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Abstract

Even with the advancements of mobile robots in recent years, robots still lag behind

animals such as squirrels in performing agile behaviors. Drawing inspiration from animal

cognitive planning and navigational strategies has proven beneficial in enhancing robot func-

tionality. Particularly, examining animals’ spatial decision-making strategies can aid in ad-

vancing robots that can perform complex locomotor tasks.

This dissertation delves into how neuronal activity in the hippocampus, a brain region

crucial for spatial cognition, is involved during complex locomotor behaviors. Previous stud-

ies have explored decision-making processes in the hippocampus, predominantly during ani-

mal navigation on the surfaces of the experiment rigs. This research builds on that by looking

at voluntary animal navigation in 3D spaces. It investigates how hippocampal place cell ac-

tivity encodes and predicts di↵erent 3D trajectories based on the routes taken (retrospective

coding) or will be taken (prospective coding) by the animals.

The study explores Long-Evans rats navigating a linear track with an adjustable gap,

where they must choose between ‘jumping’ (crossing over the gap with a single leap) or

‘ditching’ (jumping into and out of the gap) to cross the gap. Neuropixels 2.0 silicon probes

recorded neural activity from the hippocampus in sessions with both jumping and ditching
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behaviors. Recordings revealed place cell activity during the airborne phase of jumping.

Moreover, in sessions involving both jumping and ditching behaviors, place cells exhibited

‘splitter-like’ behavior by encoding these trajectories di↵erently. For example, some place

cells showed strong selectivity for jumping, while others exhibited a strong preference for

ditching. Place cells even discriminated between trajectories at locations beyond the gap,

indicating retrospective coding. These findings provide evidence that place cells adjust their

firing properties to reflect the complex behavioral choices made by animals [1].

This research also investigates the predictive nature of place cell activity. A Bayesian

decoder was trained to predict the animal’s behavior based on the average firing rates of

place cells in the time interval preceding takeo↵. The decoder achieved accuracies ranging

from 60% to 85%, significantly surpassing the chance level. This finding demonstrated that

place cells encode anticipatory information during the complex locomotor task, enabling the

prediction of complex locomotor behaviors solely based on firing rates before takeo↵ [2].

In conclusion, this dissertation enhances the understanding of the role of place cells in

spatial navigation. It highlights their ability to adapt their firing properties to reflect the

structure of complex locomotor tasks. By gaining insights from animals, we can deepen

our understanding of spatial cognition and, ultimately, use these findings to create bioin-

spired algorithms that enhance the functionality of robots in solving complex navigational

challenges.
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Chapter 1

Introduction

Throughout evolution, animals have developed remarkable abilities to navigate, adapt,

and respond to diverse environmental challenges. Their adeptness in navigating complex

terrains without the assistance of sophisticated technologies, their capability to make rapid

decisions under high-stakes conditions, and their innate propensity to learn and apply knowl-

edge to subsequent encounters are all hallmarks of nature’s designs. At the heart of these

incredible abilities, the brain serves as a repository for the various tactics and processes that

govern these actions.

This dissertation aims to shed light on the intricacies of the hippocampus, a brain region

crucial for spatial navigation, memory, learning, and decision making [3]. By studying rats

as they undertake complex locomotor tasks, this work seeks to look closer at the intricate

functionality of the brain during these tasks. The insights gained from this dissertation

could potentially lead to the development of novel bioinspired algorithms for the navigation

of mobile robots.

1



Chapter 1. Introduction

1.1 Background

Historically, the nervous system was hypothesized to be a static network that receives

sensory information from the environment, processes it, and sends motor commands to

interact with the environment [4]. This view, known as the ‘sensorimotor hypothesis’, sees

behaviors as simple reactions to sensory triggers. However, this perspective has been refuted

over the last century, with accumulating evidence suggesting that nervous systems actively

change their connectivity and spontaneously generate behavior [5].

Such plastic neural dynamics assist organisms in achieving goals, including modulating

their sensory feedback. While earlier scientific works favored the notion of nervous systems

as passive systems reacting to stimuli, newer findings introduce the idea of central pattern

generators and spontaneous neural activity, indicating the presence of an intrinsically dy-

namic and active nervous system [6]. Given this paradigm shift, it is crucial to perceive the

nervous system as an entity that proactively produces behavior and is shaped by sensory

feedback rather than merely reacting to the external world [5].

Many researchers have built upon the principle that states every behavioral action is

associated with neural activity within the brain, thereby exploring the relationships between

specific neuronal circuits and behavioral outcomes [7]. The renowned psychologist Don-

ald Hebb proposed a neuropsychological theory of behavior based on the physiology of the

nervous system and the concept of ‘cell assemblies’, which represent perceptual integration

through repeated transmission across synapses1. Carla Shatz rephrased Hebb’s principle as

“cells that fire together wire together” [8]. This principle provided a framework to explain

1Junctions between neurons where neural signals are transmitted.
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how repeated neural connections strengthen and shape behavior, leading to the formation

of learned patterns and memories [9].

Another classic illustration of this principle is the ‘operant conditioning’ behavior ob-

served by Skinner in the mid-20th century, where animals learn from past experiences, and

the neural substrate of this behavior was discovered in the 1990s [10]. Building upon this

foundation of understanding behavior through neural activity, this dissertation aims to delve

deeper by focusing specifically on the neural representation of complex locomotor behaviors

demonstrated by animals.

Squirrels are excellent models for investigating the complex locomotor behavior in ani-

mals [11]. They display exceptional agility, navigating complicated environments by striking

a balance between distance and branch flexibility when jumping [12]. This impressive abil-

ity results from evolved biomechanical adaptations and learned behaviors. This thesis aims

to identify the neural underpinnings of such extraordinary behaviors. To accomplish this,

rats, close evolutionary relatives of squirrels [13], were studied as they undertake complex

locomotor tasks.

Previous studies, such as those using virtual reality [14, 15] or honeycomb mazes [16],

have relied on intricate and innovative engineering setups to explore hippocampus-dependent

spatial navigation. In a similar approach, this dissertation presents a novel experimental rig

designed and constructed to collect kinematic and neural data from rats.

This thesis presents the neural basis of complex locomotor behaviors and contributes to

the field of behavioral neuroscience. It also provides insight into the neural encoding inside

the hippocampus during behaviors mentioned above, and the underlying principles could

potentially be applied in algorithms to facilitate robots in replicating such behaviors.
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Figure 1.1: Schematic illustrating two actions of a rat: (A) Jumping over the gap and (B)
‘Ditching’ the gap, where the rat jumps into the gap and then jumps out.

1.2 Research Objectives

The primary objective of this dissertation is to unravel the role of the hippocampus in

encoding 3D trajectories during complex locomotor tasks. The hippocampus, also known

as ‘inner GPS’, is a brain region integral to spatial cognition [17]. This research provides

insight into whether the neuronal activity in the hippocampus di↵erentiates between distinct

3D trajectories resulting from an animal’s navigational choices. As depicted in Figure 1.1,

a rat faces a gap it must cross to receive a food reward. The animal has the option to jump

over the gap or jump into and then out of the gap, a process called ‘ditching’ in this thesis.

The study investigates whether hippocampal cells exhibit selectivity in their firing pat-

terns when an animal opts to traverse directly from point A to B by jumping (see Fig-

ure 1.1) or instead chooses to navigate from point A to an intermediary point C before

reaching point B . Even though these two distinct 3D trajectories would appear similar

when projected onto the surface of the experiment rig, it remains an open question whether

the hippocampal cells respond di↵erently to them. Ultimately, this investigation probes

whether the hippocampus encodes a rat’s navigation across various real-world 3D trajecto-

4



Chapter 1. Introduction

ries in unique and identifiable ways.

Furthermore, this thesis also aims to inspect the retrospective coding aspect of hip-

pocampal cell activity, wherein hippocampal cells discriminate between the aforementioned

3D trajectories at locations beyond the gap after the rat has crossed it. This aspect of en-

coding is closely related to memory and learning processes, and by di↵erentiating between

past experiences, rats may be able to use this information to make well-informed decisions

in the future.

Additionally, the predictive aspect of hippocampal cell activity forms another significant

pillar of this study. The research aims to investigate whether these cells contain anticipatory

information, o↵ering foresight into the animal’s forthcoming actions based on the properties

of their hippocampal cells, such as the average firing rates before the initiation of a locomotor

task. This predictive information, if present, will be utilized to train a Bayesian decoder to

predict the rats’ future behaviors.

The broader objective of this thesis encompasses the potential applications of the obtained

insights. It attempts to enhance our understanding of spatial cognition, complex locomotor

actions in animals, and their influence on neuronal activity. It is hoped that these findings will

inspire advanced engineering techniques and algorithms that can enhance the navigational

abilities of robots in complex environments.

1.3 Significance of the Study

This dissertation advances our understanding of spatial cognition by analyzing the role

of place cells in the hippocampus during complex locomotor behaviors. The hippocampus is
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a crucial brain region involved in memory consolidation, cognition, and spatial navigation,

and the hippocampal place cells encode the location of an animal (see Section 2.3 for more

details). The hippocampus uses spatial and temporal markers as mainstays to structure

experiences into specific contexts, thereby creating episodic memories [18]. Yet, the mecha-

nism through which encoding occurs within the hippocampus remains to be fully understood.

The findings of this research contribute to ongoing investigations aimed at unraveling the

intricate functions of the hippocampus.

Moreover, the research underscores the potential implications for enhancing robotic func-

tionality in addressing complex navigational tasks. Inspired by animal optimization strate-

gies, scientists have sought to emulate these algorithms to advance artificial computing.

This study provides novel insights into the decision-making and path-planning strategies

evident in the complex locomotor behaviors of animals. Understanding how place cells in

the hippocampus encode and predict various 3D trajectories provides insight into possi-

ble applications in an engineering context, enhancing the decision-making and navigational

capabilities of mobile robots.

1.4 Scope and Limitations

For this dissertation, Long-Evans rats were chosen as the animal subjects due to their well-

documented cognitive abilities [19]; however, since they were inherently terrestrial animals

and raised in cages, they were not capable of performing complex locomotor tasks comparable

with wild arboreal squirrels. Despite these limitations, and by using the training techniques

developed for this thesis (see Section 3.1.1 for more details), laboratory rats jumped up to
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three times their body length during the experiments.

Regarding the experiment paradigm, the focus was on specific behaviors such as jumping

and ditching. These behaviors are the building blocks of more complex agile proto-parkour

behaviors that animals are capable of, as their survival in nature depends on them. Although

this thesis includes a kinematic analysis, a comprehensive biomechanical analysis of jumping

and ditching is beyond its scope. Moreover, the focus of this research is on the neural

basis of the short-distance and short-time navigation and planning of rats. Therefore, the

neural mechanism of long-distance navigation of migratory birds [20], aquatic animals, and

insects [21] is beyond the scope of this dissertation.

In terms of the neurophysiological scope, this dissertation is restricted to the hippocam-

pus, a specific region of the brain involved in cognitive navigation, due to the intricacies

of neurophysiological studies and the expertise and focus of the collaborative lab on hip-

pocampal formation. The hippocampus has a crucial role in cognitive path planning. Still,

it is not the only brain region involved in executing complex locomotor behaviors and the

decision-making processes related to these behaviors. Other regions, including the primary

motor cortex, premotor cortex, prefrontal cortex, and the posterior parietal cortex—a brain

region that encodes head and body posture [22], are integral to these functions. Preliminary

data were also gathered from the posterior parietal cortex during the hippocampal record-

ings. However, a comprehensive investigation of these regions fell outside the scope of this

dissertation.
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1.5 Research Contribution

Although the hippocampus has been extensively studied in the context of spatial nav-

igation, its role during complex 3D locomotor behaviors such as jumping has not been

thoroughly explored. Previous investigations of place cells in rats have typically involved

encoding of 2D surfaces, as the physical limitations necessitated that rat navigation remains

restricted to the surface of the experiment rig. However, when a rat jumps over a gap,

it e↵ectively bridges two topologically disconnected locations, thereby moving beyond the

constraints of conventional navigation on the surface.

This research represents a departure from prior studies, as it is one of the few that focuses

on the functioning of place cells during such complex locomotor behaviors. A key finding

of this research is that place cells encode 3D trajectories di↵erently when rats choose to

perform di↵erent actions, even in the absence of reward contingency or any external cue.

Splitter cells are a type of place cells that exhibit di↵erent firing rates at a specific

location depending on the animal’s previous or upcoming path [23], essentially splitting the

trajectories (see Section 2.6 for more information). One of the essential contributions of

this dissertation is the identification of a splitter-like functionality in place cells. These cells

exhibited di↵erent firing patterns for di↵erent behaviors, a trait reminiscent of the splitter

cells identified in earlier studies [24]. This evidence implies that place cells can modify their

firing properties to align with the structure of the task at hand.

This research shed light on the role of place cells in encoding predictive information before

complex locomotor behaviors. Such predictive encoding might hint at a causal role in decision

making or path planning, thereby enriching the perspective on these cells. This provides
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fresh insights regarding the brain’s methods of prediction or planning before traversing 3D

environments.

1.6 Organization of the Dissertation

This dissertation is organized into seven chapters. After this introductory chapter, Chap-

ter 2 presents a literature review on spatial encoding, the firing properties of place cells during

di↵erent tasks, predictive coding, and the role of place cells in 3D navigation. Chapter 3 out-

lines the methodology employed in the study, detailing the subjects, experiment paradigm,

data acquisition techniques, and data analysis approaches used. Chapter 4 explores the

behavioral, kinematic, and neural correlates of jumping and ditching, with a particular em-

phasis on examining the properties of neural signals during the various kinematic phases of

jumping. Chapter 5 examines the firing properties of place cells during these complex loco-

motor behaviors, with a particular focus on trajectory selectivity and retrospective coding.

Chapter 6 delves into the predictive nature of place cell activity, exploring the di↵erences in

firing rates for jumping and ditching and evaluating the accuracy of a Bayesian decoder in

predicting these behaviors. The final chapter, Chapter 7, recapitulates the main discoveries

of the research, explores their significance in the context of spatial navigation, and suggests

potential directions for future research.
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1.7 Dissemination

Elements of the work completed in this dissertation have been shared with the wider

academic community. Parts of the findings from Chapter 4 were shared at the Dynamic

Walking Conference in 2020 [25]. Likewise, salient anecdotes from Chapter 5 were presented

at the Society for Neuroscience Conference in 2022 [1]. Lastly, the integral components of

Chapter 6 have been submitted for presentation at the upcoming Society for Neuroscience

Conference in 2023 [2]. I have been extensively involved in all aspects of the research,

including the design of the experiment rig, the development of both hardware and software,

as well as data collection and extensive data analysis. However, tasks such as constructing the

experimental rig, training the animals, conducting experiments, performing animal surgeries,

and preprocessing the neural data were carried out with the invaluable assistance of the

collaborators. The principal investigators provided consistent oversight and guidance across

all research stages.
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Literature Review

This chapter reviews the existing literature on bioinspired robotics, hippocampal studies,

and neural recording technologies, alongside exploring the decoding techniques and the cur-

rent gaps in the field. This collection of knowledge serves as the foundation for understanding

the research questions that drive this dissertation.

2.1 Bioinspired Robotics

Bioinspired robotics is an expanding field that involves designing and implementing prin-

ciples, mechanisms, or algorithms derived from biological organisms, systems, and processes.

This approach to robotics draws inspiration from the adaptive and versatile behaviors ob-

served in nature to enhance robotic functionality and overcome various challenges with which

traditional robotic methods struggle [26]. Specifically, studying animals’ locomotor dynam-

ics, sensory perception, and even social behaviors has inspired engineers and researchers to

develop advanced algorithms and innovative robotic creations. Bioinspired roboticists create
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and utilize models of animal locomotion that integrate biomechanics, neural control, sensing,

planning, and learning [6]. The objective of bioinspired robotics is to draw inspiration from

biological principles to design robots with at least some of the desirable properties, such as

adaptivity, robustness, versatility, and agility comparable to animals [27–29].

An exemplary category of bioinspired robotics is jumping robotics. Many terrestrial and

aquatic animals, including locusts, fleas, frogs, kangaroos, and dolphins, utilize jumping

strategies [30]. Some of these strategies have been studied and subsequently inspired the de-

sign of state-of-the-art jumping robots. The studies take into account factors such as takeo↵

kinematics (e.g., angle, direction, velocity) and stability to understand the biomechanics of

jumping [31]. These studies provide valuable insights for the future development of bioin-

spired jumping robots [32]. For instance, one study demonstrated that gliding geckos first

hit vertical surfaces by head at high speed and then pitch back, relying on their tail to absorb

the impact and stabilize the landing, a finding corroborated by experiments with bioinspired

robotic models that also showed better landing success with an active tail reflex [33].

As illustrated in Figure 2.1, bioinspiration can happen at di↵erent levels: biomechan-

ics, locomotion control, and high-level cognitive control [34]. Examples of biomechanical

bioinspiration include mass-spring models of monopodes [35, 36], soft robots [37] and gecko-

inspired surface climbing robots [38, 39]. Bioinspired locomotion control includes feedforward

control1 in hexapod robots such as RHex [35, 36], and also getting inspiration from central

pattern generators (CPGs)2 for the control of robot locomotion [6, 40, 41]. Reinforcement

learning is an example of high-level cognitive bioinspiration, which is inspired by the learn-

1Preflex is a form of passive control.
2CPGs are neural circuits that produce coordinated rhythmic outputs from simple inputs.
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Figure 2.1: Illustration of the various levels of bioinspired robotics, comparing the biological
components of an insect to their robotic counterparts: (a) High-level cognition control, (b)
locomotion control, and (c) Biomechanics. Image reprinted from [34]. Copyright 2021,
MDPI. Used under the terms of the Creative Commons CC BY license.

ing process animals undergo during operant conditioning [42]. Other examples of high-level

cognition include bioinspired localization, mapping, and spatial planning (see Section 2.2).

The focus of this dissertation is to study the hippocampus of rats during complex loco-

motor tasks. This research aims to broaden our understanding of the intricate capabilities

of the brain and potentially inspire high-level cognitive algorithms for future robots. In the

next section, bioinspired algorithms are explained in detail.

2.2 Bioinspired Algorithms

Bioinspired algorithms (also known as bioinspired computing [43]) is a category of bioin-

spiration that focuses beyond animal locomotion to investigate optimization strategies uti-
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lized by nature [44]. A prime example is the artificial neural network, inspired by the

neural network in the brain, as described in McCulloch and Pitts’ seminal paper [45]. Other

examples of bioinspired algorithms include genetic algorithms [46], particle swarm optimiza-

tion [47], and cuckoo search [48]. For instance, the cuckoo search algorithm, derived from

the breeding behavior of certain cuckoo species, utilizes the natural behaviors of these birds

to e�ciently search for optimal solutions in computational contexts [48]. These examples

highlight how animal behavior can inspire advanced computational methodologies.

One example of bioinspired algorithms used in robotics is a neuro-inspired spatial naviga-

tion model based on the model of the rodent hippocampus. It was first developed and tested

on mobile robots in the early 1990s [49]. Subsequent studies extended this idea by incorpo-

rating other elements in the rat brain, such as head direction cells, to achieve comparable

performance on robots as animals during similar behavioral tasks [50]. RatSLAM (Short

for Rat Simultaneous Localization and Mapping) is another bioinspired algorithm inspired

by computational models of the rat hippocampus. RatSLAM mimics the biological models

related to animal navigation to create a computational model that enables a robot to build

a map of the nearby environment while determining its location within that map [51]. The

development of RatSLAM and similar algorithms highlights the importance of bioinspired

approaches in robotics, demonstrating how studying natural processes can lead to significant

technological innovations.

Therefore, a behavioral and neural study of animals is not only crucial for advancing

our scientific knowledge but also important for broadening technological methodologies and

algorithms. In the subsequent sections, the focus will transition to reviewing neuroscience

literature to get familiar with the neural foundations underlying this research. The majority
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of these studies are based on rodents, particularly rats. Any studies involving humans or

other species will be explicitly highlighted.

2.3 Place Cells and the Cognitive Map

The idea of spatial representation inside the brain was conceptualized as a ‘cognitive

map’ by Edward Tolman in 1948 when studying the behavior of lab rats in mazes. Tolman

proposed that rats can learn and navigate their environment using mental spatial represen-

tations, suggesting that behavior is guided more by understanding the overall spatial layout

rather than solely by individual sensory stimuli [52].

Later, O’Keefe and Dostrosky provided evidence that this cognitive map has a neural rep-

resentation inside the hippocampus. They demonstrated that the firing rate of the pyramidal

cells in the hippocampus of freely behaving rats increases substantially when the animal oc-

cupies a specific location within its environment. In other words, these neurons encode the

spatial information. This showed the existence of a spatial map of the environment inside

the hippocampus [53]. In subsequent studies, O’Keefe referred to these cells as ‘place cells’,

with their corresponding locations known as the ‘place field’ [54]. Building on these find-

ings, O’Keefe and Nadel proposed that the hippocampus integrates various stimuli into a

coherent cognitive framework rather than separate stimulus traces or disconnected pairwise

associations [55].

Many other researchers corroborated this theory. In one study, Morris devised a water

navigation task to investigate spatial memory in rats. He demonstrated that rats can learn

to locate an unseen, unheard, and unscented object in a fixed position relative to the room’s
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distal cues [56]. Other studies showed the importance of task structure and context in

the information encoded by the hippocampus. For example, McNaughton et al. showed

that the firing of place cells on linear tracks was not only associated with a rat’s location

but also with its direction of movement. Specifically, place cells exhibited a distinct firing

pattern depending on whether the rat was moving one way or the other, revealing the cells’

sensitivity to directionality [57]. However, such directionality was not generally observed in

random foraging tasks where rats moved randomly on a horizontal plane, suggesting that

the linear structure of the track might induce this directional firing property. There have

been many studies to understand how the hippocampus forms the cognitive map [58, 59];

however, there is still no conclusive answer to this question.

Place cell research has predominantly focused on 2D and horizontal tasks, such as pla-

nar mazes, despite animals interacting with a 3D world [60, 61]. Kate Je↵ery led a novel

study observing rats navigating vertical pegboards and discovered the presence of 3D place

fields [62]. The study found that the encoding of 3D space in the mammalian brain is

anisotropic, meaning cognitive maps have less resolution for vertical spaces than horizontal

ones. After studies in flying bats revealed isotropic spherical place fields [63], Je↵ery and

her team conducted a comprehensive study on place cells in 3D space in rats [64]. In their

research, a tiltable 3D lattice was used, allowing for more natural locomotor behavior of

the rats while moving in a 3D environment (see Figure 2.2). The study found that ease of

movement in a certain direction, not the direction of gravity, impacts how accurately the

rats’ brains map out the environment. Therefore, even though rats are terrestrial animals,

their place cells encode 3D space. As will be explained later in this dissertation, the feature

is useful when rats perform complex locomotor actions such as jumping.
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Figure 2.2: Illustration of 3D place fields in rats. (A) A 3D lattice both in its aligned (left)
and tilted (right) configurations. (B) 3D place fields for the aligned (left) and tilted (right)
orientations are depicted by di↵erent colors. Place fields appear elongated along the lattice’s
axis, indicating the ease of movement a↵ects the shape of the place field. Image modified
from [64]. Copyright 2020, Springer Nature. Used under the terms of the Creative Commons
CC BY license.
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Despite being named for their spatial encoding abilities, place cells can encode much

more than just space [65]. For example, in time-based experiments, place cells fire at specific

moments during the experiment, representing the progression of time in memories and pro-

viding an additional dimension to spatial mapping [66]. Consequently, these cells—despite

being anatomically identical to place cells—are referred to as ‘time cells’ in these studies.

Other nonspatial encoding examples by hippocampal place cells include auditory tempo-

ral and pitch information during auditory-discrimination tasks [67] and odor during odor-

discrimination tasks [68].

This dissertation investigates rats engaged in natural yet complex locomotor behaviors,

such as jumping, to enhance our understanding of both spatial and nonspatial encoding of

the hippocampus. However, it is important to note that the hippocampus functionality is

not limited to encoding current information alone. Research has revealed that hippocampal

neurons are multifaceted in their encoding capabilities. These cells not only encode present

experiences, but they also retain past events through retrospective encoding and anticipate

near-future occurrences via prospective encoding [69]. Such capacities play a pivotal role in

memory formation and decision making, especially within the context of spatial navigation

tasks. An overview of these aspects is provided in the following sections.

2.4 Hippocampus and Memory

The association of memory with the hippocampus was originally an accidental discov-

ery. In 1953, when Henry Molaison had his hippocampi removed bilaterally as a treatment

for his epileptic seizures, it was observed that he was incapable of creating new episodic
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memories1 [70]. This critical finding was replicated by subsequent research on rats. In

these studies, lesions to the hippocampus demonstrated its important function in memory

consolidation and learning [71].

Neurophysiological studies on hippocampal place cells in rats displayed increased firing

activity during sleep after exposure to their specific place fields, suggesting potential informa-

tion processing regarding the previous tasks during sleep [72]. The following studies in rats

revealed that place cells that were active during spatial tasks not only exhibited correlated

firing during subsequent sleep but also the patterns during sleep reflected both the activity

and temporal order of firing from earlier exploration. This ordered rather than scattered

re-expression of the information from waking experiences suggests a role in memory consol-

idation [73, 74]. This phenomenon is called ‘replay’ as if it is replaying the firing pattern

during an experience.

A later study by Foster and Wilson demonstrated that the rat hippocampus replays

recent spatial experiences in a reversed sequence during awake periods [75]. This reverse

replay of past movements is hypothesized to play a role in evaluating event sequences in

reinforcement learning models and potentially represent a general mechanism of learning and

memory. Moreover, disruption of the replay events in awake rats caused a deficit in learning

spatial memory-related tasks, indicating the role of replays in memory consolidation [76].

As the research on the hippocampus and its role in memory expanded, it became ap-

parent that this brain structure is instrumental in a complex form of memory known as

‘episodic memory’ or the more cautiously phrased ‘episodic-like memory’ in the context of

1As will be further elaborated later in this section, episodic memory refers to the ability to recollect
specific events or episodes from one’s life, including the ‘what’, ‘where’, and ‘when’ of the event.
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nonhuman animals [77–79]. This type of memory is characterized by the ability of animals

to integrate information about the objects (what), their location (where), and the time of

the event (when) from past episodes, hence forming a comprehensive memory of specific

experience [80].

It has been theorized that the hippocampus organizes information within a multidimen-

sional cognitive map encompassing spatial, temporal, and associational contexts. It utilizes

the cognitive map as a substrate for encoding experiences as episodic memories [17, 18].

2.5 Hippocampus as a Predictive Map

Similar to the reverse replay experiment mentioned in the previous section, Diba and

Buzsaki demonstrated that, on a linear track, place cells of rats not only fire in a reverse

replay at the end of the track but also fire in a forward sequence before the start of the run

at the beginning of the track [81]. This firing sequence has been termed ‘forward replay’,

suggesting that the cells might anticipate the impending run.

Studies have shown that the hippocampus has a significant role in planning and deci-

sion making, particularly in spatial navigation tasks [82]. For example, a study by Pfei↵er

and Foster showed that the rat hippocampus generates brief sequences before goal-directed

navigation in an open area. These sequences anticipate future behavior by encoding the

trajectories from the rat’s current location to a known goal location [83]. It indicates the

potential of these forward replay sequences in supporting a goal-directed, trajectory-finding

mechanism in navigation and exhibits prospective coding for planning future trajectories in

the hippocampus. Moreover, damage to the hippocampus in humans has been shown to
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impair the ability of patients to envision future events [84].

Research led by Loren Frank demonstrated that in a spatial decision-making task, place

cells could predict the outcome of the trial. During the decision-making time, the hippocam-

pal activity portrayed several paths that covered both the chosen and unchosen options. This

indicates that the hippocampus is involved in evaluating potential choices during memory-

driven decision making [85, 86]. A similar activity occurs in the hippocampus during vicari-

ous trial and error and is involved in decision making and planning [87]. See Section 2.7 for

more details about this phenomenon.

Hippocampal place cells encode both predictive and reward information; from a rein-

forcement learning view, they form a predictive representation [88]. For these reasons, the

hippocampus is called not only the cognitive map but also the predictive map. The cognitive

map is utilized in order to plan ahead and make informed decisions [89].

2.6 Splitter Cells

As discussed in the preceding sections, hippocampal place cells can encode retrospective

trajectories, which represent the paths an individual has previously taken, and prospective

trajectories, which represent potential future paths. In a study by Frank and Wilson, many

neurons in the hippocampus exhibited di↵erent firing rates for the same position based on the

rat’s previous location or intended destination [90]. These hippocampal neurons are referred

to as ‘splitter cells’ since they split trajectories. They di↵erentiate and encode distinct

memory tasks, even when the rat’s physical behavior and location remain unchanged. This

means that despite a lack of change in observable behavior or location, these cells are still
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Figure 2.3: Illustration of activity of a splitter cell in the modified T-maze used in the Wood
et al. study [92]. (A) Arrows demonstrate the trajectory of the rat during the alternation
task. (B) The occupancy of the animal is shown as gray dots, and the place field is highlighted
in red. (C) The place field in the left-turn trials is shown in blue. (D) Comparison of the
firing rates of the cell in left-turn and right-turn trials in di↵erent segments of the middle
arm. (E) The place field in the right-turn trials is shown in yellow. The splitter cell is active
during left-turn trials but almost silent during right-turn trials. The place cell splits the
trajectories based on the previous or future paths. Image modified from [23]. Copyright
2014, Springer Nature. Used with permission.

actively encoding di↵erent information based on the cognitive task at hand [23]. The activity

of splitter cells is based on the chosen trajectory, irrespective of the external cues [91].

In a concurrent study by Emma Wood et al., rats were trained on a modified T-maze in

which they alternated between turning right and left, creating a movement pattern resem-

bling a figure-eight [92]. Figure 2.3 illustrates a splitter cell in the modified T-maze used in

the study. The animal should alternate between left and right turns to get the food reward.

The figure shows the occupancy of the animal, the place field of the cell in di↵erent trials,
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and a comparison of the firing rates of the cell in left-turn and right-turn trials in various

segments of the middle arm. The study demonstrated that most of the hippocampal place

cells in the central stem showed di↵erent firing rates based on the rat’s direction of journey,

while the remaining exhibited consistent firing. This indicates that while some cells encode

the present location of the animal, others may encode details about the task in the ongoing

trial.

Splitter cells encoding information about the recent past, the present, and the imminent

future can be interpreted as a neuronal mechanism for episodic memory for a specific expe-

rience [69]. There is also substantial evidence that within a trial, splitter cells are involved

in decision making in spatial tasks [93].

2.7 Vicarious Trial and Error

Vicarious trial and error (VTE) refers to a specific behavior observed in rats when faced

with a challenging decision [94]. When at a choice point, rats often pause and move their

heads from one direction to another, seemingly attempting to choose between the options [95].

This behavior was first documented and named by Muenzinger et al. in the 1930s [96, 97].

Neurophysiological studies have shown the relationship between hippocampal function,

VTE, and learning. Rats with hippocampal lesions and without (sham-lesioned) were trained

on a nonspatial discrimination task. The number of times a rat moved its head between

stimuli was counted as a VTE instance. Findings showed that rats with hippocampal lesions

exhibited fewer VTEs and either learned much more slowly or did not learn the task at all.

As rats became more proficient in the task, VTE frequency decreased [98].
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A key study by Johnson and Redish indicated that neural ensembles in the hippocampus

of rats transiently encode potential future paths when the animal is at a decision point [99].

Representing future trajectories rather than recently traveled trajectories is likely influenced

by cognitive mechanisms and task demands rather than a passive computation; therefore,

hippocampal spatial processing is an active process. Moreover, it suggests that VTE is

a behavioral correlate of an underlying neural search process during deliberative decision

making. This hippocampal activity of alternating between potential path options suggests

a neural mechanism for contemplating future outcomes akin to human deliberative decision

making and mental time travel [87].

2.8 Hippocampal LFP and Behavior

Local Field Potential (LFP) refers to the electrical activity recorded in the brain, rep-

resenting the ensemble activity of a population of neurons. This collective activity exhibits

variation across di↵erent brain areas and can be sorted into several distinct patterns based

on signal frequency content.

Specifically in the hippocampus, LFP comprises both rhythmic (including theta at 6-12

Hz and ripples at 100-200 Hz) and non-rhythmic patterns, such as the Large (amplitude)

Irregular Activity (LIA) [100]. LIA is identifiable by sharp waves, an intermittent burst of

synchronized neural activity, and is observable as a large deflection in the LFP signal [101].

Sharp waves happen about a hundred milliseconds, but the LIA state can last seconds to

minutes, depending on the behavior. LIA is observable at times when the animal is sitting

quietly, predominantly during eating, grooming, drowsiness, and the slow wave sleep (SWS)
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phase [100]. High-frequency ripples occur concurrently with sharp waves, making sharp

waves and ripples (SWRs) a hallmark activity in the hippocampus [102]. Figure 3.8 depicts

hippocampal sharp waves and ripples of a freely moving animal during a sleep session. The

forward and backward replay phenomena discussed in earlier sections take place during SWR

events.

Seminal research by Case Vanderwolf established robust correlations between LFP pat-

terns and various behaviors, illustrating changes in the frequency and amplitude of theta

rhythm across di↵erent actions [103]. The theta rhythm, a distinct oscillatory pattern,

happens in animals during activities like walking, running, jumping, exploratory head move-

ments, attentive pauses (like exploratory sni�ng or fear-induced freezing), and the rapid

eye movement (REM) phase of sleep [100]. Although pronounced theta rhythm is observed

during the jumping behavior, studies have shown that disruption of theta does not change

the jumping performance of rats, suggesting that theta might be an indicator but not an

initiator for jumping behavior [104]. VTE (as explained in Section 2.7) is also another phe-

nomenon during which theta rhythm is clearly visible in the neural recordings [87]. It is

important to note that SWRs rarely occur during the theta rhythm [100].

The hippocampus is traditionally believed to mainly represent higher cognitive and lo-

comotor variables like position, speed, and direction [57]. Meanwhile, limb movements are

typically linked to subcortical circuits, spinal cord, brainstem, and cerebellum [105, 106].

However, many studies have shown the link between di↵erent motor behaviors and theta

rhythm. For instance, head movements of running rats display oscillations in the same

frequency range as the hippocampal theta rhythm [107].

Moreover, recent work by Joshi, Frank, et al. examined the correlation between hip-
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pocampal spatial representations and the stepping rhythm during locomotion [108]. In their

study, synchronization between the forelimb stepping cycle of the rats and the modulation of

hippocampal activity was observed, both peaking at around 8 Hz during movement. When

the forelimbs of the rats touched the ground, the hippocampal representation closely aligned

with the actual position of the rat’s nose (head). This coordination became especially pro-

nounced when rats faced spatial decisions, highlighting a rapid interplay between cognitive

and sensory-motor circuits.

2.9 Theta Phase

Hippocampal place cells use both temporal and rate coding to represent spatial aspects

of an animal’s environment. A key component in the temporal coding of hippocampal LFP

is ‘theta phase precession’. O’Keefe and Recce observed rats traversing through their place

fields on a linear track. They noted that the place cells began firing at a specific phase of the

theta cycle as the rats entered the respective fields. As the rat continued moving through

the corresponding place field of these cells, the cells fired at steadily earlier phases of the

theta cycle, a pattern referred to as theta phase precession [109]. Their findings illustrated

a correlation between the phase of cell firing and the position of the rat within the relevant

place field.

Studies showed that the theta phase correlates with both position and time, with a

notably stronger correlation with position than time [110]. Phase precession is observed both

on linear tracks and open environments. On linear tracks, most place cells show sequential

activities within the theta cycles, following the same order as their fields on the track.
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Temporal sequences from these cells are condensed within theta cycles, potentially facilitating

sequential learning and enhancing the time dimension of hippocampal memories [111].

2.10 Behavioral Studies

2.10.1 Psychometrics

Psychometric analysis is employed in various fields, including psychology and neuro-

science, to quantitatively assess the relationship between stimulus levels and a subject’s

responses [112]. The psychometric functions (curves), usually presented as sigmoid func-

tions1, describe how the perceptual processes relate to decision making in di↵erent tasks,

such as detecting a faint stimulus or discriminating between two stimuli [113]. For example,

in a study by Zhong et al., mice had to detect if an audio frequency was high or low to get a

food reward. The plot of the ratios that the animals reported high versus the corresponding

audio frequencies formed the psychometric curve for this discrimination task [114].

Non-perceptual decision-making tasks can also be described using psychometric functions,

especially when they involve decision making based on accumulated evidence or information.

For instance, psychometric functions can be applied to economic decision-making tasks, such

as risk preference [115]. Specifically, in the jumping and ditching context, this dissertation

presents psychometric functions as a means to show how the likelihood of choosing a risky

option (e.g., jumping) versus a safe but more energy-costly option (e.g., ditching) changes

as a function of the level of risk (see Section 4.1.1)

1S-shaped functions
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2.10.2 Head Bobbing

Head bobbing, characterized by ‘up and down’ head motions, is a behavior observed

in nocturnal species like rats. It is hypothesized that this behavior serves as an adaptive

mechanism to function in low-light conditions. The rapid movement of the head and body

provides them with motion parallax. Motion parallax allows depth estimation from the

relative motion of objects as the observer changes their viewpoint, allowing them to perceive

depth and distance [116]. This phenomenon appears to be particularly crucial for nocturnal

species that might have evolved this behavior to compensate for their lesser reliance on high

visual acuity mechanisms such as retinal imaging, which diurnal species like squirrels and

Mongolian gerbils utilize [117, 118].

The findings from Parker et al. further reinforce the significance of motion parallax in

rodents, demonstrating that when lab mice were deprived of stereo vision, they increased

vertical head movements, essentially switching to rely on motion parallax [119]. Building on

these insights, this dissertation touches upon a behavioral question: Is head bobbing at the

decision point, before jumping or ditching, more indicative of the decision process (similar

to VTE), depth estimation, or a combination of both?

2.11 Recording Neural Activity

Since this dissertation involves neural recording, a review of hippocampal studies would

be incomplete without discussing the technologies developed for recording the extracellular

activity of neurons in freely moving animals. As early as the 1940s, microelectrode recording

has been used to capture the activity of individual neurons in living animals [120]. This
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method was instrumental in providing insights into the fundamental properties and functions

of neurons. The introduction of silicon probes [121] and tetrodes [122] into the field in the

mid-1990s marked a significant advancement in the area of neural recording. It enabled the

simultaneous recording of neural activity from a larger population of neurons, a feat that

was not possible with single-electrode technologies [123].

In recent years, there has been a significant leap forward in the capabilities of neural

recording technologies with the development of miniaturized silicon probes, such as Neu-

ropixels 1.0 [124] and Neuropixels 2.0 [125]. These revolutionary devices simultaneously

record the activity of hundreds of neurons at 384 distinct recording sites distributed across

10 mm shanks. In animals such as rats and mice, this feature enables recording from multiple

brain regions [126]. These probes’ small size and lightweight design are particularly notewor-

thy as they can be utilized in freely moving animals, o↵ering a more accurate representation

of neural activity during realistic animal behavior (see Table A.1 for comparison).

In summary, the field has seen a substantial evolution from the single-electrode recording

to now being able to observe the intricate networks of activity across hundreds of neurons

with tools like Neuropixels. These technological advances have broadened our understanding

of neuronal interactions and functions, especially for population activity, paving the way for

future discoveries in neuroscience.

2.12 Decoding Neural Activity

Physical variables, such as the animal’s position or direction, or behavioral variables,

including those related to the animal’s decisions, are encoded as activity levels in populations
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of neurons. Decoders have been utilized to address the ‘inverse problem’ by estimating

these variables based on the observed neural activity [127]. This process helps measure the

amount of information regarding the physical or behavioral variables encoded in the neuronal

population.

Bayesian inference is a probabilistic approach neuroscientists use to analyze the neural

encoding during perception and decision making [128]. It is also an e↵ective method for

decoding the activity of relatively small numbers of neurons [129]. There is also a theory

called ‘Bayesian brain theory’ that claims the brain views sensory data as probability dis-

tributions and has a mental model of the environment to make predictions. This mental

model is constantly updated based on the Bayesian inference given the error between the

predictions and the sensory data [130].

A Bayesian decoder is a statistical tool that applies Bayes’ rule to interpret the informa-

tion content of the neural activity and estimate the probability of specific outcomes [131].

Bayes’ rule is a principle in probability theory that formulates the probability of a hypothesis

given the evidence [132]. The mathematical representation is:

P (H|E) =
P (E|H)P (H)

P (E)
(2.1)

where P (H|E) is the posterior probability, representing the probability of hypothesis H

given evidence E. P (E|H) is the conditional probability of evidence E given hypothesis

H is true. P (H) is the prior probability, indicating the initial probability of hypothesis H

before considering the evidence. Lastly, P (E) represents the total probability of evidence E.

By converting the observed spike patterns into predictions or estimations of the original

30



Chapter 2. Literature Review

stimuli or behaviors, the decoder can decode the activity of single neurons or neural popula-

tions [133]. For example, a Bayesian decoder has been applied to predict the most probable

locations of the rat given the ensemble firing patterns of hippocampal place cells [134].

Bayesian decoders establish a relationship between a variable of interest (such as a rat’s

location) and the firing rates of sorted spikes or the characteristics of the unsorted spike

waveforms. Once this relationship is established, the Bayesian method is employed to esti-

mate the variable of interest from the observed neural activity [135, 136].

Bayesian decoders can take as input either sorted or unsorted spikes. Sorted spikes

are classified to specific neurons, clearly identifying their source. In contrast, unsorted

spikes come from multiple neurons without distinct identification. The decoders establish a

connection between a particular variable of interest (for instance, a rat’s location) and either

the firing rates of the sorted spikes or the features of the unsorted spike waveforms. Upon

defining this relationship, the Bayesian approach is then employed to estimate the desired

variable based on the recorded neural activity [135, 136]. It has been observed that decoders

using unsorted spikes tend to perform better than those relying on sorted spikes [137].

2.13 Gaps in the Literature

Despite significant advancements in bioinspired algorithms, behavioral and neurophysio-

logical studies, and neural recording technologies, there remain notable gaps in the existing

literature. These gaps present opportunities for further research and investigation.

Even though there have been several bioinspired algorithms for mobile robot navigation

and planning (see Section 2.2), there is a notable gap in the field. To the best of my knowl-
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edge, no algorithm has been developed that draws inspiration from the cognitive processes

observed in the brains of animals during complex locomotor tasks. This gap is partly be-

cause there have been limited studies on the cognitive process of animals during complex

locomotor tasks such as jumping and ditching.

While place cells are known to encode the entire 3D space [64], most studies have been

limited to rat navigation on the surfaces of experimental rigs, with a few exceptions like

the recent work led by Buzsaki [138]. For instance, in the study of “hippocampal place-cell

firing during movement in 3D space” by Knierim and McNaughton, even though the animals

were walking on the inclined planes in 3D space, they were restricted to the 2D surface of

the inclined planes [139]. During voluntary movements, rats typically walk on experimental

surfaces or use their limbs to navigate vertical surfaces, such as pegboards [62]. Given a

direct correspondence between a rat’s location in 3D space and its position on a 2D surface

in the aforementioned studies, it raises the question: Are the place cells truly encoding the

3D space, or are they only encoding the 2D surfaces? However, in this dissertation, when rats

jump over gaps, they connect two topologically disconnected locations, a behavior beyond

the conventional surface navigation commonly studied in prior research [140]. By comparing

place cell activity during jumping and ditching trials and the fact that these trajectories

have similar projections on the 2D surface of the experiment rig, it would clarify whether

the place fields encode 2D surfaces or 3D spaces.

Furthermore, the interplay between the jumping behavior in rats and their neurophys-

iology requires further exploration. More specifically, the relationship between the theta

rhythm and kinematic aspects of jumping is not well studied. Studies have shown a correla-

tion between theta frequency and rhythmic locomotor behaviors [108, 141], and strong theta
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rhythm has been observed during jumping [103]. A recent study has shown theta phase

resting at the time of jumping [138]. Nevertheless, it remains unclear if there is a link be-

tween kinematically significant events like the time of takeo↵ or landing and specific phases

of theta. Investigating the correlation between theta phase and jumping behavior could

reveal novel insights into how the hippocampus and motor cortex interact during complex

locomotor actions.

In previous studies, a correlation between the speed and theta frequency has been ob-

served when the subjects ran on experiment rigs, with their speed being directly influenced

by the movement of their limbs [103, 142]. However, it is unclear from the prior studies if

the correlation between speed and theta frequency is due to the fact that limb movement is

correlated with both speed and the theta frequency [108]. During the aerial phase of a jump,

the previously mentioned correlation between limb movement and speed no longer applies.

Thus, a jumping experiment provides a unique context to explore the relationship between

speed and theta frequency, independent of the limb movement.

There have been limited neurophysiological studies on animals engaged in jumping be-

havior. In the majority of these studies, a negative reinforcement paradigm was employed,

where rats were required to jump in order to avoid electric shocks [103, 104, 143, 144].

Only one recent study utilized a positive reinforcement approach [138]. Furthermore, none

of the previous studies have given an alternative choice to the animal other than jumping.

By giving the option to the animal to choose between jumping and ditching, the animal

would potentially show decision making before jumping behavior. Moreover, VTE, splitter

phenomenon, and retrospective and prospective coding during complex locomotor behaviors

have not been studied before.
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2.14 Summary

This chapter’s literature review has highlighted the significance of the neurophysiological

study of rats as model organisms for navigational tasks. The hippocampus, regarded as

the cognitive map, is crucial in spatial representation. Place cells can capture current,

retrospective, and prospective information (e.g., splitter cells) and can alternate between

potential future trajectories during vicarious trial and error. The hippocampus utilizes the

cognitive map as a foundation for memory formation and decision-making processes. Neural

recording technologies and decoding tools have enabled the observation and analysis of neural

activity, providing valuable insights into the brain’s functioning during agile and complex

locomotor behaviors.

Behavioral-based robotics and bioinspired algorithms have e↵ectively used neural models

from animal brains for navigation. The behavioral and neurophysiological study of the sub-

jects during complex locomotor tasks helps advance our understanding of complex locomotor

behaviors and the underlying neural processes.

However, there are still notable gaps in the literature, particularly in understanding the

relationship between hippocampal activity and decision making during complex locomotor

behaviors such as jumping. Additionally, the connection between kinematic aspects of jumps

and hippocampal activity requires further investigation. Addressing these gaps will enhance

our comprehension of the brain’s role in controlling complex motor behaviors, contributing

to both neuroscience and bioinspired computing. By building on the foundation of existing

knowledge, this dissertation aims to explore these gaps and provide a new perspective on the

neural mechanisms underlying animal behaviors, ultimately contributing to advancements
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in both neuroscience and robotics.
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Methods

This chapter describes the methodology utilized in the research. It begins with an

overview of the experimental paradigm, followed by a discussion of the animal subjects

selected for the study and their respective training procedures. Details about the silicon

probe implantation procedure are then provided. The chapter then describes the experi-

mental rig and the data acquisition methods used to record neural data, camera images,

and force data, giving an understanding of the hardware setup essential for data collection.

This is followed by a section on the real-time control used during the experiment and the

subsequent data analysis process. The data analysis section includes animal tracking, kine-

matic analysis, and neural analysis. Neural data analysis comprises neuronal spike analysis

and local field potential analysis. The chapter concludes with the development process for a

Bayesian decoder, a tool utilized for neural and behavioral analysis in this dissertation.
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Figure 3.1: The top row depicts a rat jumping over the gap, while the bottom row illustrates
the same rat ‘ditching’ the gap—jumping into and then out of the gap. Rats show a similar
body posture before initiating both jumping and ditching.

3.1 Experimental Procedures

Rats were presented with a behavioral paradigm involving the navigation of a linear track

with an adjustable gap in the middle (refer to Section 3.2 for more detailed information).

Food rewards were dispensed at each end of the track, thereby motivating the food-deprived

rats to traverse the gap to get their reward. In doing so, the rats had the choice of either

‘jumping’ over the gap or ‘ditching’, a term coined for this study to describe the behavior of

descending into the gap and subsequently jumping out of it (see Figure 3.1). Through this

behavioral paradigm, rats are challenged to perform complex locomotor behaviors to get to

the reward.

3.1.1 Animal Subjects

The research subjects comprised four male Long Evans (Blue Spruce) rats, aged 6-7

months and weighing between 300-400 g at the time of implantation. These rats were
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chosen for their well-documented cognitive abilities and proficiency in performing complex

behaviors [19]. All animal care, training, and housing procedures were conducted in strict

compliance with the protocols approved by the Institutional Animal Care and Use Committee

(IACUC) at Johns Hopkins University.

Prior to the main experiment, the rats underwent a comprehensive training regime. Dur-

ing the training phase, the subjects were housed in wheeled cages (Scurry Rat Activity Wheel

with Living Chamber, Lafayette Instrument, Inc., Lafayette, IN, USA) to encourage physical

activity. They were moved to regular cages after surgery to reduce the risk of damaging the

implantation. The initial training phase allowed the rats to explore, climb, and jump within

a 64 cm x 43 cm x 132 cm cage (52-inch cage, Yaheetech, Shenzhen, China), preparing them

for the jumping and ditching task.

Subsequently, in order to motivate the rats to navigate the linear track for the food

reward, subjects were food deprived to 80%-85% of their baseline weight. The food reward

consisted of dustless precision pellets (Bio-Serv, Flemington, NJ, USA) or Froot Loops cereal

(Kellogg’s, Battle Creek, MI, USA). In early training sessions, the gap was closed, and

the subjects were running back and forth along the linear track to retrieve food rewards

positioned at both ends of the track. The gap length was progressively increased until the

rats consistently jumped 30 centimeters or longer. Upon reaching this stage, their diet was

returned to ad libitum feeding in preparation for the surgery.
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3.1.2 Animal Surgery

A two-step surgical procedure was designed to enhance the likelihood of successful sili-

con probe implantation in animal subjects. The first step was a craniotomy and durectomy

surgery. It involved anesthetizing the animal using isoflurane gas along with preopera-

tive intraperitoneal injection (IP) of Ketamine and Xylazine1 to drill the skull and cut the

dura mater. The opening was then sealed by layers of Dura-Gel, a dural sealant (Integra

Lifesciences, Plainsboro, New Jersey, USA), Vaseline, and Kwik-Sil (World Precision In-

struments, Sarasota, Florida, USA). Postoperatively, the rat was given subcutaneous (SC)

injections of Buprenorphine and Dexamethasone2.

After a recuperation period of 10-15 days, which included retraining the rat, the second

step was implantation surgery. It involved the same anesthesia process above, and after

removing the protective layers, a 4-shank Neuropixel 2.0 silicon probe was implanted into the

durectomy site. The target implantation coordinates, relative to the bregma3 were -4.5 mm

anterior-posterior (AP), -3.25 mm mediolateral (ML), and deeper than 4.5 mm dorsoventral

(DV). However, due to factors such as intervening arteries, the actual coordinates slightly

deviated from these target numbers [146].

After securing the probe holder to the skull, the opening was again covered with the same

materials as the previous surgery. Since the second surgery had minimal tissue damage,

postoperative drug injections were unnecessary. The animal subjects were usually ready for

the experiments as early as the next day.

1These agents work synergistically, where Ketamine provides anesthesia while Xylazine o↵ers muscle
relaxation and additional sedation to ensure deep and stable anesthesia during the procedure [145].

2These medications were administered to manage pain and reduce inflammation following the surgery.
3An anatomical landmark on the skull.
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3.1.3 Experimental Paradigm

After one or two days of retraining, the subjects were ready for the experiment. The

subjects were given food rewards at each end of the linear track after successfully crossing

the gap. Each traverse from one end to another is called a ‘lap’ and can be leftward or

rightward, depending on the direction of the gap crossing. The animals alternated between

the two reward sites without any cues from the experimenters. They almost always went

to the correct reward spot. In rare cases, when they mistakenly went to the wrong spot,

especially during ditching trials, they were not given any food reward.

Four sets of experiments were performed by each subject1: jumping only, ditching only,

titration, and hysteresis. The first experiment set was jumping, during which the rats, trained

exclusively for jumping and unfamiliar with ditching, jumped their longest distances, as the

subjects did not yet perceive ditching as an alternative. After that, they were acclimated

to the ditch and trained for one or two days for ditching. After introducing the ditch, the

animals opted for ditching at long distances. Subsequently, they were recorded for a ditching

experiment at a long gap with a gap depth of around 20 cm.

After they got used to both jumping and ditching, the most crucial experiment was

performed: titration. The idea was to keep the gap depth constant for the whole session

and change the gap length in such a way as to maximize decision making and avoid habitual

behavior, as illustrated in Figure 3.2. When a rat chose to jump in both directions, the

gap length was increased, and when it chose to ditch in both directions, the length was

decreased. When the decision of the animal was mixed in di↵erent directions, the length

continued increasing or decreasing based on the previous alteration. The length adjustment

1Except Rat 1055
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Table 3.1: Summary of Selected Experiments

Rat ID Date Experiment
Length (cm) Depth

Brain Region No. Laps
Min Max (cm)

980 2021-12-13 jumping only 33 33 30 CA1/CA3 54
2021-12-16 ditching only 33 33 22 CA1/CA3 126
2021-12-21 titration 18 37 22 CA1/CA3 184
2021-12-20 hysteresis 15 38 23 CA1/CA3 161

1055 2022-11-06 jumping only 20 41 30 CA1 171
2022-11-09 titration 20 51 25 CA1/CA3 226

1068 2022-12-12 jumping only 61 61 30 CA1/CA3 216
2022-12-13 ditching only 61 61 27 CA1/CA3 97
2022-12-20 titration 36 64 27 CA1/CA3 241
2022-12-19 hysteresis 41 71 27 CA1/CA3 248

1079 2023-03-28 jumping only 30 51 30 CA1/CA3 170
2023-04-03 ditching only 51 51 23 CA1/CA3 227
2023-04-05 titration 25 51 27 CA1/CA3 208
2023-04-06 hysteresis 30 56 28 CA1/CA3 230

made it harder for the animal at each lap to repeat its previous choice on subsequent laps.

The final experiment was hysteresis, during which the gap length was constantly in-

creased from a minimum value to a maximum value and then decreased. The maximum

and minimum range of the gap length and the increment size were determined based on the

performance of the subjects in the experiments of previous days. This cycle of increase and

decrease was repeated four to seven times during a session, depending on the performance

of the rat. This experiment was used to investigate the e↵ect of history on decision making.

A hysteresis analysis shows how the history of choices impacts the current decision to jump

or ditch. As illustrated in Figure 3.3, the gap length was increased until it reached the max-

imum limit, then decreased until it reached the minimum limit, and the process repeated

until the end of the experiment.

Table 3.1 provides detailed information about the selected experiments conducted on the

subjects, including the date, minimum and maximum gap lengths, gap depth, brain region
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Figure 3.2: Titration experiment: gap length changed between 25 and 55 centimeters with
a 1.25-centimeter step size. The gap length increased or decreased based on the decision of
the subject. The gap length changed after one rightward and one leftward lap. It increased
if the decision of the animal was jumping in both directions and decreased if the decision
was ditching in both directions. Otherwise, the length continued increasing or decreasing
based on the prior change.
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Figure 3.3: Hysteresis experiment: gap length changes between 30 and 55 centimeters with
a 2.5-centimeter step size. The gap length increased or decreased by a known increment size
until it reached the predefined maximum and minimum range. The gap length changed after
one rightward and one leftward lap.
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Figure 3.4: The experiment rig comprised two elevated linear tracks and the gap between
them. Two remote-controlled linear actuators specify the length and depth of the gap.
The photo was taken from the standpoint of the side camera; another camera records the
experiments from the top.

involved, and the number of directional (either rightward or leftward) laps completed. CA1

and CA3 are subregions of the hippocampus where place cells are commonly found [147].

3.2 Experimental Setup

The experiment rig was designed with the specific aim of inducing decision-making behav-

ior in rats. The adjustable gap served as the key feature to provoke this behavior, compelling

the subjects to choose between jumping or ditching to traverse the gap. As illustrated in

Figure 3.4, the experiment rig consisted of two elevated linear tracks known as ‘runways’.

They were constructed from wood with the size of 3/4 in x 5.5 in x 4 ft (approx. 2 cm x 14

cm x 120 cm). Thin boards were used to create shallow walls to prevent unintended falls.
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The gap bottom was constructed from plywood, measuring 1/4 in x 8 in x 24 in (approx. 6

mm x 20 cm x 60 cm). A layer of Restored Rosewood Wood Residential/Light Commercial

Vinyl Sheet (Lifeproof, Calhoun, GA, USA) was glued to the top layer of wood pieces

that were in contact with the animal. This vinyl sheet layer was not only water-proof

but also provided better traction and reduced the risk of slipping for the animals. To

maintain hygiene, the surfaces were cleaned and sanitized with Ethanol before and after the

experiments based on the protocol.

In the gap region, the linear tracks were connected to two thin boards, named ‘launch

pads’, which were used for jumping and landing. The launch pads were made of 1/4 in x 5.5

in x 6 in (approx. 6 mm x 14 cm x 15 cm) oak board (Weaber, Inc., Lebanon, PA, USA).

These oak boards were chosen after thoroughly testing the natural frequencies of boards

made from di↵erent materials and thicknesses. The tests also indicated that the animals

could e↵ectively jump from and to these boards. The top and sides of the launch pads were

covered with anti-slip safety tape (LifeGrip Stay on Track, LLC, Lehigh Acres, FL, USA)

to reduce the risk of rats stumbling or slipping and to increase their grip needed for some

behaviors (such as pull-ups when getting out of the gap).

The overall structure and legs of the experiment rig were crafted from 80/20 T-slot

aluminum pieces (80/20 Inc., Columbia City, IN, USA). Acoustic foam panels were placed

on the floor and the base of the rig to cushion potential falls, ensuring maximum safety for

the rats during the experiments.

The schematic of the entire experimental setup is illustrated in Figure 3.5. Sensors and

actuators, along with hardware and software devices, are shown in the figure. The arrows

show the direction of communications between di↵erent devices. Green arrows show the con-
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Figure 3.5: Detailed schematic of the experiment setup, highlighting device interactions.
Green arrows represent control signals, black for data streaming, and red ensures synchro-
nization among devices.

trol signals, black arrows show the stream of data, and red signals work as a synchronization

between all the devices. The individual pieces will be discussed in the following sections.

3.2.1 Actuators

The design of the linear track required precise control over the depth and length of the

gap, for which two types of actuators were incorporated into the experiment rig. The first

actuator, an FA-OS-35-12-X linear actuator, along with a 2-channel remote control system

(Progressive Automations, Inc., Delta, BC, Canada), was utilized to adjust the gap depth.

The remote-controlled actuator allowed manual variation in the gap depth without disturbing

the ongoing experiment. The actuator could move the ditch bottom up and down with a

travel distance of approximately 30 centimeters, creating di↵erent gap depths. It was only

in operation when animals were not on the ditch platform.

The second actuator was a belt-driven BiSlide assembly controlled via a corresponding
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VXM controller (Velmex, Inc., Bloomfield, NY, USA). The primary role of this actuator was

to adjust the length of the gap with a travel distance of 1 meter. A range of gap lengths

was achieved by adjusting the right platform of the track back and forth. The actuator was

controlled by a 2-button keyfob RF remote control and a simple RF M4 receiver (Adafruit

Industries, LLC, New York, NY, USA), providing the flexibility to experiment with various

gap lengths while maintaining a minimal intervention approach. This feature preserved the

natural behavior of the rats and was beneficial during the titration and hysteresis experiments

(see Section 3.1.3). This actuator only moved the right platform, and the left platform

was stationary during the experiment, as depicted in Figure 3.4. The adjustments were

happening only when the subjects were on the stationary platform. The length and depth of

the gap could be e�ciently controlled with these two actuators, thereby creating a dynamic

environment suited for the study of place cell activity during di↵erent locomotor challenges.

3.2.2 Rat Cap and Marker Crown

To track the animals with high precision and robustness, a 3D-printed marker crown was

utilized as described in [148]. The crown housed a constellation of retroreflective markers

(OptiTrack, Corvallis, Oregon, USA) of various sizes (3 mm facial, 7.9 mm, and 12.7 mm).

It was magnetically attached to the ‘rat cap’ during the experiments. The rat cap housed

the silicon probe and the necessary electronics. It was permanently attached to the skull

during the surgery, ensuring a consistent relative position between the crown and the head of

the animal. The rat cap design was heavily influenced by prior work in Buzsáki’s lab [149].

Figure 3.6 illustrates the crown marker and rat cap.
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BA

Figure 3.6: (A) 3D-printed marker crown featuring retroreflective markers of di↵erent sizes.
(B) The rat cap is surgically attached to the skull of the animal.

A B

Figure 3.7: Tracking system configuration. (A) Top-view camera equipped with an IR LED
ring and an IR filter. (B) Side-view camera setup. Both cameras operate using external
triggers.

3.2.3 Cameras

As displayed in Figure 3.7, the tracking setup used a two-camera system for optimal

perspective capture, including a top-view and a side-view camera and a specially designed

marker crown to aid in the pose tracking of the rats. For the top-view perspective, a NIR

(near-infrared) GS3-U3-41C6NIR-C 4 MP camera (FLIR Systems, Inc., Wilsonville, OR,

USA) paired with an LM6HC 1” 6mm F1.8 Manual Iris C-Mount lens (Kowa Company

Ltd., Tokyo, Japan), was used. This combination provided wide-angle coverage, ensuring

the entire experimental rig was within view.

A ring LED with QBLP670-IR3 NIR LEDs (QT Brightek, San Jose, CA, USA) sur-

rounded the camera to enhance visibility. These LEDs emitted light at an 850 nm wavelength
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within the NIR spectrum. A NIR filter was mounted in front of the lens. This filter blocked

visible light, allowing only NIR light to pass through and reach the camera sensor. The

reflection of the NIR light from LEDs to the markers were the only beams passing through

the filter camera, ensuring a sharp image of markers on a black background.

The side-view images were recorded using a mono-color BFS-U3-23S3M-C camera from

FLIR Systems, Inc., paired with an LMVZ4411 1/1.8” 4.4-11 mm Varifocal lens from Kowa

Company Ltd. This setup e↵ectively covered the areas within the gap region, capturing the

rats’ movements during jumping and ditching.

Both cameras were externally triggered by signals from the DAQ, adjusting their frame

rates dynamically to optimize memory usage. Whenever the rat entered the gap region, force

sensors (see Section 3.2.4) detected its presence. Subsequently, the frame rate increased to

capture the movement of the animal with higher detail. The top and side cameras recorded

at high speeds of 300 fps and 200 fps, respectively1. Both cameras returned to a tenth of

these speeds when rats exited the gap region.

The nominal camera speed is the rate at which the camera can capture images across its

entire sensor. Nevertheless, the camera can function at higher speeds when the imaging area

is reduced, and fewer pixels need to be digitized. The aforementioned speeds were achieved

by choosing the appropriate region of interest (ROI) to be captured.

Videos from both cameras were recorded through SpinView 2.4 software (FLIR Systems,

Inc., Wilsonville, OR, USA). To achieve high-speed recording and data transmission, raw

frames were stored on a separate computer, distinct from the neural recording PC (refer to

Section 3.2.6 for further details).

1Top camera images were used by the high precision pose tracker, necessitating a higher frame rate.

48



Chapter 3. Methods

Table 3.2: Specification of PW6D single point load cell
Specification PW6D
Accuracy class C3 Multi Range (MR)
Maximum capacity 5 kg
Sensitivity (Cn) 2± 0.2 mV/V
Natural frequency, approx 390 Hz
Non-linearity ±0.0166% of Cn
Cable length 3 m (6 wire)
Material of measuring body Aluminum
Nominal (rated) displacement at Emax, approx < 0.18 mm

3.2.4 Force Sensors

As explained in Chapter 1, in order to record the ground reaction forces of the animal

during preparation, takeo↵, and landing to test the correlation with neural signals, force

sensors were added to the experiment rig. The experiment rig was equipped with PW6D

single-point load cells (HBK - Hottinger, Brüel & Kjær, Nærum, Denmark) mounted under

both launch pads. The specification for the load cell is presented in Table 3.2. An additional

load cell was placed under the ditch bottom. These sensors facilitated precise measurement

of the force exerted by the rat during critical phases of the jumping or ditching process.

These phases included the preparation phase, where the rat gathers momentum to jump

across the gap or descend into the ditch, and the landing phase, where the rat either lands

on the other side of the gap or at the bottom of the ditch.

The custom-made load cells were equipped with a shielded cable, 3 m in length, ensuring

uninterrupted and noise-free data transmission. The voltage generated by the load cells,

proportional to the force exerted by the rat, was then amplified by a BRT RW-GT01A DIN

Rail-mounted load cell amplifier (Brightwin Electronics, Shenzhen, China). The amplified

signals were fed into the analog inputs of the DAQ (see Section 3.2.5 for further details),
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facilitating real-time recording and monitoring of the force exerted by the rats.

3.2.5 Data Acquisition and Control

LabVIEW 2020 software (NI, Austin, TX, USA) was used to control and monitor the

experimental setup. The system was interfaced with the 782522-01 NI PXIe-PCIe8381 cable

to PCIe-6259. This interface provided high-speed, direct control of the PXI system from a

desktop or server and served as the bridge between the desktop and PXI systems.

The 781052-01 PXIe-6341 (NI Corporation, Austin, TX, USA) was integrated into the

setup. An X Series Data Acquisition System (DAQ) included 16 analog inputs and two

analog outputs. This DAQ was the primary data collection and control device, interfacing

the physical measurements with the controlling software. Analog inputs were utilized to

record load cell data and the remote control R4 receiver (see Sections 3.2.4 and 3.3.2). Two

analog outputs were used for synchronization between the PCIe-6259 DAQ, cameras, and

the IMEC PXIe acquisition module (see Sections 3.2.3 and 3.3.2).

3.2.6 Experiment Computers

The experimental setup leveraged the computational power of two high-performance PCs,

each tailored to handle specific tasks essential to this study. The primary PC was designated

for running SpikeGLX software for neural data acquisition and real-time visualization, as

well as LabVIEW software for experimental control and monitoring. This PC was equipped

with a Corei9-11900K processor running at 3.50GHz (Intel Corporation, Santa Clara, CA,

USA). The system had 64GB of T-Force Delta DDR4 memory (TEAMGROUP Inc., Taipei,
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Taiwan). Storage included a 1TB 980 PRO SSD with PCIe 4.0 NVMe Gen 4 interface and a

500GB 980 SSD with PCIe 3.0x4 NVMe M.2 Gen 3 interface (SAMSUNG Electronics Co.,

Ltd., Seoul, South Korea). The PC utilized a GeForce GTX 1660 graphics card (NVIDIA

Corporation, Santa Clara, CA, USA), and it ran on the Windows 10 Enterprise N (64-bit)

operating system (Microsoft Corporation, Redmond, WA, USA).

The secondary computer was exclusively set up to acquire and store high-speed, high-

resolution video data from the two cameras utilized in the experiment setup. This Linux-

based system (Ubuntu 18.04 operating system, Canonical Ltd., London, United Kingdom)

ran on a Core i9-9900K processor at 3.60 GHz (Intel Corporation, Santa Clara, CA, USA) and

64 GB of Ripjaws V Series DDR4-3200 memory (G.Skill International Enterprise Co., Ltd.,

Taipei, Taiwan). A 2TB 980 SSD with PCIe 3.0x4 NVMe M.2 Gen 3 interface (SAMSUNG

Electronics Co., Ltd., Seoul, South Korea) provided storage.

Following the completion of the experiment sessions, the generated raw data was pre-

served in multiple locations. It was first uploaded to the cloud service, providing easy access

from any internet-connected device. Simultaneously, the data was copied to a Network At-

tached Storage (NAS) system with four hard drives arranged in a RAID 1 configuration,

o↵ering hardware failure protection. In addition, for o✏ine accessibility and further redun-

dancy, the data was also stored on external hard drives.

3.3 Neurophysiological Recording Setup

The neurophysiological recording setup was a critical component of the study. It included

the Neuropixels 2.0 probes and hardware and software setup for recording neural activity.
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The design of the neural recording setup was geared towards ensuring optimal data acqui-

sition while simultaneously promoting conditions conducive to the natural behaviors of the

rats.

3.3.1 Neuropixels 2.0 Probes

Neuropixels 2.0 probes by IMEC (Interuniversity Microelectronics Centre, Leuven, Bel-

gium) were utilized to record the neural activity of the rats. These silicon probes o↵ered

simultaneous recording from 384 (out of 5120) recording sites across four shanks. Their

lightweight, low profile and high number of channels made them ideal for studying place

cells during agile behaviors such as jumping (see Table A.1 for comparison of di↵erent neu-

ral data acquisition devices).

The preparation process for these probes involved gluing a dovetail mount for connecting

to a metal holder, sharpening the shanks, and testing the connectivity inside saline. Af-

ter experiments and explantation, the shanks were cleaned by a Tergazyme enzyme-active

detergent (Alconox, Inc., White Plains, New York, USA).

3.3.2 Neural Data Acquisition Hardware

The primary components used in the neural data acquisition process included the PXIe

Chassis, an MXI-Express interface, and a custom-made IMEC PXIe Acquisition Module.

The NI PXIe-1071 PXIe Chassis (NI Corporation, Austin, TX, USA) served as the hous-

ing unit for PXIe modules. Its high-performance backplane o↵ered robust timing and syn-

chronization capabilities. This chassis was crucial for maintaining the precise timing required
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in recording neural activity, thereby ensuring the reliability of the data.

The MXI-Express interface, comprising the NI PCIe-8381 and PXIe-8381 from NI, pro-

vided a high-bandwidth, direct connection to the PC.

Lastly, the PXIe Acquisition Module by IMEC (Interuniversity Microelectronics Centre,

Leuven, Belgium), a custom-made Printed Circuit Board (PCB) module with dual Field-

Programmable Gate Arrays (FPGAs), handled probe configuration, data acquisition at a

sampling rate of 30 kHz, and transmission. This unit ensured e�cient data collection from

the Neuropixels 2.0 probes and swift data transfer to the PC via the PCIe interface, thereby

enabling real-time signal processing and enhancing the overall e�ciency of data handling.

3.3.3 Neural Data Acquisition Software

SpikeGLX software (Version 20220101, Imec phase30 v3.51) was used for real-time visu-

alization and acquisition of neural data from the Neuropixels 2.0 probe [150]. This software

platform facilitated data acquisition, selection of channels of interest, and filtering of high-

density electrophysiological data and also featured an auditory functionality. This feature

enabled the experimenters to listen to the selected signal during the experiment, providing

a more engaging and intuitive method than visualization, as the human ear is often more

sensitive to frequency content than the eye. A snapshot of SpikeGLX in operation during

the data acquisition process from the hippocampus of a rat is demonstrated in Figure 3.8.
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Figure 3.8: A snapshot of SpikeGLX engaged in real-time visualization and recording of
neural data during an experiment. The figure demonstrates simultaneous recordings from
multiple adjacent sites. Noticeable in the middle of the image are individual unit activities.
In contrast, the activity known as a sharp wave ripple, a distinctive feature of the hippocam-
pal CA1 layer, is visible on the right side of the image (for more details, see Section 2.8).

3.4 Data Analysis

With the data e↵ectively acquired, the next step in the process involved detailed analysis

of this data, as described in this section. A combination of MATLAB 2021a (MathWorks,

Inc., Natick, MA, USA) and Python 3.61 was utilized for data analysis. These powerful

computational tools enabled a comprehensive and detailed analysis of the collected data.

3.4.1 Animal Tracking

3D pose tracking of the rats was performed using a marker-based system that specifically

targeted the head of the animal. As depicted in Figure 3.9, this system used a single top-view

1Employing libraries such as numpy, scipy, matplotlib, time, sys, os, multiprocessing, and glob.
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BA

Figure 3.9: Tracking system (A) 3D-printed marker crown featuring retroreflective markers
of di↵erent sizes. (B) Example of a sample frame from the top-view camera and the super-
imposed pose estimation results obtained using the marker tracker.

camera with a wide field of view to enable high-accuracy tracking of the six-degree-of-freedom

position and orientation of the marker crown mounted on the rat cap (see Section 3.2.3 for

more information). It has been demonstrated to accurately identify rat head position and

orientation with subcentimeter precision, providing robust measurements of rodent head

motions in a wide range of orientations [148]. This tracking was essential, as it allowed for

accurate measurement of the rats’ activity during the execution of complex maneuvers.

Another tracker was also developed in C++ by using STL and OpenCV [151] libraries

to track the position of the rat in the 2D image plane using top-view camera images and to

track the variable gap length during the experiment using the side-view camera images. The

tracker also extracted the metadata of the frames for more precise synchronization.

3.4.2 Behavioral Data Analysis

The behavioral and kinematic data were analyzed to understand the mechanical prin-

ciples underlying the complex locomotor behaviors of the rat. This involved calculating

head-bobbing frequency, linear and angular velocities and accelerations, and determining

parameters such as time of flight and ground reaction forces, which provided valuable in-
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Figure 3.10: Demonstration of position, speed, and force on launchpads before, during, and
after a representative jump. (A) The horizontal position (no filter) is plotted in a green
curve. The moments that the head of the animal is in the gap region are shown by blue
vertical bars. (B) The horizontal speed (filtered 0.01-10 Hz) is plotted in magenta. The
speed threshold (30 cm/s) for detection of the initiation of the takeo↵ is shown with the
black dashed line. (C) Vertical forces (notch filtered, between 20-60 Hz) applied to the
launchpads and the ditch bottom are plotted. Since the rat does not walk on the ditch
bottom, the corresponding force is zero.

sights into the jumping and ditching behaviors. Figure 3.10 shows the position, speed, and

ground reaction force of an animal during a representative jumping lap.

3.4.2.1 Head Bobbing Analysis

To understand the behavior of animals during the preparatory phase preceding a jump,

the analysis of the characteristic behavior of head bobbing became pivotal. As illustrated in

Figure 3.11, the detection mechanism identifies moments where the animal’s head is situated

within the gap region prior to takeo↵. The pitch angle, filtered between 0.5-10 Hz, is plotted
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Figure 3.11: Detection of head bobbing during the preparation time before jumping. Head
bobbing is considered when the animal’s head is in the gap region and before the time of
takeo↵. (A) The horizontal speed (filtered 0.01-10 Hz) is plotted in magenta. The moments
that the head of the animal is in the gap region are shown by blue vertical bars. (B) The
pitch angle (filtered 0.5-10 Hz) is plotted in light green. The peaks are detected as head-
bobbing incidents.

in light green. The red markers indicate peaks as instances of head bobbing. In the figure,

the animal demonstrated 5 head bobs within a short span of 2 seconds, resulting in a head-

bobbing frequency of 2.5 Hz. This head-bobbing frequency is an anticipatory mechanism that

animals demonstrate before jumping and ditching, which will be discussed in the following

chapter.

3.4.2.2 Ground Reaction Force

Ground reaction forces (GRFs) were captured using load cells (see Section 3.2.4) placed

strategically at the launch and landing pads. As the rats initiated a jump, the force exerted on

the launch pad significantly increased, detected as a spike in the output of the corresponding

load cell. Similarly, a force increase was also observed at the moment of landing. Depending
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on the length of the jump gap, this force increase exhibited either a single peak (unimodal)

or a dual peak (bimodal). The latter reflected the time delay between the rat’s forelegs and

hindlegs touching down.

Figure 3.10 illustrates the GRFs recorded by the load cells on both the launch and landing

pads. The times are relative to the time of takeo↵. In the third subplot from the top, the

yellow signal represents the GRF at the launch pad, while the blue signal depicts a single

peak GRF at the landing pad. By tracking these ground reaction forces, biomechanical

metrics such as maximum energy and the time of flight can be calculated, and more insights

into the kinematics and kinetics of jumping and ditching behaviors can be provided.

3.4.2.3 Time of Flight

The estimation of the time of flight is a crucial element in understanding the jumping

behavior of Long-Evans rats. This measure provides valuable information about the duration

of the aerial phase, a key parameter in assessing the kinematic features of the leap. The

time of takeo↵ was identified when the force on the launch pad rapidly dropped to zero,

indicating that the rat had entered the aerial phase of the jump. The force remained close to

zero during the flight and suddenly increased upon landing, providing a precise estimation

of the landing time. The di↵erence between takeo↵ and landing times accurately determined

the time of flight.
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3.4.3 Neural Data Analysis

This research explores the neural activity of the hippocampus during navigational tasks.

The process comprises spike sorting, firing rate analysis, and theta analysis, as will be ex-

plained in the following sections.

3.4.3.1 Spike Sorting

Upon recording the neural activity, the initial steps entailed automatic spike detection and

manual spike sorting. Spike detection was performed by referencing1, filtering the signals

with a zero-lag Butterworth filter within the 600-6000 Hz range, thresholding, and peak

detection.

Spike sorting was essential for accurately clustering spikes from each recorded unit, with

each cluster representing distinct neural firing patterns. These patterns were quantified using

metrics, one such being the peak voltage of the spike. Since a unit’s activity was usually

captured across multiple recording sites, projecting these metrics from di↵erent sites aided

in manually clustering the data, isolating similar spikes.

Despite the possibility of a unit encompassing data from multiple cells, adopting several

techniques, such as inspecting individual spike shapes and examining the distribution of

inter-spike intervals, reduced the chance of cross-contamination considerably. This ensured

the preservation of the data’s integrity and reliability. However, it is worth noting that if

the data exhibited a high noise level or the metrics fell within this noise level, the reliability

of the clusters could have been compromised.

1Post referencing was done by local or global common average referencing (CAR).
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Table 3.3: Summary of the number of clustered units and place fields in the Titration
experiment session for each rat.

Rat ID No. Clusters Direction
No. Place Fields

No. Laps
CA1 CA3

980 47
Rightward 23 2 92
Leftward 32 3 91

1055 7
Rightward 5 0 113
Leftward 6 0 112

1068 50
Rightward 20 14 120
Leftward 13 12 121

The neural statistics resulting from spike-sorting are outlined in Table 3.3. This table

provides information about the number of clustered units and place fields during the Titration

experiment session for three subjects. While data was collected from four rats, the analysis

presented in this dissertation includes data from three of those subjects.

3.4.3.2 Measuring Firing Rates

The clustered neural data underwent further analysis to calculate the firing rates of place

cells during di↵erent behaviors. Occupancy1 was calculated using a spatial histogram for

the linear track with 3 cm bins. The number of spikes per bin was calculated using a

similar histogram. The firing rate was calculated as the ratio of these two quantities at

each bin. A speed threshold was used to exclude the spikes from the moments the subjects

were idle if they were not in the vicinity of the gaps. For each cell, eight di↵erent firing

rates were calculated. These rates were separately determined for leftward and rightward

laps, stationary and moving frames of reference, and finally, for the di↵erent actions, namely

jumping and ditching.

1cumulative time in a given location
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A

B

Figure 3.12: LFP and the associated theta rhythm during a representative jumping trial.
Time is relative to the time of takeo↵. (A) LFP is depicted in black, while the theta rhythm,
shown in red, represents the zero-lag filter of the LFP between 6-12 Hz. (B) The theta phase
corresponding to the theta rhythm is extracted using the Hilbert transform.

3.4.3.3 Theta Analysis

As mentioned in Section 2.8, theta rhythm is a characteristic EEG pattern in the hip-

pocampus [152]. This section focuses on analyzing the theta rhythm from the recordings,

especially from the hippocampal fissure, a location known to produce prominent theta ac-

tivity in rats. Figure 3.12 shows the LFP, the theta rhythm, and the theta phase around the

time of takeo↵ within a representative jumping trial.

Raw voltage recordings from the probe sites were utilized, with a Butterworth filter of

order two applied in MATLAB. The zero-phase bandpass filter was specifically designed to

isolate the frequency range of theta rhythm (6-12 Hz for rats, see Section 2.8). This filtering

process enabled the extraction of the theta component from the raw signal, reducing noise

and other unwanted neural activity.

After applying the Hilbert transform to the theta signal and forming the analytic signal

(see Appendix A.2), it became possible to extract the instantaneous phase and amplitude of

the theta rhythm, which was critical for subsequent analyses. Among the multiple recording
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sites, the one with the highest theta amplitude was chosen as the reference. This site had

the highest signal-to-noise ratio (SNR) for theta rhythm, thereby ensuring the quality of the

analysis. Usually, this site was the closest one to the hippocampal fissure.

3.4.3.4 Theta Phase Analysis

To study the presence and implications of theta phase precession during jumping behav-

ior, the theta phase was initially calculated using the Hilbert transform. This process is

explained in greater detail in Section 3.4.3.3. The wavelet transform was also employed as

an alternative method to extract the phase of theta. However, since both methods yielded

similar results, the Hilbert transform method was chosen for the analysis. By plotting the

phase of theta at the time corresponding to a cell firing versus the position of the rat (or

versus the relative time with respect to an event) at that instance, it can be observed if the

location (or the relative time) is encoded in the phase of cell firing, indicating the presence

of theta phase precession.

Given the cyclic nature of theta phase, traditional methods like Pearson correlation,

which are e↵ective for linear-linear correlations, are not suitable for quantifying theta phase

precession. Kempter et al. proposed a novel technique that provides a more reliable method

for assessing circular-linear associations [153]. CircStat, a Matlab toolbox designed for circu-

lar statistics, was utilized to compute circular-linear correlations and the associated p-values

for theta phase precession [154].
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3.4.3.5 Theta Frequency Analysis

As described above, the hippocampus exhibits theta rhythm, a neural oscillation in the

frequency range of 6-12 Hz for rats. The instantaneous phase of theta (see Section 3.4.3.3)

during the time of flight (see Section 3.4.2.3) for each jump was first determined to calculate

the average frequency of theta during jumping. The phase was subsequently unwrapped to

measure the cumulative phase change during the jump. The number of cycles was obtained

by dividing the total phase change by 360�, and the average frequency was calculated as

the reciprocal of the number of cycles. This method reliably computes instantaneous and

average frequency when the frequency of the signal varies.

3.4.4 Development of the Bayesian Decoder

A Bayesian decoder was designed to predict a rat’s behavior by analyzing the firing rate

of the hippocampal place cells in the time interval of 3 to 0.5 seconds preceding takeo↵.

This decoder, described in Algorithm 1, employed Bayesian statistics principles to draw

predictions. The algorithm started by loading the clustered neural data and specifying the

direction of the rat’s traversal of the gap at each lap. Each lap is labeled as either ‘jump’

or ‘ditch’ based on the final decision of the rat. The decoder shu✏ed the data and assigned

60% of it for training and used the remaining 40% for validation.

This data was subsequently utilized to calculate the prior probabilities of two possible rat

behaviors: ‘jump’ and ‘ditch’. Using a Bayesian approach, the algorithm computed the mean

and covariance for each behavior category to form a statistical model. This model was then

used to calculate each behavioral category’s likelihood and posterior probability, given the
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observed neural activity, a process known as applying Bayes’ rule. The behavior associated

with the highest posterior probability was selected as the prediction for each data point in

the validation set. The algorithm then calculated metrics such as accuracy and precision

to evaluate the performance of the decoder. For more information about these statistical

metrics, refer to Appendix B.1.

To get the distribution of the metrics, the shu✏ing process explained above was repeated

for the Bayesian decoder and the random decoder. Bootstrapping (resampling with replace-

ment) was employed for 1000 iterations to compute the distribution of accuracies. The

random decoder only used prior probabilities to predict the outcome. Since samples of each

distribution were not independent, a t-test was not considered appropriate for demonstrating

the significance of the Bayesian decoder. Therefore, alternative metrics, such as e↵ect size,

were calculated that were independent of the sample size. A conservative metric was utilized

by calculating the p-value from the z-score of the distribution of the accuracy di↵erences.

This distribution is derived by subtracting the accuracy of the random decoder from that of

the Bayesian decoder for each sampling. If the p-value for negative numbers was below 0.05,

the accuracy of the Bayesian decoder was considered to be significantly higher than that of

the random decoder.
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Behavioral and Neural Correlates of

Jumping and Ditching

This chapter investigates the behavioral and neural correlates of jumping and ditching

behaviors displayed by Long-Evans rats when faced with an adjustable gap on a linear

track. These locomotor behaviors, characterized by distinct behavioral and neural patterns,

are analyzed to study the decision-making processes in the rats. Psychometric analysis

provides a probabilistic understanding of the choice behavior under di↵erent conditions.

Specifically, a hysteresis analysis shows the history-dependent nature of decision making

during complex locomotor tasks. Further, the chapter explores the intriguing neural encoding

underlying these behaviors, emphasizing the firing patterns of place cells in the hippocampus.

Collectively, these findings deepen our comprehension of the sophisticated interplay between

behavior and neural activity in spatial navigation tasks.
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4.1 Behavioral Analysis

In the context of the locomotor behaviors of rats, the behavioral characteristics associated

with jumping and ditching were analyzed. The jumping behavior typically consisted of a

leap over the adjustable gap in the linear track. On the other hand, ditching behavior was

characterized by the rat jumping into the gap and then making a subsequent leap out of it

to traverse the gap. Depending on the depth of the gap, the animal may clamber in and out

of it. Di↵erences in behavioral patterns, reaction times, and success rates between these two

behaviors were studied and will be reported in this section.

4.1.1 Psychometric Function

The psychometric analysis provided insight into the decision-making process of the ani-

mals when confronted with the choice of jumping or ditching to cross the gap. The decision

to jump or ditch was monitored as gap lengths varied within experiments. At a given gap

length, the number of jumps is divided by the number of passages to estimate the probabil-

ity of jumping for that length. A sigmoid function is fitted to the data points to evaluate

the psychometric function of the rat, o↵ering a probabilistic understanding of the choice

behavior under risky circumstances. Given the directionally sensitive behavior of the rats,

leftward and rightward passages were analyzed separately. Figure 4.1 presents psychometric

functions for di↵erent directions and conditions.
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Figure 4.1: Psychometric functions for incremental and decremental changes of the gap
length lead to a hysteresis loop. This figure shows both leftward and rightward direction
results for one experiment session. The blue and red psychometric functions correspond to
the decremental and incremental changes in gap length, respectively.

4.1.2 Hysteresis E↵ect

Hysteresis is a phenomenon observed when the increasing and decreasing psychometric

functions do not exactly coincide. This implies that the response to a given gap length can

di↵er depending on the previous progression of gap lengths, i.e., whether the gap length has

increased or decreased relative to the prior trial. The hysteresis analyses help in understand-

ing how rats’ decisions, when confronted with the adjustable gap, are influenced by their

past experiences.

Figure 4.1 depicts hysteresis plots for both leftward and rightward laps. The blue and red

psychometric functions correspond to the decremental and incremental changes in gap length,
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respectively. The area between these two functions represents the hysteresis e↵ect. For

example, in leftward trials, the rat’s probability of jumping a 56-cm gap varied substantially

depending on the prior distance; it was near zero if the preceding gap was 58.5 cm, yet

approached 70% if the previous gap was 53.5 cm.

The hysteresis e↵ect can be quantified as the bias, calculated by measuring the area

between the increasing and decreasing psychometric functions. The ‘signed area of the

hysteresis loop’ is obtained by integrating the psychometric function across gap lengths and

subtracting the area under the decreasing psychometric function from the increasing one. A

positive value indicates a larger area under the increasing psychometric function, suggesting

a shift towards larger gap lengths in the hysteresis e↵ect. The magnitude of the area shows

the amount of shift in the unit of gap length. This metric can be used not only for hysteresis

experiments but also for titration experiments to show the history-dependency of the decision

making.

Table 4.1 presents the areas calculated for each rat and experimental session that included

both jumping and ditching behaviors. Dates marked with an asterisk (*) denote sessions

where a hysteresis experiment was conducted, while all other sessions involve titration ex-

periments. The signed area of the hysteresis loop across all the sessions (both titration and

hysteresis, for three subjects) was significantly positive (p = 5.1⇥ 10�4, binomial test). This

statistical evidence indicates that the increasing psychometric function is significantly shifted

towards larger gap lengths.
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Table 4.1: Signed area of the hysteresis loop. Dates marked with an asterisk (*) indicate
hysteresis experiment sessions, while others are titration experiment sessions.

Rat ID Date
Signed Area of the Hysteresis Loop (cm)
Rightward Trials Leftward Trials

1055

2022-11-07 2.16 0.12
2022-11-08 2.92 1.01
2022-11-09 2.93 0.09
2022-11-10 0.57 -0.24

1068

2022-12-15* 3.21 3.12
2022-12-16 3.94 3.70
2022-12-17 3.31 2.64
2022-12-18 0.62 0.60
2022-12-19* 2.68 2.34
2022-12-20 1.11 1.98
2022-12-21 2.30 -0.77
2022-12-22 0.93 -1.79

1079

2023-04-04 0.83 -0.14
2023-04-05 0.78 1.06
2023-04-06* 0.16 -0.48
2023-04-07 -0.15 -0.47
2023-04-10 0.49 2.10

4.1.3 Head bobbing

Rats exhibited a characteristic behavior termed head bobbing, especially pronounced

when preparing for a jump. This behavior is not restricted to the rapid up-and-down move-

ment of the head but also includes subtle shifts and adjustments of the entire body.

To further investigate this behavior, the frequency of head-bobs was quantified by count-

ing the peaks in the pitch angle of the animal head after filtering the pose tracking data (see

Section 3.4.2.1 for more details). Figure 4.2 illustrates this distribution for Rat 1068 during

a session across both jumping and ditching trials. Notably, there is a significant increase in

head-bobbing frequency before jumping compared to ditching trials.

Table 4.2 compares head-bobbing frequencies for di↵erent rats during both jumping and

ditching actions. The results consistently show a significant increase in the head bobbing
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Figure 4.2: Histogram illustrating the distribution of head-bobbing frequencies for rat no.
1068 during a single session across both jumping and ditching trials. The frequency of head
bobbing is significantly higher preceding a jump than a ditch. The frequency was determined
as the number of head bobs per unit of time spent by the rat at the decision point before
initiating movement.

frequency before jumping trials. The analysis also found no significant correlation between

head bobbing frequency and gap length in all three animals, with p-values of 0.51, 0.89, and

0.22 (for rat no. 980, 1055, and 1068, respectively).

4.2 Neural Correlates of Jumping

Beyond behavior, this research probed the neural activity underlying jumping and ditch-

ing behaviors. Although the specific emphasis of this section is on the activity of place cells

in the hippocampus, there was another interesting phenomenon that did not originate from

the hippocampus but was observable in the hippocampal recordings. Figure 4.3 illustrates

the neural activity during jumping and ditching trials. Takeo↵ time is detected when the
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Table 4.2: Comparison of head bobbing frequencies for di↵erent rats before jumping and
ditching. Two-sample Welch’s T-test results, number of jumps and ditches, and the mean
head bobbing frequency (with standard error of the mean, SEM) for di↵erent rats before
jumps and ditches. Results show a significant increase in the head bobbing frequency before
jumping trials.

Rat ID
Number of Trials Mean Head Bobbing Frequency ± SEM

P-value
Jumping Ditching Before Jumping Before Ditching

980 86 97 2.50± 0.04 1.50± 0.09 6.44⇥ 10�18

1055 116 109 1.84± 0.05 1.62± 0.08 0.0193
1068 130 111 2.03± 0.04 1.66± 0.05 4.00⇥ 10�08

speed surpasses a specific threshold before jumping or ditching.

The LFP (see Section 2.8 for more information) for each jumping or ditching trial is

extracted and then aligned based on the takeo↵ time within that trial. Then all the LFPs

are averaged for jumping and ditching trials separately to see if there is any common LFP

activity before the takeo↵. If there is an activity that is correlated with the time of takeo↵,

it will be pronounced with this illustration. A similar result was observed for other animals

in other sessions. In order to test the correlation of theta phase with time of takeo↵ and

other kinematically important times, statistical analysis was conducted in Section 4.2.3.

4.2.1 Theta Phase Precession

As explained in detail in Section 2.9, theta phase precession is a notable phenomenon in

hippocampal activity. Figure 4.4 depicts theta phase precession for a rat on the runway as

the animal ran toward the food reward. The methods utilized to analyze this phenomenon

are described in Section 4.2.2.

In the context of jumping behavior, a hypothesis was formulated that the firing of place

cells, and consequently, the occurrence of theta phase precession, would be influenced by the
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A

B

D

C

Figure 4.3: The LFP plots show the local field potential for one recording site averaged
across all laps. Time is relative to the time of takeo↵, which is detected when the speed
crosses a threshold right before jumping or ditching at each trial. (A) The horizontal speed
of the head of the animal overlayed for all jumping trials within a session. (B) Mean LFP
across all jumping trials. (C) The horizontal speed for all ditching trials. (D) Mean LFP
across all ditching trials.
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Figure 4.4: This figure illustrates the relationship between the theta phase of a place cell
(no. 32) and the position of the rat as the animal is running on the runway toward the food
reward after all ditching trials. Blue markers represent the theta phase and position of the
rat when the cell fired. A clear pattern of phase precession can be observed as the animal
crosses the gap by jumping. The red vertical lines show the edges of the adjustable gap for
each ditching trial. To better visualize the wrapped cyclic nature of the theta phase and
its correlation with position, the phase precession is plotted over two complete phase cycles.
The animal runs from right to left, as indicated by the direction of the arrow.
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animal’s position and time during jumping. To investigate these relationships, two distinct

analyses were conducted.

First, the relation between theta phase precession and the position of the animal during

jumping was examined. Figure 4.5 illustrates an example that indicates that the phase

precession is strongly associated with the position of the rat, showing a downward trend for

the theta phase as the animal jumps.

Next, the relationship between theta phase precession and time during jumping and

ditching trials was evaluated. As an example, Figure 4.6 displays the same cell shown in

Figure 5.4 with respect to time, where time is relative to the time of takeo↵. A correlated

phase precession was observed as the rat jumped. However, since space and time are highly

correlated during jumping, it is di�cult to know if the cell encoding time or space or a

combination of both of them by only looking at the phase precession plots (Figure 4.5

and 4.6). It is important to note that these correlations happen even though the gap length

changes and the jumping distances and times vary accordingly.

The circular-linear correlation analysis explained in Section 3.4.3.4 revealed the existence

of theta phase precession for most place cells. The results for all subjects are visually

represented in Figure 4.7. There was a stronger correlation between theta phase and position

than with time. A small percentage of fields showed no significant alignment with either time

or position.

These findings are in line with the findings of previous studies of animals running on linear

tracks [110]. They underline the multi-dimensional nature of hippocampal theta oscillations

in encoding spatial-temporal information, particularly during complex locomotor behaviors

like jumping.
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Figure 4.5: This figure illustrates the relationship between the theta phase of a place cell
(no. 28) and an animal’s position during a jump. Green markers represent the theta phase
and position of the rat when the cell fired. A clear pattern of phase precession can be
observed as the animal crosses the gap by jumping. The blue vertical lines show the edges
of the adjustable gap for each jumping trial. To better visualize the wrapped cyclic nature
of the theta phase and its correlation with position, the phase precession is plotted over two
complete phase cycles. The animal jumps from right to left, as indicated by the direction of
the arrow.
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Figure 4.6: This figure demonstrates the relationship between theta phase precession and
the time as a rat jumps. This cell (no. 28) is the same as the one shown in Figure 4.5. Time
is relative to the time of takeo↵ at each trial. To better visualize the wrapped cyclic nature
of the theta phase and its correlation with time, the phase precession is plotted over two
complete phase cycles. The figure reveals a phase precession as time evolves across all trials.
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Figure 4.7: Statistics illustrating the correlation of theta phase with respect to position and
time for all subjects. Fields with significant correlations (p < 0.05) and a higher correlation
with the position are marked as ‘position’, while those with a stronger correlation with time
are marked as ‘time’. Fields with no significant correlation (p > 0.05) are labeled as ‘none’.
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Table 4.3: Pearson correlation coe�cients, number of jumps, and the corresponding p-values
for di↵erent rats in one experiment session. The average theta frequency is significantly
correlated with the average speed of the rats during jumping.

Rat ID No. of Jumps
Correlation

P-value
Coe�cient

980 86 0.428 4.01⇥ 10�5

1055 114 0.594 3.21⇥ 10�12

1068 130 0.581 4.09⇥ 10�13

4.2.2 Theta Frequency Versus Speed

Previous research works show a correlation between the frequency of the theta rhythm

and running speed in rats [103]. This study extends these findings by demonstrating this

correlation holds even during complex locomotor behaviors such as jumping. The procedure

to calculate the average frequency of theta during jumping is explained in Section 3.4.3.5.

This method reliably averages frequency when the signal frequency changes over time.

As shown in Figure 4.8, there is a clear correlation between theta frequency and the speed

of rats as they jump over gaps of di↵erent lengths. Data were collected from three rats, and

a consistent linear increase in theta frequency was found as the jumping speed increased.

Table 4.3 highlights that the frequency of the theta rhythm is significantly correlated

to the movement speed of an animal, even during moments when the animal is airborne.

Interestingly, during these airborne periods, the speed is not directly influenced by the motor

actions of the rat but predominantly by its projectile movement. These findings suggest the

idea that the theta frequency is correlated with the speed and not the motor actions of the

animal.
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Figure 4.8: This plot represents the correlation between the theta frequency and the speed of
the rats as they jump over gaps of di↵erent lengths. Theta frequency and speed are averaged
across the time of flight at each trial. The data from three rats show a consistent linear
increase in theta frequency as the speed of jumping increases.
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4.2.3 Correlation of Theta Phase with Action

As explained in Section 2.8, studies have shown a correlation between locomotion and

theta rhythm. This led to the hypothesis that jumping behavior might be correlated with

theta rhythm and, more specifically, that jumping kinematics might be correlated with a

particular phase of the theta cycle. To evaluate this hypothesis, the theta phase distribution

at several kinematically crucial moments, such as takeo↵ and landing times, was examined.

The distribution of theta phase at these moments was visualized using polar coordinates

(Figure 4.9). Rayleigh test (see Section C.7 for more information) was implemented to check

whether the distributions are biased toward a specific phase or they are uniform. No specific

correlation between the theta phase and these important moments was identified in the

analysis for any of the subjects in any session (p > 0.05 for all tests).

4.2.4 Theta Frequency and Kinematic Phases

Figure 4.10 shows di↵erent kinematic phases of locomotion during one jumping trial.

The initial phase is ‘running’ when the subject runs toward the gap. Following this, in the

‘preparation’ phase, the animal is situated on the launchpad with its head inside the gap,

yet the takeo↵ initiation has not begun. Subsequent to this is the ‘takeo↵’ phase, defined

by the time span starting 50 ms before the moment the speed threshold is surpassed and

concluding when there is an absence of force on the takeo↵ platform. This is succeeded by

the ‘aerial phase’, characterized by a lack of force on any platform. The concluding phase is

‘landing and running’, occurring when the animal touches down and runs towards the food

reward.
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Figure 4.9: The distribution of the theta phase at di↵erent kinematically important moments
in polar coordinates. All the data shown here are for one animal during one experiment
session. Green markers show the phase of theta in the time of interest for each lap in the
session. The red markers illustrate the vector mean of these phases for each plot (Rayleigh
test, see Section C.7). As evident from the plots, the red markers are close to the origin.
P-values for all the cases show that the theta phase is uniformly distributed rather than
occurring at a specific phase.
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Figure 4.10: This figure depicts the same plots as those in Figure 3.10, with distinct colors
superimposed to visually represent various kinematic phases observed during a representative
jumping trial.
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Figure 4.11: The correlation between the instantaneous theta frequency and the instanta-
neous speed during di↵erent kinematic phases of locomotion for all the jumps in an experi-
ment session. Notably, the theta frequency is almost constant during a large range of speeds
during takeo↵. The color code is similar to Figure 4.10.
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Figure 4.11 shows the relationship between the instantaneous theta frequency and speed

for the aforementioned phases (The instantaneous theta frequency and speed are calculated

in 10 ms interval, see Section 3.4.3.5 for more information). As shown in the figure, di↵erent

phases follow a cyclical pattern around the triangle. A salient observation from the figure

is the near-constancy of theta frequency over an extensive speed range during the takeo↵.

This phenomenon was observed for all three animals.

4.3 Discussion

This chapter explored the behaviors and the correlation between kinematics and neural

activity in rats during complex locomotor actions of jumping and ditching. Findings from

the psychometric function and hysteresis analysis provided insights into the decision-making

processes.

On the behavioral front, psychometric analysis showed the history-dependency of animal

decision making during a risk preference task of choosing between jumping and ditching, as

the risk of jumping varied by changing the gap length. Rats were significantly more inclined

to take the risk (jump) when the gap length gradually increased from low to high levels, as

opposed to when it decreased. The novelty is that the risk assessment is based on complex

locomotor behaviors involved at di↵erent gap lengths, not the reward contingency.

Additionally, the head-bobbing frequency of the rats was significantly higher before jump-

ing trials than ditching ones, which can be a preparatory action for jumping or parallaxing

to estimate the distance. Since the animals need more agility in jumping than ditching,

muscular preparation and distance estimation are more important for jumping. Hence, the
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exact role of this specific behavior remains an area of future exploration. In contrast to

the earlier work involving gerbils [155], which found a correlation between pre-jumping head

bobbing frequency and gap length, this study did not observe any such correlation.

On the neural level, the theta phase precession was observed to be associated spatially and

temporally during jumping. The correlation between theta phase and position was higher

than that with time for most fields. However, in some field the correlation of theta phase

was higher with time, indicating the intricate spatiotemporal encoding of hippocampal place

cells during complex locomotor tasks. Additionally, no correlation was observed between the

phase of theta with several kinematically important moments, such as takeo↵ and landing

times.

Furthermore, a significant correlation was observed between the theta frequency and the

jumping speed of the animal during the aerial phase of jumping. This supports previous

findings but extends them to the flight time. The novelty is that jumping is a unique

occasion when the voluntary and natural movement of an animal is decoupled from the

limb movement, which is known to be correlated with theta frequency [108]. Consequently,

further investigation is needed to understand the mechanism behind the correlation of theta

frequency and speed.

Last but not least, the theta frequency is almost constant during a large range of speeds

during the takeo↵ phase of jumping. In other kinematic phases of jumping, such as the

flight time or running phase, theta frequency is correlated with speed. However, during the

preparation time, the theta phase increases in anticipation of the takeo↵. As an animal

rapidly accelerates and propels itself into the air, the theta frequency remains constant,

capping at the maximum theta frequency for the animal.
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Chapter 5

Firing Properties of Place Cells

During Complex Locomotor

Behaviors

This chapter investigates the firing properties of place cells in the hippocampus during

complex locomotor behaviors, namely jumping and ditching. The focus is on the ability of

these place cells to encode distinct 3D trajectories based on the actions of the animals. So,

the trajectories are categorized into jumping and ditching trials based on the actions of the

rats. Considering the prevalent directional characteristic of place cells, these trajectories are

also categorized into leftward and rightward trials, determined by the direction in which the

rat traverses the gap. Further details regarding the experiments can be found in Chapter 3.

The study of dynamic encoding of spatial information during complex motor tasks adds to

the understanding of how place cells contribute to spatial navigation.
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5.1 Anchoring Frames of Reference

Place cells exhibit the capability to anchor their activity to distinct frames of refer-

ence [156]. As documented in a prior study, hippocampal neurons in rats shuttling between

a fixed reward site and a movable reward site demonstrated a dynamic encoding behav-

ior [157]. During that experiment, place fields near the fixed reward site maintained their

firing patterns. In contrast, place fields closer to the movable reward site shifted their firing

locations along with the site’s movement. This suggests that the activity of the cells was

anchored to a nearby or local frame of reference. In a review by Knierim and Hamilton, it

was pointed out that in spatial tasks, animals’ place-cell firings were more influenced by local

cues and boundaries, with distal cues mainly setting the orientation of the internal spatial

coordinate system and local cues determining its translation and scale [158].

A similar dichotomy was observed in the ‘jumping and ditching’ experimental setup.

Some place cells aligned their activity with the stationary platform, the left platform in

the experiments, while others aligned with the moving platform, the right platform in the

experiments. As depicted in Figure 5.1, green and purple markers represent place fields

corresponding to two distinct place cells. The green field, representing a place cell anchored to

the stationary platform, maintains its position regardless of the moving platform’s location.

In contrast, the purple field, indicative of a place cell anchored to the moving platform, shifts

its position along with the location of the moving platform.

To determine which platform the place fields were more closely aligned with, a two-sample

f-test was utilized (as described in Section C.4). By comparing the firing rate distribution

from both frames of reference, the frame with a significantly smaller standard deviation was
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Figure 5.1: Illustration of two place fields anchoring to di↵erent frames of reference in an
experiment session. The green and purple markers represent the firing locations for two
distinct place cells during one experiment session. Both plots show the same data but are
illustrated in di↵erent frames of reference - The left plot demonstrates alignment with the left
(stationary) platform. In contrast, the right plot exhibits alignment with the right (moving)
platform. The blue and red vertical lines show the edges of the adjustable gap for each
jumping and ditching trial, respectively. The purple markers on the left plot maintain their
position, indicating the place cell’s alignment with the left platform. Conversely, the green
markers align with the right platform. The direction of the rat’s passage is from right to
left, as the arrows indicate.
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identified as the preferred alignment. Fields without a significant di↵erence were labeled

as ambiguous. Figure 5.2 shows an example of a place field more closely aligned with the

stationary platform, indicated by the less spread-out distribution. Similarly, Figure 5.3 shows

a place field more aligned with the moving platform. This dichotomy shows the ability of

place cells to use di↵erent frames of reference for encoding, as indicated in the previous

research.

The categorization of place fields based on the alignment for three subjects is shown in

Figure 5.4. Only a fraction of place fields aligned significantly with stationary or moving

frames of reference. Most place fields were not aligned significantly with either frame of

reference, so they were categorized as ambiguous.

Observations indicate that place cells align with the stationary and moving platforms

when animals are situated on or near them. Interestingly, during jumping, the cells were

anchored to the platform from which the rat was taking o↵, not the landing platform. During

ditching, however, the cells aligned with the takeo↵ platform while the rats were jumping

into the gap and switched their alignment to the destination platform when the rats were

jumping out of the gap. The place cell activity within the gap displayed mixed alignments.

5.2 Place Cell Activity During Jumping and

Ditching

The activity of place cells was observed when the animals were jumping. Their activity

was recorded while the animals were in midair, providing evidence that these place cells
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Figure 5.2: Distribution of firing rate in a place field (no. 27) for a rat in an experiment
session. The distribution with respect to the stationary platform is plotted in light green,
and the one with respect to the moving platform is plotted in magenta. The place field is
significantly more aligned with the stationary platform.

Figure 5.3: Distribution of firing rate in a place field (no. 37) for a rat in an experiment
session. The distribution with respect to the stationary platform is plotted in light green,
and the one with respect to the moving platform is plotted in magenta. The place field is
significantly more aligned with the moving platform.
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Figure 5.4: Illustration of place fields aligning with di↵erent frames of reference. Most fields
were ambiguous, indicating that the distribution of the firing rates with respect to stationary
and moving frames did not have a significantly di↵erent standard deviation (p > 0.05). Other
fields showed more alignment with one of the platforms.
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remain active even during the jump (See Figure 5.5). These observations were consistent

with the previous findings, which also demonstrated place cell activity for rats during jumping

in both negative reinforcement, such as jumping avoidance task [143], and also in positive

reinforcement, such as liquid rewarding task [138]. Similarly, a subset of place cells remained

active during ditching trials (See Figure 5.6).

5.3 Analysis of Trajectory Selectivity

The research exposed exciting aspects of the firing properties of place cells during Hys-

teresis and Titration experiments (refer to Section 3.1.3), in which animals performed both

jumping and ditching. As animals traversed the gap, place cells displayed ‘splitter-like’

behavior instead of a uniform response to these di↵erent behaviors and trajectories. This

suggests that these cells were encoding the trajectories associated with both jumping and

ditching distinctly, even though they had similar 2D projections onto the experimental rig.

Diverging firing patterns were observed depending on whether the rats jumped over the gap

or took the ditching route. The selectivity for jumping and ditching is discussed in detail in

the subsequent subsections.

5.3.1 Selectivity for Jumping

As shown in Figure 5.7, a subset of place cells showed strong selectivity for jumping.

These cells exhibited distinct firing patterns when the rats chose to jump across the gap

in the track. The firing rate of these cells significantly increased during the jump action.
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Figure 5.5: A side view picture of the place field of a cell (no. 28) that fires when the animal
is in midair. Green markers show the location of the head of the animal when the cell fires.
Gray dots show the occupancy of the rat, and the blue vertical lines show the edges of the
adjustable gap for each jumping trial. The animal jumps from right to left, as indicated by
the direction of the arrow.

Figure 5.6: A side view picture of the place field of a cell (no. 18) that fires when the animal
is free-falling into the gap. Orange markers show the location of the head of the animal when
the cell fires. Gray dots show the occupancy of the rat, and the blue vertical lines show the
edges of the adjustable gap for each jumping trial. The animal traverses from right to left,
as indicated by the direction of the arrow.
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In contrast, when the animal decided to ditch, either significantly less firing or no firing

was observed in these cells, emphasizing the selective response to the jumping action or

trajectory.

As evident from Figure 5.8, which represents the comparison of firing rates of the cell in

Figure 5.7 during jumping and ditching trials, this category of place cells displayed a higher

firing rate during the jumping trials, underscoring the selectivity of the cell for the jumping

behavior (for calculation of firing rate see Section 3.4.3.2).

The statistical analysis explained in Section 5.5 also confirmed a significant association

between the firing rates of these cells and the jumping behavior.

5.3.2 Selectivity for Ditching

In a manner mirroring the selective response to jumping, a di↵erent subset of place

cells displayed a significant selectivity for ditching. As illustrated in Figure 5.9, these cells

demonstrated firing patterns when the rats chose to traverse the gap by ditching, but they

were almost silent during jumping.

The firing rates of these cells notably increased during the ditching, signaling their dis-

tinctive selective response to the ditching action or trajectory. However, during trials that

the rat decided to jump, the firing rates of these particular cells were considerably lower

or even completely absent. Figure 5.10 compares the cell’s firing rates during ditching and

jumping trials.

Furthermore, the statistical analysis detailed in Section 5.6 corroborates the substantial

correlation between the higher firing rates of this category cells and the ditching behavior.
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Figure 5.7: Side view pictures of the place field of a cell (no. 28) that is selective for jumping
- active during jumping but silent during ditching. Green markers show the location of the
head of the animal when the cell fires. Gray dots show the occupancy of the rat, and the blue
and red vertical lines show the edges of the adjustable gap for each jumping and ditching
trial, respectively. The direction of the arrows indicates the direction of the animal passage.
The cell is active during jumping but is almost silent during ditching trials.
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Figure 5.8: Firing rates comparison between jumping and ditching trials. for a place cell
(no. 28) - the same cell as the one in Figure 5.7. This figure illustrates a cell that is selective
for jumping. The direction of the arrows indicates the direction of the animal passage. The
adjustable gap for each trial is denoted by vertical lines - blue for jumping trials and red for
ditching trials.

This robust link signifies the capacity of place cells to di↵erentiate and encode di↵erent

locomotor actions and 3D trajectories in the same spatial context.

5.3.3 Special Cases

Several interesting special cases were observed in this study. For example, a place cell

fired when the rat jumped out of the gap in one direction and again fired when the rat

jumped out in the opposite direction. Figure 5.11 presents the place field of this cell. The

cell fired regardless of the direction of the passage, which is indicated by the arrows in the

figure. This interesting finding hints at the versatile encoding capabilities of place cells,

indicating that the cell encoding is potentially action-dependent. However, this is just one

anecdotal example and might have occurred by chance.

Additionally, some cells were observed to fire only at the perching location and had a
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Figure 5.9: Side view pictures of the place field of a cell (no. 18) that is selective for ditching
- active during ditching but silent during jumping. Orange markers show the location of
the head of the animal when the cell fires. Gray dots show the occupancy of the rat, and
the blue and red vertical lines show the edges of the adjustable gap for each jumping and
ditching trial, respectively. The direction of the arrows indicates the direction of the animal
passage. The cell is active during ditching but is almost silent during jumping trials.
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Figure 5.10: Firing rates comparison between jumping and ditching trials for a place cell
(no. 18) - the same cell as the one in Figure 5.9. This figure illustrates a cell that is selective
for ditching. The direction of the arrows indicates the direction of the animal passage. The
adjustable gap for each trial is denoted by vertical lines - blue for jumping trials and red for
ditching trials.

tiny place field, underscoring the diverse encoding capabilities of place cells. This category of

cells, primarily predictive cells, is explained in detail in Section 6.1. Although these special

cases underscore the rich dynamics of hippocampal place cells, some of them did not happen

enough times to resemble a pattern. There should be more studies to understand their

correlations.

5.4 Retrospective Encoding by Place Cells

Place cells not only encoded the current environment or the action of the animal but

also exhibited encoding capabilities that spanned locations beyond the gap on the other side

of the track. This emphasizes the ability of these cells to discriminate between di↵erent

trajectories based on the animal’s past actions.

Figure 5.12 illustrates two place cells with di↵erent firing rates at a location beyond the
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Figure 5.11: Side view images of the place fields of a single cell (no. 29) that fires when
the animal jumps out of the gap in both directions. The cell is selective for ditching and
is almost silent during jumping trials. Only ditching trials are displayed here. Magenta
markers show the location of the head of the animal when the cell fires, and gray dots show
the occupancy of the rat. The direction of the arrows indicates the direction of the animal
passage. Vertical lines denote the adjustable gap for each trial.
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gap depending on whether the rat had previously jumped or ditched at the gap location. The

black dashed oval specifies the exact physical location but is encoded di↵erently by these two

cells. The cell marked orange fired in the dotted region only if the rat had traversed the gap

by jumping, and similarly, the cell marked green fired in the area only after ditching. Since

the firing of these cells at the current location (dashed oval) varies based on the previous

trajectory or action of the animal, this phenomenon is referred to as retrospective coding.

5.5 Statistical Analysis

An objective statistical analysis was employed to determine if the place cells show se-

lectivity towards specific jumping and ditching behaviors. The objective was to determine

if there was a significant di↵erence in the median firing rates of these cells during the two

distinct trials. The Mann-Whitney U test was the preferred statistical method to achieve

this goal. Section C.5 provides a detailed explanation of this test.

Figures 5.13 and 5.14 represent the distribution of firing rates of two di↵erent place

cells within their field during jumping and ditching trials. By statistical comparison of

these distributions, it can be determined whether the median of these two distributions is

significantly di↵erent or not.

Some firing rate distributions like the one depicted in Figure 5.14 were normal, making

Welch’s T-test a potential candidate for assessing mean di↵erences (see Section C.3.2.2).

However, most observed distributions were zero-inflated (see Figure 5.13). Given the in-

herent characteristics of these distributions, the Mann-Whitney U test was considered more

appropriate for comparing the populations, as it does not make any assumptions about the
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Figure 5.12: Side view images of the place fields of two cells (no. 22 and 29) that fire when
the animal jumps over or out of the gap. Orange and green markers show the location of
the head of the animal when the corresponding cell fires, and gray dots show the occupancy
of the rat. Green place cells are almost silent during jumping trials. The direction of the
animal passage is left to right, as indicated by the direction of the arrows. The adjustable
gap for each trial is denoted by vertical lines - blue for jumping trials and green for ditching
trials. Note that the black dashed oval specifies the same physical location but is encoded
di↵erently by these two cells. There is no firing of the green cell during any of the jumping
trials.
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Figure 5.13: Firing rate distribution for a cell in its place field (no. 36) during an experimen-
tal session with one subject. The distribution for the jumping trials is plotted in blue, and
the one for the ditching trials is plotted in red. This particular cell exhibited a significantly
higher firing rate during jumping trials than ditching trials.

Figure 5.14: Firing rate distribution for a cell in its place field (no. 30) during an experi-
mental session with one subject. The distribution for the jumping trials is plotted in blue,
and the one for the ditching trials is plotted in red. For this cell, a significant increase in the
firing rate was observed during ditching trials compared to jumping trials.
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Figure 5.15: Histogram displaying the distribution of p-values obtained from the Mann-
Whitney U test for numerous place cells across three di↵erent rats. Cells with p-values
below 0.05 are considered to be significantly selective. The data indicates that a substantial
number of place fields are indeed selective to either jumping or ditching trajectories.

underlying distribution of the data (see Section C.5).

The final statistical analysis focuses on the aggregate statistical significance across all the

place cells studied. Figure 5.15 shows a histogram of the p-values from the Mann-Whitney

U test for place cells recording from three rats during three sessions. A p-value threshold of

0.05 was set as the marker for statistical significance. Cells below this threshold indicate that

many of these cells are significantly selective to either the jumping or ditching behaviors.

This combined data provides a broader perspective, emphasizing the prevalence of selectivity

among the analyzed place fields.

Figure 5.16 displays all the place fields from a single experimental session, represented as

circle markers. The left and right plots show the leftward and rightward fields. The x-axis

shows the location of the place field along the track, and the y-axis shows the selectivity
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ratio. This ratio was calculated by first determining the firing rates for both jumping and

ditching trials and then finding the ratio between the firing rate for jumping trials and the

average rate across both trials. A ratio near zero points to higher selectivity for jumping,

one close to one for ditching, and values in between suggest no selectivity. Place fields that

are significantly selective (p < 0.05) for jumping are marked in blue, and the ones that are

significantly selective for ditching are marked in red.

5.6 Discussion

As explained in this chapter, place cells in the hippocampus discriminated between jump-

ing and ditching trials. These cells exhibited distinct firing patterns, with some cells display-

ing a selective response to jumping and others to ditching. Such distinctive encoding suggests

that these cells actively encode di↵erent trajectories based on the behavioral choices made by

the rats. Similar to the splitter cells discussed in Section 2.6, these findings provide evidence

that place cells can adapt firing rates to reflect behavioral choices, demonstrating selectivity

for di↵erent actions or trajectories and the capacity for coding them retrospectively.

The retrospective coding suggests that the firing properties of place cells are not solely

determined by the current location of the animal but also reflect the animal’s history of

action or behavior. These findings are consistent with those reported by [92] and [90].

However, there is an essential di↵erence in the experiment setup. In previous studies, the

animals were navigating a flat, 2D maze, while in this work, they traversed distinctive 3D

trajectories that had similar 2D projections onto the horizontal plane. In other words, the

animals expanded the possible trajectories by jumping over the gap and connecting two
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Figure 5.16: Selectivity of all the fields recorded during one experimental session that includes
jumping and ditching. The left and right plots show the leftward and rightward fields. The x-
axis shows the location of the center of the corresponding place fields, and the y-axis shows
the selectivity of the fields for jumping or ditching. Selectivity is calculated by the ratio
between the average firing rate of jumping trials divided by the sum of the average firing
rates during both jumping and ditching trials. Ratios close to one indicate higher selectivity
for jumping, ratios close to zero indicate higher selectivity for ditching, and ratios in the
middle indicate no selectivity. Significantly selective fields (p < 0.05) are marked in blue for
jumping and red for ditching. The size of the markers indicates the peak firing rate of the
fields, while the opacity of the markers reflects the stability of the fields. Black vertical lines
show the edges of the adjustable gap for each trial.
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topologically disconnected locations.

These observations reveal a rich and complex role for place cells in spatial navigation,

learning, and memory. The animal’s retrospective encoding can be used to assign the out-

come of a trial, such as food contingency, to the behavior of the animal. For instance, if

the animal received di↵erent food rewards for di↵erent behaviors, the hippocampus would

have the information required for associating di↵erent behaviors of jumping and ditching to

di↵erent outcomes, helping the animal learn and choose the more e�cient task. This can

have implications for the broader understanding of how neural activity in the hippocampus

contributes to complex locomotor behaviors.

The distinct encoding of 3D trajectories, especially the retrospective encoding, demon-

strates the adaptability of hippocampal place cells to changes based on the complex loco-

motor behaviors of the animal. Since jumping and ditching trials are related to di↵erent

behaviors and the animal navigates through di↵erent trajectories, it is impossible to distin-

guish if the hippocampal place cells are encoding di↵erent trajectories, actions, or a com-

bination of the two. Through this di↵erential encoding, place cells could provide a neural

basis for the animal to remember and choose between di↵erent paths or strategies in the

environment, thus playing a key role in decision-making processes. Di↵erential encoding of

jumping and ditching trajectories is illustrated in Figure 5.17. With distinct marker colors

for di↵erent cells, the sequential firing of the place cells varies when the animal navigates in

the jumping and ditching trajectories. This di↵erent sequential firing pattern indicates that

the hippocampus encodes jumping and ditching experiences di↵erently.

These findings provide a nuanced understanding of the role of hippocampal place cells in

spatial navigation and memory. The distinctive encoding of jumping and ditching trials may
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Figure 5.17: Encoding of splitter cells for jumping and ditching trajectories. The sequential
firing of hippocampal place cells di↵ers for these two trajectories, making them di↵erent
experiences. The direction of the animal passage is right to left, as indicated by the arrows.
The adjustable gap for each trial is denoted by vertical lines - blue for jumping trials and
red for ditching trials.

105



Chapter 5. Firing Properties of Place Cells During Complex Locomotor Behaviors

serve as a form of memory that the animal can use to inform future behaviors or decisions.

Furthermore, this retrospective coding might also underpin the ability of animals to navigate

back to previously visited locations or to correct their trajectory based on past mistakes.
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Chapter 6

Predictive Nature of Place Cell

Activity

Building upon the findings established in Chapter 5 regarding immediate and retrospec-

tive coding in place cell activity, the question that presents itself is: Do place cells also exhibit

prospective coding before performing complex locomotor behaviors? Can the neural activity

of hippocampal place cells be utilized to predict an animal’s navigation in 3D trajectories,

specifically when choosing to jump or ditch when confronted with a gap?

This chapter explores the predictive nature of place cell activity before such complex

locomotor behaviors. A key point of investigation is the di↵erential firing rates of place

cells before jumping and ditching. This characteristic plays an important role in creating a

predictive model of the animal’s behavior.
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6.1 Prospective Encoding of Place Cells

Some place cells with a field on the launchpad region exhibited di↵erent firing rates

when animals contemplated jumping or ditching, as mentioned in the previous chapter.

This di↵erential firing pattern was a key observation underpinning the development of the

predictive decoder that will be discussed in this chapter. For example, Figure 6.1 illustrates

a place cell with a place field at the decision point, precisely where the rat perches before

making a behavioral choice. The cell becomes silent when the animal initiates the jumping

or ditching action. Comparing the firing rate of this cell before jumping and ditching trials,

as shown in Figure 6.2, shows that the peak firing rate of a cell was more than double before

jumping trials compared to ditching trials. This higher firing rate during jump preparation

suggests a prospective encoding by the cell.

6.2 Di↵erential Encoding in Similar Physical

Location

A crucial consideration in interpreting the di↵erential firing rates of the place cells is the

potential influence of the animal’s position and orientation as it prepares for jumping versus

ditching. A valid concern is that these spatial and orientation discrepancies might be driving

the di↵erent firing rates instead of anticipating future behavior.

To address this concern, an extensive spatial analysis was conducted. The entire experi-

mental space was meshed using 3D grids, and the occupancy of the rat was calculated in each

cubic bin of a 3 cm edge. Bins corresponding to the decision-making region were focused on,
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Figure 6.1: This figure displays an example of a cell exhibiting a place field exclusively at the
rat’s perching location when deciding to jump or ditch. The arrows indicate the direction of
the animal’s passage. Vertical lines denote the adjustable gap for each trial, and the dotted
rectangle designates the perching location - blue for jumping and red for ditching trials.
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Figure 6.2: This figure displays an example of a cell exhibiting a place field exclusively at
the rat’s perching location when deciding to jump or ditch. On average, the cell’s firing rate
before jumping trials is more than double that of ditching trials. The direction of the arrows
indicates the direction of the animal passage. The adjustable gap for each trial is denoted
by vertical lines - blue for jumping trials and red for ditching trials.

with the criteria that the occupancy should be greater than 500 ms for both jumping and

ditching trials. The last constraint was that the animal should be on the launchpad.

Figure 6.3 displays the position (markers) and orientation (arrows) of the rat’s head after

implementing the selection process described above. Blue and red are indicative of jumping

and ditching trials, respectively. As seen in the figure, the position and orientation of the rat’s

head are quite comparable across both types of trials at the decision point. This similarity

in spatial and orientation parameters strengthens the argument that the di↵erential firing

rates of the place cells represent an anticipation of the forthcoming behavior rather than

merely a response to current spatial factors.

Figure 6.4 further illustrates the di↵erential firing rates between jumping and ditching

trials. In this representation, the radius of each purple 3D marker in the selected 3D bins

indicates the cell’s firing rate within that bin. Notably, the cell exhibits a higher firing rate

prior to takeo↵ in jumping rather than ditching trials, even under similar spatial regions.
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Figure 6.3: After selecting the data points within the 3D bins that had occupancy above
a given threshold, the position and orientation of the rat’s head appear similar for both
jumping and ditching trials. The markers represent the position, while the arrows indicate
the orientation of the rat’s head - blue for jumping trials and red for ditching trials. The
direction of the animal passage is from right to left. The data is downsampled at 10Hz for
illustration.

Figure 6.4: 3D spatial distribution of firing rates during the decision point in both jumping
and ditching trials. The blue and red markers represent the position for jumping and ditching
trials, respectively. The radius of the purple spheres in each selected 3D bin represents the
firing rate of the cell. The direction of the animal passage is from right to left.
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6.3 Bayesian Decoder

As shown with an example in the previous section, some place cells had a di↵erent firing

rate before takeo↵ in jumping and ditching trials. In order to show the existence of predictive

information in the cells, a neural Bayesian decoder was implemented to utilize the encoded

information and predict the decision of the rats. This decoder used the average firing rates

of the rats’ place cells to forecast whether a rat would jump or ditch the gap at a given lap.

Similar to the neural decoder, a behavioral decoder was developed by utilizing the average

position and orientation of the animal’s head at each lap to predict the decision of the animal.

For every lap, the decoder computed the rate of neural spikes (for the neural decoder)

or the average head pose (for the behavioral decoder) within specific temporal and spatial

constraints. The temporal constraint was 3 to 0.5 seconds before takeo↵, and the spatial

constraint was the area on the launchpad (up to 15 cm from the edge of the launchpad and

height above 5 cm below the launchpad). The visual inspection confirmed similar occupancy

for both jumping and ditching trials. Each lap was labeled as ‘jump’ or ‘ditch’ based on

the decision of the animal. Information on the decoder’s implementation can be found in

Section 3.4.4, along with its corresponding pseudocode presented in Algorithm 1.

The Bayesian decoders established statistical models for the distribution of the firing

rates by computing the mean vector and covariance matrix from multi-dimensional data.

This model was then employed to estimate the likelihood and posterior probability of each

behavioral category (jumping or ditching) based on the observed neural activity or the

observed head pose. For each data point in the validation set, the behavior with the highest

posterior probability was selected as the prediction.
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To validate the performance of the Bayesian decoders, evaluation metrics such as accuracy

were calculated and compared with the metrics from the random decoder. Accuracy shows

the overall correctness of all predictions (see Section B.1). The random decoder predicts

behaviors randomly based on the prior probabilities in the training dataset. For the statistical

test of individual subjects, bootstrapping (sampling with replacement with 1000 repetitions)

was utilized, and the significance of the accuracy of the Bayesian decoder was calculated.

For more information about statistical analysis, see Section 6.4.

6.3.1 Neural Bayesian Decoder

The neural Bayesian decoder was developed and trained using the average firing rates of

place cells before jumping and ditching behaviors. For every lap, the decoder computed the

average firing rate of neural spikes within specific spatiotemporal constraints mentioned in

the previous section (see Section 6.3 for more details).

To show the performance of the Bayesian decoder, total accuracy for both jumping and

ditching predictions was calculated. These metrics were compared to a random decoder as a

baseline. The comparison for one experiment session demonstrated in Figure 6.5 shows that

the predictive capabilities of the Bayesian decoder are far better than random chance.

6.3.2 Behavioral Bayesian Decoder

As the findings in Section 4.1.3 showed, there is predictive information in the behavior

of the animal when the animal is at the decision point. Specifically, the head bobbing

frequency was higher before jumping trials than ditching trials. In order to extract predictive
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Figure 6.5: The histogram of the accuracy of the neural Bayesian decoder and the random
decoder for rightward trials in an experiment session for rat 980. The histogram is calculated
by bootstrapping the dataset selected for training and validation. Statistical analysis showed
that the accuracy of the neural Bayesian is significantly higher than the accuracy of the
random decoder.

information from animal behavior, a behavioral Bayesian decoder was developed and trained.

This decoder utilized the average of 6 degrees of freedom from the 3D position and

orientation (roll, pitch, and yaw) of the rat’s head within the aforementioned spatiotemporal

constraints. Details about the 3D head pose tracker employed in this study can be found in

Chapter 3.

Figure 6.6 illustrates the histogram of accuracies for the behavioral Bayesian decoder

and the random decoder for both leftward trials in an experiment session. The predictive

capabilities of the behavioral Bayesian decoder are far better than the random decoder.
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Figure 6.6: The histogram of the accuracy of the behavioral Bayesian decoder and the
random decoder for leftward trials in an experiment session for rat 1068. The histogram
is calculated by bootstrapping the dataset selected for training and validation. Statistical
analysis showed that the accuracy of the behavioral Bayesian is significantly higher than the
accuracy of the random decoder.

6.4 Statistical Analysis of Bayesian Decoders

In order to understand the Bayesian decoders’ predictive capabilities, a statistical eval-

uation was conducted focusing on the accuracy of the decoders. Since the outcome of the

Bayesian decoders is stochastic, bootstrapping (sampling with replacement with 1000 rep-

etitions) was utilized to use di↵erent portions of the data for training and validation with

each sampling to calculate accuracy. The results that are listed in 6.1 show the mean and

standard deviation of the accuracy distributions for di↵erent sessions and decoders.

The neural decoder exhibited accuracies varying from 64% to 87%, which robustly sub-

stantiates the notion that place cell activity encodes predictive information for complex

locomotor behaviors. Moreover, the behavioral decoder accuracies ranging from 73% to

95% also indicate that there is anticipatory behavior during the preparation time on the
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Table 6.1: Comparison of the prediction accuracy of the neural and behavioral decoders
against the random decoder. The random decoder only utilized prior probabilities for pre-
diction. Both Bayesian decoders show significantly higher accuracy than that predicted by
random chance (p = 0.0156, binomial test for 6 sessions and 3 rats). Furthermore, the be-
havioral decoder demonstrates statistically significantly higher (p = 0.0156, binomial test)
accuracy than the neural decoder. The mean accuracy and standard deviation for each
decoder are given in percentages.

Rat ID Direction Random Decoder Neural Decoder Behavioral Decoder
1068 Leftward 52% ± 7% 85% ± 5% 90% ± 6%
1068 Rightward 50% ± 7% 77% ± 6% 95% ± 4%
1055 Leftward 53% ± 7% 64% ± 8% 85% ± 7%
1055 Rightward 55% ± 7% 60% ± 14% 73% ± 9%
980 Leftward 52% ± 8% 75% ± 9% 93% ± 5%
980 Rightward 54% ± 8% 72% ± 6% 93% ± 6%

launchpad. These results also align with the anticipatory behavior of higher head-bobbing

frequency before jumping.

The predictive accuracies of the Bayesian decoders were, on average higher than the cor-

responding random decoders. Given that the accuracy was above the chance in all 6 sessions,

the binomial test shows that the Bayesian decoders were significantly higher than random

chance given the binomial test (p = 0.0156). The random decoder served as a baseline model,

with predictions solely based on the prior probabilities of the training dataset, providing a

fundamental comparison metric. This comparative assessment significantly underscores the

superior performance of the Bayesian decoder against the null hypothesis.

Table 6.2 shows the performance of the neural Bayesian decoder. It lists the number

of cells utilized in the decoder, Cohen’s d to measure the e↵ect size (further discussed in

Section C.6), and the p-values that signify the statistical significance of the results. To

determine the p-values, the signed di↵erence between the accuracies of the neural and random

decoders was first computed for every bootstrapping sample. This led to the formation of

a distribution of di↵erential accuracies. From this distribution, a one-tailed z-score was
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Table 6.2: Performance of the neural Bayesian decoder for di↵erent rats during a Titration
session. Results are categorized by the direction of movement (leftward and rightward).
Statistical significance is indicated by an asterisk(*) for p-values less than 0.05. 5 out of 6
Cohen’s d values exceed 0.8, indicative of a large e↵ect size. 4 out of 6 results are statistically
significant.

Rat ID Direction Number of Cells Cohen’s d P-value
1068 Leftward 9 5.45 6.51⇥ 10�5*
1068 Rightward 5 4.11 0.00207*
1055 Leftward 2 1.48 0.148
1055 Rightward 1 0.41 0.385
980 Leftward 10 2.79 0.0192*
980 Rightward 5 2.50 0.0346*

calculated (as elaborated in Section C.2). The subsequent p-value was derived using this

z-score. Notably, the table indicates that 4 out of the 6 sessions analyzed have achieved

statistical significance.

The performance of the neural decoder depends on the availability of su�cient neural

data to ensure meaningful accuracy. In certain sessions, there was a limited number of cells

for input, for instances where only 1 or 2 cells were available for rat 1055. Such sessions

predictably exhibited the lowest accuracy rates for the neural decoder.

The analysis of the behavioral Bayesian decoder is presented in Table 6.3. It shows that

5 out of the 6 sessions achieved statistical significance. The p-values were calculated using

the same one-tailed z-score method used for the evaluation of neural decoders. Both the

neural and behavioral decoders’ results suggest that they can e↵ectively predict the decision

of the animal using either neural activity or anticipatory behavioral cues.
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Table 6.3: Performance of the behavioral Bayesian decoder for di↵erent rats during a Titra-
tion session. Results are categorized by the direction of movement (leftward and rightward).
Statistical significance is indicated by an asterisk(*) for p-values less than 0.05. All Co-
hen’s d values exceed 0.8, indicative of a large e↵ect size. 5 out of 6 results are statistically
significant.

Rat ID Direction Cohen’s d P-value
1068 Leftward 4.6 0.00102*
1068 Rightward 5.8 4.01⇥ 10�5*
1055 Leftward 3.6 0.0121*
1055 Rightward 1.9 0.192
980 Leftward 4.5 0.00117*
980 Rightward 4.2 0.00297*

6.5 Discussion

The findings presented in this chapter are important in understanding the prospective

encoding abilities of place cells. The di↵erential firing rates of these cells before a rat starts

to jump or ditch constitute evidence for a prospective code. The distinction in the firing

rates suggests that these cells predict the future behavior or trajectory of the animal.

A Bayesian decoder was utilized to demonstrate the predictive nature of place cells ob-

jectively. The decoder’s significant accuracy compared to the random decoder showed that

combined data from the population of the cells can be e↵ectively utilized to predict behavior

accurately. The neural decoder’s ability to accurately predict the rats’ choice to ‘jump’ or

‘ditch’ indicates that place cell activity contains anticipatory information.

The goal of the Bayesian decoder is not to predict the behavior of the animal in real time.

It uses temporal information (between 3 to 0.5 seconds) relative to the time of takeo↵ in

order to filter the data. However, the real-time decoder does not have access to this temporal

information. The main objective of the Bayesian decoder was to prove the existence of

predictive information in the place cells.
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It is noteworthy that the general position and orientation of the animal head were visually

comparable during preparation to jump or ditch. However, by using the minute di↵erences

between the position and orientation, the behavioral decoder was able to show that there are

significant di↵erences in the preparatory behavior that can be used to predict the decision

of the rat. So, it is not yet clear if the neural information can predict decisions before the

behavioral indicators or vice versa. As mentioned before, increasing the number of place

cells enhances the accuracy of the neural decoder. Similarly, using other behavioral metrics,

such as body posture, might also increase the accuracy of the behavioral decoder.

Lastly, this chapter’s results provide a powerful argument for the predictivity of place

cells. Studies have shown some neural mechanisms in the hippocampus of rats, such as

replay and preplay, to use their cognitive map to predict future behaviors based on past

experiences [84]. The prospective encoding of place cells presented in this chapter could

also be a mechanism involved in decision-making processes, potentially contributing to the

planning of 3D trajectories and predicting future actions.
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Conclusion and Future Directions

This dissertation presents a behavioral and neurophysiological study of rats performing

complex locomotor behaviors, namely jumping and ditching. The research explored how pre-

vious choices of the animals influenced their current decision making and examined whether

head posture or behaviors such as head bobbing could predict subsequent actions of the

animals. It also examined the correlation between hippocampal theta rhythm frequency

and speed during di↵erent kinematic phases of jumping. Furthermore, this work shed new

light on the dynamic role of place cells in encoding trajectories associated with jumping

and ditching. The hippocampus not only encoded these trajectories di↵erently but also

contained predictive information about the animal’s decision, which could be decoded to

predict its behavior. Overall, these findings deepen our understanding of the intricate role

of the hippocampus during complex locomotor behaviors and lay the groundwork for future

investigations in this domain.
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7.1 Summary of Key Findings

Building upon existing literature [159, 160], this study rea�rmed the presence of a hys-

teresis e↵ect during decision-making tasks in a novel context. Animals jumped longer dis-

tances when the gap length increased compared to when it decreased. The history of decisions

influenced the current decision of the animal. This finding o↵ers insight into the decision-

making processes in animals based on their judgments. Perceptual judgments originate from

both sensory experiences and the cognitive interpretation of those experiences [161]. The

hysteresis e↵ect for rats before jumping and ditching seems more of a cognitive e↵ect, sug-

gesting that prior experiences can influence subsequent actions and decisions, potentially as

a safety mechanism or an adaptive strategy in assessing environmental challenges.

Furthermore, the behavior of the animals at the decision point was di↵erent before jump-

ing versus ditching. Specifically, the frequency of head-bobbing was significantly higher be-

fore jumping than ditching. It is important to mention that the animals moved their bodies

as well as their heads during head bobbing. Therefore, head and body movement was either

a muscle preparation for the impending leap, a mechanism to estimate the distance of the

gap (see Section 4.1.3), or a combination of both. In any event, the stakes were higher

for jumping, so the higher head bobbing was in line with the expectation. Moreover, the

nuanced di↵erences in the head posture during the preparation time were enough such that

the Bayesian decoder could predict the animal’s decision significantly better than chance. It

indicates that the animal showed a distinct head posture and probably corresponding body

posture before jumping and ditching.

Another finding is the consistent relationship between theta frequency and speed, which
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persisted even during the aerial phase of the jump. While such a correlation for running

animals has been observed [142], it is the first time that this correlation is documented

when the movement of its limbs does not control the speed of the animal during a voluntary

movement. This suggests that the correlation between the frequency of the theta rhythm and

speed is not due to the movements of limbs of the animals when running on the ground. This

implies that the interplay between the theta rhythm frequency, an internal brain signal, and

the animal’s speed, an external kinematic variable, is not solely contingent on the animal’s

limb movements. So, even though the animals could not fully control their speed during the

aerial phase, the frequency of their theta rhythms still correlated with their body speeds.

An intriguing observation emerged when examining theta frequency during various phases

of jumping. While theta frequency displayed a correlation with speed in several kinematic

phases of jumping, such as running, landing, and even the aerial phase, a unique pattern

was observed during takeo↵ (specifically, within the 100-150 ms time window). During this

phase, the theta frequency remained nearly constant, close to its maximum frequency. This

behavior suggests that during the preparation phase, marked by noticeable head and body

movements, the animal might increase its theta frequency in anticipation of achieving peak

speed during the subsequent aerial phase. It is important to note that this discovery is

unprecedented in existing literature.

Shifting the focus to place cells, they demonstrated the ability to change their firing rates

to encode information during complex locomotor tasks, di↵erentiating between jumping and

ditching trajectories. This splitter-like phenomenon was similar to previous studies [92]

but happened in a completely novel context. The distinct retrospective encoding of the

same environment was not due to external cues or reward contingencies but because of the
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decisions of the animal to choose di↵erent 3D trajectories based on the previous experiences

and its assessment of the current gap.

Lastly, the place cell activity exhibited predictive information at the decision point before

the initiation of jumping and ditching. This predictive aspect of place cells presents an

interesting facet of their function and is in line with previous research on the prediction nature

of the hippocampus in di↵erent time scales [162]. The experimenter did not enforce the

decisions of the animals by external cues or reward contingencies. In titration experiments,

adjustments to the gap length, based on the animal’s last decision, enhanced decision making

and reduced habitual behavior.

7.2 Implications of the Findings

The findings of this dissertation enrich our understanding of spatial navigation. By

shedding light on the encoding of place cells during complex locomotor behaviors, this study

o↵ers a fresh perspective on neural mechanisms underpinning animal navigation. These

implications can provide deeper insights into the field of neuroscience.

Theta rhythm is essential in encoding spatiotemporal information during navigational

tasks [163]. This thesis contributes to the previous works by showing the correlation be-

tween theta frequency and speed during the aerial phase of the jump. This suggests a

deeper linkage between the theta rhythm frequency and speed beyond just the locomotion

mechanics. Furthermore, this research revealed that theta frequency was almost constant

during a large range of speeds (from 10 m/s up to 400 m/s) during the takeo↵ time (for

about 100-150 ms). This implies that theta rhythm increased in anticipation of peak speed
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during a jump, indicative of an internal model that predicts animal speed based on planned

tasks. Should future studies validate these findings, it would underscore the role of the theta

rhythm as an independent mechanism that adjusts based on predictions of imminent actions.

Splitter cells have been studied in spatial tasks on planar mazes, di↵erentiating between

trajectories based on previous, current, or future behaviors [23]. This thesis expands on

that and shows such splitter-like phenomena exist even when animals navigate through 3D

trajectories using complex locomotor tasks. Previous works did not distinguish between

the encoding of 3D space and the 2D projection of the animal onto the experiment rig.

Animals in previous studies navigated on complex 3D surfaces, such as the surface of a 3D

lattice [64] or the surface of inclined planes [139]. However, their navigation is restricted to

the surface of the experiment rig. They are not navigating two distinct 3D paths that project

the same trajectory onto the surface of the experiment rig. This dissertation shows such a

novel phenomenon. This experiment paradigm, where animals traverse a gap by jumping or

ditching, is distinctive because both trajectories have a similar projection onto the surface

of the experiment apparatus. This implies that the place cells of rats encode 3D space and

not 2D surfaces.

Robots inspired by biological systems utilize jumping mechanisms to address the problem

of navigation through challenging terrains [32]. Moreover, algorithms inspired by the cogni-

tive process in the brain of animals are used to control the navigation and decision making

of mobile robots [164]. Two examples of such neuro-inspired algorithms include RatSLAM,

which uses models of mapping by place cells [51], and EM-SOL, which uses models of episodic

memory-based self-organizing learning [165]. Bioinspired algorithms get updated by getting

more insight from animal studies. For instance, NeuroSLAM is the modified version of Rat-
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SLAM for 3D environments [166] and was inspired by the models for 3D place cells and grid

cells.

This dissertation provides new insight by demonstrating di↵erent hippocampal encodings

during distinct behavioral choices of the animal. For example, a bioinspired SLAM algorithm

can create multiple maps of the same environment based on the behavior of the robot, the

state of the environment, or the task at hand and search for the optimal path within the

state-based maps.

The results illuminate how spatial and event-related information is encoded in the brain.

This expands our current understanding and opens up new possibilities for exploring cog-

nitive processes in animals and, potentially, understanding the building blocks of cognition,

such as memory and decision making in humans.

7.3 Potential Future Research Directions

Although many animals use their high-level cognition for navigation, most mobile robots

do not have high-level cognitive control. By probing and modeling the biological algorithms,

we can find new strategies for the control of robots, especially during navigational tasks.

Based on retrospective or prospective information, there is an opportunity to develop the

techniques that animals use, such as history-dependency and di↵erential spatiotemporal

encoding, for future robots.

One potential avenue for future research is investigating the biomechanical aspects of

jumping and ditching. For example, the study of takeo↵ kinematics (e.g., angle, velocity,

acceleration) and kinetics (ground reaction forces, energy) of takeo↵ and landing during long-
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distance jumps1 or the force analysis when animals pulling up from the bottom of deep gaps.

Additionally, researchers can inspect the role of tails in stabilizing animal motion. Ongoing

research studies the e↵ect of tail usage in successful maneuvers, especially jumping out of

the ditch [167]. Finally, energy calculations can help estimate the energetic costs associated

with jumping and ditching at di↵erent lengths and depths. Energy can be used to find a

mathematical model for decision making based on the cost function.

Exploring the neural dynamics underlying complex locomotor tasks would benefit from

simultaneous recordings across multiple brain regions. For instance, understanding the rela-

tionship between the motor cortex and the hippocampus necessitates simultaneous recording

of these areas. This is crucial as the communication and coordination of these regions are

essential for both the planning and execution of these complex locomotor tasks. Further-

more, collecting data from other important regions, like the prefrontal cortex—responsible

for decision-making and reward evaluation—and the posterior parietal cortex, integral to

regulating head and body posture, demonstrates a comprehensive picture. It is worth men-

tioning that preliminary data has been collected during this research for the posterior parietal

cortex.

As revealed by this research, the predictive capacity of place cell activity opens up ex-

citing possibilities for future investigations. Future studies could probe deeper into how this

predictive encoding interacts with other cognitive processes, such as decision making and

memory, or how these predictive properties could vary under di↵erent behavioral tasks or

trajectories. One example of a potential study could be investigating whether the predictive

encoding remains consistent by introducing a middle platform as a third option for the ani-

1Jumps more than 60 cm.
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mal. Another example is a sudden increase in the gap length when the animal has initiated

a jump to see how the hippocampal firings respond when the animal forcibly changes its

mind on the fly to land at the bottom of the ditch instead of the landing pad at the other

side of the gap.

Another fascinating aspect is looking at the problem from the perspective of neuroe-

conomics. The multidisciplinary field of neuroeconomics studies the intersection of neuro-

science, economics, and psychology to explore the neural mechanisms underlying decision-

making processes [168]. It explores the neurobiological basis of value-based decision making

in Pavlovian, habitual, and goal-directed categories [169]. By providing external cues before

the decision point or by changing reward contingencies, one can study the behavior of the

animal or the hippocampal activity during decision making or reward consumption.

As suggested in the previous section, a neuro-inspired algorithm for mobile robots can

be developed to use multiple maps for an environment based on the state of the robot or the

task at hand. During challenging times, the flexibility to switch between these maps could

spark innovation. It can be seen as a bifurcation in the topological maps that happens at

times of necessity at some cost. This is particularly evident when the regular strategy is

ine↵ective, especially in situations where failure carries significant consequences.

Finally, the experiment paradigm in this dissertation demonstrated a correlation between

trajectories and behavioral choices within the complex navigational tasks. As illustrated in

Figure 1.1, when subjects opt to jump from point A to B or ditch via intermediary point

C , they choose both the action and the trajectory. In other words, the action of jumping

happens at trajectory A - B , and the action of ditching happens at trajectory A - C - B .

Consequently, it remains ambiguous whether the splitter-like phenomena happen because
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animals navigate between points A and B by di↵erent actions or 3D trajectories. Devising

experimental paradigms that evaluate each factor independently could further illuminate the

encoding capacities of place cells.

7.4 Final Remarks

This dissertation presents an exploration of the intricate dynamics of rat behavior during

complex locomotor tasks alongside a deep analysis of the underlying neurophysiological mech-

anisms. The findings illustrate how prior experiences shape the decision-making processes

in rats and how seemingly minor behaviors, such as head-bobbing or postural adjustments,

carry significant predictive value for their impending actions.

The multifaceted relationship between hippocampal theta rhythm and kinematic aspects

of movement, especially during aerial phases of jumping, adds depth to the existing knowl-

edge on the interplay between hippocampal theta rhythm and behavior. Through this re-

search, it becomes evident that the brain does not merely operate as a passive decoder of

sensory experiences. Instead, it acts as an anticipatory, predictive entity that fine-tunes its

theta rhythm in preparation for dynamic challenges.

One of the important takeaways from this study is the splitter-like encoding of place

cells. The adaptability with which these cells adjust their firing rates, encoding distinct

trajectories for di↵erent actions, demonstrates the flexibility of the neural systems guiding

spatial navigation. Moreover, the predictive encoding of these cells at decision points further

highlights the diverse functionalities of the hippocampus.

While this dissertation has shed light on numerous facets of rat behavior and its neu-
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rophysiological mechanisms, many questions remain unanswered. For instance, how can

robots, inspired by these cognitive strategies, better navigate challenging terrains? What

biomechanical intricacies influence the rats’ impressive jumps? How does predictive encod-

ing integrate with other cognitive processes? These avenues, among others, present exciting

opportunities for further exploration and research.

In conclusion, this dissertation emphasizes the significance of studying animal behavior

in novel environments and the neurophysiological processes during complex but natural loco-

motor behaviors. Much like the rats’ jumps, every leap in knowledge is built on preparation,

anticipation, and the pursuit of the unknown. The insights obtained from this research

not only contribute to the field of neuroscience but also open doors to new possibilities for

bioinspired strategies in robotics.
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Appendix A

Data Acquisition and Analysis

A.1 Comparison of Data Acquisition Devices

For an objective assessment of neural data acquisition devices, it is essential to evaluate

specific attributes, performance metrics, and design elements. Table A.1 provides a specifi-

cation comparison of several neurophysiological devices. It was utilized for the selection of

an appropriate data acquisition device for this research.

Neuropixels 2.0 was characterized by its lightweight architecture. This was especially

significant as it reduced the potential physical limitation for the subjects, thereby preserving

the integrity of natural behaviors like head-bobbing for this study. Moreover, the real-time

monitoring capability of the probe enhanced the ability to observe and listen to neural

activity during the experiment, ensuring instantaneous data validation and adjustments

where necessary. Its low-profile design minimized unintended head bumps during complex

locomotor tasks in this study.
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A.2 Extracting Phase and Amplitude of a sig-

nal using Hilbert Transform

The Hilbert transform, denoted H[x(t)] for a real-valued function x(t), is defined as

H[x(t)] =
1

⇡
P.V.

Z 1

�1

x(u)

t� u
du (A.1)

where P.V. is the Cauchy principal value. The analytic signal xa(t) is then given by

xa(t) = x(t) + iH[x(t)] (A.2)

where i is the imaginary number. After filtering raw signals, the Hilbert transform was

applied to the theta signal to create the analytic signal using the following MATLAB code.

% Butterworth Filter
d = designfilt(‘bandpassiir’,‘FilterOrder’,2, ...

‘HalfPowerFrequency1’,6,‘HalfPowerFrequency2’,12, ...
‘SampleRate’,Fs);

filtered_signal = filtfilt(d, raw_signal);

% Hilbert Transform
analytic_signal = hilbert(filtered_signal);

% Compute the amplitude and phase
amplitude = abs(analytic_signal);
phase = angle(analytic_signal);

By applying the Hilbert transform to the theta signal and forming the analytic signal, it

became possible to extract the instantaneous phase and amplitude of the theta rhythm.
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Bayesian Decoder

B.1 Performance Metrics

This section explains ‘accuracy’ and ‘precision’ as statistical measures used to evaluate

the performance of the Bayesian decoder. Accuracy shows the overall correctness of all pre-

dictions, while precision evaluates the quality of the most confident predictions. A balance

between the two is crucial to ensure both a high rate of correct predictions and the reliability

of confident predictions, leading to a more e�cient and reliable Bayesian decoding process.

In this dissertation, the primary objective is to demonstrate the presence of predictive infor-

mation within hippocampal place cells. Therefore, the emphasis is on measuring accuracy, as

it provides a su�cient assessment of the performance of the decoder for the specific research

goal.
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B.1.1 Accuracy

Accuracy is a general measure of the correctness of the decoder and can be expressed

with the following equation:

Accuracy =
TP + TN

P +N
(B.1)

where TP (true positives) is the number of correct predictions that are positive, TN (true

negatives) is the number of correct predictions that are negative, P is the total number of

actual positives, N is the total number of actual negatives. Accuracy, therefore, measures

the proportion of total true predictions (both positive and negative) among all cases.

B.1.2 Precision

Precision is a measure of the exactness or quality of the decoder and can be expressed

with the following equation:

Precision =
TP

TP + FP
(B.2)

where TP (true positives) and FP (false positives) are defined as before. Precision, therefore,

measures the proportion of true positive predictions among all positive predictions.

B.2 Pseudocode for the Bayesian Decoder

The Algorithm 1, Bayesian Decoder for Neural Analysis, is designed to process and

analyze data from animal behavioral experiments. The decoder loads processed data, sets

various parameters, and calculates the ratio of spike count to time count for each cluster and
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lap. Subsequently, it performs multiple iterations where it splits the data into training and

validation sets and calculates prior probabilities, mean, and covariance for each ‘jump’ and

‘ditch’ category. It further computes likelihood and posterior probabilities, makes predictions

for the validation set, and calculates and plots accuracy and precision metrics. The process

concludes with the performance of z-tests and the calculation of p-values and other metrics,

providing a thorough statistical analysis of the animal behavioral responses.

Algorithm 1 Bayesian Decoder for Neural Analysis
1: Load processed data from processed data.mat
2: Specify direction (left or right)
3: Assign field numbers for each case based on rat number and direction
4: Assign cluster numbers for each field
5: Set time range
6: Initialize empty labels array and lap numbers array
7: for each cluster do
8: for each lap do
9: Calculate index based on time, position, and direction of the cluster
10: Count spikes
11: Calculate index based on time, position, and direction of the lap
12: Count time
13: end for
14: Store ratio of spike count to time count in data
15: end for
16: Initialize accuracy and precision arrays for both null and alternative hypothesis
17: for each iteration in num iter do
18: Split data into training and validation sets
19: Calculate prior probabilities for ‘jump’ and ‘ditch’ categories
20: Calculate mean and covariance of data for each category
21: Define functions for calculating likelihood and posterior probability
22: Make predictions for the validation set based on the highest posterior probability
23: Calculate accuracy and precision metrics
24: end for
25: Plot and save histograms of accuracy and precision for both ‘jump’ and ‘ditch’ categories
26: Perform z-tests and calculate p-values and other metrics
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Statistical Concepts

C.1 P-value

The p-value is a critical statistical measure used to determine the significance of outcomes

in experimental studies. Essentially, the p-value quantifies the likelihood of obtaining the

observed data in a study under the assumption that the null hypothesis is true [170]. It serves

as a tool in hypothesis testing, involving two fundamental hypotheses: the null hypothesis

(H0) and the alternative hypothesis (H1). The computation of the p-value is based on the

test statistic and the statistical model that represents the data’s likelihood.

The test statistic is derived from the sample data and forms the basis for deciding whether

to reject or uphold the null hypothesis. Examples of test statistics include the z-score, the

t-score, and the Rayleigh Z statistic. A statistical model, like the normal distribution or

uniform distribution, is a mathematical representation used to describe the likelihood of

di↵erent outcomes in a dataset based on the assumed underlying structure and relationships
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among the variables. In hypothesis testing, a small p-value (typically  0.05) provides

strong evidence against the null hypothesis, leading to its rejection. Conversely, a large p-

value (> 0.05) provides weak evidence against the null hypothesis, and it suggests that the

null hypothesis should not be rejected.

C.2 Z-test

The z-test is a statistical method for hypothesis testing that employs the standard normal

distribution to assess whether the di↵erence between the sample mean and the population

mean is significant [171]. When we have a sample and know the population standard devia-

tion (�), a z-test is applicable.

Given a sample size of n, sample mean x̄, population mean µ, and population standard

deviation �, the z-score is calculated using the formula:

z =
x̄� µ

�/
p
n
. (C.1)

Once we have the z-score, we can use the standard normal distribution to find the corre-

sponding p-value. A smaller p-value indicates stronger evidence against the null hypothesis.

The z-test is suitable when data is approximately normally distributed, and the popula-

tion standard deviation is known. For instance, it can be used to determine whether a given

sample could plausibly come from a population with a specific mean.
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The formula to calculate the p-value in a one-tailed z-test is:

P (Z � z) = 1� �(z), (C.2)

where Z is a standard normal random variable, z is the observed test statistic, and �

represents the cumulative distribution function of Z.

C.3 T-test

The t-test is used to ascertain whether there is a significant di↵erence between the means

of two groups [172]. Unlike the z-test, the t-test is applicable when the population standard

deviation is unknown, and it estimates the standard deviation from the sample itself.

C.3.1 One-Sample T-test

A one-sample t-test is employed to compare a sample mean with a known population

mean. Given a sample size of n, sample mean x̄, population mean µ, and sample standard

deviation s, the t-score is calculated using the formula:

t =
x̄� µ

s/
p
n
. (C.3)

The degrees of freedom, in this case, are n� 1. After calculating the t-score, we refer to

the t-distribution table to find the corresponding p-value.
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C.3.2 Two-Sample T-test

Two-sample t-tests are employed when comparing the means of two independent groups

to determine whether they are significantly di↵erent [173]. There are two types of two-sample

t-tests: Student’s t-test and Welch’s t-test.

C.3.2.1 Student’s T-test

Student’s t-test assumes that the two groups have equal variances. Given two groups

with sample sizes n1 and n2, sample means x̄1 and x̄2, and pooled sample standard deviation

sp, the t-score is computed as:

t =
x̄1 � x̄2

sp ·
p
1/n1 + 1/n2

. (C.4)

where sp is the pooled standard deviation, calculated as:

sp =

s
(n1 � 1)s21 + (n2 � 1)s22

n1 + n2 � 2
. (C.5)

C.3.2.2 Welch’s T-test

Unlike Student’s t-test, Welch’s t-test doesn’t assume equal variances, making it more

reliable when this assumption is not met. Given two groups with sample sizes n1 and n2,

sample means x̄1 and x̄2, and sample standard deviations s1 and s2, the t-score is computed

as:

t =
x̄1 � x̄2p

s
2
1/n1 + s

2
2/n2

. (C.6)
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C.4 F-test for Equality of Variances

The F-test is a statistical analysis based on the F-distribution [174]. Fisher’s F-test,

known as the test for equality of variances, assesses whether the variances of two groups

are equal. Like previous tests, this also requires the data to be normally distributed. For

two groups with sample sizes n1 and n2, and sample variances s
2
1 and s

2
2, the F-statistic is

calculated as:

F =
s
2
1

s
2
2

. (C.7)

The subsequent p-value is determined using the cumulative distribution function of the

F-distribution.

C.5 The Mann-Whitney U-test

The Mann-Whitney U-test (aka the Wilcoxon rank-sum test) is a non-parametric test

designed to evaluate whether two independent samples come from identical distributions.

The test ranks values from both samples together, aiming to determine if one group tends

to have higher ranks than the other. The test statistic, U , is derived from the rank sums

of the two samples. Specifically, for samples of sizes n1 and n2, with rank sums R1 and R2

respectively, the U-values are computed as

U1 = n1n2 +
n1(n1 + 1)

2
�R1 (C.8)
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and

U2 = n1n2 +
n2(n2 + 1)

2
�R2, (C.9)

with the smaller value between U1 and U2 being used as the test statistic. A significantly

small U value indicates a di↵erence between the distributions of the two samples. This test

is advantageous when the distribution of data is not normal.

C.6 Cohen’s d

Cohen’s d is an e↵ect size measure that indicates the standardized di↵erence between

two means [175]. It’s often used alongside a t-test to provide a comprehensive understanding

of results.

Cohen’s d is calculated as:

d =
x̄1 � x̄2

sp
, (C.10)

where x̄1 and x̄2 are the means of the two groups, and sp is the pooled standard deviation

(calculated as in Student’s t-test).

A larger absolute value of Cohen’s d indicates a greater di↵erence between the two groups.

Generally, a Cohen’s d of 0.8 is considered a ‘large’ e↵ect size. However, interpretations vary

depending on context [176].
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C.7 The Rayleigh Test

The Rayleigh test assesses circular data’s uniformity, making it e↵ective for identifying

unimodal distributions around a specific angle [177]. Given a sample of n data points on a

circle, with the j
th data point represented as a complex number zj = e

i✓j (where ✓j is the

angle of the point), the mean resultant length (R̄) is calculated as:

R̄ =

�����
1

n

nX

j=1

e
i✓j

����� . (C.11)

The Rayleigh statistic (Z) is then computed as:

Z = nR̄
2
. (C.12)

Using the Rayleigh statistic, a p-value can be derived to test the null hypothesis of

uniformity (data evenly distributed around the circle). The p-value can be found using the

formula:

p = e
�Z

✓
1 +

2Z � Z
2

4n
� 24Z � 132Z2 + 76Z3 � 9Z4

288n2

◆
. (C.13)

If the p-value is below a significance level (0.05), the null hypothesis is rejected, indicating

that the data isn’t uniformly distributed around the circle.
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[49] M. J. Matarić, “Navigating with a rat brain: A neurobiologically-inspired model for

robot spatial representation,” in From Animals to Animats: Proceedings of the First

International Conference on Simulation of Adaptive Behavior, J.-A. Meyer and S. W.

Wilson, Eds., The MIT Press, 1991, pp. 169–175, isbn: 9780262256674. doi: 10.

7551/mitpress/3115.003.0023.

[50] D. Sheynikhovich, R. Chavarriaga, T. Strösslin, and W. Gerstner, “Spatial represen-

tation and navigation in a bio-inspired robot,” in Biomimetic Neural Learning for

Intelligent Robots: Intelligent Systems, Cognitive Robotics, and Neuroscience, Berlin,

Heidelberg: Springer, 2005, pp. 245–264. doi: 10.1007/11521082_15.

[51] M. J. Milford, G. F. Wyeth, and D. Prasser, “RatSLAM: A hippocampal model

for simultaneous localization and mapping,” in IEEE International Conference on

Robotics and Automation, 2004. Proceedings. ICRA’04. 2004, IEEE, vol. 1, 2004,

pp. 403–408. doi: 10.1109/ROBOT.2004.1307183.

[52] E. C. Tolman, “Cognitive maps in rats and men.,” Psychological Review, vol. 55,

no. 4, p. 189, 1948. doi: 10.1037/h0061626.

150

https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/NABIC.2009.5393690
https://doi.org/10.7551/mitpress/3115.003.0023
https://doi.org/10.7551/mitpress/3115.003.0023
https://doi.org/10.1007/11521082_15
https://doi.org/10.1109/ROBOT.2004.1307183
https://doi.org/10.1037/h0061626


Bibliography

[53] J. O’Keefe and J. Dostrovsky, “The hippocampus as a spatial map: Preliminary

evidence from unit activity in the freely-moving rat.,” Brain Research, 1971. doi:

10.1016/0006-8993(71)90358-1.

[54] J. O’Keefe, “Place units in the hippocampus of the freely moving rat,” Experimental

Neurology, vol. 51, no. 1, pp. 78–109, 1976. doi: 10.1016/0014-4886(76)90055-8.

[55] J. O’Keefe and L. Nadel, The Hippocampus as a Cognitive Map. Clarendon Press,

1978, isbn: 9780198572060. [Online]. Available: https://discovery.ucl.ac.uk/

id/eprint/10103569/1/HCMComplete.pdf.

[56] R. G. Morris, “Spatial localization does not require the presence of local cues,” Learn-

ing and Motivation, vol. 12, no. 2, pp. 239–260, 1981. doi: 10.1016/0023-9690(81)

90020-5.

[57] B. L. McNaughton, C. A. Barnes, and J. O’Keefe, “The contributions of position, di-

rection, and velocity to single unit activity in the hippocampus of freely-moving rats,”

Experimental Brain Research, vol. 52, pp. 41–49, 1983. doi: 10.1007/BF00237147.

[58] J. O’Keefe and N. Burgess, “Geometric determinants of the place fields of hippocam-

pal neurons,” Nature, vol. 381, no. 6581, pp. 425–428, 1996. doi: 10.1038/381425a0.

[59] R. P. Jayakumar, M. S. Madhav, F. Savelli, H. T. Blair, N. J. Cowan, and J. J.

Knierim, “Recalibration of path integration in hippocampal place cells,” Nature,

vol. 566, no. 45, pp. 533–537, 2019. doi: 10.1038/s41586-019-0939-3.

[60] F. Savelli and J. J. Knierim, “Coming up: In search of the vertical dimension in the

brain,” Nature Neuroscience, vol. 14, no. 9, pp. 1102–1103, 2011. doi: 10.1038/nn.

2913.

151

https://doi.org/10.1016/0006-8993(71)90358-1
https://doi.org/10.1016/0014-4886(76)90055-8
https://discovery.ucl.ac.uk/id/eprint/10103569/1/HCMComplete.pdf
https://discovery.ucl.ac.uk/id/eprint/10103569/1/HCMComplete.pdf
https://doi.org/10.1016/0023-9690(81)90020-5
https://doi.org/10.1016/0023-9690(81)90020-5
https://doi.org/10.1007/BF00237147
https://doi.org/10.1038/381425a0
https://doi.org/10.1038/s41586-019-0939-3
https://doi.org/10.1038/nn.2913
https://doi.org/10.1038/nn.2913


Bibliography

[61] B. S. Porter, R. Schmidt, and D. K. Bilkey, “Hippocampal place cell encoding of

sloping terrain,” Hippocampus, vol. 28, no. 11, pp. 767–782, 2018. doi: 10.1002/

hipo.22966.

[62] R. Hayman, M. A. Verriotis, A. Jovalekic, A. A. Fenton, and K. J. Je↵ery, “Anisotropic

encoding of three-dimensional space by place cells and grid cells,” Nature Neuro-

science, vol. 14, no. 9, pp. 1182–1188, 2011. doi: 10.1038/nn.2892.

[63] M. M. Yartsev and N. Ulanovsky, “Representation of three-dimensional space in the

hippocampus of flying bats,” Science, vol. 340, no. 6130, pp. 367–372, 2013. doi:

10.1126/science.1235338.

[64] R. M. Grieves, S. Jedidi-Ayoub, K. Mishchanchuk, A. Liu, S. Renaudineau, and K. J.

Je↵ery, “The place-cell representation of volumetric space in rats,” Nature Commu-

nications, vol. 11, no. 1, p. 789, 2020. doi: 10.1038/s41467-020-14611-7.

[65] D. Aronov, R. Nevers, and D. W. Tank, “Mapping of a non-spatial dimension by the

hippocampal–entorhinal circuit,” Nature, vol. 543, no. 7647, pp. 719–722, 2017. doi:

10.1038/nature21692.

[66] H. Eichenbaum, “Time cells in the hippocampus: A new dimension for mapping

memories,” Nature Reviews Neuroscience, vol. 15, no. 11, pp. 732–744, 2014. doi:

10.1038/nrn3827.

[67] Y. Sakurai, “Coding of auditory temporal and pitch information by hippocampal

individual cells and cell assemblies in the rat,” Neuroscience, vol. 115, no. 4, pp. 1153–

1163, 2002. doi: 10.1016/S0306-4522(02)00509-2.

152

https://doi.org/10.1002/hipo.22966
https://doi.org/10.1002/hipo.22966
https://doi.org/10.1038/nn.2892
https://doi.org/10.1126/science.1235338
https://doi.org/10.1038/s41467-020-14611-7
https://doi.org/10.1038/nature21692
https://doi.org/10.1038/nrn3827
https://doi.org/10.1016/S0306-4522(02)00509-2


Bibliography

[68] H. Eichenbaum, M. Kuperstein, A. Fagan, and J. Nagode, “Cue-sampling and

goal-approach correlates of hippocampal unit activity in rats performing an odor-

discrimination task,” Journal of Neuroscience, vol. 7, no. 3, pp. 716–732, 1987. doi:

10.1523/JNEUROSCI.07-03-00716.1987.

[69] J. Ferbinteanu and M. L. Shapiro, “Prospective and retrospective memory coding in

the hippocampus,” Neuron, vol. 40, no. 6, pp. 1227–1239, 2003. doi: 10.1016/S0896-

6273(03)00752-9.

[70] W. B. Scoville and B. Milner, “Loss of recent memory after bilateral hippocampal

lesions,” Journal of Neurology, Neurosurgery, and Psychiatry, vol. 20, no. 1, p. 11,

1957. doi: 10.1136/jnnp.20.1.11.

[71] B. Kaada, E. W. Rasmussen, and O. Kveim, “E↵ects of hippocampal lesions on maze

learning and retention in rats,” Experimental Neurology, vol. 3, no. 4, pp. 333–355,

1961. doi: 10.1016/0014-4886(61)90009-7.

[72] C. Pavlides and J. Winson, “Influences of hippocampal place cell firing in the awake

state on the activity of these cells during subsequent sleep episodes,” Journal of

Neuroscience, vol. 9, no. 8, pp. 2907–2918, 1989. doi: 10.1523/JNEUROSCI.09-08-

02907.1989.

[73] M. A. Wilson and B. L. McNaughton, “Reactivation of hippocampal ensemble mem-

ories during sleep,” Science, vol. 265, no. 5172, pp. 676–679, 1994. doi: 10.1126/

science.8036517.

153

https://doi.org/10.1523/JNEUROSCI.07-03-00716.1987
https://doi.org/10.1016/S0896-6273(03)00752-9
https://doi.org/10.1016/S0896-6273(03)00752-9
https://doi.org/10.1136/jnnp.20.1.11
https://doi.org/10.1016/0014-4886(61)90009-7
https://doi.org/10.1523/JNEUROSCI.09-08-02907.1989
https://doi.org/10.1523/JNEUROSCI.09-08-02907.1989
https://doi.org/10.1126/science.8036517
https://doi.org/10.1126/science.8036517


Bibliography

[74] W. E. Skaggs and B. L. McNaughton, “Replay of neuronal firing sequences in rat

hippocampus during sleep following spatial experience,” Science, vol. 271, no. 5257,

pp. 1870–1873, 1996. doi: 10.1126/science.271.5257.1870.

[75] D. J. Foster and M. A. Wilson, “Reverse replay of behavioural sequences in hippocam-

pal place cells during the awake state,” Nature, vol. 440, no. 7084, pp. 680–683, 2006.

doi: 10.1038/nature04587.

[76] S. P. Jadhav, C. Kemere, P. W. German, and L. M. Frank, “Awake hippocampal

sharp-wave ripples support spatial memory,” Science, vol. 336, no. 6087, pp. 1454–

1458, 2012. doi: 10.1126/science.121723.

[77] N. S. Clayton and A. Dickinson, “Episodic-like memory during cache recovery by

scrub jays,” Nature, vol. 395, no. 6699, pp. 272–274, 1998. doi: 10.1038/26216.

[78] H. Eichenbaum, “Hippocampus: Cognitive processes and neural representations that

underlie declarative memory,” Neuron, vol. 44, no. 1, pp. 109–120, 2004. doi: 10.

1016/j.neuron.2004.08.028.

[79] J. D. Crystal, “Episodic-like memory in animals,” Behavioural Brain Research,

vol. 215, no. 2, pp. 235–243, 2010. doi: 10.1016/j.bbr.2010.03.005.

[80] C. Ergorul and H. Eichenbaum, “The hippocampus and memory for “what,”“where,”

and “when”,” Learning & Memory, vol. 11, no. 4, pp. 397–405, 2004. doi: 10.1101/

lm.73304.
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[153] R. Kempter, C. Leibold, G. Buzsáki, K. Diba, and R. Schmidt, “Quantifying circular–

linear associations: Hippocampal phase precession,” Journal of Neuroscience Methods,

vol. 207, no. 1, pp. 113–124, 2012. doi: 10.1016/j.jneumeth.2012.03.007.

[154] P. Berens, “Circstat: A matlab toolbox for circular statistics,” Journal of Statistical

Software, vol. 31, pp. 1–21, 2009. doi: 10.18637/jss.v031.i10.

[155] G. G. Kui, M. Krysiak, K. Banda, and H. R. Rodman, “Context dependence of

head bobs in gerbils and potential neural contributions,” Behavioural Brain Research,

vol. 418, p. 113 622, 2022. doi: 10.1016/j.bbr.2021.113622.

[156] M. L. Shapiro, H. Tanila, and H. Eichenbaum, “Cues that hippocampal place cells

encode: Dynamic and hierarchical representation of local and distal stimuli,” Hip-

pocampus, vol. 7, no. 6, pp. 624–642, 1997. doi: 10.1002/(SICI)1098-1063(1997)7:

6<624::AID-HIPO5>3.0.CO;2-E.

[157] K. M. Gothard, W. E. Skaggs, and B. L. McNaughton, “Dynamics of mismatch cor-

rection in the hippocampal ensemble code for space: Interaction between path inte-

gration and environmental cues,” Journal of Neuroscience, vol. 16, no. 24, pp. 8027–

8040, 1996. doi: 10.1523/JNEUROSCI.16-24-08027.1996.

165

https://github.com/billkarsh/SpikeGLX/releases/tag/Release_v20220101-phase30
https://github.com/billkarsh/SpikeGLX/releases/tag/Release_v20220101-phase30
https://doi.org/10.1016/S0896-6273(02)00586-X
https://doi.org/10.1016/j.jneumeth.2012.03.007
https://doi.org/10.18637/jss.v031.i10
https://doi.org/10.1016/j.bbr.2021.113622
https://doi.org/10.1523/JNEUROSCI.16-24-08027.1996


Bibliography

[158] J. J. Knierim and D. A. Hamilton, “Framing spatial cognition: Neural representations

of proximal and distal frames of reference and their roles in navigation,” Physiological

Reviews, vol. 91, no. 4, pp. 1245–1279, 2011. doi: 10.1152/physrev.00021.2010.

[159] E. Liaci, A. Fischer, H. Atmanspacher, M. Heinrichs, L. Tebartz van Elst, and J.

Kornmeier, “Positive and negative hysteresis e↵ects for the perception of geometric

and emotional ambiguities,” PLOS ONE, vol. 13, no. 9, e0202398, 2018. doi: 10.

1371/journal.pone.0202398.

[160] I. Hachen, S. Reinartz, R. Brasselet, A. Stroligo, and M. Diamond, “Dynamics of

history-dependent perceptual judgment,” Nature Communications, vol. 12, no. 1,

p. 6036, 2021. doi: 10.1038/s41467-021-26104-2.

[161] R. M. Gallagher, T. Suddendorf, and D. H. Arnold, “Confidence as a diagnostic

tool for perceptual aftere↵ects,” Scientific Reports, vol. 9, no. 1, p. 7124, 2019. doi:

10.1038/s41598-019-43170-1.

[162] W. Tang, J. D. Shin, and S. P. Jadhav, “Multiple time-scales of decision-making in

the hippocampus and prefrontal cortex,” eLife, vol. 10, e66227, 2021. doi: 10.7554/

eLife.66227.

[163] M. E. Hasselmo and C. E. Stern, “Theta rhythm and the encoding and retrieval

of space and time,” Neuroimage, vol. 85, pp. 656–666, 2014. doi: 10 . 1016 / j .

neuroimage.2013.06.022.

[164] V. A. Shim, B. Tian, M. Yuan, H. Tang, and H. Li, “Direction-driven navigation

using cognitive map for mobile robots,” in 2014 IEEE/RSJ International Conference

166

https://doi.org/10.1152/physrev.00021.2010
https://doi.org/10.1371/journal.pone.0202398
https://doi.org/10.1371/journal.pone.0202398
https://doi.org/10.1038/s41467-021-26104-2
https://doi.org/10.1038/s41598-019-43170-1
https://doi.org/10.7554/eLife.66227
https://doi.org/10.7554/eLife.66227
https://doi.org/10.1016/j.neuroimage.2013.06.022
https://doi.org/10.1016/j.neuroimage.2013.06.022


Bibliography

on Intelligent Robots and Systems, IEEE, 2014, pp. 2639–2646. doi: 10.1109/IROS.

2014.6942923.

[165] Q. Zou, M. Cong, D. Liu, and Y. Du, “A neurobiologically inspired mapping and

navigating framework for mobile robots,” Neurocomputing, vol. 460, pp. 181–194,

2021. doi: 10.1016/j.neucom.2021.07.025.

[166] F. Yu, J. Shang, Y. Hu, and M. Milford, “NeuroSLAM: A brain-inspired SLAM

system for 3D environments,” Biological Cybernetics, vol. 113, pp. 515–545, 2019.

doi: 10.1007/s00422-019-00806-9.

[167] B. Woronowicz, M. Hathiyari, S. G. Lashkari, and N. J. Cowan, “Tail-assisted climbing

in rats,” in The Society for Integrative and Comparative Biology Annual Meeting, To

be presented at the Society for Integrative and Comparative Biology Annual Meeting,

2024, Jan. 2024.

[168] P. Glimcher and E. Fehr, Neuroeconomics: Decision Making and the Brain. El-

sevier Science, 2013, isbn: 9780123914699. doi: 10 . 1016 / C2011 - 0 - 05512 - 6.

[Online]. Available: https : / / www . sciencedirect . com / book / 9780124160088 /

neuroeconomics.

[169] A. Rangel, C. Camerer, and P. R. Montague, “A framework for studying the neuro-

biology of value-based decision making,” Nature Reviews Neuroscience, vol. 9, no. 7,

pp. 545–556, 2008, issn: 1471003X. doi: 10.1038/nrn2357.

[170] R. L. Wasserstein and N. A. Lazar, “The ASA statement on p-values: Context, pro-

cess, and purpose,” The American Statistician, vol. 70, no. 2, pp. 129–133, 2016. doi:

10.1080/00031305.2016.1154108.

167

https://doi.org/10.1109/IROS.2014.6942923
https://doi.org/10.1109/IROS.2014.6942923
https://doi.org/10.1016/j.neucom.2021.07.025
https://doi.org/10.1007/s00422-019-00806-9
https://doi.org/10.1016/C2011-0-05512-6
https://www.sciencedirect.com/book/9780124160088/neuroeconomics
https://www.sciencedirect.com/book/9780124160088/neuroeconomics
https://doi.org/10.1038/nrn2357
https://doi.org/10.1080/00031305.2016.1154108


Bibliography

[171] M. Crawley, Statistics: An Introduction Using R. Wiley, 2014, isbn: 9781118941119.

[Online]. Available: https://books.google.com/books?id=KR-FBAAAQBAJ.

[172] Student, “The probable error of a mean,” Biometrika, vol. 6, no. 1, pp. 1–25, 1908.

doi: 10.2307/2331554.

[173] B. L. Welch, “The generalization of ‘Student’s’ problem when several di↵erent pop-

ulation varlances are involved,” Biometrika, vol. 34, no. 1-2, pp. 28–35, 1947. doi:

10.2307/2332510.

[174] S. C. Pearce, “Introduction to Fisher (1925) statistical methods for research work-

ers,” in Breakthroughs in Statistics: Methodology and Distribution, S. Kotz and N. L.

Johnson, Eds. New York, NY: Springer New York, 1992, ch. 5, pp. 59–65. doi: 10.

1007/978-1-4612-4380-9_5.

[175] J. Cohen, Statistical power analysis for the behavioral sciences, Second. Academic

press, 1988. doi: 10.4324/9780203771587.

[176] D. Lakens, “Calculating and reporting e↵ect sizes to facilitate cumulative science: A

practical primer for t-tests and ANOVAs,” Frontiers in Psychology, vol. 4, p. 863,

2013. doi: 10.3389/fpsyg.2013.00863.

[177] K. Mardia and P. Jupp, Directional Statistics (Wiley Series in Probability and Statis-

tics). Wiley, 2009, isbn: 9780470317815.

168

https://books.google.com/books?id=KR-FBAAAQBAJ
https://doi.org/10.2307/2331554
https://doi.org/10.2307/2332510
https://doi.org/10.1007/978-1-4612-4380-9_5
https://doi.org/10.1007/978-1-4612-4380-9_5
https://doi.org/10.4324/9780203771587
https://doi.org/10.3389/fpsyg.2013.00863


Shahin G. Lashkari

Summary of Qualifications

• 6+ years of experience in programming languages such as C++, Python, MATLAB, and Simulink for data
processing, signal processing, and modeling.
• Collaboration with interdisciplinary teams of graduate students in neuroscience and engineering to record
and analyze neurophysiological data inside an immersive virtual reality environment.
• Strong background in mathematical analysis, modeling, and control, with a focus on developing innovative
and bio-inspired approaches for autonomous systems.

Education

- Ph.D. in Mechanical Engineering, Johns Hopkins University 2023
- M.S. in Electrical Engineering, Clemson University 2017
- M.S. in Mechanical Engineering, Sharif University of Technology 2011
- B.S. in Mechanical Engineering, Amirkabir University of Technology 2008

Skills

- Programming: C/C++ (C++14, STL, OpenCV), Bash, Git, HTML.
- Data Science: Python (NumPy, Pandas, Matplotlib, SciPy, scikit-learn), MATLAB, Jupyter.
- CAD, Prototyping, and HW Control: SolidWorks, AutoCAD, LabVIEW, Simulink, LTspice.
- Robotics: ROS, Computer Vision, Optimization, Sensor Fusion, Embedded Systems, APIs.
- Control Systems: PID, Optimal, Adaptive, and Model Predictive Control, State Estimation.

Experiences

B Robotics and Control Internship, Johnson and Johnson 2022

• Developed an object-oriented Python library using nonlinear optimization to achieve kinematic
calibration of surgical robots. The library, now incorporated into the production line, has
successfully reduced calibration error by 50%.

• Developed modules for extracting DH parameters from URDF files and performed frame
calibration for base and end-e↵ector fixtures using least squares optimization.

B Research Assistant, Laboratory for Computational Sensing and Robotics (LCSR),
Johns Hopkins University

2018-2023

• Collaborated with a team of engineers and neuroscientists to design and implement a low-
latency virtual reality (VR) dome to study hippocampal and cortical neural recordings of animals
during immersive VR experiences.

• Led a multidisciplinary team to design and construct an embedded experimental system for
studying animal biomechanics and neurophysiology during gap crossing. Behavioral correlates
of the neural data were analyzed using the force and 3D pose data.

• Developed a robust and accurate real-time tracking system using the OpenCV library in C++,
complemented by a Kalman filter for the fusion of tracking data and IMU data for enhanced
precision and reliability.

• Conducted comprehensive data analysis using MATLAB and Python, employing Bayesian and
SVM classifiers, to model and decode neural and behavioral information and predict animals’
decisions with accuracy of 75% ± 10%.

• Utilized a combination of C++ and Python for the development of ROS nodes, and
incorporated APIs for communication with machine vision cameras, DAQ, and motor drivers.

169



B Teaching Assistant, Mechanical Engineering Department, Johns Hopkins University 2018-2019

• Assisted in teaching graduate courses of ”Robot Devices, Kinematics, Dynamics, and Control”
and ”Adaptive Control”, which included hands-on projects for controlling UR5 robot arms.

B Research Assistant, Biosystems Research Complex, Clemson University 2014-2017

• Implemented a sensor-based and model predictive controller for a bioreactor, utilizing finite
state machines and an adaptive state estimator for estimating oxygen uptake rate, to enhance
robust and e�cient production of recombinant proteins.

• Employed Hardware-in-the-Loop (HIL) to control the hardware using Simulink Real-Time.

B Teaching Assistant, Electrical Engineering Department, Clemson University 2014-2016

• Assisted the professors in teaching a variety of courses ranging from theoretical classes such as
”Continuous and Discrete Systems Design” and ”Modeling and Analysis of Dynamic Systems”
to hands-on labs like ”Electrical Engineering Laboratory IV.”

• Supervised and guided teams of undergraduate students in ”Senior Design” projects.

Honors and Awards

⇧ Creel Family Teaching Assistant Award 2020
⇧ Johns Hopkins University Mechanical Engineering Departmental Fellowship 2017-2018
⇧ Phi Kappa Phi Honor Society 2016

Publications

• S. G. Lashkari, B. M. Woronowicz, P. Ozel, B. Krishnan, J. J. Knierim, N. J. Cowan, Hippocampal place
cell encoding during gap-crossing behaviors, Society for Neuroscience, San Diego, California, USA, 2022.
• B. Krishnan, G. Secer, F. Savelli, S. G. Lashkari, R. P. Jayakumar, K. L. Wright, N. J. Cowan, J. J.
Knierim, Population Responses in Medial Entorhinal Cortex During Recalibration of Path Integration Gain,
Society for Neuroscience, San Diego, California, USA, 2022.
• M. S. Madhav, R. P. Jayakumar, S. G. Lashkari, F. Savelli, H. T. Blair, J. J. Knierim and N. J. Cowan,
The Dome: A virtual reality apparatus for freely locomoting rodents, J. Neurosci. Methods, 109336, 2022.
• S. G. Lashkari, M. G. Wilkinson, B. Krishnan, J. J. Knierim, and N. J. Cowan, Decision-making and path
planning for jumping rats, Dynamic Walking, Hawley, Pennsylvania, USA, 2020.
• M. S. Madhav, R. P. Jayakumar, S. G. Lashkari, F. Savelli, N. J. Cowan, and J. J. Knierim, Using
augmented reality and a control theoretic approach to characterize computation of path integration in rodents,
Society for Neuroscience, Chicago, Illinois, USA, 2019.
• R. Gro↵, S. Harcum, M. Pepper, S. G. Lashkari, M. Mayyan, Controlling E. coli cultures to the Boundary
of Oxidative and Overflow Metabolism (BOOM) using a low-latency OUR estimator, IFPAC, North Bethesda,
Maryland, USA, 2017.
• M. Hadipour, M. T. Ahmadian, S. G. Lashkari , A. Barari, Natural Frequency Improvement of a Suspended
FGM Bridge, in Proceedings of IMECE2011-63411, Denver, Colorado, USA, 2011.

Selected Coursework

Robot Operating System (ROS) Analysis of Linear Systems
Matrix Analysis Algorithms for Sensor-Based Robotics
Modern Control Engineering Intelligent Systems Modeling and Control
Kinematics and Dynamics of Robots Digital Image Processing
Advanced Kinematics in Robotics Advanced Dynamics
Optimal Control Advanced Analytical Dynamics
Optimal Estimation Adaptive Systems and Control

170


	Abstract
	Acknowledgements
	Dedication
	List of Tables
	List of Figures
	Introduction
	Background
	Research Objectives
	Significance of the Study
	Scope and Limitations
	Research Contribution
	Organization of the Dissertation
	Dissemination

	Literature Review
	Bioinspired Robotics
	Bioinspired Algorithms
	Place Cells and the Cognitive Map
	Hippocampus and Memory
	Hippocampus as a Predictive Map
	Splitter Cells
	Vicarious Trial and Error
	Hippocampal LFP and Behavior
	Theta Phase
	Behavioral Studies
	Psychometrics
	Head Bobbing

	Recording Neural Activity
	Decoding Neural Activity
	Gaps in the Literature
	Summary

	Methods
	Experimental Procedures
	Animal Subjects
	Animal Surgery
	Experimental Paradigm

	Experimental Setup
	Actuators
	Rat Cap and Marker Crown
	Cameras
	Force Sensors
	Data Acquisition and Control
	Experiment Computers

	Neurophysiological Recording Setup
	Neuropixels 2.0 Probes
	Neural Data Acquisition Hardware
	Neural Data Acquisition Software

	Data Analysis
	Animal Tracking
	Behavioral Data Analysis
	Head Bobbing Analysis
	Ground Reaction Force
	Time of Flight

	Neural Data Analysis
	Spike Sorting
	Measuring Firing Rates
	Theta Analysis
	Theta Phase Analysis
	Theta Frequency Analysis

	Development of the Bayesian Decoder


	Behavioral and Neural Correlates of Jumping and Ditching
	Behavioral Analysis
	Psychometric Function
	Hysteresis Effect
	Head bobbing

	Neural Correlates of Jumping
	Theta Phase Precession
	Theta Frequency Versus Speed
	Correlation of Theta Phase with Action
	Theta Frequency and Kinematic Phases

	Discussion

	Firing Properties of Place Cells During Complex Locomotor Behaviors
	Anchoring Frames of Reference
	Place Cell Activity During Jumping and Ditching
	Analysis of Trajectory Selectivity
	Selectivity for Jumping
	Selectivity for Ditching
	Special Cases

	Retrospective Encoding by Place Cells
	Statistical Analysis
	Discussion

	Predictive Nature of Place Cell Activity
	Prospective Encoding of Place Cells
	Differential Encoding in Similar Physical Location
	Bayesian Decoder
	Neural Bayesian Decoder
	Behavioral Bayesian Decoder

	Statistical Analysis of Bayesian Decoders
	Discussion

	Conclusion and Future Directions
	Summary of Key Findings
	Implications of the Findings
	Potential Future Research Directions
	Final Remarks

	Data Acquisition and Analysis
	Comparison of Data Acquisition Devices
	Extracting Phase and Amplitude of a signal using Hilbert Transform

	Bayesian Decoder
	Performance Metrics
	Accuracy
	Precision

	Pseudocode for the Bayesian Decoder

	Statistical Concepts
	P-value
	Z-test
	T-test
	One-Sample T-test
	Two-Sample T-test
	Student's T-test
	Welch's T-test


	F-test for Equality of Variances
	The Mann-Whitney U-test
	Cohen's d
	The Rayleigh Test

	Bibliography
	Curriculum Vitae

