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Abstract— Many control methods implicitly depend on the as-

sumption that time is accurately known. For example, the finite-

horizon linear quadratic regulator is a linear policy with time-

varying gains. Such policies may be infeasible for controllers

without accurate clocks, such as the motor systems in humans

and other animals, since gains would be applied at incorrect

times. Little appears to be known, however, about control with

imperfect timing. This paper gives a solution to the linear

quadratic regulator problem in which the state is perfectly

known, but the controller’s measure of time is a stochastic

process derived from a strictly increasing L

´

evy process. The

optimal controller is linear and can be computed from a

generalization of the classical Riccati differential equation.

I. INTRODUCTION

This paper studies the finite-horizon linear quadratic reg-
ulator (LQR) with temporal uncertainty. Solutions to finite-
horizon optimal control problems are typically time-varying
feedback policies. Implicitly, it is assumed that the controller
has perfect knowledge of time, even in cases of imperfect
state information. This paper examines the consequences of
assuming that controller’s measure of time is stochastic.

A stochastic process can be time-changed by replacing
its time index, objective time, by a monotonically increas-
ing stochastic process, subjective time [1]. Time-changed
stochastic processes arise in finance, since changing the time
index to a measure of economically relevant events, such as
trades, can improve modeling [2]–[4]. This new time index
is, however, stochastic with respect to calendar time.

Similar notions of objective time and subjective time arise
in the study of time estimation in the nervous system. Human
timing is subject to neural noise and environmental perturba-
tion [5]. Furthermore, humans rationally exploit the statistics
of their temporal noise during simple timed movements, such
as button pushing [6] and pointing [7]. To analyze more
complex movements, a theory of feedback controllers that
compensate for temporal noise is desirable.

The study of control systems with temporal uncertainty is,
however, relatively unexplored. Attention has been devoted to
the problem of clock synchronization in distributed systems
[8], [9]. Less effort has been devoted studying the impact
of asynchronous clock behavior on common control issues,
such as stability [10] and optimal performance [11]. Only a
limited amount of work focuses on general consequences of
temporal uncertainty for control [12], [13].

This paper focuses on the linear quadratic regulator prob-
lem with perfect state information, but a stochastically time-
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changed control process. The optimal cost-to-go function is
derived by dynamic programming, based on a generalization
of the classical LQR Riccati differential equation. The results
apply to a wide class of stochastic time changes given by
strictly increasing Lévy processes.

Section II reviews the classical linear quadratic regulator,
and demonstrates how temporal uncertainty can lead to
poor behavior. Next, in Section III, basic ideas from Lévy
processes are reviewed, and the class of temporal noise
models is defined. The problem of interest and its solution
are stated in Section IV, while the solution is derived in
Section V. Finally, a conclusion is given in Section VI.

II. CLASSICAL LQR AND TIME

The classical linear quadratic regulator chooses inputs
ut = gt(xt) that minimize the quadratic integral

Z tf

0

�
xT
t Qxt + uT

t Rut

�
dt+ xT

tf�xtf ,

subject to linear dynamics

ẋt = Axt +But

and initial condition x
0

= x. Here Q and � are positive
semidefinite, while R is positive definite.

The optimal solution is given by

ut = Ltxt, (1)

where
Lt = �R�1BTPt, (2)

and Pt satisfies the backward differential equation

�Ṗt = Q+ATPt + PtA� PtBR�1BTPt, (3)

with final condition Ptf = �.
The linear quadratic regulator requires perfect knowledge

of the state and, perhaps more subtly, perfect knowledge
of time. While linear quadratic control with imperfect state
information is commonly studied, little seems to be known
about optimal control with imperfect time information. The
following example shows that using the standard LQR policy
with noisy time measurement can lead to poor behavior.

Example 1: Consider the system defined by the state
matrices

A =


1 1
0 1

�
, B =


0
1

�
,

with cost matrices given by � = I , Q = 0, and R = 1.
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Fig. 1. Plots of the first coordinate, x1(t), with initial condition x(0) =
[0, 1]T , and tf = 5. The black line depicts the trajectory for the LQR
policy, (1), while the gray lines are trajectories under the policy (5) for 100
realizations of ⇣t. The final times under (5) varied from 2 to 11, and some
trajectories deviate significantly from the nominal trajectory because gains
are applied at the incorrect times.

Now say that instead of knowing time t, the controller
only has access to a noisy measure of time is given by

⇣t = sup{s+Bs : 0  s  t}, (4)

where Bt is the standard unit Brownian motion. The process,
⇣t, can be interpreted as a noisy clock. A realization of ⇣t is
plotted in Figure 2(b), cf. Example 4.

Figure 1 shows the result of using the policy

u(⇣t, xt) = L⇣txt (5)

over the time horizon {t : ⇣t 2 [0, tf ]}. Intuitively, the
controller uses ⇣t as though it were the correct clock reading,
but this can result in a suboptimal gain when ⇣t 6= t. Note
that the time horizon varies with the realization of ⇣t.

For some choices of A, B, Q, R, and �, the policy, (5),
can perform arbitrarily worse than (1).

This paper generalizes (1), (2), and (3) in order to opti-
mally compensate for uncertainty generated from a relatively
large class of temporal noise models.

III. LÉVY PROCESSES AND TIME CHANGES

This section presents the class of temporal noise models
used in this paper. Two notions of time are used: subjective
time and objective time. Subjective time is modeled as a
stochastic process parametrized by objective time. The noisy
clock process from (4) is an example of a subjective time
model.

A. Background on Lévy Processes

Basic notions from Lévy processes required to define the
general class of subjective time models are now reviewed.
The definitions and results can be found in [14].

A real-valued stochastic process Xt is called a Lévy
process if

• X
0

= 0 almost surely (a.s.).

• Xt has independent, stationary increments: If 0  s  t,
then Xs and Xt�Xs are independent and Xt�Xs has
the same distribution as Xt�s.

• Xt is stochastically continuous: For all a > 0 and all
s � 0, limt!s P(|Xt �Xs| > a) = 0.

It will be assumed that Lévy processes in this paper are
right-continuous with left-sided limits, i.e. they are càdlàg.
No generality is lost since, for every Lévy process, Xt, there
is a càdlàg Lévy process, X̃t, such that Xt = X̃t for almost
all t.

A monotonically increasing Lévy process is called a
subordinator. The following theorem, adapted from [14],
implies that every subordinator can be uniquely characterized
by a function on C.

Theorem 1: Let Xt be a subordinator. There exists a
unique complex-valued function  , called the Laplace ex-
ponent of Xt, such that for all z 2 C with Re z > 0,  is
analytic at z and

E
⇥
e�zXt

⇤
= e�t (z). (6)

The function,  , is called the Laplace exponent because
(6) is the Laplace transform of the distribution of Xt. A
converse to Theorem 1 holds, but constraints on the form
of  are required. Equation (6) is derived from the famous
Lévy-Khintchine formula for Lévy processes.

So far, the discussion in this section has been completely
standard. This paper will employ (6) for the less com-
mon task of computing expectations of matrix exponentials,
E
⇥
eAXt

⇤
, where Xt is a subordinator. To reason about

unstable A, the definition of the Laplace exponent must be
extended, when possible, to values of z with Re z  0.

Recall that  is always analytic at z with Re z > 0. It
could, however, be analytic on a larger region. Define r

min

2
[�1, 0] to be the minimal value r such that  is analytic at
all z with Re z > r and define the domain of  , dom( ), as

dom( ) = {z 2 C : Re z > r
min

}. (7)

It can be shown that (6) holds on all of dom( ).

Example 2: The simplest non-trivial subordinator is the
Poisson process Nt, which is characterized by

P(Nt = k) = e��t
(�t)k

k!
,

where � > 0 is called the rate constant. Its Laplace exponent
is given by  (z) = � � �e�z , which is found by computing
the expected value directly. It follows that r

min

= �1 and
dom( ) = C.

B. Subjective Time Models

Let ⌧s be a strictly increasing subordinator. In other words,
if s < s0 then ⌧s < ⌧s0 a.s. (Note that any subordinator can
be made to be strictly increasing by adding a drift term bs
with b > 0.) The process ⌧s will have the interpretation of
being the amount of objective time that has passed over s
units of subjective time. The process ⇣t will be an inverse



process that describes how much subjective time has passed
over t units of objective time. Formally, ⇣t is defined by

⇣t = inf{� : ⌧� � t}.

Note that ⇣⌧s = s a.s. Indeed, ⇣⌧s = inf{� : ⌧� = ⌧s}, by
definition. Since ⌧s is right continuous and strictly increasing,
a.s., it follows that ⇣⌧s = s, a.s.

Example 3: The case of no temporal uncertainty corre-
sponds to ⌧s = s and ⇣t = t. The Laplace exponent of ⌧s is
computed directly as  (z) = z and dom( ) = C.

Example 4: A more interesting temporal noise model is
the inverse Gaussian subordinator. Fix � > 0 and � > 0. Let
Ct = �t+Bt, where Bt is a standard unit Brownian motion.
The inverse Gaussian subordinator is given by

⌧s = inf{t : Ct = �s},

with Laplace exponent  (z) = �(
p
�2 + 2z � �). Here

dom( ) corresponds to Re z > ��2/2. Derivation of  ,
in this case, relies on techniques outside the scope of this
paper. See [14].

It can be shown that the inverse process is given by

⇣t = sup
�
��1C� : 0  �  t

 
.

See Figure 2. Note that when � = � = 1, the subjective time
⇣t becomes the noisy clock process, (4).

In the preceding example, the process ⌧s has jumps, but the
inverse, ⇣t, is continuous. The next proposition generalizes
this observation for any strictly increasing subordinator, ⌧s.

Proposition 1: The process ⇣t is continuous almost surely.

Proof: Fix ✏ > 0 and t � 0. Set s = ⇣t. Strict
monotonicity of ⌧s implies that [⌧

max{s�✏,0}, ⌧s+✏] is a
nonempty interval, a.s. The inverse property of ⇣t implies
(almost surely) that t 2 [⌧

max{s�✏,0}, ⌧s+✏] and ⇣t0 2
[max{s� ✏, 0}, s+ ✏] for all t0 2 [⌧

max{s�✏,0}, ⌧s+✏].

IV. PROBLEM STATEMENT AND MAIN RESULT

Consider a linear system of the form

ẏt = Ayt +Bu(⇣t). (8)

This system describes a scenario in which dynamics of a
physical plant are described by motion in objective time,
but the agent choosing u cannot directly measure time, but
instead must rely on its subjective measure ⇣t.

Let xs = y⌧s be the time-changed process. Note that (8)
can be solved as

yt = eAty
0

+ eAt

Z t

0

e�A�Bu(⇣�)d�.

It follows that xs can be computed as

xs = eA⌧sx
0

+ eA⌧s
Z ⌧s

0

e�A�Bu(⇣�)d�. (9)

Note that xs depends on the values of u(r) for r 2 [0, s).
For compactness, u(r) will often be written as ur. Let
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Fig. 2. 2(a). The inverse Gaussian subordinator, ⌧s, with � = � = 1. The
process was simulated by generating independent inverse Gaussians using
the method from [15]. 2(b). The inverse process, ⇣t. Note that the graph of
⇣t can be found from the graph of ⌧s by simply switching the axes.

F = {Fs}s�0

be the natural filtration associated with xs.
A control policy is said to be admissible if us is measurable
in Fs and right-continuous with left limits.

Let [0, S] be a finite interval of subjective time. The time-
changed linear quadratic regulator is the admissible control
policy that minimizes the expected quadratic cost

E
"Z S

0

�
xT
s Qxs + uT

s Rus

�
ds+ xT

S�xS

#
.

Here it is assumed that Q and � are positive semidefinite,
while R is positive definite.

Given a policy us, the expected cost-to-go is defined as

Js(x) = (10)

E
"Z S

s

�
xT
r Qxr + uT

r Rur

�
dr + xT

S�xS xs = x

#
.

It follows that the regulator problem involves choosing the
policy that minimizes J

0

(x).
The solution to the time-changed regulator problem uses

a Riccati-like differential equation whose terms depend on



the linear mappings described in the following lemma. The
lemma is proved in Section V-B.

Lemma 1: If the all eigenvalues of �2A lie in dom( ),
(7), then there are linear mappings, F , G, and H such that

E
h
eA

T ⌧sY eA⌧s
i
= Y + sF (Y ) +O(s2)

E

eA

T ⌧sY

Z ⌧s

0

eA�d�

�
= sG(Y ) +O(s2)

E
Z ⌧s

0

eA
T�d�Y

Z ⌧s

0

eA⇢d⇢

�
= sH(Y ) +O(s2).

The eigenvalue assumption is made so that the equation

E
h
e(�1+�2)⌧s

i
= e�s (��1��2)

holds whenever �
1

and �
2

are eigenvalues of A. Note that if
A is Hurwitz, then the eigenvalue requirement always holds.

Example 5: With no temporal noise, the mappings reduce
to

F (Y ) = ATY + Y A, G(Y ) = Y, H(Y ) = 0. (11)

Furthermore, since  is analytic everywhere, these formulas
are true for any state matrix, A.

Example 6: Consider an arbitrary strictly increasing sub-
ordinator with Laplace exponent  . Let A = � where � is
a real, non-zero scalar with �2� 2 dom( ). Combining (6)
with the formula

R t
0

e��d� = ��1(e�t � 1) shows that

E
⇥
e�⌧se�⌧s

⇤
= e�s (�2�)

E

e�⌧s

Z ⌧s

0

e��d�

�
= ��1(e�s (�2�) � e�s (��))

E
Z ⌧s

0

e��d�

Z ⌧s

0

e�⇢d⇢

�
=

��2(e�s (�2�) � 2e�s (��) + 1).

It follows that

F (Y ) = � (�2�)Y

G(Y ) = ��1( (��)�  (�2�))Y

H(Y ) = ��2(2 (��)�  (�2�))Y.

Applying similar ideas to state matrices in Jordan form,
Lemma 1 can be viewed as a generalization of this example.

With all the required definitions now given, the main
theorem of the paper can be stated. The theorem is proved
in Section V.

Theorem 2: Let ⌧s be a strictly increasing subordinator
with Laplace exponent  . Assume that the eigenvalues of
�2A are contained in dom( ) and 0 2 dom( ). The
optimal expected cost-to-go is of the form Js(x) = xTYsx,
where Ys solves the backward differential equation

� d

ds
Ys = Q+ F (Ys)� (12)

G(Ys)B(R+BTH(Ys)B)�1BTG(Ys)
T ,

with final condition YS = �. The optimal policy is given by

us = Ksxs,

where the gain Ks is defined by

Ks = �(R+BTH(Ys)B)�1BTG(Ys)
T . (13)

The optimal controller compensates for the temporal un-
certainty, since the mappings F , G, and H , from Lemma 1,
depend on the distribution of ⌧s. Thus, different subjective
time models will lead to different optimal controllers.

Example 7: With no temporal noise, by plugging in the
matrices from (11), the gain and cost-to-go reduce to (2)
and (3), respectively. Thus, the time-changed linear quadratic
regulator generalizes the classical linear quadratic regulator.

The following theorem is useful for comparing the ex-
pected costs for different linear policies. It will not be proved,
since the main ideas of its derivation are contained in the
proof of Theorem 2.

Theorem 3: If the control input is a linear policy, us =
Lsxs, then the expected cost-to-go is given by Js(x) =
xT
s Psxs, where Ps satisfies the backward differential equa-

tion

� d

ds
Ps = Q+ F (Ps) + LT

s B
TG(Ps)

T +G(Ps)BLs

+ LT
s (R+BTH(Ps)B)Ls,

(14)
with final condition PS = �.

Note that the optimal gain, (13), is recovered by taking
the derivative of (14) with respect to Ls and setting to
0. Theorem 2 is not simply a special case of Theorem
3, however, since it gives the optimal input over all Fs-
measurable càdlàg policies. Theorem 3, on the other hand,
assumes a-priori that the policy is linear.

Example 8: Consider the unstable scalar system de-
scribed by A = 1/6 and B = 1 and cost matrices Q =
R = � = 1. Say that ⌧s is the inverse Gaussian subordinator
with � = � = 1. Figure 3 compares the controller from
Theorem 2 with the classical LQR controller.

V. PROOF OF MAIN RESULT

The proof of Theorem 2 is a continuous-time stochastic
dynamic programming argument. As in the well-known case
of differential equations driven by Brownian motion [16], the
Hamilton-Jacobi-Bellman equation must be modified from
the deterministic case, based on the the behavior of the
stochastic process. In this paper, the required corrections are
captured by Lemma 1. The dynamic programming argument
is given in Subsection V-A and Lemma 1 is proved in V-B.

A. Regulator Derivation

The optimal expected cost-to-go is the minimum of (10)
over all admissible policies. As in standard dynamic pro-
gramming arguments [17], the optimal cost-to-go function is
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Fig. 3. 3(a). The blue line shows Ys, where xTYsx is the optimal
expected cost-to-go function when time is perturbed by the inverse Gaussian
subordinator. The green line shows Ps, where xTPsx is the expected cost-
to-go that arises when the classical LQR gains, (2), are substituted into (14).
As expected, the Ys  Ps for all s. 3(b). Simulations. The blue line is a
trajectory xs generated by using the gain from (13). The green line is a
trajectory generated by using the standard LQR gain. Note that the LQR
controller induces a large jump near s = 1. Often, classical LQR gains are
more aggressive than (13) because no H term appears in the inverse.

derived from the identity

Js(x) = min
u

E
"Z s+�

s

�
xT
r Qxr + uT

r Rur

�
dr

+Js+�(xs+�) xs = x]

(15)

for small � > 0. Similar to (9), xs+� can be written as

xs+� = eA(⌧s+��⌧s)xs+

Z ⌧s+�

⌧s

eA(⌧s+���)Bu(⇣�)d�. (16)

Recall that ⌧s and us were assumed to be right-continuous.
Furthermore ⇣t is continuous by Proposition 1. It follows that
xs+� ! xs as � # 0. Thus xs is right-continuous.

Fix ✏ > 0 and assume that xs = x and us = u (where
x and u are simply vectors, not processes). By the inverse
property, u(⇣⌧s) = us = u almost surely. Right-continuity

of us and ⇣t implies that for � > 0 sufficiently small,

xs+� = eA(⌧s+��⌧s)x+

Z ⌧s+�

⌧s

eA(⌧s+���)Bud� (17)

+O((⌧s+� � ⌧s)✏)

Furthermore, the second term on the right can be written asR ⌧s+��⌧s
0

eA�Bud�.
Let ⌧̂s be an independent realization of the process ⌧s.

Define the noisy state matrices A� and B� by

A� = eA⌧̂� , B� =
Z ⌧̂�

0

eA�d�B. (18)

Since ⌧s+�� ⌧s and ⌧̂� have the same distribution, it follows
that

xs+�
d
= A�x+ B�u+O(⌧̂�✏), (19)

where d
= means that the two sides have the same distribution.

Furthermore, A� , B� , and the O(⌧̂�✏) term and are indepen-
dent of Fs.

Since xs and us are right-continuous, the integral in (15)
can be approximated simply:

Z s+�

s

�
xT
r Qxr + uT

r Rur

�
dr = (20)

�
�
xTQx+ uTRu

�
+O(✏�).

With the local approximations defined, the cost-to-go can
now be derived. Note that JS(x) = xT

�x, so define YS =
�. For s + �  S, assume inductively that Js+�(x) =
xTYs+�x+O(✏�) for some positive semidefinite matrix Ys+� .
Combining (15), (19), and (20) gives

Js(x) = min
u
�
�
xTQx+ uTRu

�
+ (21)

E
⇥
(A�x+ B�u+O(⌧̂�✏))

TYs+�(A�x+ B�u+O(⌧̂�✏))
⇤

+O(✏�).

The proof of Lemma 1 shows that E
⇥
⌧̂2�
⇤
, E [⌧̂�A�], and

E [⌧̂�B�] are all O(�) functions, whenever dom( ) contains
0 and the eigenvalues of �2A. Thus, the O(⌧̂�✏) terms can
be absorbed into the O(✏�) term. Because A� and B� are
independent of Fs, the expected value can be expanded as

E
⇥
(A�x+ B�u)TYs+�(A�x+ B�u)

⇤
= (22)

xTE
⇥
AT
� Ys+�A�

⇤
x+ 2uTE

⇥
BT
� Ys+�A�

⇤
x

+ uTE
⇥
BT
� Ys+�B�

⇤
u.

It follows by (18) and Lemma 1 that the expected values on
the right of (22) can be written as

E
⇥
AT
� Ys+�A�

⇤
= Ys+� + �F (Ys+�) +O(�2)

E
⇥
BT
� Ys+�A�

⇤
= �BTG(Ys+�)

T +O(�2)

E
⇥
BT
� Ys+�B�

⇤
= �BTH(Ys+�)B +O(�2).

Assume without loss of generality that �  ✏. Plugging
the above expected values into (22) gives

Js(x) = xTYs+�x+ �xT (Q+ F (Ys+�))x+

min
u
�
⇥
2uTBTG(Ys+�)

Tx+ uT (R+BTH(Ys+�)B)u
⇤

+O(✏�).



Note that since Ys+� is positive semidefinite, it follows
from the form in Lemma 1 that H(Ys+�) is also positive
semidefinite. Similarly, R + BTH(Ys+�)B is positive def-
inite. Thus, the unique minimizing input is given by u =
Ks+�x, with Ks+� given in (13). Plugging in the optimal
input shows that Js(x) = xTYsx + O(✏�), where Ys is the
positive semidefinite matrix defined by

Ys = Ys+� + �(Q+ F (Ys+�))

� �G(Ys+�)B(R+BTH(Ys+�)B)�1BTG(Ys+�)
T .

Letting ✏ and � go to zero shows that Js(x) = xTYsx,
where Ys solves the backward differential equation (12).

B. Proof of Lemma 1

Assume that the Jordan decomposition of A has q blocks,
and for each eigenvalue �i, the corresponding Jordan block
has size Mi ⇥Mi. The matrix exponential can be written as

eAt =
qX

i=1

e�it
Mi�1X

j=0

tj�i
j ,

for some matrices �i
j 2 Cn⇥n such that

Pq
i=1

�

i
0

= I . Thus,

eA
T tY eAt =

qX

i,j=1

e(�i+�j)t
Mi�1X

k=0

Mj�1X

l=0

tk+l
�

i
k
⇤
Y �

j
l . (23)

Set µ = �i + �j . By hypothesis, �µ 2 dom( ), and
thus  is analytic at �µ. The desired expected value can
be computed in terms of the scalars E

⇥
⌧ks e

µ⌧s
⇤
. For simpler

algebra, set �(z) = � (�z). Then from (6), E [eµ⌧s ] =
e�s (�µ) = es�(µ). Now E

⇥
⌧ks e

µ⌧s
⇤

can be computed as

E
⇥
⌧ks e

µ⌧s
⇤
=

dk

dµk
E [eµ⌧s ] =

dk

dµk
es�(µ). (24)

The exponential can be expanded as es�(µ) = 1+s�(µ)+

s2f(µ, s), where f(µ, s) =
P1

j=0

sj�(µ)j+2

(j+2)!

. Thus, for k �
0, (24) becomes

E
⇥
⌧ks e

µ⌧s
⇤
=

(
1 + s�(µ) +O(s2) k = 0

sdk�
dµk (µ) +O(s2) k � 1.

(25)

Combining (23) and (25) gives the desired expectation:

E
h
eA

T ⌧sY eA⌧s
i
= Y+

s
qX

i,j=1

Mi�1X

k=0

Ml�1X

l=0

dj+k�
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The expressions for G and H can be found by combining
the argument above with the scalar formula

Z t
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e�t
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VI. CONCLUSION

The time-changed regulator problem in this paper could be
extended in numerous ways. For instance, time-varying cost
matrices could be incorporated by simply changing Q and R
to Qs and Rs, respectively. Coupling in the cost between xs

and us is also simple. Subtleties may arise in infinite horizon,
since it is unclear when (12) tends to a steady-state solution.
Generalization to output feedback seems challenging.

Lemma 1 and (12) could likely be explained in terms
of Itô’s formula for Lévy processes. Such an interpretation
might be helpful in the extension of the dynamic program-
ming argument to nonlinear systems.

Additionally, most of the arguments should extend with
minimal change if the system is also driven by a Brownian
motion, independent of the time-change. If, however, they are
correlated the results could be more difficult. The problem
would also be more interesting if the time-change could be
correlated with the state and input history.
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[3] T. Ané and H. Geman, “Order flow, transaction clock, and normality of
asset returns,” The Journal of Finance, vol. 55, no. 5, pp. 2259–2284,
2000.

[4] P. Carr and L. Wu, “Time-changed Lévy processes and option pricing,”
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