1

− τrn
i
= b

(
rni+1 − rni

)
+

∑
rn
i

<u≤rn
i+1

Δτu≤εn

Δτu

Thus suprn
i
≤Sn

|τrn−
i+1

− τrn
i
| is bounded above by

b sup
rn
i
≤Sn

∣∣rni+1 − rni
∣∣+ sup

ri≤Sn

∑
rn
i

<u≤rn
i+1

Δτu≤εn

Δτu

It has already been shown that the first term on the right
converges to 0 almost surely. Thus to prove (39), it suffices to
prove that

lim
n→∞

sup
rn
i
≤Sn

∑
rn
i

<u≤rn
i+1

Δτu≤εn

Δτu = 0 (45)

almost surely, when εn ↓ 0 sufficiently quickly. By the Borel-
Cantelli lemma, (45) will follow if εn is chosen such that

P

⎛
⎜⎜⎝ sup

rn
i
≤Sn

∑
rn
i

<u≤rn
i+1

Δτu≤εn

Δτu ≥ 1

2n

⎞
⎟⎟⎠ <

R

2n
(46)

for some R > 0.
As before, suppress the superscripts on rni and the subscripts

on εn and Sn. Recall that ri+1 − ri are exponential random
variables with rate parameter g(ε). Furthermore, the jump times
of τns are independent of the small-jumps process

τs − τns =
∑

0≤r≤s
Δτr≤ε

Δτr.

Define h(ε) by

h(ε) =

ε∫
0

tλ(dt).
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Let q(ε) be the probability that
∑

ri<u≤ri+1
Δτu≤ε

Δτu ≥ (1/2n).

Define q̂(ε) as the upper bound on q(ε) given by Markov’s
inequality

q(ε) =P

⎛
⎜⎝ ∑

ri<u≤ri+1
Δτu≤ε

Δτu ≥ 1

2n

⎞
⎟⎠ ≤ 2nE

⎡
⎢⎣ ∑

ri<u≤ri+1
Δτu≤ε

Δτu

⎤
⎥⎦

=2nE

⎡
⎣ ri+1∫

ri

ε∫
0

tN(dr, dt)

⎤
⎦ =

2nh(ε)

g(ε)
= q̂(ε). (47)

As in the proof of (40), the bound in (46) will be recast as a
more tractable inequality.

Let L be the geometric random variable defined by

L = min

⎧⎪⎨
⎪⎩i :

∑
ri<u≤ri+1

Δτu≤ε

Δτu ≥ 1

2n

⎫⎪⎬
⎪⎭ .

So L has probability given by P(L = k) = (1− q(ε))kq(ε). As
in the proof of (40), for any constant M > 0

P

⎛
⎜⎝ ∑

ri<u≤ri+1
Δτu≤ε

Δτu ≥ 1

2n

⎞
⎟⎠

= P(L ≤ K) ≤ P(L ≤ M) + P(M ≤ K).

The first term on the right can be bounded as

P(L ≤ M) = 1− (1− q(ε))M+1 ≤ 1− (1− q̂(ε))M+1 .

Furthermore, as in the proof of (40), if

(2nSg(ε) + 1) log (1− q̂(ε)) < log

(
1− 1

2n

)
(48)

the constant M can be chosen such that

P(L ≤ M) + P(M ≤ K) ≤ 2

2n
.

Thus, if (48) holds, then so does (46). Note that q̂(ε) → 0 as
ε → 0, and thus log(1− q̂(ε)) → 0 as well. Thus, for (48) to
hold for sufficiently small ε, it suffices to show that g(ε) log(1−
q̂(ε)) → 0 as ε → 0.

The Taylor series expansion of log(1− q̂(ε)) gives

|g(ε) log (1− q̂(ε)) | = g(ε)

∞∑
k=1

q̂(ε)k

k
= g(ε)

∞∑
k=1

2nkh(ε)k

g(ε)kk

=2nh(ε)

∞∑
k=0

q̂(ε)k

k + 1

≤ 2nh(ε)

∞∑
k=0

q̂(ε)k =
2nh(ε)

1− q̂(ε)
.

Now limε→0 h(ε) = 0 implies that limε→0 g(ε) log(1− q̂(ε)) =
0. Therefore (48) holds for small ε and so (39) is proved.

Now (36) and (37) will be proved. As long as Sn → ∞, the
limit in (36) is immediate from (38) since

Sn − sup {rni : rni ≤ Sn} ≤ sup
{
rni+1 − rni : rni ≤ Sn

}
.

Now (37) will be proved. If b > 0, then (37) follows for any
sequence with Sn → ∞. Thus, assume that b = 0. There exists
ε̂ > 0 such that λ((ε̂,∞)) > 0. For all n such that εn ≤ ε̂, the
following holds:

sup
{
τrn

i
: rni ≤ Sn

}
≥ τnSn

≥ ε̂N (Sn, (ε̂,∞)) .

Here N(s, (ε̂,∞)) is a Poisson process with rate λ((ε̂,∞)) >
0. Thus, the lower bound goes to ∞ almost surely as Sn → ∞.
Therefore (37) holds. �

APPENDIX B
PROOF OF LEMMA 1

First note that β is analytic at z if
∫∞
0 (ezt − 1)λ(dt) is.

Furthermore, by the Lévy-Itô decomposition

E[ezτs ] = ezbsE

⎡
⎣exp

⎛
⎝z

∞∫
0

tN(s, dt)

⎞
⎠
⎤
⎦ .

Thus, it suffices to prove the lemma for the case that b = 0.
It will be shown that β is analytic. Let y : [0, 1] → C be a

continuous, piecewise continuously differentiable curve with
y(s) ∈ dom(β), with derivative y′(s) continuous on all but a
finite set. Since y is arbitrary, Morera’s theorem implies that β
is analytic, provided that

∮
C

∞∫
0

(
eyt − 1

)
λ(dt)dy = 0. (49)

For any t ≥ 0, eyt − 1 is analytic, and so
∮
C(e

yt − 1)dy = 0.
Thus, (49) will hold, provided that the order of integration can
be switched. This will be justified by Fubini’s theorem.

Since dy(s)/dr = y′(s) almost everywhere, Fubini’s theo-
rem can be applied if the following holds:

1∫
0

∞∫
0

∣∣∣ey(s)t − 1
∣∣∣ |y′(s)|λ(dt)ds < ∞. (50)

Since y′(s) is continuous, except on a finite set, it follows that
there is a constant M such that |y′(s)| < M almost everywhere.
Now ey(s)t − 1 will be bounded. For t ∈ [0, 1], the following
bound holds:

∣∣∣ey(r)t − 1
∣∣∣ ≤ ∞∑

k=1

tk |y(r)|kk! ≤ t
(
e|y(r)| − 1

)
. (51)

Let r = sup{Rey(s) : s ∈ [0, 1]}. By continuity, r < rmax.
The function ey(s)t − 1 can also be bounded using the triangle
inequality: ∣∣∣ey(r)t − 1

∣∣∣ ≤ ∣∣∣ey(s)t∣∣∣+ 1 ≤ ert + 1. (52)
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Thus, the integral in (50) can be bounded as

1∫
0

∞∫
0

∣∣∣ey(s)t − 1
∣∣∣ |y′(s)|λ(dt)ds

≤
1∫

0

⎛
⎝ 1∫

0

tλ(dt)
(
e|y(r)| − 1

)
+

∞∫
1

(ert + 1)λ(dt)

⎞
⎠Mds.

Note that the integral on the right is finite since r < rmax. Thus,
(49) holds and β is analytic.

Since β is analytic, the integral in (5) converges for any
matrix A with spec(A) ⊂ dom(β). See [21].

Now (4) will be proved. The proof is similar to the proof of
Theorem 2.3.8 in [20].

First, the function t will be approximated by step functions
over (0,∞). The construction is similar to the approach in
the proof of Theorem 1.17 in [42]. Consider a sequence a
sequence of integers jn → ∞ so that γn = 2−jn ↓ 0 at a rate
to be specified later. Let kn(t) be the unique integer such that
kγn ≤ t < (k + 1)γn. Define the function ϕn(t) by

ϕn(t) =

{
kn(t)γn t ∈ (0, n)
n t ≥ n.

Then ϕn(t) is a simple function such that ϕn(t) = 0 for t ∈
(0, γn), t− γn < ϕn(t) ≤ t for t ∈ [γn, n], and ϕn(t) ≤ t for
t > 0. The formula, (4), is a consequence of the following chain
of equalities:

E

⎡
⎣exp

⎛
⎝z

∞∫
0

tN(s, dt)

⎞
⎠
⎤
⎦

= lim
n→∞

E

⎡
⎣exp

⎛
⎝z

∞∫
0

ϕn(t)N(s, dt)

⎞
⎠
⎤
⎦ (53)

= lim
n→∞

exp

⎛
⎝s

∞∫
0

(
ezϕn(t) − 1

)
λ(dt)

⎞
⎠ (54)

= exp

⎛
⎝s

∞∫
0

(
ezt − 1

)
λ(dt)

⎞
⎠ . (55)

The first equation is the most challenging, and will be han-
dled last. To prove (54), note that zϕn(t) is a simple function.
Thus, there are constants ci ∈ C and disjoint λ-measurable sets,
Ai, such that

zϕn(t) =

q∑
i=1

ci1Ai
(t).

Since ϕn(t) = 0 over (0, γn), it follows that 0 is not in the
closure of any Ai. Thus, the integral on the right of (53) may be
written as

∞∫
0

zϕn(t)N(s, dt) =

q∑
i=1

ciN(s,Ai)

where N(s,Ai) are independent Poisson processes with rate
λ(Ai). Thus, the expectation on the right of (53) may be
calculated as

E

⎡
⎣exp

⎛
⎝z

∞∫
0

ϕn(t)N(s, dt)

⎞
⎠
⎤
⎦

=

q∏
i=1

E [exp (ciN(s,Ai))]

=

q∏
i=1

exp (−sλ(Ai))

∞∑
k=0

(sλ(Ai))
k

k!
ecik

=

q∏
i=1

exp (sλ(Ai) (e
ci − 1)) .

Now (54) follows because:

s

q∑
i=1

(eci − 1)λ(Ai) = s

∞∫
0

(
ezϕn(t) − 1

)
.

To prove (55), note that the construction of ϕn implies that
ezϕn(t) − 1 is 0 for t < γn and constant for t ≥ n. Thus, it is
absolutely integrable, so by Lebesgue’s dominated convergence
theorem

lim
n→∞

∞∫
0

(
ezϕn(t) − 1

)
λ(dt) =

∞∫
0

(ezt − 1)λ(dt).

Therefore, (55) holds.
Now (53) will be proved. First, it will be shown that

lim
n→∞

∞∫
0

ϕn(t)N(s, dt) =

t∫
0

tN(s, dt), a.s. (56)

Then, dominated convergence will be applied.
Assume that γn−1 is fixed. The difference of the right and left

of (56) may be bounded as

0 ≤
∞∫
0

(t− ϕn(t))N(s, dt)

≤
γn−1∫
0

tN(s, dt) + γn

n∫
γn−1

N(s, dt) +

∞∫
n

(t− n)N(s, dt).

(57)

To bound the first term on the right of (57), note that

γ1∫
0

tN(s, dt) =

∞∑
i=1

γi∫
γi+1

tN(s, dt) < ∞, almost surely.
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Thus, the the first term on the right of (57) may be expressed as
the tail sum

γn−1∫
0

tN(s, dt) =

∞∑
i=n−1

γi∫
γi+1

tN(s, dt)

which converges to 0 almost surely, provided that γn ↓ 0 suffi-
ciently quickly. (See [20].)

Now consider the second term on the right of (57). For fixed
γn−1, the next term γn may be chosen sufficiently small to give
the following probability bound:

P

⎛
⎜⎝γn

n∫
γn−1

N(s, dt) ≥ 2−n

⎞
⎟⎠

= e−sλ([γn−1,n))
∑

k≥ 1
γn2n

(sλ ([γn−1, n)))
k

k!
<

1

2n
.

The Borel-Cantelli lemma implies that the second term con-
verges to 0 almost surely.

The last term on the right of (57) is 0 if τs < n, which holds
for sufficiently large n almost surely. Thus (56) holds.

Now it will be shown that Lebesgue’s dominated conver-
gence applies to (53). Let r = Re z. Note that the function on
the right has magnitude given by

exp

⎛
⎝r

∞∫
0

ϕn(t)N(s, dt)

⎞
⎠ . (58)

Thus, it suffices to show that the term on the right has finite
expectation. If r ≤ 0, then the term is bounded above by 1 and
so finiteness is immediate. So, consider the case that r > 0.

The expectation will be bounded using monotone conver-
gence. Note that ϕn(t) ≤ ϕn+1(t). Indeed, recall that γn =
2−jn for an integer jn. Thus γn = 2jn+1−jnγn+1. By con-
struction kn(t) satisfies kn(t)γn = kn(t)2

jn+1−jnγn+1 ≤ t. It
follows that kn(t)2jn+1−jn ≤ kn+1(t). It follows that ϕn(t) ≤
ϕn+1(t) for all t ≥ 0.

The monotone convergence theorem now implies that (53)
holds for z = r. Since (54) and (55) have already been proved,
it follows that the magnitude from (58) has expectation bounded
by esβ(r), which is finite.

Finally, (6) will be proved. Since β is analytic on dom(β),
it follows that both sides of (4) must be analytic as well. Say
that spec(A) ⊂ dom(β) and consider a contour C, contained
in dom(β), which encloses spec(A). Using the holomorphic
functional calculus (see [21]), (6) can be derived as follows:

E
[
eAτs

]
=

1

2πi

∮
C

E[eyτs ](yI −A)−1dy

=
1

2πi

∮
C

esβ(y)(yI −A)−1dy

= esβ(A).

�

APPENDIX C
PROOF OF LEMMA 2

Define the matrices Z and Ã by

Z =

[
I
0

]
P [ I 0 ] and Ã =

[
A I
0 0

]

respectively. Note that eÃt is given by

eÃt =

[
eAt

∫ t

0 eArdr
0 I

]
.

Thus, the matrix-valued mappings may be written as

[
F (P ) G(P )
G(P )T H(P )

]
=b(ÃTZ+ZÃ)+

∞∫
0

(
eÃ

TtZeÃt−Z
)
λ(dt)

Since eÃ
Tt⊗eÃ

Tt=eÃ
T⊕ÃTt, the equation may be vectorized as

vec

([
F (P ) G(P )
G(P )T H(P )

])

=

⎛
⎝bÃT ⊕ ÃT +

∞∫
0

(
eÃ

T⊕ÃTt − I
)
λ(dt)

⎞
⎠ vec(Z)

= β(ÃT ⊕ ÃT)vec(Z).

Thus according to Lemma 1, F , G, and H are well defined,
as long as spec(ÃT ⊕ ÃT) ⊂ dom(β). By construction, the
spectrum is given by

spec(ÃT ⊕ ÃT) = spec(ÃT) + spec(ÃT)

= {0} ∪ spec(A) ∪ (spec(A) + spec(A)) .

Let r = max{Reμ : μ ∈ spec(A)}. If r ≤ 0, then the max-
imum real part of any eigenvalue of ÃT ⊕ ÃT is 0. If r > 0,
then the corresponding maximum real part must be 2r. Since
{0} ∪ spec(2A) ⊂ dom(β), it follows that spec(ÃT ⊕ ÃT) ⊂
dom(β), and so the mappings are defined.

Furthermore, the relevant expectations may be vectorized
and evaluated using (6)

vec
(
E

[
eÃ

TτsZeÃ
Tτs

])
=E

[
eÃ

T⊕ÃTτs
]
vec(Z)

= vec(Z) + sβ(ÃT ⊕ ÃT)vec(Z)

+O(s2).

The proof for g is similar, noting that

vec

⎛
⎝ t∫

0

eAtMMTeA
Ttdt

⎞
⎠=[ I 0 ](eÂt − I)

[
0
I

]
vec(MMT)

where Â =

[
A⊕A I

0 0

]
. �
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[22] J. Cvitanić, V. Polimenis, and F. Zapatero, “Optimal portfolio allocation
with higher moments,” Annals Finance, vol. 4, pp. 1–28, 2008.

[23] D. B. Madan, P. P. Carr, and E. C. Chang, “The variance gamma process
and option pricing,” Eur. Finance Rev., vol. 2, pp. 79–105, 1998.

[24] O. E. Barndorff-Nielsen, “Processes of normal inverse Gaussian type,”
Finance Stoch., vol. 2, pp. 41–68, 1998.

[25] J. R. Michael, W. R. Schucany, and R. W. Haas, “Generating random
variates using transformations with multiple roots,” Amer. Stat., vol. 30,
no. 2, pp. 88–90, 1976.

[26] W. H. Fleming and H. M. Soner, Controlled Markov Processes and
Viscosity Solutions, 2nd ed. New York: Springer, 2006.

[27] K. Sato, Lévy Processes and Infinitely Divisible Distributions.
Cambridge, U.K.: Cambridge Univ. Press, 1999.

[28] P. E. Protter, Stochastic Integration and Differential Equations, 2nd ed.
New York: Springer, 2004.

[29] E. Todorov and M. I. Jordan, “Optimal feedback control as a theory of mo-
tor coordination,” Nature Neurosci., vol. 5, no. 11, pp. 1226–1233, 2002.

[30] C. Harris and D. Wolpert, “Signal-dependent noise determines motor
planning,” Nature, vol. 394, no. 6695, pp. 780–784, 1998.

[31] L. C. G. Rogers, Optimal Investment. New York: Springer, 2013.
[32] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile

autonomous agents using nearest neighbor rules,” IEEE Trans. Autom.
Control, vol. 48, pp. 988–1001, 2003.

[33] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of
agents with switching topology and time-delays,” IEEE Trans. Autom.
Control, vol. 49, pp. 1520–1533, 2004.

[34] H. Geman, D. B. Madan, and M. Yor, “Stochastic volatility, jumps and
hidden time changes,” Finance Stoch., vol. 6, pp. 63–90, 2002.

[35] M. B. Ahrens and M. Sahani, “Observers exploit stochastic models of
sensory change to help judge the passage of time,” Current Biol., vol. 21,
pp. 1–7, 2011.

[36] M. M. Ankaralı, H. T. Sen, A. De, A. M. Okamura, and N. J. Cowan,
“Haptic feedback enhances rhythmic motor control performance by re-
ducing variability, not convergence time,” J. Neurophysiol., 2014.

[37] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical
oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179–194,
1998.

[38] S. Grondin, “Timing and time perception: A review of recent behavioral
and neuroscience findings and theoretical directions,” Attention, Percep-
tion, Psychophys., vol. 72, no. 3, pp. 561–582, 2010.

[39] E. Todorov and W. Li, “A generalized iterative lgq method for locally-
optimal feedback control of constrained nonlinear systems,” in Proc.
Amer. Control Conf., 2005.

[40] E. Theodorou, J. Büchli, and S. Schaal, “Reinforcement learning of motor
skills in high dimensions: A path integral approach,” in Proc. IEEE Int.
Conf. Robot. Autom., 2010, pp. 2397–2403.

[41] J. B. Lasserre, D. Henrion, C. Prieur, and E. Trélat, “Nonlinear optimal
control via occupation measures and LMI-relaxations,” SIAM J. Control
Optim., vol. 47, no. 4, pp. 1643–1666, 2008.

[42] W. Rudin, Real and Complex Analysis. New York: WCB/McGraw-Hill,
1987.

Andrew Lamperski (S’05–M’11) received the B.S.
degree in biomedical engineering and mathemat-
ics from the Johns Hopkins University, Baltimore,
MD, in 2004 and the Ph.D. degree in control and
dynamical systems from the California Institute of
Technology, Pasadena, in 2011.

He held postdoctoral positions in Control and Dy-
namical Systems, California Institute of Technology,
from 2011 to 2012 and in Mechanical Engineering at
The Johns Hopkins University in 2012. From 2012
to 2014, he did postdoctoral work in the Depart-

ment of Engineering, University of Cambridge, Cambridge, U.K. In 2014, he
joined the Department of Electrical and Computer Engineering, University of
Minnesota, Minneapolis, as an Assistant Professor. His research interests
include optimal control and decentralized control, with applications to neuro-
science and robotics.

Dr. Lamperski received the Whitaker International Program Scholarship.

Noah J. Cowan (S’99–M’01–SM’12) received
the B.S. degree from the Ohio State University,
Columbus, in 1995, and the M.S. and Ph.D. degrees
from the University of Michigan, Ann Arbor, in 1997
and 2001, all in electrical engineering.

From 2001 to 2003, he was a Postdoctoral Fellow
in Integrative Biology at the University of California.
In 2003, he joined the Mechanical Engineering De-
partment, The Johns Hopkins University, Baltimore,
MD, where he is now an Associate Professor. His re-
search interests include mechanics and multisensory

control in animals and machines.
Dr. Cowan received the NSF PECASE award in 2010, the

James S. McDonnell Foundation Scholar Award in Complex Systems in
2012, and the William H. Huggins Award for excellence in teaching in 2004
and The Dunn Family Award in 2014.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


